Electronic Transactions on Numerical Analysis. ETNA
Volume 27, pp. 26-33, 2007. Kent State University
Copyright © 2007, Kent State University. etna@mcs.kent.edu
ISSN 1068-9613.

OSCILLATION OF FACTORED DYNAMIC EQUATIONS*

J. DEVRIEST AND A. HULME'

Abstract. Results developed for the Euler—Cauchy dynamic equation are extended to a more general class
of factored dynamic equations. The oscillation properties are studied in the case of isolated time scales, where a
necessary and sufficient criterion for oscillation is developed.
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1. Introduction. We will assume that the reader is familiar with the time scale calculus
(see Bohner and Peterson [2]). The factored form of the Euler—Cauchy dynamic equation

(1.1) (tD = X2)(tD — A1)z = 0,

where D is the delta derivative operator with respect to ¢t and A1, A2 are constants was intro-
duced by Akin-Bohner and Bohner [1] and they used this to define and solve the nth order
Euler—Cauchy dynamic equation. The oscillation of the second-order Euler—Cauchy dynamic
equation (1.1) was studied by Huff et al [4]. We assume throughout that T C (0, c0) and
f T — (0,00). In this paper we solve and study the oscillation properties of the factored
dynamic equation

(1.2) (F)D = X)(f(#)D = A)z =0,

where Aq, Ay are constants, which we call the characteristic roots of (1.2). K. Messer studies
nth order factored equations in [5].
We will assume that the regressivity condition

(A1 + A2)p(t) + A dop?(t)
f®) f2(t)

holds throughout. This regressivity condition (1.3) is equivalent to the restriction that

(1.3) 1+ #0

M A2
@) (1)
where R is the regressive group defined in [2], page 58.

The next three results are motivated by results in [4].
THEOREM 1.1. Let A1, A2 be the characteristic roots to (1.2). If \y # s, then

ER,

z(t) = cre a (t,t0) + cae xs (t,t0)
HO) HO)

is a general solution of (1.2). If \y = Aa, then

t
1
z(t) = cre t,to) + cae t,t ———As
() = creay (tto) + cze (o) v 1(8) + Mpa(s)
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is a general solution of (1.2).
Proof. Assume that z solves (1.2) and take y = (f(t)D — A1)z, so that

(1.4) (f(t)D = A2)y = 0.
This is equivalent to the dynamic equation

A
vt =y
f@)
which is solved by
y(t) = c2e 1, (t,10)
O]

due to the regressivity condition (1.3). From (1.4) it follows that x satisfies
(f®)D — M)z = 026%(75;750);
or equivalently

/\1 =c Le A
(o 765) == 17t sm )

Using the variation of constants formula [2], page 77, we get that

¢ 1
2(0) = cre (6 0) + 2 /t 5y (0(6) (mefx_?)(s,to)) As
= c1ey (bt0) + cae 5y (t,10) t: ﬁe%(to,a(s))e%(s,to)As
= c1e 3y (10) + 26 3y (t,10) t: f(l) o 21 (009, to)e (5, t0)As
= c1e sy (1) + 26y (t,10) t: mee%(s,to)e%(s,to)As
= c1ey (bt0) + cae oy (t,10) t: me%e%(s,to)&s.

If \; = X2, we have the desired result that
¢ 1
z(t) = cle (t to) +ch (t to) ——————As.
to f(8) + A1p(s)

If A1 # A2, then the formula

t
1 1
S s,t0)As = t,to) — 1
w0 705) + Mp(s) Mo (8 t0) X2 — M\t [ ¢ 2oz (bto)
completes the proof. O

If the characteristic roots are complex conjugates of each each other, we can write the
general solution in terms of the generalized expontential and trigonometric functions (see [2]
for the definitions of these functions).

