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FACTORIZATION OF THE HYPERGEOMETRIC-TYPE
DIFFERENCE EQUATION ON THE UNIFORM LATTICE*

R. ALVAREZ-NODARSE', N. M. ATAKISHIYEV?, AND R. S. COSTAS-SANTOS?

Abstract. We discuss factorization of the hypergeometric-type difference equations on the uniform lattices and
show how one can construct a dynamical algebra, which corresponds to each of these equations. Some examples
are exhibited, in particular, we show that several models of discrete harmonic oscillators, previously considered in a
number of publications, can be treated in a unified form.
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1. Introduction. The study of discrete system has attracted the attention of many au-
thors in the last years. Of special interest are the discrete analogs of the quantum harmonic
oscillators [2, 5, 6,9, 11, 12, 16, 17, 18, 21, 25] among others.

There are several methods for studying such systems. One of them is the factorization
method (FM), first introduced for solving differential equations [28, 19]. This classical FM is
based on the existence of the so-called raising and lowering operators for the corresponding
equation, which allow to find the explicit solutions in a simple way, see e.g. [7, 22]. Later
on, Miller extended it to difference equations [23] and g-differences —in the Hahn sense—
[24]. In the case of difference equations this method has been also extensively used during
the last years (see e.g. [9, 11, 14, 22, 29] for difference analogs on the uniform lattice and
[4,5,6,9, 11, 12, 15] for the g-case).

Later on, references [7, 8, 13] indicated a way of constructing the so-called “dynamical
symmetry algebra” by applying the FM to differential or difference equations [3, 11, 12] and
then this technique has been used to consider some particular instances of g-hypergeometric
difference equations. Of special interest is also the paper by Smirnov [29], in which the equiv-
alence of the FM and the Nikiforov et al formulation of theory of g-orthogonal polynomials
[26], was established. In [4], following the papers [15, 22] for the classical case, it has been
shown that one can factorize the hypergeometric-type difference equation (2.1) in terms of
the above-mentioned raising and lowering operators.

Our main purpose here is to show how to deal with all different cases of difference
equations on the uniform lattice 2:(s) = s in an unified form. One should consider this paper
as an attempt to provide a background for the more general g-linear case (since in the limit
as g goes to 1, the g-linear case reduces to the uniform one). Some results concerning this
general case will be also given in the last section.

The structure of the paper is as follows. In Section 2 some necessary results on classical
polynomials are collected. In section 3 the factorization of the hypergeometric-type differ-
ence equation is discussed, which is used in section 4 to construct a dynamical symmetry
algebra in the case of the Charlier polynomials. In section 5 the Kravchuk and the Meixner
cases are considered in detail. Finally, in section 6 we briefly discuss a possibility of applying
this technique to the g-case.
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2. Preliminaries: the classical “discrete” polynomials. The discretization of the hy-
pergeometric differential equation on the lattice z(s) [26, 27] leads to the second order dif-
ference equation of the hypergeometric type

Q2.1

a(s)

A Vy(z(s))

Ay(z(s))

Ax(s —1/2) Vz(s)

7(s) Az(s)

+Xy(z(s)) =0,

where Af(s) := f(s+ 1) — f(s), Vf(s) := f(s) — f(s—1).

The most simple lattice is the uniform one z(s) = s and it corresponds to the equation

(2.2)

o(s)AVy(s) + 7(s)Ay(s) + My(s) = 0.

The above equation have polynomial solutions P, (s), usually called classical discrete or-
thogonal polynomials, if and only if A = A,, = —n(7' + (n — 1)0"'/2).
It is well known [26] that under certain conditions the polynomial solutions of (2.2)

are orthogonal. For example, if U(s)p(s)sk| ) = 0, forall ¥ = 0,1,2,..., then the
s=a

—a,

polynomial solutions P, (s) of (2.2) satisfy

2.3)

b—1
(Pny Pr)a = ZPH(S) Pr(s) p(s) = (snmdia

where the weight functions p(s) are solutions of the Pearson-type equation

24)

Alo(s)p(s)] = T(s)p(s)

or o(s+1)p(s+1)=[o(s)+7(s)]p(s).

