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OPTIMAL GRIDS FOR ANISOTROPIC PROBLEMS
�

S. ASVADUROV
�
, V. DRUSKIN � , AND S. MOSKOW �

Abstract. Spectral convergence of optimal grids for anisotropic problems is both numerically observed and
explained. For elliptic problems, the gridding algorithm is reduced to a Stieltjes rational approximation on an interval
of a line in the complex plane instead of the real axis as in the isotropic case. We show rigorously why this occurs
for a semi-infinite and bounded interval. We then extend the gridding algorithm to hyperbolic problems on bounded
domains. For the propagative modes, the problem is reduced to a rational approximation on an interval of the
negative real semiaxis, similarly to in the isotropic case. For the wave problem we present numerical examples in
2-D anisotropic media.
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1. Introduction. The Dirichlet-to-Neumann (DtN) operator is an important tool for
many applications, such as inverse problems [19], domain decomposition [1, 18, 12], and
absorbing boundary conditions [11, 13, 15]. So, it sounds attractive to target computational
algorithms to generate accurate approximations of the DtN map at the expense of accuracy
in the entire domain. The use of specially placed finite difference grid points have proven
useful for several problems in geophysics described by isotropic PDEs. These grids are gen-
erated from rational approximations of the DtN map, or impedance function in the spectral
domain. See, for example [8] for an introduction and their generation algorithm; [3, 4, 2, 6]
for their application to geophysical problems and inversion; and [10] for their relationship
with spectral methods. The staggered finite difference grids are chosen to yield exponential
convergence for the model problem

(1.1) �����	��
�
�
��
at the endpoint receiver location(s) for � in a given spectral interval. The grids are then applied
to more complex problems, such as higher dimensional (isotropic) wave propagation, and the
observed spectral convergence at receivers can be explained by Fourier transform reduction
of the problem to (1.1). Furthermore, since the DtN map completely describes the coupling
of a domain with its neighbors, these grids can be combined with domain decomposition to
yield spectral convergence in piecewise constant media with Cartesian interfaces [3, 9].

In geophysics, however, one frequently deals with piecewise smooth media which are
inherently anisotropic, or that involve layers dipped at various angles. For example, we may
be interested in two dimensional scalar wave propagation in such media, modelled piecewise
by

(1.2) ������
�� 
�
������ � 
���� � ���! 
At first glance it is not obvious how to even apply the optimal grids to such a problem.
On staggered grids, the mixed derivative term would require us to sum terms which live on"
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different grids. To resolve this issue on unbounded intervals, we use Lebedev grid clusters
[16, 17, 7], which generally lead to natural extensions to anisotropy. For bounded problems,
we split the solution into its odd and even parts. We describe the techniques in more detail
throughout the paper.

Using the Lebedev cluster technique, when the above mentioned optimal grids were
applied to (1.2), spectral convergence was observed at the receivers, despite the fact that the
equation does not transform into (1.1). Indeed, even the steady state counterpart to (1.2),��
�
 ����� ��
�� � �����#
$�
becomes

(1.3) �����&% �'� ( �)� 
 �&� 
�
 
��
after Fourier transform in the * direction. Our goal is to explain why, then, the spectral
convergence still occurs. To do this, we:+ explore rigorously in one dimension the use of grids which were optimized for (1.1)

on the problem (1.3).+ explain how the convergence for (1.2) depends on the convergence of these grids for
the problem (1.3).

The paper is organized as follows. In Section 2 we provide background on optimal grids,
including a basic introduction in 2.1 and a demonstration of how they work for isotropic
elliptic and wave problems in 2.2 and 2.3. Section 3 contains the study of anisotropy. In 3.1
we motivate our 1-d model with an elliptic equation. In 3.2 we show how to apply optimal
grids to the anisotropic problem (1.3) on a half-line and prove that exponential convergence
is maintained. We handle a slightly more general problem in a bounded interval in 3.3. In
3.4 and 3.5 we apply these results for a bounded interval to an anisotropic elliptic and wave
problem, respectively. We present numerical experiments in Section 4 and a discussion in
Section 5.

2. Background.

2.1. Optimal grids. We first describe the optimal grid technique for background and
notation. Consider the isotropic one dimensional problem on an interval ,-��.0/�1 :�)�2�3� 
�
 
��(2.1) �4��
),5�617
�8�9,5/:17
��
where our goal is to approximate the solution at the left endpoint, ��,-�!1 . (Source and receiver
are at ;<
$� . ) We note that we allow the case /�
>= . We use a staggered three-point finite
difference scheme. Staggered schemes have primary and dual grids:? ;�@BA!.C%D
FE6. � .  G � .IH � E'.J;�KL
��
and ?�M; @ A6.N%D
���.  G � .IHO. M;QPR
���.
respectively, with corresponding step sizesS @ 
�; @UTVK �&; @
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 M;Q@W� M;�@YXWK  
One thinks of the potential � as living on the primary grid and the derivative � 
 as living on
the dual grid. Differences are three-point; taking them shifts a discrete solution from one grid
to the other. The grid is staggered in the sense that the dual points are placed between two
primal points, with the exception of the left endpoint which both grids share. We apply the
Neumann boundary condition at ;�
Z� by using a ghost point to obtain the system for an
approximation [ to the solution to (2.1)EMS @ \ [ @]TVK �^[ @S @ � [ @ �^[ @YXWKS @-XOK _ �^��[7@V
��`%D
 � .  G � .IH(2.2) EMS K \ [7a4�b[cKS K _ �^��[:KL
>� 8MS K[7d TVK 
��  
The second equation of (2.2) results from allowing %#
eE in the first equation of (2.2), and
setting [:K:�^[ PS P 
F�L8:.
where [DP is the fictitious value at the ghost point ;�P . Or, we may also use the notation

(2.3) ,gfh[i1 @ 
 [7@]TVKj�^[7@S @ %9
���.GE6.  G � H�.
and

(2.4) k Mf M[ml @ 
 M[ @ � M[ @YXWKMS @ %�
>E6. � .  G � .IH
for the difference operators from the primary to dual grid and from the dual to primary grid,
respectively. We then can express the above difference equation asMf!fn[$�^��[F
���	,5fn[�1 P 
�8[ d TVKL
��  
For shorthand we will write the system in matrix notation:

(2.5) ,-/�om�^��10[F
>� 8MS K�pq K  
The continuous Neumann to Dirichlet, or NtD, map is the mapping r�,5��1 from the Neumann
data 8 to the Dirichlet data ��,-�61 , with parameter � :��,-�!1�
s��r�,5��1t��ug,-�61  
One can compute r explicitly; for finite / ,

(2.6) r�,5��1c
wvIx'y)z ,-/ ( ��1( �
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and for /{
|=
(2.7) r�,g�Q1:
>E~} ( �  
Similarly, we can talk about the discrete NtD map, r d ,5��1 which is grid-dependent:

(2.8) [:K4
s��r d ,5��1 [:Kj�b[ PS P  
With a bit of algebra we can see that this discrete NtD map, or finite difference impedance,
can be written as the rational function of �
(2.9) r�dn,g�Q1c
 d� @U�VK * @���&��@
where the � @m� � are the eigenvalues of /jo in (2.5) and * @m� � are the squares of the first
components of the corresponding eigenvectors (normalized with respect to an

MS @ weighted
inner product.)

The idea of optimal grids is to choose an r6d which is a good rational approximation tor on the spectral domain of interest, and to use the grid which yields the desired rnd . The
impedance r�,5��1 is a Stieltjes function of � , and so we can use the well developed theory of
rational approximations to Stieltjes functions [5]. That is, r�,g�Q1 can be written as

(2.10) � PXO� ,5���3�W1 XOK f6�D,Y�O1
for �D,5��1 some positive measure on ,��R=�.I��� ; the spectral measure. For finite / , the spec-
tral measure is discrete. For elliptic problems, the spectral interval of interest, � ��K�.I�Qa�� is
to the right of the origin (away from the poles), and so r d is chosen to be a near optimal
Padé-Chebyshev approximation. For semi-infinite intervals ( /{
�= ), we will have a contin-
uous spectral measure, and in this case we use either Padé-Chebyshev or optimal Zolotarev’s
approximation. The Padé-Chebyshev approximations will have exponential convergence inH ;

(2.11) � r d ,g�Q17�	r�,g�Q1��n��� q X�� d��V�� �
where �	
J� a }'� K . For Zolotarev’s approximations, the convergence rate will depend loga-
rithmically on � [14]. For the discrete measure (finite / ) case, the convergence will in fact be
superexponential [5].