THEOREM 1.2. If the characteristic roots of (1.2) are A1,» = oo £ if3, where 3 > 0, and
the regressivity condition (1.3) holds, then

x(t) = clem(t to) cos_ s (t,to) + c2e 2 (t to) s1nf(t)+;aw(t) t,t0)
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is a general solution of equation (1.2).
Proof. By Theorem 1.1,

atig (T, 1 a—ip (T, 1
ef‘é't)ﬁ(a 0)7 eTt)ﬁ(7 0)

are solutions. Define ,g by

By _ B teT

f@) () +ant)’

Then the following two conditions hold:

o B e B0
OO0

o B a B
OBNIORB O RS0

~—

So

1
atip (T, 1 —ea—ig(t,1
€ +t)ﬁ(’ 0)+26Tt)ﬁ(70)

B (T i t,t
fﬁ((tt))( 9 0) 2 _f?t)@(_ ﬂ(t))( 0)

€5 (tto) +€_ 50 (£, t0)
— f_(
- em(t tO) 9

<)
~|

DN = DN =
@

-
3p
53]

(_
®

e e (t,0) cos 5(7(75 ; to)

= e_a(t,t0) cos s (t,t0)

is a solution. Likewise

T2 (t) = eﬁ (t, t(]) sin f(t)+ﬁau(t) (t, t())

is a solution. Since x1, 2 are linearly independent solutions, we have the desired result.
g

The properties of the generalized trigonometric functions are not fully known, so we
write the solution in terms of the classical trigonometric functions. This leads to a useful
forumla on isolated time scales, that is time scales where every point is isolated.

LEMMA 1.3. If the characteristic roots are A1 2 = o £ i3, where § > 0, then

z(t) = A(t) (¢1 cos B(t) + ¢ sin B(t)),

where
_ I R (5ED))AT _ ' ( (a + zﬂ)) T
(15) A(t)=e 1) >0, B() /to 3 (& - Ar,

where &y, is the cylinder transformation (see page 57 in [2]), is a general solution of the
dynamic equation (1.2). If, in addition, T is a isolated time scale, then fort € T,

o(t) p(t)
5 retan Bu(r)
H f )+ p(r)a)? + B2u Zacta ( Y+ an(r )>

T=to T=to
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Proof. From [2], page 59, we have
€a+ip (ta tO) = efttO 6"‘(1-) (%)AT
FiO}
— iy R(enn (FE7))+iS (€ (57)) AT

— A(t)eiB(t)
= A(t) (cos B(t) + isin B(t)) .

The real and imaginary parts
z1(t) := A(t)cos B(t), =za(t):= A(t)sin B(t)

are linearly independent solutions of (1.2), and the result follows.
Suppose that every point in T is isolated, then

= e (1000 7Y

S0 deu) | )| () +op(r) | Bu(r)
e R Iy o5 A o8 <)A”’( O f<7))

_L 1 2 _t rctan 75#(7)
() ( 7y VU + onln)? + 5 ”)U(T)“ta (f(7)+au(7))'

Then

16 ® (6 (SE2)) = 5 108 (5 VT + a4 7720

and

o (D) e ()

From (1.5) and (1.6) we have

A(t) = fio me) log(f(T V(D) +ap(m)2+82u 2(7—))

_ 258 108 (5t VT Fau(m) 8% (7) )

p(t) 1
- 11 (W VI T anmP + /W(r)) .

Furthermore, from (1.5) and (1.7) we have

T=t1p

Bl = / it (5 ) A7

p(t)
B retan Bu(T)
= ) arcta (f(T)+au(T)>’

which is the desired result. 0
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2. Oscillation Results. For the remainder of the paper we assume that T is unbounded
above and that the characteristic roots of the dynamic equation (1.2) are A1 ,» = a%4/3, where
B > 0. Recall from [4] the definition of oscillatory:

DEFINITION 2.1. If the characteristic roots of (1.2) are A1 o = a £, B > 0, then we
say the dynamic equation (1.2) is oscillatory iff B(t) is unbounded.