In the following we will consider the monic polynomials, i.e., P, (8) = 8™ + bps™ 14 - -+,
The polynomial solutions of (2.2) are the classical discrete orthogonal polynomials of
Hahn, Meixner, Kravchuk and Charlier and their principal data are given in Table 2.1.

TABLE 2.1

The classical discrete orthogonal monic polynomials.

Hahn Meixner Kravchuk Charlier
Pp(s) hoP (s; N) M (s) K7(s) Crh(s)
[a, 8] [0, V] [0, o0) [0,N+1] [0, 00)
a(s) sS(N+a-—s) s s s
7(s) B+1)(N=1)=(a+B8+2)s | (p—1)s+py et p—s
o+ (s+B8+1)(N—-1-35) us + yp -1 (s = N) n
An nn+a+pB+1) (1—p)n > n
I'(N+a—s)I'(B+s+1 ST (y+s N\ s N-—s e Hu®
p(s) S TGy ey forern | (rr-p) eEsy
a,B>-1,n<N-1 ¥>0,p€(0,1) | p€(0,1),n <N—=1| p>0
2 n!T(a+B+N+n+1) a+B+2n+2y" ()™ N\ n n n
dn (N—n—-D(a+B8+n+1)n ( atntl ) (I—Z,)‘Y'I:Q" ()p"(1—p) nlp
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They can be expressed in terms of the generalized hypergeometric function ,F,,
F a1,a2,...,0ap
PRO\ by, b, ..., by

shifted factorial)

_ = (a)k(a2)k - - (ap) 2*
x> -2 (01)k(b2)k -~ (bg)r k!’

k=0 k

(a)o=1, (a)g=ala+1)(a+2)---(a+k—-1), k=1,2,3,... .

Using the above notations, we have for the monic polynomials of Hahn, Meixner, Kravchuk
and Charlier, respectively
1) ,

(1=N)n(B+Dn ( —s,a+f+n+1,-n
(a+B8+n+1), %7 1-N,B+1

1
1__),
W
)
p )
)
1.

A further information on orthogonal polynomials on the uniform lattice can be found in
[1, 20, 26, 27].

ha? (s, N) =

- £ (4

Ky = S an (T

CH(s) = (—p)" F( =

3. Factorization of the difference equation. Let us consider the following second or-
der linear difference operator

(3.1) h,(s) = —v(s—1) e % —u(s)ed + [20(s) + 7(s)]],

where e2?* f(s) = f(s + a) forall @ € C, v(s) = y/o(s + 1)[o(s) + 7(s)], and I is the
identity operator, and let (®,,),, be the set of functions

(3.2) Ba(s) = V2O p o),

where d,, is a norm of the polynomials P, (s), which satisfy equation (2.2), and p(s) is the so-
lution of the Pearson-type equation (2.4). If P, (s) possess the discrete orthogonality property
(2.3), then the functions ®,,(s) have the property

b—1
(@n(s), B (s))d = Y Bu(5)@m(s) = dn,m-

Using the identity V = A — VA and the equation (2.2), one finds that
(3.3) bl(s)(bn(s) = )‘nq)n(s)a

i.e., the functions ®,,(s), defined in (3.2), are the eigenfunctions of h, (s). In the following
we will refer to b, (s) as the hamiltonian.
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Our first step is to find two operators a(s) and b(s) such that the Hamiltonian b, (s) =
b(s)a(s), i.e., the operators a(s) and b(s) factorize the Hamiltonian b, (s).

DEFINITION 3.1. Let « be a real number. We define a family of a-down and o-up
operators by

ak(s):= e 0 (e‘9s Vo(s) —\/a(s) + 7(s) I) ,
al (s):= (\/a(s)e_as — J/o(3) +7(s) I)eaas,

34

respectively.
A straightforward calculation (by using the simple identity e?* V = A) shows that for
alla € R

by (s) = al(s)az(s),

i.e., the operators @, (s) and al (s) factorize the Hamiltonian, defined in (3.1). Thus, we have
the following

THEOREM 3.2. Given a Hamiltonian ¥ (s), defined by (3.1), the operators a%(s) and
al,(s), defined in (3.4), are such that for all « € C, the relation f,(s) = al (s)ak(s) holds.