For wave problems, the spectral interval will contain some poles, and one can choose
the rational approximation to r by combining Padé-Chebyshev approximations with pole-
matching, as in [3], where the high order convergence was maintained. We discuss the appli-
cations to isotropic elliptic and wave problems in more detail below.

Once a suitable r'd is chosen, the corresponding grid can be constructed by solving an
inverse spectral problem [8]. Then the convergence at ;J
�� of the resulting numerical
solution is exactly that of the rational approximation. Furthermore, the primary and dual
grids associated with r d can be reversed and used to approximate the solution to the Neumann
problem �)���&��
�
�
$�(2.12) �4��
),5�617
$8��
),5/:17
$�  
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and exponential convergence is maintained [9]. We will refer to the continuous and discrete
NtD maps corresponding to this Neumann problem as rW��,5��1 and rO�d ,g�Q1 , respectively.

Throughout the paper we assume we have such a system of primary and dual grids
which yield exponential convergence in our spectral interval of interest for problems (2.1)
and (2.12). What we do here is describe how to apply these same grids to anisotropic prob-
lems, and investigate the convergence. To study the anisotropic convergence, we need to viewr�dn,-�n1 as a rational approximation to r�,-�n1 for ���¡  , not just on the real line.

Before analyzing anisotropy we show how optimal grids work for isotropic elliptic and
hyperbolic equations.

2.2. Elliptic equations. Consider, for example, the following boundary value problem
for Laplace’s equation on the rectangle ,-�).I/:1�¢	,-��.Q£/c1 :
(2.13) �4¤ 
�
 �3¤ ��� 
���.¥�4¤ 
 ,-��.�*)1D
$¦9,-*h1�.§¤¨,5/L.�*)17
$�).N¤©£/ -periodic in *  
Let us assume that the data has bounded spectrum, that is,

(2.14) ªj,Y*)1c
 «�¬ ��X « � ¬ q
@]­'® � .

where ¯ ¬ 
 ��°6± } £/ . Then by using the Fourier method, we can obtain the Dirichlet data
exactly: ¤¨,-��.�*)17
 «�¬ ��X « r�,�¯

a¬ 1 � ¬ q @²­6® �
where r is the impedance function (2.6). We introduce a semidiscretization of (2.13) on a
system of primary and dual lines given, respectively, by ;³
>; ¬ and ;3
 M; ¬ , and consider a
solution

?~´ ¬ ,-*)1µA ¬ �9Kµ¶¸·¸·¸·¸¶ d to

(2.15) � Mf6f ´ � ´ ��� 
$�).
��,-f ´ 1G� P6,-*h1:
�ª�. ´ d TVK ,Y*)17
���. ´ ¬ ,-*)1 £/ -periodic in *�. ° 
sE'.  � G H  

We can again apply the Fourier method to (2.15) to obtain´ K ,Y*)17
 «�¬ ��X « r�dn,Y¯
a¬ 1 � ¬ q @]­ ®��  

So, we can bound the error of the Dirichlet data¹ ¤¨,-��.�*)19� ´ K ,Y*)1 ¹Gº)»µ¼ P ¶-½ºh¾¹ ª ¹Gº » ¼ P ¶Y½º!¾ 
À¿¿¿
Á «¬ ��X « � ¬ q @²­ ®�� ,5r2�^r d 1�,Y¯ a¬ 1 ¿¿¿ º)»�¼ P ¶Y½º!¾¿¿¿

Á «¬ �DX « � ¬ q @]­ ®�� ¿¿¿ º » ¼ P ¶-½º!¾
ÃÂ Á «¬ �DX « � a¬¨Ä ,gr��^r d 1G,�¯ a¬ 1ÆÅ aÂ Á «¬ ��X « � a¬� Ç x�ÈÉ'Ê ¼ ­ »Ë ¶ ­ »Ì ¾ � r�,5��1��	r'dn,5��1G�  (2.16)
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Hence for a semi-discretized elliptic problem, if the grid were chosen by a near optimal ra-
tional approximation, the convergence will be exponential (2.11) on the line ;Í
�� . Note that
(2.14) was assumed only for simplicity of explanation; for example, we could have used any
smooth ª (with fast enough decaying Fourier representation) and still obtained exponential
convergence.

Also, we could have used different boundary conditions, or an arbitrary positive-definite
finite-difference operator in * with spectral interval � ¯ aK .�¯ a« � instead of �4¤4��� in (2.13), in
which case (2.16) would give the estimate for the ; -discretization error only.

2.3. Hyperbolic equations. Let us consider the initial value problem for the one-dimen-
sional wave equation on � �).I/D�W¢	� ��.�Î4� ,
(2.17) ¤4
�
i�&¤ ��� 
��).&�4¤j
Q,-��.�Ï�17
$ª�,-Ï�1�.<¤¨,5/L.�Ï�1:
��).Í¤¨,-;�.0�!1c
$�).Í¤ � ,-;�.0�!1c
$�).
where ª�,-Ï�1c
 Ð�Ñ ��X Ð

Ò Ñ q @UÓ�Ô]�
and Õ Ñ 
 �'ÖY± }~Î . We assume Î4}�/ irrational to avoid resonances. With the help of the Fourier
method we obtain ¤¨,5�).�Ï�1:
 Ð�Ñ ��X Ð

Ò Ñ r�,B�4Õ aÑ 1 q @]Ó Ô �
where again r is the one dimensional impedance (2.6). We introduce a semidiscretiza-
tion of (2.17) by the method of lines using ;>
×; ¬ and ;�
 M; ¬ , and consider a solution?~´ ¬ ,YÏ�1�A ¬ �VK�¶¸·¸·¸·¸¶ d to the approximate problem´ ���V� Mf6f ´ 
���.

��,5f ´ 1 P ,-Ï�1c
�ªj,YÏ�1�. ´ d TVK',YÏ�1c
$�). ´ ¬ ,5�617
$�). f ´ ¬f6Ï ,5�617
$�). ° 
sE'.  G G .IH  
Again using the Fourier method we obtain´ K ,YÏ�1:
 Ð�Ñ ��X Ð

Ò Ñ r�dn,��4Õ aÑ 1 q @UÓ Ô �  
Then the error bound for the Dirichlet data can be obtained as in the elliptic problem:¹ ¤¨,-��.�Ï�19� ´ K ,YÏ�1 ¹ º)»�¼ P ¶ Ø ¾¹ ª ¹ º)»µ¼ P ¶ Ø ¾ � Ç x�ÈÉ'Ê ¼ X�Ó »Ù ¶ P ¾ � r�,5��1��^r d ,5��1G�  

REMARK 2.1. An important difference between this problem and the elliptic one is that
there are poles of r in the spectral interval due to the negativity of its lower bound. These
poles are matched in the rational approximation. Hence we need to set H in (2.9), i.e., the
number of terms in the rational approximation, to be at least equal to the number of these poles
in the interval �²�4Õ aÐ .I��� . One can calculate that this is the integer part of

º Ó ÙÚ � E�} � , which
is approximately twice the number of wavelengths corresponding to the temporal frequencyÕ Ð within � ��.0/7� . So, we arrive at the important conclusion that the exponential convergence
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occurs when the average grid density exceeds two points per wave length, i.e., the Nyquist
limit frequency. The convergence bound from [8] gives at least a logarithmic convergence rate

proportional to �Â Ó »ÙÛ , where f is the distance between Õ aÐ and the closest non-excluded pole
of r . It shows that, asymptotically (for high frequencies), an appropriately chosen optimal
grid finite difference scheme requires only two grid points per wavelength to converge.

