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COMPUTING QUATERNIONIC ROOTS BY NEWTON’S METHOD
�

DRAHOSLAVA JANOVSKÁ
�

AND GERHARD OPFER �
Abstract. Newton’s method for finding zeros is formally adapted to finding roots of Hamilton’s quaternions.

Since a derivative in the sense of complex analysis does not exist for quaternion valued functions we compare the
resulting formulas with the more classical formulas obtained by using the Jacobian matrix and the Gâteaux derivative.
The latter case includes also the so-called damped Newton form. We investigate the convergence behavior and show
that under one simple condition all cases introduced, produce the same iteration sequence and have thus the same
convergence behavior, namely that of locally quadratic convergence. By introducing an analogue of Taylor’s formula
for �������
	�� , we can show the local, quadratic convergence independently of the general theory. It will also be
shown that the application of damping proves to be very useful. By applying Newton iterations backwards we detect
all points for which the iteration (after a finite number of steps) must terminate. These points form a nice pattern.
There are explicit formulas for roots of quaternions and also numerical examples.
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1. Introduction. The newer literature on quaternions is in many cases concerned with
algebraic problems. Let us mention in this context the survey paper by Zhang [15]. Here,
for the first time we try to apply an analytic tool, namely Newton’s method, to finding roots
of quaternions, numerically. Let 
������������ be a given mapping with continuous partial
derivatives. Then, the classical Newton form for finding solutions of 
�������� � is given by
!�"���$#%
'&(�"���*)
�+�-,.�-/1032%�4� �5#6)�,(1.1)

where 
 & stands for the matrix of partial derivatives of 
 , which is also called Jacobian matrix.
The equation (1.1) has to be regarded as a linear system for ) with known � . The further steps
consist of iteratively solving this system with ��/1032 .

In this paper we want to treat a special problem 
!�"���7�8� with 
9�;:<�=: , where: denotes the (skew) field of quaternions. We use the letter : in honor of William Rowan: amilton (1805 – 1865), the inventor of quaternions. In this setting we will try also other
forms of derivatives of 
 than the matrix of partial derivatives.

For illustration in this introduction, we use the simple equation 
!�"���7�>�?�!@BA+C withC�,D��E�: . If we follow the real or complex case for defining derivatives, we have two possi-
bilities because of the non commutativity of the multiplication in : , namely
 & �"�����>�GFIHKJLNMPO1Q �R
!�"�S#UT��VA�
!�"���D�DTXW!Y[Z\�GFKHIJLNMPO �]�"�S#UT^� @ A�� @ �DTXW!Y�� �5#_FKHIJLNMPO T���T!WXY[,
`&a�"�����>�GFIHKJLNMPO Q T WXY �"
����S#bT��VAc
������D�dZP�GFKHIJLNMPO T WXY �]�"��#UT�� @ A�� @ ���e�S#_FIHIJLNMPO T W!Y ��T$f
If we put g L �4�hT-��T W!Y for any Tji� � then from later considerations we know that k g L kl�mk �Vk
and ��g L � Y �n� Y . Thus, g L fills the surface of a three dimensional ball and there is no unique
limit. In other words, the above requirement for differentiability is too strong. One can
even show that only the quaternion valued functions 
��(op�%�>�qC'o
#srN,t
��(op�%�>�uopC
#mr[,C�,vr
Ee: , respectively, are differentiable with respect to the two given definitions, Sudbery
[13, Theorem 1].w
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In approximation theory and optimization a much weaker form of derivative is employed
very successfully. It is the one sided directional derivative of 
j��:x��: in direction T or
one sided Gâteaux 1 derivative of 
 in direction T (for short only Gâteaux derivative) which
for �$,yTzE7: is defined as follows:
 & �"�{,vT��|�>�}FKHIJ~����~��l� 
!�"�5#b�VT���Ac
������� �}FKHIJ~N���~��l� ���S#%��T�� @ A�� @� � ��TS#bT-�$f(1.2)

Let T�E���� Q �`Z , then 
 & �"�{,vT��t�9��T�� and from (1.1) replacing 
 & �"��� with 
 & �"�{,vT�� we obtain
the damped Newton form � /�032 �>�h�%�"���|�4�e�S# ��lT � �$W!Y1CBA����
if T�� � . For T
� � we obtain the common Newton form for square roots.

If we work with partial derivatives, the equation 
!�"�����>� ��@�A�C implies


`&a�"�����>�n� ��� � Y A�� @ A�����A��-�� @ � Y � �� � � � Y �� � � � � Y
�1�� f(1.3)

Matrices of this form are known as arrow matrices. They belong to a class of sparse ma-
trices for which many interesting quantities can be computed explicitly, Reid [11], Walter,
Lederbaum, and Schirmer [14], and Arbenz and Golub [1] for eigenvalue computations. The
special cases C^,]�zEz� and C^,]�zEz� reduce immediately to the common Newton form� /1032 �4� �b�"�����>� �� � �S# C� � f
The treatment of analytic problems in : goes back to Fueter [5]. A more recent overview
including new results is given by Sudbery [13]. However, Gâteaux derivatives do not occur
in this article.

We start with some information on explicit formulas for roots of quaternions. Then we
adjust the common Newton formula for the � -th root of a real (positive) or complex number
to the case of quaternions. Because of the non commutativity of the multiplication we obtain
two slightly different formulas. We will see that under a simple condition both formulas
produce the same sequence. We see by examples that in this case the convergence is fast
and we also see from various examples that in case the formulas produce different sequences,
the convergence is slow or even not existing. Later we apply the Gâteaux derivative and
the Jacobian matrix of the partial derivatives to formula (1.1) and show that under the same
condition the same formulas can be derived which proves that the convergence is locally
quadratic. The Gâteaux derivative gives also rise to the damped Newton form which turns out
to be very successful and superior to the ordinary Newton technique.

2. Roots of quaternions. We start by describing a method for finding the solutions of
!�"���|�>� � � AjCS� ��,�C�E7:5�[�\,.��Ez ¡,.��¢+�`,(2.1)

explicitly. The solutions of 
��������h� will be called roots of C . We need some preparations. IfCS�m��C Y ,vC @ ,]C � ,]C � �tE�: we will also use the notationCS�hC Y #%C @X£ #bC �l¤ #bC �X¥ ,
1René Gâteaux, French mathematician (Vitry 1889 – [Verdun?] 1914)
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where £ , ¤ , ¥ stand for the units �(��, � ,]�-,]���¦,��(��,]�-, � ,]���¦,��(��,]�-,]�-, � � , respectively.
DEFINITION 2.1. Two quaternions C�,vr are called equivalent, denoted by C¨§©r , if there

is TcEz:5� Q �`Z such that C��9T W!Y r¦T (or T^C��9r¦T ). The set of all quaternions equivalent to C
is denoted by ª C�« . Let C��4�¬�(C Y ,]C @ ,vC � ,]C � �­E�:®��� . We call C'¯
�>�G���-,]C @ ,vC � ,]C � � the vector
part of C . By assumption C'¯�i� � . The complex number°C
�>�s��C Y ,�± C @@ #bC @� #%C @� ,]�-,]�����5��C Y #nk C'¯`k £(2.2)

has the property that it is equivalent to C (cf. (2.3)) and it is the only equivalent complex
number with positive imaginary part. We shall call this number

°C the complex equivalent
of C .

Because of CS�hT WXY r¦T
�x² Tk TVk(³ W!Y r Tk TVk
there is no loss of generality if we assume that k TVk @´� � . Since C%E+� commutes with all
elements in : we have ª C�«�� Q C^Z . In other words, for real numbers C the equivalence class ª C�«
consists only of the single element C . Let µ­E�� , then µ and the complex conjugate µ belong
to the same class ª µy« because of µ��m� ¤ � WXY µ ¤ .