4. The dynamical algebra: The Charlier case. Our next step is to find a dynami-
cal symmetry algebra, associated with the operator 0, (s), or, equivalently, with the corre-
sponding family of polynomials, i.e., 7o find two operators a(s) and b(s), that factorize the
hamiltonian Y, (s), i.e., h,(s) = b(s)a(s), and are such that its commutator [a(s),b(s)] =
a(s)b(s) — b(s)a(s) = I, where I denotes the identity operator.

THEOREM 4.1. Let §),(s) be the hamiltonian, defined in (3.1). The operators b(s) =
al (s) and a(s) = ak(s), given in (3.4), factorize the Hamiltonian Y, (s) (3.1) and satisfy
the commutation relation [a(s), b(s)] = A for a certain complex number A, if and only if the
following two conditions hold:

o(s —a)[o(s —a) +7(s — a)]

c@oGs—D+ris—1]

and

o(s—a+1)+o(s—a)+7(s —a)—20(s) —7(s) = A.

Proof. Taking the expression for the operators a, (s) and a}, (s), a straightforward calcu-
lation shows that a, (s)al, (s) = A; (s)e% + As(s)e=% + A3(s)I, where

Ai(s) = —Jo(s+1—-a)o(s —a+1)+71(s —a+1),

As(s) = —/o(s — a)[o(s — a) + 7(s — a),
As(s) =o(s+1—-a)+o(s—a)+71(s —a).
In the same way, a] (s)a’ (s) = b, (s) = Bi(s)e% + Ba(s)e % + Bs(s)I, where

a

Bi(s) = —v(s), Bs(s) =—v(s—1), Bs(s)=20(s)+ 7(s).



ETNA

Kent State University
etna@mcs.kent.edu

38 R. ALVAREZ-NODARSE, N. ATAKISHIYEV, AND R. COSTAS-SANTOS

Consequently,

(A1) [a(s),al,(9)] = (A1(5) = Bi(s) ) e + (Aa(s)— Ba(s) )% + (Aa(s)— By (s) ) .

To eliminate the two terms in the right-hand side of (4.1), which are proportional to exp(+09;),
one have to require that A, (s) — B;(s) = 0 and As(s) — Ba(s) = 0. But A;(s)/B1(s) =
Az(s +1)/By(s + 1), hence, the requirement that A; (s) = Bj(s) entails the relation A5 (s) =
B»(s), and vice versa. Thus, from (4.1) it follows that the commutator [a], (s), a%(s)] = A
iff A;(s) = Bi(s) and Az(s) — Bs(s) = A. D

Using the main data for the discrete polynomials (see Table 2.1), we see that the only
possible solution of the problem 1 corresponds to the case when o(s) + 7(s) = const. and
a = 0, i.e., the Charlier polynomials. Moreover, in this case A,, = n.

COROLLARY 4.2. For the hamiltonian, associated with the Charlier polynomials,

by (s) = —v/sme  — /(s + Dpe® + (s + w1,

efp'u/sfn

b7 (5)8C (s) = ndC(s),  ®C(s) = Ch(s), p>0, n=0,1,2,....

sln!

Furthermore, the operators
5 _ Bs T _ —8s
ag(s) =vs+1e” —/ul, al(s) = vse=% — \/ul,

are such that f)l = al(s)a, 3
Notice that, since 0, (s)

le(S){aé(S)‘I’(S)} a ( )%L(S){aé(S)q’(S)} = (a5(s)a5(s) — D){ag(s)8(s)}

In other words, if ®(s) is an eigenvector of the hamiltonian b, (s), then ag(s)é(s) is the
eigenvector of f, (s), associated with the eigenvalue A — 1, and ag(s)tﬁ(s) is the eigenvector
of b, (s), associated with the eigenvalue A+1. In general then [ag]¥ (s)®(s) and [a}]* (5)®(s)
are also eigenvectors corresponding to the eigenvalues A — k and A + k, respectively.