Let us also consider a multidimensional hyperbolic equation, say in � �).I/D��¢#� ��.�£/9��¢#� ��.�Î4� ,¤ ��� �3¤4���#�&¤j
�
¨
���.¤4
Q,-�).0*�.�Ï�17
>�Lªj,-*�.0Ï�1�.Ü¤¨,5/L.0*�.0Ï�1c
���.¤Ý,Y;�.0*�.0�61:
���.C¤ � ,-;�.�*�.I�617
���.¤ £/ -periodic in *
with data given by a finite sum of the formª^
 «�¬ �DX « Ð�Ñ ��X Ð � ¬ Ñ q

@UÓ Ô � q @]­'® � .
with Õ Ñ 
 a Ñ ÚØ and ¯ ¬ 
 a ¬ Ú½º . Then we can calculate that the resulting Dirichlet data is given
by ¤¨,5�).�*�.0Ï�1c
 � ¬ ¶ Ñ � ¬ Ñ rÍÞY¯ a¬ �&Õ aÑ'ß q @-à]Ó Ô �YTO­ ®���á  
We can use the semidiscretization ´ ��� � ´ ���#� Mf!f ´ 
$�
with appropriate initial and boundary conditions, and for the semidiscrete solution obtain´ K ,-*�.�Ï�17
 � ¬ ¶ Ñ � ¬ Ñ r'dRÞ-¯ a¬ �&Õ aÑ ß q @-à]Ó Ô �YTO­ ®��Gá  
Again, when the average grid density exceeds two points per wave length, the maximal pos-
sible spectral error¹ ¤Ý,-�).0*�.�Ï�19� ´ K ,Y*�.�Ï�1 ¹�º » ¼ P ¶-½º!¾5â�¼ P ¶ Ø ¾¹ ª ¹Gº » ¼ P ¶Y½º!¾5â�¼ P ¶ Ø ¾ � Ç x�ÈÉ'Ê ¼ X�Ó »Ù ¶ ­ »Ì ¾ � r�,g�Q1��^r�dh,g�Q1��
starts to decrease exponentially. The most difficult and the most important for the finite-
difference approximation of wave problems are the propagative modes, that is, those with
purely imaginary exponents. If we look at the solution in the entire domain,¤|
 � ¬ ¶ Ñ � ¬ Ñ q @ , ( Ó »Ô X�­ »® 
 T�Ó ÔU� TW­ ® � 1 .
we see that these propagative modes correspond to Õ aÑ � ¯ a¬ . If one omits the so-called
evanescent modes with real exponential decay in the ; direction from the estimate, we have¹ ¤Ý,-�).0*�.�Ï�19� ´ K ,Y*�.�Ï�1 ¹�º » ¼ P ¶-½º!¾5â�¼ P ¶ Ø ¾¹ ª ¹�º » ¼ P ¶Y½º!¾5â�¼ P ¶ Ø ¾ � Ç x�ÈÉ'Ê ¼ X�Ó »Ù ¶ P ¾ � r�,5��1��	r d ,5��1G�  
One can similarly construct an exponentially convergent scheme for parabolic problems.
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3. Anisotropy.

3.1. Motivation. To motivate the material in the following sections, let us consider the
constant coefficient anisotropic elliptic equation

(3.1) �4ã �G�j����� ã 
�� �&ã 
�
 
$�).
on the rectangle ,5�).I/:1�¢b,-�).�£/:1 , with periodic boundary conditions in * and Neumann data
on the left and right sides. Assume that � is real and � � � � E . This equation on a rectangle
can be viewed as the Laplace equation on a parallelogram with bottom parallel to the ; -axis
and angle ¦ between its bottom and left sides. That is, if we make the change of variables\ £; £* _ 
 \ E �ä�å!æ ¦ æ0ç y ¦ _ \ ; * _
we obtain the equation (3.1) where � 
 ä�å6æ ¦ . We consider the equation (3.1) in such a form
for simplicity; it can be transformed to the more general anisotropic equation� � K0K ã���� ����� K�a ã�
���� � a0a ã�
�
¨
$�
by stretching along main coordinate axes without affecting exponential convergence of opti-
mal grids. It is the mixed derivative term that needs special treatment.

Suppose we compute the Fourier coefficients in * of a solution to (3.1),

� ¬ ,Y;�1c
 � ½ºP ã�,-;�.�*)1 q @]­'® � f'*  
We have then that � ¬ ,Y;�1 satisfies the following equation in ; ,

(3.2) ¯ a¬ � ¬ �&% ��� ¯ ¬ ,Y� ¬ 1B
i��,Y� ¬ 1B
�
¨
��  
For simplicity of exposition we will consider ¯ ¬ � � , as the analysis for ¯ ¬ � � works in the
same way. So, we will consider solutions to

(3.3) �)�2�3% �'� ( �Q��
#�3��
�
�
$�).
and refer to this as our one dimensional anisotropic equation. When � 
è� and ¦F
 Ú a ,
this corresponds to an isotropic problem. In this case, (3.3) has the two linearly independent
solutions: �2
 q�é � É 
  
For nontrivial � , we can represent solutions in the form�2
 q�ê � É 

where complex

Ò
satisfies the quadratic equation

(3.4)
Ò a � % ��� Ò ��E�
$�  

That is, Ò 
s�4% �Rë$ì � � a � ER
>�4% q�é @îí



ETNA
Kent State University 
etna@mcs.kent.edu

GRIDS FOR ANISOTROPY 63

where ¦<
 x�ï äGä�å!æ � �	,-��. ± 1  
We will use

Ò K and
Ò a to denote the roots with negative and positive real parts, respectively.

Note that it is not obvious how to apply optimal grids to (3.2). Since the grid is a staggered
one, the first order term �O
 lives on the grid dual to the one for � and �W
�
 . Therefore,
applying the grids and differences (2.3) and (2.4) directly does not make geometric sense. In
the sections that follow, we resolve this problem by rewriting the equation as a system. The
techniques for the infinite and finite intervals are somewhat different; so we examine each
separately. Also, for wave problems we need to consider a slightly more general form for the
equation (3.2), and we do that for a bounded interval.

3.2. Semi-infinite interval. Let us now consider the problem

(3.5) �)�2�3% ��� ( ��� 
 �&� 
�
 
$�  
on � �).�={1 with boundary conditions

(3.6) �4��
),-�!1c
>E6. ð ç Ç
~ñ � �Í
$�  
Due to the infinity condition we we will have a unique solution with

Ò 
 Ò K , the root of (3.4)
with negative real part. One can calculate that the NtD map (or impedance) is

(3.7) rOòn,5��1jóô
���,-�!17
>� EÒ K ( � 
$r�, Ò a K ��1
where r is the isotropic impedance (2.7). To apply optimal grids to this problem, we refor-
mulate the equation as a second order system.

LEMMA 3.1. The system �)���&% ��� ( �)¤ 
 �&� 
�
 
��(3.8) �)¤��&% ��� ( �)��
m�&¤j
�
¨
��
on � �).�={1 with boundary conditions�&��
),-�!1c
>E6. ð ç Ç
~ñ � �2
$�(3.9) �4¤ 
 ,-�!1c
>E6. ð ç Ç
~ñ � ¤ 
 
$�
is equivalent to the problem (3.5) with boundary conditions (3.6).

Proof. Clearly, the solution � of (3.5), (3.6) satisfies (3.8), (3.9) with¤|
��2
s� q ê Ë � É 
Ò K ( �  
Furthermore, one can check that there are four linearly independent solutions of (3.8) which
are solutions of the first order systems

(3.10)
Ò ( �Q�2
�¤4
). Ò ( ��¤|
���
h.

with both roots
Ò @ of (3.4):õ q ê Ë � É 
q ê Ë � É 
�ö . õ q X ê Ë � É 
� q X ê Ë � É 
�ö . õ q ê » � É 
q ê » � É 
�ö . õ q X ê » � É 
� q X ê » � É 
�ö  
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If we now impose the boundary conditions (3.9), the unique solution is�<
�¤|
s� q ê Ë � É 
Ò K ( �
from which the result follows.

What we will do is apply the optimal grids directly on the problem (3.8), using the
primary grid for � and the dual for ¤ , to get the finite difference system��[ ¬ �&% ��� ( � ´ ¬ � ´ ¬ XOKMS ¬ � EMS ¬^÷ [ ¬ TVK��b[ ¬S ¬ � [ ¬ �b[ ¬ XWKS ¬ XWK ø 
���.� ´ ¬ �	% ��� ( � [ ¬ T9K �^[ ¬S ¬ � ES ¬^ù ´ ¬ TVK � ´ ¬MS ¬ TVK � ´ ¬ � ´ ¬ XWKMS ¬ ú 
���.° 
sE'.  � G .µH(3.11)

with the discrete boundary conditions

(3.12)
[cK��b[ PS P 
F�iE'.D[ d TVK�
��). ´ K�� ´ PMS K 
F�iE'. ´ d TVK4� ´ dMS d T9K 
��  

We define the finite difference impedance by the average,r òd ,5��1c
 [ K � ´ P� .
and estimate how accurately it approximates r ò ,5��1 . What the following result shows is that
the convergence of the anisotropic impedance depends on the convergence of the correspond-
ing isotropic impedance on a ray in the complex plane.