LEMMA 2.2. The above notion of equivalence defines an equivalence relation. And we
have C5§nr if and only if ¶ CS� ¶ rN,·k C�k��mk r�k4f(2.3)

Proof. Let T^C9�¸r¦T for some T}i�<� . Then, the general rule k �-gXk\��k �VkIk gXk yieldsk C�k;�¹k r�k . Let us put Ce�ºT WXY r¦T and apply another general rule

¶ �"�^g���� ¶ �"g'��� . Then
¶ Cz� ¶ �aT WXY r1T^��� ¶ �]�(T W!Y r1�DT��¡� ¶ �(T�T WXY r¦�\� ¶ r . It remains to show that (2.3) implies
the existence of an T�i� � such that T^C5�nr¦T . Let C
E�� . Then (2.3) implies CS�nr and hence,Tz� � . Otherwise, (2.3) is equivalent to a real, linear, homogeneous »�¼�» system. It can be
shown, that the rank of the corresponding matrix is two.

There are situations where there are infinitely many roots.
THEOREM 2.3. Let 
 be defined as in (2.1) but with real C . If there exists a complex root� of C which is not real, then there will be infinitely many quaternionic roots of C .
Proof. Let ���>� � Y #6� @�£ be a root of C with � @ i�h� . We have 
!�"�����>�+� � A�C�� � . LetTcE�:®� Q �`Z . We multiply the last equation from the left by T W!Y and from the right by T and

obtain T!WXY]
!�"���]T´�nT!WXYy� � T¨A6T!WXYyC`T
�m�aT!WXYy��T^� � AjCS�h�(2.4)

since real numbers commute with quaternions. Therefore, 
!�(T W!Y ��T^�t�n� or, in other words,
the whole equivalence class ª �-« of � consists of roots.

COROLLARY 2.4. Let Cji�s� be real. For �U¢©½ there are always infinitely many roots
of C . For ���h� there are infinitely many roots if C�¾e� .

The finding of roots of quaternions is based on the following lemma.
LEMMA 2.5. Let C©Em:®�[� and let

°C be the corresponding complex equivalent of C
where

°CS� T WXY C`T for some T�i�+� such that ¿ °C
�U� . Then, � will be a root of C if and only ifÀ���4� T W!Y ��T is a root of
°C .

Proof. (i) Let � be a root of C . By applying (2.4) we obtain
À� � A °C
�9� . (ii) Let

À� be a
root of

°C . I.e. we have
À� � A °CS�h� . Multiplying from the left by T and from the right by T WXY

gives the desired result.
This lemma yields the following steps for solving (2.1) for C��4�m�(C Y ,vC @ ,]C � ,vC � �¡iEz� .
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(i) Compute
°C��4�Á�(C Y ,�Â C @@ #%C @� #bC @� ,]�-,]�p���hC Y #hk C ¯ k £ E�� .

(ii) Let
À��Ã5E�� be the roots of

°C
Ez� :
À��Ã­�mk C!k Y]Ä �|Å¦Æ`Ç � £{ÈlÉ @ ÃdÊ� �d,vË¨�h��, � ,1f�f1fd,]�´A � ,Ì1Í�Î �j�?Ï1ÐÑ Ï Ñ ,X�bE�ª ��,]Ò�ª .

(iii) Find T7E�: such that
°C��4�hT W!Y C'TzE7� .

(iv) Then, the sought after roots are � Ã �nT À� Ã T W!Y .
The equivalence CS§ °C , expressed in (iii) may be regarded as a linear mappingÓ C5� °C�, where

Ó �ÕÔ � �� °ÓhÖ E�� �[×`�(2.5)

and
°Ó

is a ��½�¼�½�� Householder matrix°Ó �4�hØ|A �ÙpÚXÙ Ù�Ù Ú , Ù �>� �� C @ Aek C'¯�kC �C �
�� with

°Ó �� C @C'�Cp�
�� � �� k C ¯ k��

�� f
Now, in (iv) we need the inverse mapping

Ó W!Y � Ó , thus, the roots are

� Ã �>� Ó ���
¶ À� Ã¿ À� Ã��
�1�� �8k C!k YDÄ �

�����
Ì¦ÍpÎ ÈlÉ @ ÃdÊ�Ï¦ÛÑ ÏdÜ Ñ Î HKÝ È�É @ ÃdÊ�Ï¦ÞÑ ÏdÜ Ñ Î HKÝ È�É @ ÃdÊ�ÏdßÑ ÏdÜ Ñ Î HKÝ È�É @ ÃdÊ�

�1���� ,àË��h��, � ,1f�f1f¦,]�´A � f(2.6)

The right hand side of (2.6) was already given by Kuba [10]. However, the above deriva-
tion using Householder transformations is new. It allows a very easy proof of the following
lemma.

LEMMA 2.6. Let �e¢m� and CcEj:5�[� be given and let � Ã ,�Ë��s��, � ,v��,1f�f1fd,D��A � , be
the roots of C according to (2.6). Then (i) k � Ã kl�_k C!k YDÄ � for all Ë¨�h��, � ,v��,1f1f�fd,D�SA � , and (ii)
the real ��»¨¼´�$� matrix á}�4�m�[� O � Yãâ�â1â � � W!Y � of all roots has rank two.

Proof. (i) The matrix
Ó

is orthogonal and thus, does not change norms: k � Ã k
�k ¶ À� Ã #_¿ À� Ã £ k¡�äk À� Ã k¡�Õk C!k Y]Ä � . (ii) The matrix
Ó

is non singular and thus, does not
change the dimension of the image space.

COROLLARY 2.7. Under the same assumptions as in the previous lemma all roots � Ã ofC are located on a (two dimensional) circle on the surface of the four dimensional ball with
radius k C!k Y]Ä � .

Let �xE¬: be a root of CåE¬:®�[� and let
°�{, °C be the complex equivalents of �$,]C ,

respectively. The Lemma 2.5 does not state that
°� is a root of

°C . Nevertheless, it is half
way true. For any real number g we define æRgpç as the largest integer not exceeding g . For a
complex number o , the quantity o is defined as the complex conjugate of o .

LEMMA 2.8. Let CbEU:5��� be given and let �!Ã be the roots of C in the ordering Ëj���, � ,1f�f1fd,]��A � given in (2.6). Let
°C be the complex equivalent of C and

°�!Ã be the complex
equivalents of ��Ã',$Ë�� �-, � ,1f1f�f¦,D�´A � . Then,

°��Ã is a root of
°C for Ë¨�h��, � ,1f�f1fd,'æè�"�7A � �]él�Nç

and
°� Ã is a root of

°C for the remaining Ë .
Proof. We only show the essential part: If � is a root of C , then either

°� or
°� is a root of°C . Let

°C��åT W!Y C'T and
°�6� °T WXY � °T . By applying (2.4) we have �(T WXY ��T�� � A °C��_� . SinceT WXY ��T and

°T W!Y � °T are both complex, they differ by Lemma 2.2 at most in the sign of the
imaginary part and the statement is proved.

Let us illustrate this lemma by a little example.
EXAMPLE 2.9. Let �º�Õ� . The two roots of Cê�>�à�èA�»^,D»p��,]½���,1A��l��� are � O �4�



ETNA
Kent State University 
etna@mcs.kent.edu

86 D. JANOVSKÁ AND G. OPFER�(ë�,1A�»^,]½�,�A��l�¦,{� Y �ìA�� O and
°Cb�íA�»®# � �'î �lï £ , °� O �?ëB#9î �lï £ , °� Y �íA�ëB#©î �lï £ .

We have
°��@O � °C and � °� Y �D@�� °C .

If we use numerical methods for finding roots of C+En: we will find only one of the
quaternionic roots, say ð . Let

°C�, °ð be the complex equivalents of C�,Dð , respectively. Then,
according to Lemma 2.8,

°ð or
°ð is a complex root of

°C . We defineÀð5�4�_ñ °ð if
°ð � � °C ,°ð otherwise.