Using the preceding formulas for the Charlier polynomials, one finds
4.2) ab ()5 () = Un®11(s),  ag(s)@5 (s) = D@4 (s),
where U,, and D,, are some constants.

If we now apply ag(s) to the first equation of (4.2) and then use the second one and (3.3),
we find that A, = D,U,_1. On the other hand, applying ao( ) to the second equation in
(4.2) and using the first one, as well as the fact that aé( )a ( 18C(5) = (A +1)@E(5), one
obtains that 1 + A,, = U,D,q1 = Apg1, from which it follows that \,, should be a linear
function of n (that is also obvious from Table 2.1).
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If we use the boundary conditions o (s)p(s) |
tion by parts, we obtain

(a5(5)2m(5), Bn(8))d = (B (5), a5 (5)@n(8))a,
i.e., the operators aj(s) and a; (s) are mutually adjoint.
From the above equality (the adjointness property) and (4.2) it follows that D, 1 = U,
thus U2 = A,41, therefore U,, = \/An41 and D,, = /A, , i.e., we have the following

COROLLARY 4.3. The operators &} (s) and a§(s) are mutually adjoint with respect to
the inner product {-,-)q and

0 (58S () = (Vae? — VRT) 85(s) = VT 185, (s),
a(=)2S () = (Vo T 1e® — Vil) 85(s) = v 27, (s).

s—ap = 0, as well as the formula of summa-

From the above corollary one can deduce that

VET18§(s+1) — Vad(s) =0 = &5 (s) = Noy/ 2o

s!
Using the orthonormality of ®§ (s), one obtains that Ny = e~#/2, Thus
1 nxC 1 n e Fus
97 (5) = —= (b ()" 8 (o) = —= [Vae™ — Vil] ( . ) -

Notice that

[b1(s), ()] = VA(u = 1) + uaf(s),  [51(s), 05()] = =/l — 1) — pag(s).

This example constitute a discrete analog of the quantum harmonic oscillator [9].

5. The dynamical algebra: The Meixner and Kravchuk cases. From the previous
results we see that only the Charlier polynomials (functions) have a closed simple oscillator
algebra. What to do in the other cases? To answer to this question, we can use the following
operators:

a(s) = /os F D) e2® — \Jo(s = 1) F (s = D) e 2%,
at(s) = e_%as\/a(s +1) — e%a‘; Vo(s—1)+7(s—1).

For this operators

h,(s) = a(s)a™(s) + 7 —o".
We will define a new hamiltonian b, (s) and operators b(s) and b (s)
h,(s) = C2h,(s) + E, b(s) = C,a(s) and bt (s) = Chat(s),

where C, and FE are some constants (to be fixed later on). Notice that from (3.3) it follows that
the eigenfunctions of f),,(s) are the same functions (3.2), but the eigenvalues are C2)\,, + E,
i.e.,

ba(5)®n(5) = (CoAn + E)®u(s).
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A straightforward computation yields
(5.1) b, (s) = b(s)bT(s) + (7' —0")C: + E,

and

(5.2) + C2\[o(s + 3 )(o(s — 1) +7(s — ) e

+ \/a(s +2)o(s—3) +7(s—3))e”
+b,(5) = (20(s) + 7(s))I + %(% o' —1').

The right-hand side of (5.2) suggests us to use the following new operators
c(s) = Cyb(s) e™ 2 *yo(s+1)=CyCo(o(s+1) — 8‘1/(8)),
1
ct(s) = Cy\/o(s + 1) €29 bt (s) = C4Ch(o(s + 1) — v(s) e ),

where, as before, v(s) = y/o(s + 1)(o(s) + 7(s)). So,

(5.3)

[B(s) = =Ca(0"=1")c(s) + CaCy [y(s) + ((0"=7")CI=E) I] o' (s +3),

[h2(s) = C3(0" = 1')c" (s) = CaCh' (s + 3)[By(5) + ((0" = 7")C; — E) 1],

[c(s),cT ()] = C2C? (a'(s + D)e v (s) + v(s)eP o' (s + ) — [V2(s) — v?(s — 1)]1).
The above expression leads to the following