PROPOSITION 3.2. Let rOòd ,5��1c
 [ K � ´ P�
be the numerical impedance computed from the system (3.11), (3.12) and let r ò ,g�Q1 be the
continuous impedance (3.7). Then the relative error of the impedance satisfiesûûûû r òd ,5��1r ò ,5��1 ��E ûûûû �ü� ûûûû r d , Ò a K ��1r�, Ò a K ��1 �üE ûûûû a
where

Ò K is the root of (3.4) with negative real part, r'd),-�n1�.Ir�,5�!1 are the discrete and con-
tinuous isotropic impedances (2.8), (2.7), and � is independent of H . That is, the error for
the anisotropic impedance for real � is on the order of the square of the isotropic impedance
error on the ray in the complex plane � q X�@UaIí �
where ¦2
 x�ï äGäGå6æ � , � � ¦ � ± .

Proof. Consider the finite difference counterpart of (3.10),Ò ( �þý[ ¬ 
 ý´ ¬ �Üý´ ¬ XOKMS ¬(3.13) Ò ( ��ý´ ¬ 
 ý[ ¬ TVK ��ý[ ¬S ¬ .° 
FE'.  G G .IH  
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We will show that similar to in the continuous case, using both roots
Ò K and

Ò a of (3.4) in
(3.13) gives a basis for all the solutions of (3.11). To see this, consider a solution ,7ý[�.�ý´ 1 of
(3.13). Eliminating ý´ we obtain

(3.14)
Ò a �<ý[ ¬ � EMS ¬ ù ý[ ¬ TVK ��ý[ ¬S ¬ � ý[ ¬ �ÿý[ ¬ XOKS ¬ XOK ú 
��  

With the help of (3.4), this equation becomes

(3.15) �¡ý[ ¬ �3% �'� Ò �Íý[ ¬ � EMS ¬ ù ý[ ¬ TVK � ý[ ¬S ¬ � ý[ ¬ � ý[ ¬ XOKS ¬ XOK ú 
$�  
By then substituting the first equation of (3.13) into the second term of the left hand side of
(3.15) we obtain the first equation of (3.11). Similarly, eliminating ý[ from (3.13) we obtain

(3.16)
Ò a ��ý´ ¬ � ES ¬^ù ý´ ¬ TVK �Üý´ ¬MS ¬ T9K � ý´ ¬ � ý´ ¬ XOKMS ¬ ú 
$�).

and we can again show that it can be transformed to the second equation of (3.11). Hence we
see that all solutions of (3.13) satisfy (3.11). For each

Ò @ , the system (3.13) has two linearly
independent solutions. Using both the roots we obtain a total of four linearly independent
solutions to (3.11).

REMARK 3.3. Clearly the system (3.14), (3.16) is not equivalent to (3.11); the former
also contains four more linearly independent solutions.

To estimate the convergence of r òd to r ò , we decompose the solution ,g[j. ´ 1 of (3.11)
into two linearly independent solutions ,7ý[ @ .�ý´ @ 1 of (3.13). These solutions are obtained by
setting

Ò 
 Ò @ , %D
>E6. � and imposing that the boundary conditions hold at infinity for ý[ @ :
(3.17) ý[ @d TVK 
��  
From this condition and equation (3.14) we haveý[ @K 
|r�dn, Ò a@ ��1 ý[ @K � ý[ @PS P .
where r'd is the standard discrete isotropic impedance on the primary grid. Define the ratio

� d ,5�!17
 r d ,5�!1r�,5�!1
and rewrite the impedance as r d , Ò a ��17
 � d , Ò a ��1( Ò a �  
By the representation (2.10), one can see that Stieltjes functions of complex conjugate argu-
ments are also conjugate. The same holds for the discrete impedance by the formula (2.9).
So, since Ò a K 
�� Ò aa .
we have that

(3.18)
� dh, Ò a K �Q1:
 �� d), Ò aa �Q1  
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Note that system (3.13) in general gives dual relationships between its solutions ý[ and ý´ . Ifý[ satisfies (3.17), then from (3.13) we obtainý´ d TVKj� ý´ dMS d TVK 
$�
and

(3.19)

�� Ë X �����o Ëý´ P 
 Ò a �<ý[ K�	 Ë X �	
�o � 
 Ò a � � dh, Ò a �Q1( Ò a �  
If we consider (3.13) with boundary conditions (3.17) and

(3.20)
ý[ K ��ý[�PS P 
s�iE'.

then from the second equation of (3.13) ý´ Pm
>� EÒ ( � .
and from (3.19) we obtain

(3.21)
ý´ Kj�Üý´ PMS K 
F� Ò a � � d , Ò a ��1Ò ( � ( Ò a � 
F� sign ,��m, Ò 1�1 � d�, Ò a �Q1  

From here on we use ý[ @ , ý´ @ to denote the solutions of (3.13), (3.17), (3.20) with
Ò 
 Ò @ .

Then [j. ´ satisfying (3.11), (3.12) can be represented as[�
�
�KRý[ K � 
Gamý[ a . ´ 
�
�K ý´ K � 
�aÍý´ a .
where the 
G@ are determined by the boundary conditions (3.12) at the left. For brevity we
define

� 
 � d , Ò a K ��1  
Then, using (3.20), (3.21) and (3.18), we obtain


 K 
 �� � E� �m, � 1 . 
 a 
 � �üE� �m, � 1  
This gives the discrete impedancer òd ,g�Q1�
 ,g[:K � ´ P 1�(3.22) 
 , �� � E�1:ý[ KK � , � ��E~1:ý[ aK � , �� � E�1Ýý´ KP � , � �üE�1�ý´ aP� �m, � 1  
We know that ý[ KK 
F� �Ò K ( � .bý[ aK 
 ��Ò a ( � .
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and ý´ @P 
>� EÒ @ ( �  
Substituting these into (3.22) we obtainrOòd ,g�Q1c
F� EÒ K ( � � .
where

� 
 ,��� � E~1 � �ü, � �üE�1��� ê Ëê » � ,��� � E~1 � , � �üE�1 ê Ëê »� �m, � 1
>E � ,BE�� ê Ëê » 1G, � �üE�1�, �� ��E~1� �m, � 1  
Now, if we assume that � � �üE!� is small, then� � ��En��
���,I� � �üE!� a 1�.
or � rOòd }�rOòL��En�'
���,I� � d , Ò a K ��1��üE!� a 1
which completes the proof.

So, the relative error of the approximation of the continuous impedance is on the order
of the square of the relative error of the isotropic impedance r!dn, Ò a ��1 . That is, we reduced the
problem to that of the approximation of a Stieltjes function on the line� q @]aµí �
for a positive interval of � with � � ¦ � ±D 
The Padé-Chebyshev approximations, generated from data for r for � on the positive real line
will yield exponential convergence on finite regions of   which are away from the negative
real axis, where we have the poles of both r d and r [5]. Hence it is a consequence of rational
approximation theory [5] that standard optimal grids for the isotropic problem will produce
exponential convergence for the problem (3.5). Note that when ¦ü
 ± } � we will have the
standard isotropic problem; in the limit case ¦��Ü� the approximation line approaches the
poles.

3.3. Two-sided problem on a finite interval. When applying optimal grids on finite
regions or for use in domain decomposition, it is crucial that we can solve the two sided
problem with spectral convergence at both ends. In this section we consider a two-sided and
slightly more general anisotropic equation

(3.23) 
G��� �&% ��� ( �)� 
 �&� 
�
 
���.
�4��
),5�617
�8c. ��
),5/:17
��
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where we view 
 as a parameter. (For wave problems we will need to allow 
 to vary.) One
difficulty with the two-sided problem is that the NtD map is now a � ¢ � matrix valued
function of � , mapping the two-point Neumann data to the Dirichlet data:

(3.24)
\ �9,5�61��,-/�1 _ 
���,g�Q1 \ 8� _  

First we should point out that for 
�
 E and positive � , the operator of equation (3.23) with
the homogenous Neumann boundary condition is Hermitian positive-definite, so � is defined
for any � � � .