All further roots
Àð Ã of

°C follow the equationÀð�ÃB� Àð Å¦Æ`Ç �lË'Ò� £ ,àË�� � ,y�`,1f�f1f¦,]�´A � f(2.7)

It should be observed that the factor Å¦Æ`Ç @ ÃdÊ� £ apart from � does not contain any information
about the root

Àð . In order to find all quaternionic roots we only need to apply (2.6) again. We
put
ÀðS�>�+òS# Ù £ and ó�Ã®�4� @ ÃdÊ� and obtain the other roots by

ð Ã �>� Ó ���
¶ Àð Ã¿ Àð Ã��
� �� � Ó ��� ò Ì1Í�Î ó Ã A Ù Î HIÝ�ó ÃÙ Ì1Í�Î ó Ã #6ò Î HIÝ�ó Ã��

� �� � ���uô Ãõ @!ö Ãõ � ö Ãõ � ö Ã
� �� ,(2.8)

where ðB�5��� õ Y , õ @ , õ � , õ � �d,·k ð�¯�k'�4� Â � õ @ � @ #h� õ � � @ #h� õ � � @ , and where

ô Ã �4�+ò Ì¦Í�Î ó Ã A Ù Î HIÝ�ó Ã , ö Ã �4�
Î HI÷lÝ Ùk ð ¯ k � Ù Ì¦Í�Î ó Ã #6ò Î HIÝ�ó Ã �d,àË¨� � ,v��,1f1f�fd,D�7A � f

EXAMPLE 2.10. Let �%�Á½ and C��ø�èA�ù�ú�,yël�`,�A¡û[ù-, � �l»p� . Then, ð��¬� � ,1A��`,v½�,�A�»p� is
one of the quaternionic roots and the corresponding complex equivalents are°CÁ�üA�ù�ú�#Á�lúpî ��ï £ , °ð+� � #mî ��ï £ . We have

Àðh� � AÁî �lï £ ,­k ð�¯�k¡�uî ��ï`,tòý� � ,Ù �mA î ��ï`,vó Y �n�[Ò{é[½-,]ó @ � »lÒ{é�½�, ô Y �mA���f>ë�� � # î ùpû[���mA�ë`f � ú�½pû', ô @ �h��f>ë�� î ùpû!A � ���»-f � ú�½pû`, ö Y � A��-f ë-� � #.þ ÿ��@ � � � A���f úlú��lù-, öè@ � ��f>ë��Nþ ÿ��@ � A � �ü� A���f ½l½�ï�� .
Then the two other quaternionic roots are ð Y �4�ã�èA�ë`f � ú�½pû`,]��f úpû�ù�»^,1A � f � � û�ë', � f ½lë�ú�ûl�d,ð @ �>�m�"»-f � ú�½pû`, � f ½�� � ú-,1A � f ïlùp��ë`,y�'f ú�»l½�½l�df

3. Newton iterations for roots of quaternions. Newton iterations for finding the � -th
root of a positive number C is commonly defined by the repeated application of� /�032 �>�h�%�����|�4� �� ²p�"�7A � �*��# C� � W!Y ³ f(3.1)

What happens if C is a quaternion? There are the two following analogues of Newton’s
formula (3.1): � /�032 �>� � Y �����|�4� �� � �"�7A � �*��#6� YyW � C`��,(3.2)

g�/�032j�4�h� @ ��g��t�>� �� � �"��A � �ègP#bC�g YdW � � f(3.3)

Both formulas have to be started with some value � O i� �-,Dg O i�h� , respectively. The quantities� O ,Dg O will be called initial guesses for � Y ,v� @ , respectively. In the first place we do not know
what formula to use. But there is the following important information.

LEMMA 3.1. Let the initial guess � O Ec:B� Q ��Z be the same for both formulas (3.2) and
(3.3). (i) The formulas � Y and � @ generate the same sequences � O ,]� Y ,D� @ f1f�f if � O and C
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commute and in this case ��� and C commute for all �´¢h� . (ii) Let ���9� . Then ���­�ng�� for
all ��¢ � implies that ��� and C commute for all �¨¢e� .

Proof. Let � Y produce the sequence � O ,]� Y ,D� @ f1f�f and � @ the sequence � O ,Dg Y ,Dg @ f�f1f
(i) Assume that � O and C commute. Using formulas (3.2) and (3.3), we obtain� � É Y A�g � É Y � �� � � YdW �� CBAjC�g YdW �� # ����A � �¦�"� � Acg � �]��,(3.4) � � É Y CBA Cpg � É Y � �� � �"��A � �1�"� � C®A Cpg � �{#hk C!k @ �"� YdW �� A�g YyW �� � � f(3.5)

We first show the following implication:�
	p�Õ� C5A Cp�´�h� � �
���ä� YdW � C5A�Cp� YyW � �h� for any �zE�:B� Q ��Z�f(3.6)

For C¨�n� this implication is true. Let C�i�n� . Then (a) implies � Ã C�� Cp� Ã for all Ë7E�  and
hence, C WXY � W Ã �+� W Ã C W!Y . Since C W!Y � ÏÑ Ï Ñ Û (b) follows. We shall prove by induction that� � Acg � �h��,ä� � C®A Cpg � �+� for all �¨¢e��f(3.7)

By assumption, (3.7) is valid for ���s� . Assume that it is valid for any positive � . Then by
(3.4) and by (3.6), we have ��� É Y A�g�� É Y �n� . And (3.5) implies ��� É Y C5A Cpg�� É Y �©� . Thus,
(3.7) is valid for all �¨E�  .

(ii) Let ���¡�+g�� for all ��¢ � . Then, (3.4), (3.5) reduce to� YdW �� C5A�Cp� YdW �� �h��,(3.8) ��� É Y C5A Cp��� É Y � �´A �� ����� C®A C����N��f(3.9)

For ���Á� equation (3.8) reads � W!Y� C
�9Cp� WXY� which implies C W!Y � � �©� � C W!Y . Since C W!Y �ÏÑ Ï Ñ Û it follows that Cp� � �+� � C and hence by (3.9), we have Cp� � É Y � � � É Y C .It should be noted that part (i) is already mentioned by Smith [12, Theorem 3.1], though
in a matrix setting. In the above lemma it was assumed that � O and C commute. However, it
is an easy exercise to see that this is equivalent to the commutation of � O and C . Only in our
context it was a little more convenient to assume that � O and C commute.

Let � Ej  be arbitrary. Then � � �mg � for all ��¢©� implies (3.8). However, for � ¢9½
the implication (3.6) is not an equivalence. Take �c�n½ and �c�4� £ , then (b) of (3.6) is valid,
but not necessarily (a) of (3.6).

In the next example we show, that for �e¢©½ the necessary condition (3.8) for � Y �Ág Y
does not imply � @ � g @ .

EXAMPLE 3.2. Let �6�9½ and � O � £ . Then (3.8) is valid for �
�9� and all CzEc: and
as a consequence � Y �+g Y � Y� �(� £ AjC`� . However, � O CBA Cp� O i� � and � @ i� g @ for some C .

In Lemma 3.1 we have shown that the commutation of C and � O implies the commutation
of C and ��� for all �¨¢e� . If ���l,��¨¢e� , are the members of any sequence of approximation for
an � -th root of C
E�: , then the property that C and ��� commute is intrinsic to the problem.

