Electronic Transactions on Numerical Analysis. Volume 27, pp. 124-139, 2007. Copyright © 2007, Kent State University. ISSN 1068-9613.

LEFT-DEFINITE VARIATIONS OF THE CLASSICAL FOURIER EXPANSION THEOREM*

L. L. LITTLEJOHN † and A. $ZETTL^{\ddagger}$

Abstract. In a recent paper, Littlejohn and Wellman developed a general left-definite theory for arbitrary selfadjoint operators in a Hilbert space that are bounded below by a positive constant. We apply this theory and construct the sequences of left-definite Hilbert spaces $\{H_n\}_{n \in \mathbb{N}}$ and left-definite self-adjoint operators $\{A_n\}_{n \in \mathbb{N}}$ associated with the classical, regular self-adjoint boundary value problem consisting of the Fourier equation with periodic boundary conditions. As a particular consequence of our analysis, we obtain a Fourier expansion theorem in each left-definite space H_n as well as an explicit representation of the domain of $A^{n/2}$ for each positive integer n.

Key words. self-adjoint operator, Hilbert space, left-definite Hilbert space, left-definite operator, regular selfadjoint boundary value problem, Fourier series

AMS subject classification. 34B24, 33B10

^{*}Received December 19, 2003. Accepted for publication January 10, 2005. Recommended by F. Marcellán. [†]Department of Mathematics, Baylor University, One Bear Place #97328, Waco, TX 76798-7328

⁽Lance_Littlejohn@baylor.edu).

[‡]Department of Mathematics, Northern Illinois University, DeKalb, Illinois, 60115-2880 (zettl@math.niu.edu).

¹²⁴