Note that as in the last section, the true solution to the equation (3.23) is of the form�2
|H K q ê Ë � É à 
 X º � a á � H a q ê » � É à 
 X º � a á
where

Ò 
 Ò K�. Ò a now satisfy

(3.25)
Ò a � % ��� Ò ��
L
��  

Dividing this solution into its odd and even (about ;Í
�/j} � ) parts,�<
���� � ���~.
and plugging into (3.23), we obtain the following coupled system:

(3.26) 
G�)� � �&% ��� ( ��� �
 �&� �
�
 
��).

G��� � �&% ��� ( �)� �
 �3� �
�
 
$�).

�4���
 ,-�!17
 8 � �� . ����,5/�} � 1D
���. �4���
 ,-�617
 8¡���� . ���
 ,5/�} � 1D
��).
which has the solution� � 
|H K æ�ç y)z Ò K ( ��,-; �	/�} � 1 � H a æ0ç y)z Ò a ( ��,-; �	/�} � 1� � 
$H K ä�å6æ z Ò K ( �V,Y;��	/�} � 1 � H a ä�å6æ z Ò a ( �9,Y; �&/j} � 1  
Note that the differential operator is the same as in (3.8), but on a finite interval with boundary
conditions. Since the solutions do not decay at infinity, both of the roots

Ò K and
Ò a will appear

in the solution. Let us therefore decompose the solution in terms of the functions ,Y� � 1 K ,,Y� � 1 a , ,Y� � 1 K and ,Y� � 1 a which satisfyÒ a@ ��,-� � 1 @ ��,Y� � 1 @
�
 
$�(3.27) ��,-� � 1 @
 ,5�617
sE'. ,-� � 1 @ ,-/�} � 1D
$�
and Ò a@ �V,Y� � 1 @ �ü,-� � 1 @
�
 
$�(3.28) ��,Y� � 1 @
 ,-�617
FE'. ,Y� � 1 @
 ,5/�} � 1D
��  



ETNA
Kent State University 
etna@mcs.kent.edu

GRIDS FOR ANISOTROPY 69

We know that the problem (3.27) has the continuous impedancer�, Ò a@ ��17
 vµx�y)z ,5/ Ò @ ( ��} � 1Ò @ ( �
and one can compute that the Neumann problem (3.28) has the impedancer � , Ò a@ ��1c
 ä�å vIz ,-/ Ò @ ( ��} � 1Ò @ ( �
 EÒ a@ ��r�, Ò a@ �Q1  
We can now rewrite the odd and even parts of the solution as

(3.29) � � 
�
 K ,-� � 1 K � 
 a ,Y� � 1 a
� � 
�
 K Ò K ( �Qr�, Ò a K ��1�,-� � 1 K � 
 a Ò a ( ��r�, Ò aa ��1�,-� � 1 a

where the boundary conditions imply that 
~K�.�
�a solve the system

(3.30) ÷ E EÒ K ( ��r�, Ò a K �Q1 Ò a ( ��r�, Ò aa ��1 ø ÷ 
�K
�a ø 
 ÷  T�!a X"!a ø  
Now consider the following numerical approximation. We use the primary

? ;W@tA and dual?�M; @ A grids, respectively, for the odd and even parts of the solution [ � and [ � on the interval,-��.0/�} � 1 ; and similar to (3.11) we compute the finite difference approximation to (3.26):


G��[ � �ü% �'� ( � Mfn[ � � Mfnfn[ � 
$�(3.31)

G��[#�R�ü% �'� ( �Qfn[$�j�&f Mfh[#��
$���,-fh[ � 1 P 
 8 � �� .3��, Mfn[ � 1IKL
 8¡�%�� .&,Æ[ � 1 d TVKL
$�).	, Mfh[ � 1 d TVKL
$�  

We will show the convergence of this finite difference solution at the boundary will again de-
pend on the convergence of the isotropic impedance, as in the case of a semi-infinite interval.
For this we introduce the discrete NtD map, �7dh,5��1 , where

(3.32)
\ ,g[ � 1 K � ,Æ[ � 1tP��,Æ[ � 1 K � ,g[ � 1BP _ 
�� d ,g�Q1 \ 8� _  

The following lemma says that we have a decomposition of the discrete solution which is
similar to the above decomposition of the continuous solution.

LEMMA 3.4. The finite difference solution to (3.31) can be written as[#�L
|�4K�,Æ[#�G1 K � ��a!,g[#��1 a(3.33) [ � 
|� K Ò K ( ��r'dn, Ò a K �Q1G,g[ � 1 K � � a Ò a ( ��r�dn, Ò aa �Q1G,g[ � 1 a
where

? ,g[ � 1 @ .�,g[ � 1 @ A are the solutions to

(3.34) � Ò a@ ,g[ � 1 @ � Mf6f�,g[ � 1 @ 
���.¥��,-fh[ � 1 @P 
FE6. ,Æ[ � 1 @ d TVK 
$�
and

(3.35) � Ò a@ ,Æ[ � 1 @ �&f Mf�,g[ � 1 @ 
$�). ��, Mfh[ � 1 @ K 
FE6. , Mfh[ � 1 @ d T9K 
��"&
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(3.36) ÷ E EÒ K ( ��r d , Ò a K ��1 Ò a ( ��r d , Ò aa ��1 ø ÷ � K��a ø 
 ÷  T�!a X"!a ø
where r�dn,5�!1 is the discrete isotropic impedance for a bounded interval (2.6).

Proof. Notice that (3.33) as it is written will clearly satisfy all the discrete boundary
conditions thanks to (3.34), (3.35) and (3.36). We will now show it is a solution to the
difference system (3.31). From the equation (3.34) for each ,g[ � 1 @ and the fact that each

Ò @ is
a root of (3.25) we haveMf!f�,g[ � 1 @ 
|� Ò a@ ,g[ � 1 @ 
�
G�V,g[ � 1 @ �	��% � Ò @�,g[ � 1 @  
Plugging (3.33) into the first equation in (3.31) and using the above to cancel, we get�&% � ( ��� K Ò K ( ��r�dh, Ò a K ��1 Mf�,Æ[ � 1 K � � K ��% � Ò K ,Æ[ � 1 K(3.37) �4% � ( ��� a Ò a ( ��r�dh, Ò aa ��1 Mf�,Æ[ � 1 a � � a ��% � Ò a ,Æ[ � 1 a  
Recall the duality property of the odd and even optimal finite difference grids,Mf�,g[ � 1 @ 
 ,g[ � 1 @ Er�dh, Ò a@ ��1 .
from which we get that the above expression (3.37) is zero. The second equation in (3.31) is
also satisfied by (3.33). One may check by plugging in and using the duality relationMf�,g[ � 1 @ 
s,Æ[ � 1 @ Er �d , Ò a@ ��1 
s,g[ � 1 @ Ò a@ ��r�dh, Ò a@ ��1  �'

Notice that thanks to the lemma, the true and finite difference solutions both have anal-
ogous decompositions into component parts. From this we can calculate the NtD maps for
both problems. The continuous boundary solution from (3.29) is

÷ � � ,-�61� � ,5�61 ø 
 ÷ r�, Ò a K �Q1 r�, Ò aa ��1Ò K ( ��r�, Ò a K ��1�r � , Ò a K �Q1 Ò a ( ��r�, Ò aa �Q10r � , Ò aa ��1 ø ÷ 
 K
 a ø  
Recall that r�, Ò a@ �Q10r � , Ò a@ ��1c
 EÒ a@ �  
Inverting the system (3.30) for 
 K and 
 a we have that
(3.38)÷ � � ,-�!1� � ,-�!1 ø 
 EÒ a ( �Qr�, Ò aa ��1�� Ò K ( ��r�, Ò a K ��1 ù , Ò a � Ò K 1 ( ��r�, Ò a K �Q10r�, Ò aa �Q1Ür�, Ò aa ��1��^r�, Ò a K �Q1ê »ê Ë r�, Ò aa �Q1�� ê Ëê » r�, Ò a K ��1 K� É¡k Kê » � Kê Ë l úü÷  T�!a X(!a ø
so that the NtD map (3.24) is

��,5��1c
 EÒ a ( ��r�, Ò aa �Q1D� Ò K ( �Qr�, Ò a K ��1 ) ù , Ò a � Ò K 1 ( ��r�, Ò a K ��1�r�, Ò aa ��1§r�, Ò aa �Q17�	r�, Ò a K ��1ê »ê Ë r�, Ò aa ��1�� ê Ëê » r�, Ò a K �Q1 K� É k Kê » � Kê Ë l ú *
where

* 
 ÷ E~} � E~} �E~} � �iE�} � ø . ) 
 ÷ E E�iE E ø  
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By the above lemma and essentially the same calculation, the two sided discrete impedance
(3.32), � d is exactly the same as � except that each occurrence of the continuous impedancer is replaced by the discrete impedance r6d . Using these facts we can simplify the above to
get the following proposition.