LEMMA 3.3. For a given C
E´: let � be a solution of 
������|�4�e� � A7C5�h��,'�cE�  . ThenC and � commute.
Proof. Multiply 
!�"���¨�4�ø� � A Cj�G� from either side by � and subtract the resulting

equations. Then Cp�´�+��C .
Lemma 3.1 does not exclude the case that � � �n� for some �
�+� . This means that both

sequences stop at the same stage. However, we will show that this cannot happen if � � W!Y is
already close to or far away from one of the roots of C . We introduce the residual ð � of � � byð � �>�hCBA�� �� f
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It is a computable quantity.
LEMMA 3.4. Let us consider the two values ��� WXY ,]���l,��z¢ � , generated by � Y defined

in (3.2) under the only assumption that ��� W!Y i�ý� . Let the residual ð�� WXY have the property
that k ð � W!Y k��Ák C!k or k ð � W!Y k'�e�^k C!k f(3.10)

Then � � i�h� and consequently, � � É Y is well defined.
Proof. It is clear from (3.2) that � � �4� � Y ��� � W!Y �%��� can happen if and only if�"�\A � �*� �� W!Y #
C5�h� or � �� WXY �9A Y� W!Y C . Then, in this case ð � W!Y �4�hC�AS� �� W!Y �hCV# Y� W!Y CS��� WXY C , which contradicts our assumption.

FIG. 3.1. Exceptional points � ������� for ����� and roots of � ��� marked � .

Let � Y be given by (3.2). It is easy and also interesting to find all exceptional points� � ��C`�|�4� Q �z�l� Y �"���;� �-,D�ji�h�`Z! Q �`Z
for which the Newton iteration will terminate. For this purpose we write the Newton iteration
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backwards, i. e. we switch ��� É Y ,D��� and obtain the equation" �"� � É Y �t�>�s�"�7A � �*� �� É Y A��!�^� W!Y� É Y � � #bCS� �-,#�5�+�-, � ,1f1f�f¦,.� O �h��f(3.11)

In a first step, starting with � O �s� we obtain � solutions � Y of " ��� Y ���s� , repeat with
all � solutions � Y , obtain �$@ solutions � @ etc. In this way, we generate $&%S�4� � #U�´#%�X@|#â1â�â #e� % �º��� % É Y A � �]é��"�cA � � points of

� � ��C`� if we stop after ' cycles. Since � O �¬�
we can apply the techniques from Section 2 reducing equation (3.11) for all �n¢?� to an
equation with complex coefficients with the consequence that all solutions are complex as
well and

� � ��C`��(9� . For �%�m� the set
� � �(C'� is located on a straight line passing through

the origin and having slope �c�)	&* Ì,+ 	�ÝX�3¿;� Y é ¶ � Y � where � Y �4�m�DA�C`� Y]Ä @ . For ���e� the set� � ��C`� is rotational invariant under rotations of ��Ò{éN� and shows typical self-similarity. The
sets

� � ��C`� and
� � �ar¦� differ only by scaling and rotation. Or in other words, the qualitative

look of
� � �(C`� is independent of C . Since the exceptional points are apart from rotation the

same in each of the � sectors there are �
$ % A � �]é[���-$ % WXY �Á�"� % A � �]é��"�SA � � points in each
sector. An example with '¨�Áû cycles, �c�©ú , and C��4� £ is shown in Figure 3.1. It contains½l½pë�ï��l½ points. We have also included the three level curves

l .��4� Q o5Ez�n�^k o � A�C!kl�hµlk C!k>Z for µ�� �-f ï-, � ,y�`f
4. Inclusion properties. Newton iterations can be written in the form� Y �������>� �´A �� �S# �� � YdW � C�f(4.1)

Thus, � Y �"��� is a convex combination of � and � YdW � C . Let Cå�>� �(C Y ,]C @ ,]C'�l,vCp���d,�r �4��(r Y ,vr @ ,vr � ,vr � � be two arbitrary quaternions. With the help of the (closed, non empty) intervals/ � �4�mª J�HKÝ{��C � ,vr � �¦,DJ0	 Æ �(C � ,yr � �3«3,��5� � ,y�`,v½�,D»^,
we define the segment12 C^,yr 34 �4�m� / Y , / @ , / � , / � �df

LEMMA 4.1. Let � O ,]� Y ,1f�f1f be the sequence generated by � Y for a given C�Ez: . Then,
for all �¨¢e� we have (componentwise)� � É Y E 12 � � ,]� YdW �� C 34 f(4.2)

Proof. Follows immediately from (4.1).

TABLE 4.1
Inclusion property for some selected values �65�����7�85 � .Þî C � � A�� ½ A�»� � �mA��`f>�[» � ú A � f ï � ú�½ ��f ù'ûN»l» A�½�f ùl½p��ú� � � ��f>��� � û A � f »���ë�»ã��f � �lù � A��`f ù � �lù� W @� C � ë`f �lù�ù�� A���f ½lùl½'û �-f ëpû�ëlë A���f4û[ú'û[½�-� � ��f>��� � û A � f »���ë�»ã��f � �lù � A��`f ù � �lù�:9 � � f4ûlû�½lï A��`f>� � ëlï·½-f ½p��½lù A�»-f »�½ � ù� W @� C � »-f ï � ù�» A�½�f ùl½lú�ù ë�f>ûlëlël� A¡û'f úpû�½pû

EXAMPLE 4.2. Use Example 2.10 again: �6�Á½-,]Cz�4�ø�DA�ùlú�,yël��,1A¡û[ù-, � ��»p� with � O �4�C�é[ù . We obtain (monotonicity is missing) the above numbers (in Table 4.1) and a graphical
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FIG. 4.1. Inclusion property of Newton iterations from step 4 to step 8.

representation in Figure 4.1. We also see that the inclusion is very quickly so precise that the
three curves cannot be distinguished by inspection of the graph.

As we see from the table the inclusion ;î C�E 12 ����,]� YdW �� C 34 which is valid for real roots
is not true in general.

5. Numerical behavior of Newton iterations. There are three cases:
(i) The iterates converge quickly (quadratically).

(ii) The iterates converge slowly (linearly).
(iii) The iterates do not converge.

Case i.) We choose an arbitrary C and select the initial guess � O so that C and � O commute
( ��� Y �ø� @ ). We observe fast (quadratic) convergence. In the Figures 7.1, 7.2, left side,
p. 95, we see 16 examples for �ø�8½ and for �å�<û , showing the absolute value of the
residuals. In all examples the convergence is eventually quadratic.

Case ii.) We choose C and � O randomly and independently. Ten examples are exhibited
in Figure 5.1 where the horizontal axis represents the number of iterations and where the
vertical axis represents the exponent of the absolute value of the residuals with respect to
base ten. In all cases the convergence is slow (linear).

Case iii.) We look at the following special example.
EXAMPLE 5.1. Let C��4�Á���-,]�-, � ,v���¦,vT´�>� Â ½�#U� î �',�< � �4�m�aë î ��A6û�� L ÿ ,v�%�4�hT�< and���+» . Then, ( �>=+��f ï��l½lï-,:<?= ��f ½lù��pû )ßî C�E Q �(��,v��,@<�,]���¦,��DA���,v��,1AA<�,]���¦,��DAA<�,]�-,]�;,]���¦,��
<�,]�-,1A��;,]���dZ�f

If we start both iterations for this case with � O � ���-,]��,v��, � � , we have � O C i� Cp� O and we
obtain different iterates. And even worse, if we continue the computation (see Figure 5.2,
showing the absolute value of the residual), we observe that the first and third component of
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FIG. 5.1. Fourth root of quaternion � , � and initial guess �CB random.

all iterates will remain zero. Thus, convergence is impossible. Observe, that those elements
which commute with C have the form �7�m�"� Y ,]�-,D�^�l,]�p� .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.0275

0.028

0.0285

0.029

0.0295

0.03

0.0305

0.031

FIG. 5.2. Fourth root of quaternion � � ��D � D �@Ed� D�� , with initial guess � B � �FD � D � D �@E � .
6. Convergence of Newton iterations. According to our previous investigations, the

two Newton iterations defined in (3.2), (3.3) may converge slowly or may not converge in case
the initial guess � O and the given C do not commute. Therefore, we assume throughout this
section that C and � O commute. We already mentioned that equivalently, � O and C commute.
Then, according to Lemma 3.1 the two formulas produce the same sequence. Therefore, we
only use formula (3.2). We want to show that in this case the convergence is fast. The details
will be specified later.