THEOREM 5.1. If 6" = 0, then the operators §,(s), ¢(s) and ¢*(s), defined by (5.1)
and (5.3), respectively, form a closed algebra such that

[05(s), c(s)] = 7'C2e(s) + CvCaa’(0) (hy(s) — 7'C2 — E)
[h2(s), ¢* ()] = =7 C2c* (5) = C4Cad’ (0) (B (s) = 7'C2 = B),
[e(s), " ()] = CE|o(s) = o' (0) (D, (s) — B
Observe also that with this particular choice o’ (s+1) = ¢'(0) and

c(s) +c*(s) = CoCa(hy(s) + 20'(0) + 7(5)),
v2i(s) —v?(s — 1) = o' (0)(20(s) + 7(5)) + o (s).
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Furthermore, using the boundary conditions o'(s)p(s) |S:a , = 0, one finds
b—1 b—1
(c®pn, ®m)a = CoCh ZU(S +1)®,(8) P (s) — Zl/(s —1)®,(s — 1)P,,(s)

s=a s=a

b—1 b—1

= CoCp Z o(s +1)®n(5)2m(s) — CaCh Z v(8)®n(s)®m(s+1)

s=a s=a

= (q)ny C+(I)m)d7

i.e., the following theorem follows.

THEOREM 5.2. The operators ¢(s) and ¢t (s) are mutually adjoint.

Notice also that the operators b, (s) and b, (s) are selfadjoint operators.

REMARK 5.3. Since A\ = A\, = —n(7'+ (n—1)0" /2), the identity ¢ = 0 is equivalent
to the statement that Ay, is a linear function of n. In this case A, = —n1’.

In the following we will consider only the case when ¢/ = 0, i.e., the case of the
Meixner, the Kravchuk and the Charlier polynomials.

If we define the operators

Ko(s) = hy(s)(—=7'C3)~"
(5.4 K_(s) = —7'C2 c(s) — CyC,0'(0) (hy(s) —7'C2 — E) ,

K. (s) = —7'C2ct(s) — CyCo0'(0) (ho(s) — 7'C2 — E) ,

then
[Ko(s), Kx(s)] = £Kx(s) v [K(s), K4 (s)] = AoKo(s) + Ar,
where
Ay =-27'¢"(0)CZCH-T'C2)(c'(0) +7') and
Ay = —EAy(—7'C2)~t + C2C872 (0" (0)7(0) — o(0)7'].

The case Ay = 0 corresponds to the Charlier case (see the previous section). If Ay # 0,
we have two possibilities: Ag > 0and 4 < 0. In the following we will choose C2 = —1/7/,
ie,—7'C2 =1

In the first case Ag > 0 one can choose C' and E in such a way that Ay = 2and A; = 0.
Thus

- o _ _Gilo'(0)7(0) — o(0)7]
(55) Cb2 = m, E=—- b o7 .

Consequently, the operators K+ and K are such that

(5.6) [Ko(s),Ki(s)] = xKi(s) and [K_(s), K4 (s)] = 2Kp(s).
This case corresponds to the Lie algebra Sp(2, $R).
In the second case one can choose Cy and E in such a way that Ag = —2 and 4; = 0.
Thus
! 20 ! _ !

a' (0)[7" + a'(0)]’ 27!
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Consequently, the operators K 1 and K are such that
(5.8) [Ko(s), K+ (s)] = £Kx(s) and [K(s), K (s)] = 2Ko(s).

This case corresponds to the Lie algebra so(3).

Notice that since the operator b, (s) is selfadjoint, the operators K4 (s) are mutually
adjoint in both cases, i.e.

<K+¢ma (b’n)d = <"I)m7 K—(b’n)d-

5.1. Dynamical symmetry algebra Sp(2,R). Let us consider the first case. We start

with the operator
K?(s) = K§(s) — Ko(s) — K4(s)K_(5),

where Ko(s), K (s), and K_(s) are the operators given in (5.4). A straightforward calcula-
tion gives
_ 7(0)d’(0) = 7' (0)
-~ 20'(0) (0’ (0) + 1)’
where F is given by (5.5), i.e., the K2(s) is the invariant Casimir operator.