PROPOSITION 3.5. Let
Ò K and

Ò a be the two roots of (3.25). Then the NtD map (3.24)
for (3.23) is given by
(3.39)

��,5��1c
 E( �¨, Ò a r�, Ò aa �Q1D� Ò K r�, Ò a K �Q101 ) ù , Ò a � Ò K 1 ( ��r�, Ò a K ��1�r�, Ò aa ��1Ür�, Ò aa �Q1D�	r�, Ò a K ��1ê »ê Ë r�, Ò aa ��1�� ê Ëê » r�, Ò a K �Q1 K� É¡k Kê » � Kê Ë l ú *
while the discrete counterpart (3.32) is given by
(3.40)

� d ,5��1c
 E( �¨, Ò a r�dh, Ò aa ��1�� Ò K r�dh, Ò a K ��1�1 ) ù , Ò a � Ò K 1 ( ��r�dn, Ò a K ��1�r�dh, Ò aa �Q1Ür�d), Ò aa �Q1��^r�dh, Ò a K ��1ê »ê Ë r�dh, Ò aa ��1�� ê Ëê » r�dh, Ò a K ��1 K� ÉÍk Kê » � Kê Ë l ú *
for

* 
 ÷ E�} � E�} �E�} � �iE~} � ø . ) 
 ÷ E E�iE E ø .
and r and r'd the respectively continuous and discrete isotropic impedances (2.6) and (2.9)
for the interval � �).0/j} � � .

Note that when 
Ý
 E , as will be the case for elliptic problems, the roots
Ò K and

Ò a are
negative conjugate and again we have that the roots are�4% q�é @îí
for ¦�
 x�ï äGäGå6æ � . So, the convergence of the solution at the endpoints ;�
©� and ;�
 /
depends on the convergence of r6dn,-�n1 to r�,5�!1 on the two complex conjugate rays�Ý
F� q é @UaIí ��.
for a positive interval of � . One can see easily from the Stieltjes forms (2.6) and (2.9) of r
and r d that, r�,B� q @UaIí �Q1:
 r9,B� q X�@]aµí �Q1
and r d ,�� q @]aµí �Q1c
 r d ,B� q X�@]aµí �Q1  
Hence it suffices to consider the approximation on just one of the rays. Also, because � exists
for any positive � , then as follows from (3.38) the denominator in the expression for � must
be also nonzero for any positive � . Obviously, the same is true for � d , and so we have the
following:

COROLLARY 3.6. When 
4
sE and � � � ,¹ ��,5��19��� d ,5��1 ¹ 
+�|Þ ûû r�,B� q @]aµí �Q1D�	r d ,B� q @]aµí �Q1 ûû ß
uniformly for any �-,�� « @ Ð � � and � � ¦ « @ Ð ��¦þ��¦ « ò 
 � ± .
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3.4. Anisotropic elliptic equations. Now, let us, for example, consider the problem on,-��.0/�1�¢&,5�).)£/:1 :�4¤ 
�
��{�'� ¤ 
�� �&¤ ��� 
��).¥�4¤ 
 ,-�).0*)1�
|¦9,Y*)1�. ¤ 
 ,-/�.�*)17
���.Ü¤©£/ -periodic in *  
As before, we assume that the data has bounded spectrum, that is,ªj,Y*)1c
 «�¬ ��X « � ¬ q

@]­'® � .
where ¯ ¬ 
 ��°'± }D£/ . Then we can compute that the solution is¤¨,-;�.0*h1:
 «�¬ ��X « � ¬ � ¬ ,Y;�1 q

@²­6® � .
where � ¬ ,-;�1 solves¯ a¬ � ¬ �&% ��� ¯ ¬ ,Y� ¬ 1B
i��,Y� ¬ 1B
�
¨
���. �4� u¬ ,-�!17
FE6.N� u¬ ,5/:17
$�  
From this we obtain ¤¨,5�).�*)17
 � ¬ Þ E¥� ß ��,�¯ a¬ 1 \ E� _ � ¬ q @²­ ®��
and similarly ¤Ý,-/L.0*)1c
 � ¬ Þ � E ß ��,Y¯ a¬ 1 \ E� _ � ¬ q @]­'® �
where � is the two-sided impedance (3.39) with 
�
>E . We will solve this problem using the
semi-discretization on the lines ;Í
�; ¬ and ;<
 M; ¬ for the halved interval ,5�).I/�} � 1 .� ´ ���� � ��� Mf ´ � � Mf6f ´ � 
$�). � ´ ���� � ��� f ´ � �	f Mf ´ � 
���.�^,Yf ´ ��1 P ,Y*)17
$¦9,-*h1I} � . ´ �d T9K ,-*�.0Ï�17
���.�$k Mf ´ � l K ,Y*)17
$¦9,-*h1I} � . k Mf ´ � l d TVK ,Y*�.�Ï�17
$�).´ � ,Y*)1�. ´ � ,Y*)1 are £/	� periodic in *  
This semi-discrete problem then has solutions at ;2
$� and ;2
$/ , respectively, given by´ �K ,-*h1 � ´ �P ,-*h1:
 � ¬ Þ�E � ß ��dh,�¯ a¬ 1 \ E� _ � ¬ q @]­'® �

� ´ �K ,-*)1 � ´ �P ,-*)17
 � ¬ Þ � E ß � d ,�¯ a¬ 1 \ E� _ � ¬ q @]­ ®��  
From these formulae and Corollary 3.6, the error from this ; -discretization at both sides;Í
�� and ;Í
�/ will be

�
\ Ç x�ÈÉ�Ê ¼ ­ »Ë ¶ ­ »Ì ¾ � r�,B� q @UaIí ��1��^r d ,B� q @UaIí ��1G� _  
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3.5. Anisotropic hyperbolic equations. Let us now consider a wave problem on in� ��.0/7�W¢&� �).Q£/��V¢	� ��.�Î4� ,
¤j���9�3¤ ��� � ��� ¤ 
�� �&¤ 
�
 
���.¤ 
 ,-�).0*�.�Ï�17
s�Lª�,-*�.�Ï�1�.Ü¤ 
 ,-/L.0*�.�Ï�1D
���.(3.41) ¤Ý,Y;�.0*�.0�61:
��).Ü¤ � ,Y;V.�*�.0�!17
���.¤ £/ -periodic in *

with data ª given by a finite sum of the formª&
 � ¬ ¶ Ñ � ¬ Ñ q @]Ó Ô � q @]­ ®0�
where, as before, Õ Ñ 
 ��±WÖ }�Î and ¯ ¬ 
 ��±�° }�£/ are the temporal and spatial frequencies,
respectively. The solution to (3.41) can be expressed as¤Ý,Y;�.0*�.�Ï�1c
 � ¬ ¶ Ñ � ¬ Ñ � ¬ Ñ ,-;�1 q @UÓ Ô � q @]­ ®0� .
where the � ¬ Ñ satisfy � ¬ Ñ ,Y¯ a¬ �3Õ aÑ 1�� � % � ¯ ¬ ,Y� ¬ Ñ 1 
 ��,Y� ¬ Ñ 1 
�
 .