Let 
 be defined by 
!�"���B�4�s� � AUC where C�,]�UE6: and CUi�å� . We will compare the
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iteration generated by formula (3.2) with the classical Newton iteration which is defined by
the linear �"»¨¼7»p� system
������N�X#6
`&(�����N�è)����h��,ä��� É Y �4�+���t#6)��l,#�S�+�-, � ,�f1f�f¦,(6.1)

where 
 & is the already mentioned �"»�¼j»'� Jacobian matrix whose columns are the partial
derivatives of 
 with respect to the four components of ���ý��� Y ,]� @ ,D�^�l,D�^�N� Ú . The equation
(6.1) is a linear system for the unknown )&� where ��� is known. Here and in the sequel of this
section, it is reasonable to assume that � � ,D) � have the form of column vectors. An explicit
formula for 
 & for �z�h� was already given in the Introduction, formula (1.3). For the general
case, we will develop a recursive and an explicit formula for 
 & . Let us denote by 
�G ��H the
column vector of the partial derivative of 
 with respect to the variable � � ,I�b� � ,v��,]½-,D» .
Then 
 & �s�R
JG Y H ,D
:GI@ H ,D
:G ��H ,è
JG �KH � . We will use the formulas��� @ � G ��H �4�m���-��� G ��H �+�-� G ��H #6� G ��H �{,#�5� � ,y�`,]½-,D»^,(6.2) �"� � � G ��H �4�m���-� � W!Y � G ��H �+�{��� � WXY � G ��H #6� G ��H � � W!Y ,#�5� � ,y�`,]½-,D»^, �c¢ ½-f(6.3)

Since �7�h� Y #b� @�£ #6� �a¤ #6� ��¥ we have �LG Y H � � ,D�MGI@ H � £ ,]�MG ��H � ¤ ,]�MG �KH � ¥ . For ���h�
we have therefore
'&a�"�����s�"�S#%�$,]� £ # £ �{,D� ¤ # ¤ �{,D� ¥ # ¥ ���t�e�JN #ON��{,
where

Nm�>�m� � , £ , ¤ , ¥ ��,
and the multiplications �JN®,�N�� are not matrix multiplications but simply componentwise
multiplications with the (quaternionic) constant � . If N is considered a matrix, then it is the
identity matrix. For a general �c¢e½ we obtain from (6.3)
 & �"����� � ² �"� � W!Y � G Y H ,��"� � W!Y � GK@ H ,���� � WXY � G ��H ,��"� � W!Y � G ��H ³ #PN¡� � W!Y f
In order for the multiplication with � to be correct, each column �"� � WXY �,G ��H ,��5� � ,v��,]½-,D» , has
to be understood as a quaternion.

Let us write instead of 
 & a little more accurately 
 &� if the Jacobian matrix is derived
from 
 � �����|�4� � � A�C . Then the formulas (6.2), (6.3) read
 &@ �"���;�+�JNU#PN¡�$,ä
 &� ������� ��
 &� W!Y #ON�� � W!Y ,.�c¢ ½�f(6.4)

From these formulas it is easy to derive the following explicit formula


`&� É Y �"����� �Q��R O � � W � N¡� � ,.��¢U�-,(6.5)

where we also allow 
 &Y �4�SN . In particular, we have 
 &� ���p�¡�UT for � ¢m� . Since we have
already computed 
 &@ in (1.3) we can compute 
 &� quite easily by using (6.4):V�WX � � � �
� VYW8 � � �[Z0\ � 8 �(6.6) ]

^_a` � � 8 bMc � 88 c � 8X c � 8d � c �y� b � 8 c �y� b � X c �y� b � d�y� b � 8 ` � 8 bec ` � 88 c � 8X c � 8d cLf � 8 � X cLf � 8 � d�y� b � X cLf � 8 � X ` � 8 bec � 88 c ` � 8X c � 8d cLf � X � d�y� b � d cLf � 8 � d cLf � X � d ` � 8 bec � 88 c � 8X c ` � 8d
gihj>k



ETNA
Kent State University 
etna@mcs.kent.edu

COMPUTING QUATERNIONIC ROOTS 93

This expression is quite complicated. However, we do not need any explicit formula
like (6.6) for numerical purposes, because we can create the needed values by evaluating (6.4),
or (6.5) directly.

We shall show below that, roughly, the classical Newton iterates governed by (6.1) are
identical with the iterates produced by (3.2) or (3.3). However, there is a difference in the
break down behavior. We have already seen (proof of Lemma 3.4) that the iteration defined
by (3.2) can break down if and only if � Y �"�����+� , which would imply that the Jacobian matrix
 &� �"��� is the zero matrix. Thus, the classical Newton iteration will also break down. However,
there is the possibility that 
 &� is not the zero matrix but nevertheless singular, implying that
the classical Newton iteration breaks down, whereas the other iteration still works. It is best
to present an example for this case.

EXAMPLE 6.1. Let ��� »-,XCS�+� O �s����,v��, � ,]�p� . Then (cf. (6.5))


 &� �"� O ��� ��� ����» ���� ���A�» � ������ ���
�1��

and the classical Newton iteration cannot be continued. However, � Y �4�·� Y ��� O �m��èA � éN»-,v��,v½péN»^,]�p� and the following values converge quickly to �DAA<�,]�-,]�;,]�p� . Compare to
Example 5.1. A remedy would be to start the classical Newton iteration with � Y .

The connection between the two iterations (3.2) and (6.1) is established in the following
theorem.

THEOREM 6.2. Let 
 � be defined by 
 � �����¡�>�n� � A6C for �$,]C�E�:S,VC�i�©� and �6¢n� .
Let the initial guess � O i�©� commute with C and let � O be the same for both iterations (3.2),
(6.1). Then, both iterations produce the same sequences, provided the Jacobian matrix 
 &� is
not singular.

Proof. We prove that ) O �>� �� ² � YdW �O C®A�� O ³(6.7)

solves (6.1) for �5�h� . This is sufficient because of � Y � � O #�) O � � O # Y� ²�� YdW �O C�A7� O ³ �Y� ² �"��A � �*� O #%� YdW �O C ³ �5��� Y ��� O � . If we use formula (6.5) we have to show that

� �O AjC\# �� l � W!YQ��R O � � WXYyW �O N�� � OYm ² � YdW �O C®Ac� O ³ �+�-f
Inside the square brackets are matrices. Vectors are in round or in no parentheses. The former
equation is equivalent to

���"� �O AjC`�$# l � WXYQ��R O � � W!YdW �O N¡� � O m � YyW �O C®A l � W!YQ��R O � � WXYyW �O N�� � O m � O �h��f
Thus, it suffices to show thatl � WXYQ��R O � � W!YdW �O N¡� � O6m � O �+�!� �O , l � W!YQ��R O � � WXYyW �O N�� � O�m � YyW �O CS� �XC^f
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The first equation is a special case of the second equation, put C��+� �O . It is therefore sufficient
to show the validity of the second equation. We prove the second equation by induction. We
shall use that C and � O commute with the consequence that C and � ÃO also commute for allË´Eon . See (3.6). For �z� � the equation is true. Suppose it is true as it stands. Thenl �Q��R O � � W �O N¡� � OYm � W �O C�� l � WXYQ��R O � � W �O N¡� � O #ON�� �O m � W �O C

�+� O l � W!YQ��R O � � WXYyW �O N�� � OYm � YdW �O Cp q,r sR � Ï
� WXYO

p q,r sR � Ï
# l N�� �O m � W �O Cp q,r sR Ï �m���
# � �èC�f

Thus, we have shown, that ) O solves (6.1) for �S�n� . This will even be true, if 
 &� is singular.