For example, let T be the real interval [1, 00) and let f(t) = t*. Then

b1 t1
B(t) =,3/ —dTZ,B/ —dr.
1 f(7) 1 Tk
So B(t) is unbounded if and only if £ < 1. Thus we have oscillation only in the case where
k<1
We now restrict ourselves to isolated time scales, for which we have the following crite-
rion for oscillation.
THEOREM 2.2. Let T be an isolated time scale. The dynamic equation (1.2) is oscillatory
on T if and only if Eio:to ur) diverges.

f(r)
Proof. Suppose that Eio:to % diverges. We break the proof into two cases. If
lim, o0 ﬁ E:g # 00, then clearly

1i_>m arctan f(T)ﬂ # 0.
m +
So
.- Bu(r)
lim B(t) =
Jim B(#) T_Ztoarctan ( 4 e
= Z arctan f(T)ﬂ
r=to iy T
= 00.

Thus (1.2) is oscillatory.

If lim, o % = 00, then there is a t; > tg such that

= B = B
Zarctan T > Zarctan m

= wn TS =n ")
= Z arctan (g - M)
P @)
SN~ (B opn) B ()
=2 \2 7 U B
Since lim, _, % = 00, we have lim,_, ’;g:; = 0. We apply the limit comparison
test,
B . u(r) _ B pi(r)
.9 ) T 2P . g B p(n)\ _B
lim = lim (= —=- -
T—00 u(r) T—00 \ 2 24 f2(7') 2

<

()
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We have 0 < £ 5 < 0o, and p —to f ; = 00, 80 lim;_,, B(t) = oo and therefore we have
oscillation.

To prove the converse, we deal with the contrapositive. Suppose that > >2 ‘o ?E:g con-

verges. Then lim,_, o, f(Tg =0,s0lim; “(:g = 00. Thus for ¢; sufficiently large

— B - B
Z arctan T < Zarctan T 70

=t um T T=t1 3 u(n)

= f: arctan (2ﬂ . %)

<

So B(t) is bounded, and therefore the solutions are nonoscillatory. d
To show the utility of this result, consider the Euler—Cauchy equation (1.1) on the time
scale N. In this case,

So (1.1) is oscillatory on N.
We can also use standard series comparisons between time scales in this manner. On the
time scale N? we have

p(t)  2n+1

f&y - n?

So Eio:to ’;E:g = oo, and we have oscillation of the Euler-Cauchy equation (1.1) on N2.

Still considering the Euler-Cauchy equation, oscillation on the time scale T, = {¢,, |
to = 1,tn41 =t + tp ,n € Ny} is determined under the condition that p > 0 after some
effort in [4]. By using Theorem 2.2 we can establish the same result quickly. Note that
t, <n+1foralln € Ny. So

2
> -2
=5 =

S|

§—T=Zt—"

THEOREM 2.3. Let f(t) = t*, then the dynamic equation (1.2) is oscillatory on NP for
p>0ifandonly ifk < 1.
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Proof. For t,, € NP we have u(t,) = (n + 1)? —nP. If p = 1, we have

oo 001
Z:Zn—

n=1

‘:

&H

which is divergent if and only if k£ < 1.
If p > 1 we have

2.1 p(n+ 1Pt > (n+1)P —nP > pnP~!
by the mean value theorem, and
(2.2) (n+1)P~! < 2pP~1

for sufficiently large n. So we have for an integer ng sufficiently large that
oo oo
> =
n=ng

Z Z npk

When k < 1, we have oscillation since p(k — 1) + 1 < 1.
The other half of (2.1) gives

_ 2p
- Z np(k—1)+1"

n=1

When k£ > 1, the solutions are nonoscillatory since p(k — 1) +1 > 1.
If p < 1, inequalities (2.1) and (2.2) become

pn?~t > (n 4+ 1)P —nP > p(n + 1)P7!

and
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In this case,

=3 _pr
Inp(k—1)+1"
n=1

So for k < 1, we have p(k — 1) + 1 < 1 and thus the solutions are oscillatory.
We can also form an upper bound,

in+

n=1

Y —np

I/\
M8
"G

npk

= Z np(k— 1)+1
n=1

As before, the solutions are nonoscillatory if & > 1.
Therefore, for each case we have oscillation if and only if & < 1 which is the desired
result. a
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