��,-� ¬ Ñ 1�
�,5�61c
FE'. ,Y� ¬ Ñ 1�
�,-/�17
��  
This is exactly the two-sided problem (3.23) with

(3.42) 
L
 ¯ a¬ �&Õ aÑ¯ a¬  
For the case 
 � � a , which is our primary interest here, the problem become indefinite, i.e.,
it will have resonances. We need to assume, then, that Õ Ñ are not resonance frequencies. One
can compute that a solution � ¬ Ñ is some combination ofq ê Ë ­ ®�
 . q ê » ­ ®B

where

Ò K~. Ò a are the two roots of Ò a � % ��� Ò ��
  
By the analysis of the previous section, the resulting Dirichlet data for ¤ is given by¤¨,-��.�*�.�Ï�1c
 � ¬ ¶ Ñ Þ E � ß � ¬ Ñ \ E� _ � ¬ Ñ q @UÓ Ô � q @]­ ®�� .
where

� ¬ Ñ 
���,Y¯ a¬ 1
is the two-sided impedance from (3.39), with 
 given by (3.42). For the semi-discretized
problem, we again use the system of primary and dual lines ;³
>; ¬ and ;3
 M; ¬ , and divide
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the solution into its odd and even parts about ;3
>/�} � . We solve for
?�´ �¬ ,Y*�.�Ï�1�A ¬ �VK�¶¸·¸·¸·¸¶ d TVK ,?~´ �¬ ,-*�.�Ï�1µA ¬ � P ¶¸·¸·¸·¸¶ d on the primary and dual lines, respectively, which satisfy´ ���� � ´ ���� � ��� Mf ´ �� � Mf6f ´ � 
$�).´ ���� � ´ ���� � ��� f ´ �� �	f Mf ´ � 
$�).(3.43)

´ �¬ ,-*�.0�617
��). ff6Ï ´ �¬ ,-*�.I�61D
$�). ° 
sE'.  G G H � E'.
´ �¬ ,Y*�.0�!17
���. ff6Ï ´ �¬ ,-*�.I�617
��). ° 
��).  G G H�.
�^,5f ´ � 1 P ,-*�.0Ï�17
$¦9,-*�.0Ï�10} � . ´ �d TVK ,Y*�.�Ï�17
$�).

�$k Mf ´ � l K ,-*�.0Ï�17
$¦9,-*�.0Ï�10} � . k Mf ´ � l d TVK ,-*�.0Ï�17
���.´ � ,-*�.0Ï�1�. ´ � ,Y*�.0Ï�1 are £/	� periodic in *  
Again using the Fourier method, the resulting semi-discretized Dirichlet data is then´ �K ,-*�.�Ï�1 � ´ �P ,Y*�.�Ï�17
 � ¬ ¶ Ñ Þ E¥� ß � ¬ Ñd \ E� _ � ¬ Ñ q @UÓ�ÔU� q @]­'® � .
where

� ¬ Ñd 
��9dh,Y¯ a¬ 1
is the two-sided discrete impedance from (3.40), where again 
 is given by (3.42). For 
 �� a , matrix-valued function ��,5��1 has poles, so we can not formulate an exact counterpart of
Corollary 3.6. However, since we have assumed that the Õ Ñ are not resonance frequencies,
all entries of ��,Y¯ a¬ 1 are bounded. Hence it follows from the equivalent representation (3.38)
that the denominators of ��,�¯ a¬ 1 are nonzero. In this case, one can see explicitly from these
formulae that for large enough H the error of the Dirichlet data can be estimated as¹ ��,Y¯ a¬ 1����9dh,Y¯ a¬ 1 ¹ 
�� \ Ç x�È@U�VK�¶ a � r�, Ò a@ ¯ a¬ 19�^r�dh, Ò a@ ¯ a¬ 1G� _ .
where

Ò @ are the roots of Ò a � % ��� Ò � ¯ a¬ �&Õ aÑ¯ a¬  
Note that Ò K 
F�4% �#� ì 
�� � aÒ a 
s�4% � � ì 
j� � a  



ETNA
Kent State University 
etna@mcs.kent.edu

GRIDS FOR ANISOTROPY 75

−40 −30 −20 −10 0 10 20
−40

−30

−20

−10

0

10

20

30

40

Real Part

Im
ag

in
ar

y 
P

ar
t

η=5

η =0, elliptic case

−(b
max

η)2

FIG. 3.1. Spectral approximation curves in the complex plane for fixed temporal frequency . and varying
spatial frequency / . Here 0214365�798:1<;>= ? .

Consider now the modes which are propagative in ; , that is, when 
 � � a and the rootsÒ K~. Ò a are purely imaginary. This means that, just as in the isotropic wave problem of Section
2.3, we need r'd to be a good approximation to r on the negative real axis- exactly where r
has poles. So, just as before, r'd needs to be defined by matching these poles.

We can further examine the negative real spectral interval that needs to be approximated
by r'd by considering the following form of a propagative mode:�2
 q @]Ó Ô à ê Ð @ 
 T ê Ð A � TO� á .
where Bü
e,CBW
�.DBW��1 , ¹ B ¹ 
 E , and

Ò B�� 
 ­ ®Ó Ô . If we substitute this representation into the
differential equation (3.41) we obtain Ò 
FE�GHBD.�BJI XOK .
where G is the coefficient matrix of the elliptic part of the operator,

G$
 \ E �� E _  
From this we see that

Ò � Ò « ò 
 , where
Ò « ò 
 is the reciprocal of the minimal eigenvalue of

G . The latter is just the minimal wave speed for the anisotropic media. So, the error for the
Dirichlet data corresponding to the propagative modes will depend onÇ x�ÈK Ê ¼ X�àUÓ Ù ê ÌJL�@ á » ¶ P ¾ � r�,-�n19�	r�d),-�n1G�  
We would therefore require the elimination of the poles on the interval �]��,YÕ Ð Ò « ò 
'1 a .I��� .This is similar to what was done for the isotropic problem on the smaller interval �]�4Õ aÐ .I���where the minimal wave speed was E . Note that for a given Õ Ð , the grid size should still be
inversely proportional to the minimal wave speed, i.e., it will require approximately the same
number of grid points per wavelength as for the isotropic problem. The evanescent spectrum
is well separated from the spectrum of

Û »Û 
 » , so the semi-discretized finite difference solution
will converge exponentially (with uniform exponential rate) with H on the line ;|
è� . In
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Figure 3.1 we plot an example of , Ò @-¯:1 a curves for a fixed Õ and varying ¯ . For Õ�
NM ,
we see the two components of the spectrum in blue. The horizontal interval �]��, Ò « ò 
 Õ)1 a .0���corresponds to the propagative modes, and the curvilinear part corresponds to the evanescent
modes. This is shown next to the corresponding red lines for the elliptic case, that is, whenÕ�
$� .

4. Numerical experiments. Optimal grids were successfully implemented (without math-
ematical foundation) to the 3D dissipative (elliptic) anisotropic Maxwell’s equations in in-
duction well logging applications for oil exploration [7]. The exponential convergence was
experimentally observed for 3D anisotropic problems in unbounded domains.

Here we demonstrate the use of optimal grids for the two dimensional scalar wave equa-
tion with domain decomposition. In practice, we design optimal grids for constant coeffi-
cients, but, indeed, our objective is to apply them for variable coefficient problems. One way
to do this is by decomposing the domain. Let us assume, for simplicity, that we solve a piece-
wise constant coefficient elliptic equation in O 
PO K:Q O a , such that in every subdomain
we have the Laplace equation. If the NtD maps in every subdomain are approximated with
accuracy R , and the approximate solution satisfies the conjugation condition (continuity of the
solution and normal component of the current) on the interface S between the subdomains,
then the solution of the entire problem would be approximated with ��,CR�1 error on S . This is
why we can use the optimal grids, which were designed for constant coefficient problems, in
the homogeneous subdomains of variable coefficient problems. By the same reasoning they
are particularly useful in the exterior part of unbounded domains.
Now let us apply optimal grids to the problem�Q���D
�� 
�
������ � 
��j� � ���! 
We introduce a * -discretization with, respectively, primary and dual grids (see Figure 4.1):? * @ A!.C%D
���.GE6.  G � .DT � E
and ?WM* @ A6.N%D
���.  G � .IH
in a similar manner as for the ; -grid. This yields the semi-discrete system (3.43)´ ���� � Mf � f � ´ �j� ��� Mf6f � ´ �� � Mf6f ´ �L
$�´ ���� �&f � Mf � ´ � � ��� f Mf � ´ �� �	f Mf ´ � 
$�(4.1)

where the FD operators fn� and
Mf!� are the counterparts of f and

Mf , respectively. The obtained
ODE system (4.1) is solved by the standard explicit time-stepping.