By this theorem we have shown, that the iteration defined by (3.2) coincides with the
classical Newton iteration via the Jacobian matrix 
 & of the partial derivatives. Therefore, all
known features are valid: The iteration converges locally and quadratically to one of the roots.
The iteration generated by (3.2) has the advantage that, numerically, the case � Y �����P�å� is
practically impossible (cf. Proof of Lemma 3.4) since this requires, that the components of �
are irrational numbers which, however, have in general no representation in a computer.

In the last section (no. 9) we shall give an independent proof for the local, quadratic
convergence of Newton’s method for finding roots by showing that an analogue of Taylor’s
theorem can be applied to � Y or � @ .

7. The Gâteaux derivative and the damped Newton iteration. The Gâteaux deriva-
tive of a mapping 
���:m�8: was already defined in (1.2). Let 
 � �����|�4� � � A
C for �$,vC�E�: ,
then 
`&� �"�{,vT���� � W!YQ��R O � � W!YdW � T-� � f
For real T this specializes to 
 &� �"�{,vT���� �$T�� � W!Y and if we introduce this expression into the
classical Newton form (1.1) (replacing 
 & �"��� with 
 &� �"�{,vT�� ) we obtain� /�032 �>�h�%�����|�4�+��# ��$T � �!YyW � CBA����
which coincides with � Y defined in (3.2) if T´� � , otherwise it can be regarded as a damped
Newton form with damping factor t��4� � élT . Damping is normally used in the beginning of
the iteration. It enlarges (sometimes) the basin of attraction. In order to apply damping we
write �^/1032t�ut^���>�h�%�"�{,�t��|�4�+�5#vt �� � � YyW � C®A����(7.1)

and carry out the following testk 
 � �"�^/1032��wt��D�1k�¾9k 
 � �"���1k ,xtz�4� � , �� , �» ,1f�f1f
The first (largest) t which passes this test will be used to define ��/1032��wt�� for the next step.
This strategy proved to be very useful in all examples we used.
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FIG. 7.1. Newton without and with damping, applied to the computation of third roots.

0 10 20 30 40 50 60
10−15

10−10

10−5

100

105

1010

1015

1020

1025

1030

0 2 4 6 8 10 12
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

FIG. 7.2. Newton without and with damping, applied to the computation of seventh roots.

As expected, the damping is used only in the beginning of the iteration, with the conse-
quence that the convergence order is not changed, and, in addition, only few damping steps
were applied. We show the effect in Figures 7.1 and 7.2, where 16 cases are exhibited each
for �z�h½ and �z�©û . The initial data are identical for the undamped and damped case. In the
case of ���h� the undamped and damped case look alike.

We also compared the number of calls of � (defined in (7.1)) for the damped Newton
iteration and for � Y (defined in (3.2)) for the undamped Newton iteration. For �n�x� and�+�G½ these numbers are similar, but from � �Gë on there is a clear difference. We made
1000 tests for ���n½�,vë , and for ���9û . For ���në the number of calls with damping is about
22% smaller than that without damping. For ���©û those figure is 25%.

8. The Schur decomposition of quaternions. We start with a definition.
DEFINITION 8.1. Let C Y ,]C @ ,vC � ,]C � be any four real numbers. We form the two complex

numbers �6�>�hC Y #UC @1£ ,e<��4�hC � #bC � £ and the following two matrices:

y �4�ºÔ � <A < � Ö ,{zø�>� ��� C Y A�C @ A�C � A�C �C @ C Y A�C � C �C � C � C Y A�C @C � A�C � C @ C Y
�1�� f(8.1)
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The matrix
y

will be called complex q-matrix, the matrix z will be called real q-matrix.
Both types of matrices are isomorphic to quaternions C
�>�s��C Y ,vC @ ,]C'��,vCp��� with respect to

matrix multiplication. We have k C!k��åkIk y kKk'�åkKk z7kIk with the consequence that the conditions
of
y

and z are equal to one. Further,
y|y � �ýk C�k @XØ[,}z~z Ú �¬k C!k @XØ . The eigenvalues of

y
and z are the same, only in z all eigenvalues appear twice. The two eigenvalues of

y
areó:� �4�+C Y�� Â C @@ #bC @� #bC @� £ . They are distinct if CcéE7� .

In Björck and Hammarling [2] the authors develop methods to finding the square root
of a matrix. In more recent papers these methods are extended to the computation of � -th
roots of matrices, Smith [12], Higham [6], Iannazzo [7]. For finding a root of a matrix �
the authors use the Schur decomposition of � . If � is any complex square matrix, then the
(complex) Schur decomposition which always exists has the form� ��� � �~�c,
where

�
is upper triangular, thus, having the eigenvalues of � on its diagonal, and � is

unitary (i.e. � � �?�nØ ). If one knows an � -th root � of
�

, then �ý��� � � � ����� � � � ��
����� � � � �5�lá � . Thus, á is an � -th root of � .
An application to quaternions results in the question: Can

y
or z have a Schur decom-

position, in terms of q-matrices? If we pose this problem for complex q-matrices we have to
ask whether a decomposition of the following form is possible:Ô ó É �� ó W Ö �5� Ô ó �� ó Ö � Ô ò A ÙÙ ò Ö Ô � <A < � Ö Ô ò ÙA Ù ò Ö ,(8.2)

where ��,�< are arbitrary, given complex numbers and ó�,DòV, Ù are wanted complex numbers
such that k ò�k @t#hk Ù k @�� � . If we rewrite this equation with quaternions, it readsó�� �{C��;,·k �|kl� � ,(8.3)

where � is the quaternion defining the q-matrix � , i. e. �x�4�<� ¶ �"ò!�d,d¿\�"ò!�d, ¶ � Ù �¦,y¿\� Ù �]� .
Since k �|k @¡�_k ò�k @t#hk Ù k @¡� � we have � WXY � � . Thus, equation (8.3) defines an equivalence
between ó and C . Our former Lemma 2.2 confirms that ó and C are indeed equivalent. This
may be summarized as follows.

THEOREM 8.2. Let C be a quaternion and ó the complex representative of C . Then (8.3)
is the Schur decomposition of C .

Proof. Rewrite (8.3) in form of complex q-matrices.
In terms of quaternions, the application of the Schur decomposition leads to the explicit

determination of the roots as already described in Section 2.
Because of the isomorphy between complex and real q-matrices, corresponding results

for real q-matrices can be directly copied from the case of complex q-matrices and are deleted
here.

In order to find � , equation (8.3) may be regarded as a linear, homogeneous, real system
of four equations in the four components of � . In a former paper, [8], we have already solved
a similar system. It has the form

� ���)T$, � �>� ��� � A�C @ #nk C'¯`k A�C � A�C �C @ A+k C ¯ k � A�Cp� C'�C'� Cp� � A�C @ A+k C ¯ kCp� A�C'� C @ #nk C ¯ k �
�1�� f

The matrix has rank two for C�E7:5�[� . We find two independent solutions as follows:� Y �>�s�]k C'¯�k�#�C @ ,Nk C'¯`k�#
C @ ,]C � A�C � ,]C � #
C � �d,{� @ �>�s��C � A�C � ,]C � #
C � ,�k C'¯'k*ASC @ ,Nk C'¯`k3A�C @ �d,
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provided C'� or Cp� is not vanishing. In case C`��� Cp�¡� � and C @ � � , � Y �>�s� � ,]�-,]��,v���¦,�� @ �4����-, � ,v��,v��� are independent solutions. In case C����ýCp�¨�ý� and C @ ¾_� , � Y �>�}�(��,v��, � ,]�p� ,� @ �4�s����,v��,v��, � � are independent solutions. The general solution of (8.3) and of (8.2) as well
is, therefore,

�6�4� � Y � Y #%� @ � @k � Y � Y #%� @ � @ k ,�� Y ,]� @ Ez�P,·k � Y k�#hk � @ k'�e��f(8.4)

We could choose � Y ,]� @ such that one of the four components of � is vanishing, which would
simplify the resulting matrix � slightly. E. g. � Y �4�¹A�Cp�BAeCp��,]� @ �>�<k C ¯ kp#hC @ would
make the second component of � vanish and the corresponding complex � would have a real
diagonal (provided k C`�'k[#9k Cp�pkX�Á� ). But we would like to point out that the considerations
of this section are of theoretical nature and not used in our numerical computations. The
Householder transformation, developed from (2.5) to (2.6) is to our taste much neater and
does not need the explicit knowledge of � .