Furthermore, if we define the normalized functions

K*s)=E(E-1I, E

@u(s) = 1/ 22 s,

we have
(5.9 K2(5)®,(s) = E(E — 1)®,(s), Ko(s)®n(s) = (n + E)®y(s).
Now using the commutation relation (5.6), it is easy to show that
Ko(8)[K£(8)®n(s)] = (n+ E £ 1)K (5)®p(s).
Consequently, from (5.9) and the above equation we deduce that
K, (s)®,(5) = KnPpnt1(s), K_(5)®,(5) = 6, Ppn—1(5).

Employing the mutual adjointness of the operators K ., one obtains

En = (K4 ®n(s), Pny1(5))a = (Bn(s), K- Pny1(s))a = Fn1,
thus
(5.10) K, (5)®,(5) = 6nt1Pni1(s), K _(8)®,(s) = 6, Pn_1(5)-
In order to compute k,,, use (5.9) and (5.10); this yields

E(E-1)=n+E?-n+E) -k} = k,=+/nn+2E-1).
In this case the functions (®,,),, define a basis for the irreducible unitary representation

D™ (—E) of the Lie group (algebra) Sp(2, *R).

From the above formula it follows that the functions @,,(s) can be obtained recursively
via the application of the operator K (s), i.e.,

~—

8a(6) = 1 KE6), Bals) = VA,

where p(s) is the weight function of the corresponding orthogonal polynomial family and dg
is the norm of the Ppy(s).
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5.1.1. Example: The Meixner functions. Let consider the Meixner functions
N (5) = pule~m/2(1 -

/2+ (7)3 ,
:u/)’Y " s|n'(7)n 7’3 H(8)7 n Z 05
and the hamiltonian b,

—Vps(s+y—1

— V(s + 1) (s + 7)€’
thus b1 (s)®M (s) =

+(+ps+7)I,
n
Therefore

(s) = n®M(s). In this case we have Cj = ,/I_T”,E 1,C, =

a i
=1+ 30 | %
1—u
s——+’y
C1-p

i1
56_%85.
Consequently,
1 Y + Y
= — - = - - ].
B(6) = 1 1(6) + 3 = bl (5) +
Moreover,
My _ Y\ aM
ho(5)2 () = (n+ 3 ) B2 (s),
VE VE g Y\ 1+p
Ko(s) = 1 . 1 . ALY
o(s) s THN e <s+)@+w1_ue~+@+2)1_u,
Vs —1+47) 5 _ /(s +1D(s+7) VH
Ko (s) = - V56 0 _ 2 2 I
+(s) =i © - e +1_M(8+’Y) ;
uy/s(s —1+7) (s+1)(s+7y
K (s)=- e % — 2s+) I,
(5= -l o Y (304
and
0 Y(Y
Ko(s)0¥(s) = (n+ 3) @h(s), K52 (s) = 2 (2 -1) @M (o),
K, (s =V +1)(n+7)8 (s
.11)
K (5)®M(s) = /n(n+vy—1
Using the fact that h,®}/(s) = Z®{(s), together with the formulas (5.4) and (5.11), one
finds
0=K (s)®)

V(s —1+7) Y (s —1) —spu 23} (s)
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therefore the normalized function <I>M (s)
51“(7 + 3)
F ML(s+1)’

(v +3)
T'(s+1)

and

B 6) = | i s (K (5)” [

A similar result have been obtained before in [9].