The convergence analysis of (3.43) can be extended to (4.1) in the following way. The
error of (4.1) can be estimated as the error of (3.43) plus the error of the * -discretization.
Following the approach of [4], we compute the rational approximation, not to the exact
impedance, but to the impedance of a fine equidistant grid. Such grids are easier to com-
pute and do not generate artificial reflections when combined with fine equidistant grids in
multi-domain settings. The extremely fast convergence of the Padé-Chebyshev algorithm af-
ter the elimination of the resonance poles, i.e., after average grid density exceeds Nyquist
limit of two points per wave length, allows us to obtain an accurate (with single precision
accuracy) approximation of the fine-grid impedance on the prescribed spectral interval with
very small cost. So, what we will do is compare the results for such spectrally ”equivalent”
coarse optimal and fine equidistant grids.
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0 1

FIG. 4.1. Sample optimal grid. Dots are the primary points and crosses are the dual grid points.

In the first experiment we use a homogeneous, anisotropic medium given by a symmetric� ¢ � matrix that has value � on the diagonal and E off the diagonal. The computations are
done on a square centered about the origin with half side equal to one, and the source function
is a Gaussian pulse with center frequency equal to E�� Hz. The source is located at the origin.

In this first experiment we perform the computations three times. The first is with an
equidistant grid with U points per minimum wavelength (with the respect of the minimal
wavespeed in the model). In the second computation, we use the equidistant grid on the left
half while the right half of the domain we used an equivalent optimal grid in the ; direction.
The optimal grid in the right half plane has slightly less than 1/3 of the nodes of the equidistant
grid. In the third computation, we used the optimal grid in both the ; direction on the right
half of the domain and in the * direction on the top half of the domain. The tensor product
optimal grid in the upper right region of the domain has approximately 1/10 of the number of
nodes on the grid as the equidistant mesh in the same region. This is a less significant savings
than one would have if higher accuracy were needed. For comparison, if we were to needEWV points per wavelength, the savings would be about X � times; for X � points per wavelength
the savings would be over E��'� times. In Figure 4.2 we present a snapshot of the wave at the
same time for the three different grids. The gridlines are also shown on the plots, but for
convenience only every 10th gridline is drawn in each direction.

We see that the profiles present an ellipse, as expected for anisotropic media. On the
first and equidistant grid, this ellipse has a well-defined, non-dispersive front. In the second
picture of Figure 4.2, in the optimal grid region one sees the numerical dispersion caused by
the coarsening of the grid steps. This dispersion, however, does not affect the accuracy on
the left half of the domain. The optimal grid accurately reproduces the NtD map at ;^
w� ,
that is why the results in the left half plane are accurate. Similarly, in the third snapshot we
observe that although there is large numerical dispersion in the coarse grid region, this error
does not propagate into fine grid region. We note that while a rigorous approach to tensor
product optimal grids goes beyond the analysis described here, it is not difficult to see why
they may work. Using an equivalent optimal grid in * in the upper half plane leaves the NtD
map of (4.1) (with fine * -grid) at *�
 � unchanged. This is why the results in the lower
left quarter remain unchanged compared to the fine uniform * -grid in the second picture. In
fact, the difference between the first and third pictures in the bottom left region is less than
0.1%, while the error between these computations, with U points per wavelength, and the true
solution, is itself on the order of 1%.

For the second experiment, our geometry is a model of a simple vertical well, or borehole,
with an anisotropic background medium. See Figure 4.3. The square of computation is the
same, but the medium now varies in the ; direction. For ; � �²�L�  � Mh.0�  � M~� the medium
is an isotropic fluid with speed E , but outside of this region we have an anisotropic solid
represented by the � ¢ � matrix with � on the diagonal and E on the off-diagonal. We first
perform the computation using a fine equidistant grid. In the second computation, we use a
fine equidistant grid within the isotropic borehole region and an optimal grid coarsening in
the x direction in the outer, anisotropic, domain. Figure 4.4 shows the wave before it hits the
anisotropic region. In both cases it is still within the fine gridded region. In Figure 4.5, we
see the anisotropy influencing the wavefront and the beginning of numerical dispersion with
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FIG. 4.2. Wave in Homogeneous Anisotropic Media

the coarse grid. Finally in Figure 4.6, we see that the grid coarsening and dispersion in the
outer region has not affected the accuracy of the solution in the borehole region, where the
receivers are located.

5. Discussion. In this manuscript, we have demonstrated that if one uses pre-existing
optimal grids on the anisotropic problem (1.3) on a finite or semi-infinite interval by using the
schemes described above, the convergence of the NtD map is on the order of the convergence
of that of the isotropic NtD map on a ray in the complex plane. In particular, this says that if
the grids were computed from a Padè-Chebyshev or Zolotarev’s rational approximation, the
convergence will be exponential. We also showed that for wave problems, the propagative
modes require a spectral approximation on the negative real axis where the poles are located,
similar to the isotropic case.

We also presented some qualitative numerical results for the two dimensional scalar wave
equation in anisotropic media. We saw that the error in the coarsely gridded optimal grid
subregions did not penetrate into the high accuracy regions, even if the two regions did not
have the same material properties. This shows that the optimal grids, used in one or more
directions, can greatly reduce the system size for a given accuracy at a receiver location.

As is the case for isotropic problems, optimal grids achieve spectral (generally expo-
nential) convergence for the impedance response, or NtD map, of an interval, whether finite
or semi-infinite. In other words, a coarse optimal grid will yield an approximation of this



ETNA
Kent State University 
etna@mcs.kent.edu

GRIDS FOR ANISOTROPY 79

FIG. 4.3. Borehole Geometry

FIG. 4.4. Wave in Borehole Model: t=0.3
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FIG. 4.5. Wave in Borehole Model: t=0.8

FIG. 4.6. Wave in Borehole Model: t=1.3

response equivalent to that of a very fine (exponentially finer) equidistant grid. Because it
is the NtD map that completely determines the coupling of a domain with its neighbor(s),
subdomains can be discretized very coarsely without affecting the accuracy of the solution
in the finely gridded regions. Subregions are coupled using standard conjugation conditions.
Furthermore, these subregions need not have the same material properties.

The next step will be to apply these techniques to more complex borehole geometries.
This will require truly two dimensional domain decomposition, as was done for isotropic
problems in [3]. To show that spectral convergence will be maintained for such problems,
one needs to examine the convergence of the higher dimensional NtD map computed with
tensor product optimal grids. We are currently working to show that the Galerkin equivalence
described in [10] is maintained for the two dimensional NtD map in the sense of its repre-
sentation in the eigenbases. What this will mean computationally is that we can use optimal
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grids in both directions on rectangular, homogeneous, anisotropic subdomains (or geometries
with parallelograms) while maintaining high order convergence. A rigorous analysis and
numerical experiments will be provided in a forthcoming paper.
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method. I. One-sided impedance approximation., Math. Comp., 71 (2002), pp. 995–1019.

[11] B. ENGQUIST AND A. MAJDA, Radiation boundary conditions for acoustic and elastic wave calculations,
Comm. Pure Appl. Math., 32 (1979), pp. 313–357.

[12] M. J. GANDER, F. MAGOULES, AND F. NATAF, Optimized Schwarz methods without overlap for the
Helmholtz equation., SIAM J. Sci. Comput., 24 (2002), pp. 38–60.

[13] D. GIVOLI, I. PATLASHENKO, AND J. B. KELLER, DtN schemes for nonlinear problems in unbounded
domains. in Computational mechanics (Buenos Aires, 1998), CD-ROM file, Centro Internac. Mtodos
Numr. Ing., Barcelona, 1998.

[14] D. INGERMAN, V. DRUSKIN, AND L. KNIZHNERMAN, Optimal finite difference grids and rational approx-
imation of the square root. I. Elliptic problems., Comm. Pure Appl. Math., 53 (2000), pp. 1039–1066.

[15] M. GUDDATI AND J. TASSOULAS Continued-fraction absorbing boundary conditions for the wave equation,
J. Comp. Acoust., 8 (2000), pp. 139–156.

[16] V. I. LEBEDEV Difference analogies of orthogonal decompositions of basic differential operators and some
boundary value problems. I, Soviet Comput. Math. Math. Physics., 4 (1964), pp. 449–465 (in Russian).

[17] S. MOSKOW, V. DRUSKIN, T. HABASHY, P. LEE, AND S. DAVYDYCHEVA, A finite difference scheme for
elliptic equations with rough coefficients using a Cartesian grid nonconforming to interfaces., SIAM J.
Numer. Anal., 36 (1999), pp. 442–464.

[18] A. QUARTERONI AND A. VALLI, Theory and application of Steklov-Poincaré operators for boundary value
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