In view of the isomorphic representations (8.1) of quaternions in matrix forms, it is of
course tempting to use matrix algorithms for treating quaternions. As far as only elemen-
tary arithmetic operations are used, there will be no problem. But there is already a differ-
ence in the amount of arithmetic work. To invert a quaternion, 11 (real) flops are needed.
To invert a corresponding complex �a��¼U��� matrix requires 300 flops and to invert a real�"»�¼�»'� matrix requires 350 flops (matlab counts). Since in general matrix operations do
not know about the underlying quaternionic structure, problems of ignoring the matrix struc-
ture can be avoided by simply using quaternion arithmetic. This is supported in two papers
by Dongarra, Gabriel, Koelling, and Wilkinson, [3], [4]. There is a very simple example,
see the present authors [9], of computing eigenvalues of a quaternion valued �a�¨¼���� matrix
where an application of an eigenvalue algorithm to the corresponding complex �"»\¼B»'� matrix
gives bad results. The matrix structure is ignored and the precision is reduced significantly.
Another example: If one computes the matlab Schur decomposition of

y ,Iz the resulting
unitary matrices � do not belong into the class of q-matrices.

9. Taylor for � � in the quaternionic case. The question is whether there are some
possibilities to extend Taylor’s theorem also to quaternionic valued functions, though deriva-
tives in the strong (complex) sense do not exists. We will only treat the question for simple
functions � defined by ���"�����>� � � ,.��Eon�,!��E´:¨,
and we will replace derivatives of � by the derivatives we know from the real and complex
case, namely � & �"���|�>� �!� � W!Y ,�� & & �"���|�>� ���"�7A � �*� � W @ ,ä�cE�n|,!��E7:¨,(9.1)

and we will call these functions, � & ,�� & & derivatives. We shall show that a Taylor formula of
the form ���"�����)����� O �X#O��&a�
�l�1�"�
A�� O �d,(9.2)

is possible which reads in our special case� � �+� �O #6�e� � W!Y �"��A�� O �d,(9.3)

which leads for �Ui�h� to

� � WXY � �� ��� � Ac� �O �¦����A�� O � W!Y f(9.4)
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That means we can find �´A � values of � such that formula (9.2) is valid. However, this
is quite trivial. What we want to know is some information on the location of � in relation to �
and � O . If we do not make special assumptions on � and � O we are not able to make forecasts
about � . But if we assume that �$,D� O commute then the situation changes. For commuting�$,]� O we have the formula

��&a�
�l���m�"� � A�� �O �1�"�´Ac� O � WXY � � W!YQ��R O � � � � W � W!YO ,.��¢ � f(9.5)

The same formula for negative � reads

��&a�
�l���s�"�:�hAc�J�O �¦�"�
Ac� O � W!Y �mA W � W!YQ��R O � W � W!Y � � É �O ,����hA � f(9.6)

These formulas are also valid for �8�m�6�m� , but they are trivial in this case. If we go one
step further with Taylor’s formula we obtain

�������������"� O �X#v��&(��� O �¦�"�´Ac� O �$# � & & ��)��� ����Ac� O � @ f(9.7)

If we put ���"�����>� � � then for ) we obtain (for �bi� �-,D�7A � i�h� ) the formula) � W @ � ����"�7A � � ²p�"� � Ac� �O �¦����Ac� O � W @ A��!� � W!YO ����A�� O � W!Y ³ f(9.8)

With the help of (9.4), (9.5), and (9.6) we obtain� & & �")��� �s�"� � A�� �O �1�"��A�� O � W @ A��!� � WXYO ����Ac� O � W!Y
� � W!YQ��R Y �"��A��p�è� � WXY � � W � WXYO ,ä��¢ � ,(9.9)

� & & �")��� �s�"� � Ac� �O �¦�"�
Ac� O �dW @ A>�´� � W!YO ����A�� O �yW!Y
� W � W!YQ��R O �èAA�¬A��'�*�$W � W!Y¦� � É � WXYO ,����hA � f(9.10)

If we express � � W!Y defined in (9.4) either by (9.5) or by (9.6) and ) � W @ defined in (9.8)
either by (9.9) or by (9.10), then � � W!Y ,D) � W @ have one common feature. They all represent
convex combinations. Therefore, we have the following inclusion properties:

� � W!Y¡Eh² J�HIÝ��R O6� Y ��������� � WXY � � � � W � W!YO , J0	 Æ��R O6� Y ��������� � W!Y � � � � W � W!YO ³ ,!�c¢ � ,(9.11)

�&� W!Y E ² J�HIÝ��R O6� Y ��������� W � WXY � W � W!Y � � É �O , J�	 Æ��R O6� Y ������� � W � WXY � W � W!Y � � É �O ³ ,e���©A � ,(9.12) ) � W @ E ² J�HIÝ��R Y � @ ��������� � WXY � � WXY � � W � W!YO , J0	 Æ��R Y � @ ��������� � W!Y � � W!Y � � W � W!YO ³ ,!�c¢e�`,(9.13) )�� W @ E ² J�HIÝ��R O6� Y ��������� W � WXY � W � W!Y � � É � WXYO , J0	 Æ��R O6� Y ������� � W � WXY � W � W!Y � � É � WXYO ³ ,e���©A � ,(9.14)

where in all cases the minima and maxima have to be applied componentwise. More exactly,
one could also say that these values are all contained in the convex hull of the given points.
The situation is particularly simple in the cases where � is small:
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�®� �� �"�S#%� O �d,.��� ��,� @ � �½ �"� @ #6�^� O #%� @O �d,.���+½-,� � � �» �"� � #6� @ � O #6�^� @O #6� �O �d,à��� »-,� W @ �e� W!Y � W!YO ,��x�mA � ,� W � � �� �"� W @ � W!YO #%� WXY � W @O �d,��x�mA��
� W � � �½ �"� W � � W!YO #%� W @ � W @O #%� WXY � W �O �¦,{�x�ÁA�½)�� �½ �(�[� O #%���d,.���h½�,) @ � �ú ��½�� @O #U�[�-� O #%� @ �d,.���e»-,) � � �� � �"»�� �O #b½�� @O �S#U�[� O � @ #6� � �¦,��z�hë`,) W � �e� W!Y � W @O ,��x�mA � ,) W � � �½ �"� W @ � W @O #U�[� W!Y � W �O �d,{�}�9A��`,) W 9 � �ú �"� W � � W @O #U�[� W @ � W �O #%½l� W!Y � W �O �¦,��x�9A�½-f

We summarize our results so far.
THEOREM 9.1. (Taylor form 1) Let �6�-:ý�¸: be defined by ���"���\�>�Á� � ,D�bE�n , and

define � & ,�� & & according to (9.1). Assume that �$,]� O Ec: commute. Then there is an element�5E7: and an element )
E�: such that���"�����)����� O �$#O��&a�
�l�1�"�´Ac� O �¦,���"�����)����� O �$#O� & �"� O �1�"�´Ac� O �$# � & & ��)`�� �"�
Ac� O � @ ,
where for �`,D) we have the inclusions given in (9.11) to (9.14).

We are mainly interested in the case where��Ac� O �5���
is small. The commutation of �$,D� O implies that also � commutes with � and with � O because�N�´�m�"�´Ac� O �*���+� @ Ac� O �´� � @ Ac�^� O � ���`,�[� O �m�"�´Ac� O �*� O � �-� O Ac� @O �+� O �
Ac� @O �+� O �`f
Since the commutation of �$,]� O also implies the commutation of � � ,]� ÃO for arbitrary ��,vË´E�n ,
this applies also for the two commuting pairs �`,D�L�!�`,D� O . Thus, the binomial formula for� � �m��� O #��l� � is valid in the ordinary sense.

THEOREM 9.2. (Taylor form 2) Let �6�-:ý�¸: be defined by ���"���\�>�Á� � ,D�bE�n , and
define � & ,�� & & according to (9.1). Assume that �$,]� O E7: commute. Then with �5�4�e�¨A�� O we
have ���"���������"� O �$#v��&(��� O �¦�"�
Ac� O �$#v����� @ �d,(9.15) ���"���������"� O �$#v� & ��� O �¦�"�
Ac� O �$# � & & ��� O �� ����Ac� O � @ #v����� � �¦,(9.16)
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where ���(T�� is an abbreviation for an expression with the propertyFIHIJÑ L Ñ MPO ���aT^�]T!WXY�� Ì¦Í Ý Î�+ f
Proof. (i) Let �c¢ � . [a] From (9.2) and (9.5) by letting �z�4�+� O #�� we obtain

���"���;�)����� O �{# � WXYQ��R O ��� O #��l� � � � W � WXYO �
�)����� O �{# � WXYQ��R O ² �QÃ,R O Ô � Ë Ö � � W ÃO � Ã ³ � � W � WXYO �
�)����� O �{# � WXYQ��R O �QÃ,R O Ô � Ë Ö �^� W Ã W!YO � Ã É Y
�)����� O �{# � WXYQ��R O ²1� � W!YO ��#?�l� � W @O � @ # â�â1â ³
�)����� O �{#O� & �"� O �1�"��A�� O �$# � W!YQ��R Y ² ����� W @O � @ # â�â1â ³�)����� O �{#O��&a�"� O �1�"��A�� O �$#v����� @ �¦f

[b] From (9.7) and (9.9) by letting �7�e� O #�� we obtain

���"����������� O �$#v� & �"� O �1�"�´Ac� O �X# � W!YQ��R Y �"��A��'�¦�"� O #��l� � W!Y � � W � W!YO � @
������� O �$#v��&��"� O �1�"�´Ac� O �X# � W!YQ��R Y �"��A��'� ²

� WXYQÃ,R O Ô �BA �Ë Ö � � W!YdW ÃO � Ã ³ � � W � W!YO � @
������� O �$#v��&��"� O �1�"�´Ac� O �X# � W!YQ��R Y �"��A��'�

� WXYQÃ,R O Ô �­A �Ë Ö � � W @ W ÃO � Ã É @
������� O �$#v��&��"� O �1�"�´Ac� O �X# � W!YQ��R Y �"��A��'� ² � � W @O � @ #h���®A � �*� � W @O � � # â�â1â ³
������� O �$#v� & �"� O �1�"�´Ac� O �X# � & & ��� O �� ����Ac� O � @ # � W!YQ��R @ �"�7A��'� ² ���®A � �*�^� W @O � � # â1â�â ³������� O �$#v��&��"� O �1�"�´Ac� O �X# � & & ��� O �� ����Ac� O � @ #v����� � �¦f

(ii) Now, let ���nA � and define $ by �7�+� O #P$�� O . Then, �S�>� ��A�� O �)$�� O . Assume that$p,�� are small. [a] We use (9.2) and (9.6) and obtain

���"���������"� O ��A W � WXYQ��R O ��� O #O$�� O � W � WXY � � É �O $�� O
�����"� O ��A W � WXYQ��R O � W � W!YO � � #O$[�yW � WXYd� � É � É YO $
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�����"� O ��A�� �O W � W!YQ��R O � � #O$[� W � WXY $P�)����� O ��Ac� �O W � WXYQ��R O � � A>$|#P$ @ A�$ � â1â�â � � É Y $�����"� O ��A�� � W!YO �"�
Ac� O � W � WXYQ��R O � � A�$t#O$ @ A�$ � â1â�â � � É Y�����"� O ��A�� � W!YO �"�
Ac� O � ² A>�¬Ajµ Y $|#%µ @ $ @ A�µ � $ � â1â�â ³�����"� O �$#v��&(��� O �¦����Ac� O �{#%µ Y �:�O $ @ # â�â1â �)���"� O �$#v��&a�"� O �¦����A�� O �$#O���
� @ �d,
where µ Y ,vµ @ ,vµ � ,�f1f1f are positive constants (e.g. µ Y � W � G W � É Y H@ ).

[b] We use (9.7) and (9.10) and obtain

���������)���"� O �$#v� & ��� O �¦����Ac� O �{# W � WXYQ��R O �DAA�GA��p�1�"� O #P$�� O �dW � W!Y¦� � É � WXYO � @O $ @
�)���"� O �$#v� & ��� O �¦����Ac� O �{# W � WXYQ��R O �DAA�GA��p�è� W � W!YO � � #O$N� W � WXY � � É � É YO $ @
�)���"� O �$#v��&(��� O �¦����Ac� O �{#6�J�O W � WXYQ��R O �DAA�¬A��'�1� � #O$N� W � WXY $ @�)���"� O �$#v��&(��� O �¦����Ac� O �{#6�J�O W � WXYQ��R O �DAA�¬A��'�1� � A�$|#O$ @ A â�â1â � � É Y $ @�)���"� O �$#v� & ��� O �¦����Ac� O �{#6� �O W � WXYQ��R O �DAA�¬A��'�1� � Ajµ G ��HY $|#%µ G ��H@ $ @ A â�â1â ��$ @�)���"� O �$#v��&(��� O �¦����Ac� O �{# � & & �"� O �� ����A�� O � @ #v����� � �d,

where the constants µ G ��HY ,vµ G ��H@ ,�f1f�f could be computed by a recursion formula.
Some generalizations are possible. If we multiply the formulas given in Theorem 9.1,

and Theorem 9.2 from the left by any constant C E9: and take into account the fact thatC����(T��������(T�� then we see that we can apply these theorems also to �������´�>�?C�� � ,��_En , where the derivatives of � are defined as usual. If ��,è
 are two functions for which the
two theorems are valid, then these theorems are also valid for the sum ��#n
 because of���(T��{# ���(T��|�����aT^� . Since Newton’s formula for computing the root is a sum of this type
we have the following result.

COROLLARY 9.3. Let C�,D��E�: and let ð be one of the possible solutions of ð � �©C for�c¢e� and assume that ð is commuting with � . Define�%�����|�4� �� ²p���´A � �è�S#bC�� YyW � ³ f
Then C is also commuting with � and�%�"�����eð�# �´A �� ðpW!Yl�"��A�ð�� @ #O���]�"�
A�ð�� � �df(9.17)

Proof. Since ð and � commute we have �^ð �¹ðN� implying ð �¹� W!Y ðN� and ð � ��"� W!Y ð���� � �s� W!Y ð � � . Since ð � �_C the elements C and � commute. Formula (9.17) is the
second Taylor formula of Theorem 9.2.
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This corollary proves the local, quadratic convergence of Newton’s method for comput-
ing quaternionic roots without relying on any global theory.

COROLLARY 9.4. Let ���e���b� and let ¡ � � � be the set of all polynomials of the form

" ��o'�t�>� �Q��R � CC��o � ,�CC�PE7:¨f
Define the first derivative " & and the second derivative " & & of " as in the complex case. Let�$,]� O E�: be commuting elements. Then for " Eo¡ � � � we have" �"����� " �"� O �X# " &a�"� O �1�"��A�� O �X#v���D�"�7A�� O � @ ���" �"����� " �"� O �X# " & �"� O �1�"��A�� O �X# " & & �"� O �� ����A�� O � @ #v���D���
A�� O � � �¦f
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