5.2. Dynamical symmetry algebra so(3). Let us consider the second case and define
the following operator

K?(s) = K3(s) + Ko(s) + K_(s) K, (s).
where Ko(s), K, (s), and K_(s) are the operators given in (5.4). Substituting the value of
E, given by (5.7), and doing some straightforward computations yield
7(0)c’'(0) — 7' (0)

KXs) = BE-DI,  B=5 0oy + 1)

i.e., the K2(s) is the invariant Casimir operator.
Moreover, if we define the normalized functions as

() = || 2 Pa(o),
we have
K?(s)®,(s) = E(E —1)®,(s), Ko(s)®n(s) = (n + E)®y(s).
Now using the commutation relation (5.8), we have
Ko(s)[K£(8)®n(s)]=(n+ E £ 1)Ki(5)®p(s).
Consequently, from (5.9) and the above equation, we conclude that
K, (s)®,(5) = KnPpnr1(s), K_(5)®,(5) = 6 ®pn_1(5).

Using the mutual adjointness of the operators K 1, one obtains

fin = (K1 ®n(5), @ny1(5))a = (Pn(s), K Pry1(s))a = Fns1,
thus
(5.12) K (8)®,(s) = knt1Pnt1(9), K _(8)®,(s) = 6,®,-1(5).
To compute Ky, use (5.9) and (5.12); this leads to

E(E-1)=Mn+E?+Mm+E)+k2, = kyn=+v—-()(n+2E-1).

In this case the functions (®,,),, define a basis for the irreducible unitary representation
DT (—E) of the Lie algebra so(3).
As in the previous case, from the above formula it follows that the functions ®,,(s) can
be obtained recursively via the application of the operator K (s), i.e.,
1 p(s)

Bn(s) = m-’(ﬁ(s)q’o(s), Bo(s) = do

where p(s) is the weight function for the associated orthogonal polynomial family and d is
the norm of the Py (s).
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5.2.1. Example: The Kravchuk functions. Let us consider now the Kravchuk func-
tions

K (s) = plo=m/2(1 — p)(N-n=a)/2

and the corresponding hamiltonian b, (s)

K VPs(N—s+1) 5 Np+s—2ps p(s+1)(N—3s) 4
e — 5+ I— s
b (5) Vvi=p ¢ 1-p Vi=-p <

thus bf(s)@nK(s) =n®X(s). In this case C = /T—p, Cy = \/p~1, E = — &, therefore

1, 1,

b(s) = —v/p(N —s+1)e 2% + /(1 —p)(s+ 1)e2”,

s 1o

bH(s) = —/p(N — s+ 1)e2% + /(1 —p)(s + 1)e2.

Consequently,
n N
ba(s) = (1= p)b,(5) = 5 = bls)b"(s) = 5 — 1

Moreover,

B, (0% 6) = (n— 7 ) @)

Ko(s) = —/p(1 —p)s(N — s+ 1)e % — \/p(1 — p)(s + 1)(N — s)e’
+[N(p—-3) —s2p -1,

Ki(s) =(1-p)/s(N — s+ 1)e7 % + p\/(s + 1)(N — s)e — \/p(1—p)(2s — N)I,
K_(s) =p\/s(N —s+1)e=? + (1—p)/(s + 1)(N = 5)e? — \/p(1—p)(2s — N)I,

and
Ko () = (n- 3 ) 856, K200k = § (V+2)250)
Ky ()25 (5) = /T DN = m) @5, (s),
(5.13)

K_(s)85 (s) = /n(V —n + 1)) 8L, (s).

Using the fact that h,®% (s) = —5 @K (s), together with the formulas (5.4) and (5.13), we
find

0= K- (o) =72 (@é{ (- A= g - 1)) ,



ETNA

Kent State University
etna@mcs.kent.edu

46 R. ALVAREZ-NODARSE, N. ATAKISHIYEV, AND R. COSTAS-SANTOS

therefore the normalized function ®Z (s) is equal to

nl(N —n)!
sI(N —s)!’

2K (s) = \/ =m0 weor (V) () ]

6. The g-case. To conclude this paper we will discuss here briefly what happens in the g-
case. The preliminary results, related with this case, have been presented during the Bexbach
Conference 2002 [3]. A more detailed exposition of these results is under preparation.

B (5) = plo=/2(1 — )N n9)/2

and

A(s)Vp(s)

dip (89),
n

where d,, is the norm of the g-polynomials P, (s; q), p(s) is the solution of the Pearson-type

equation

W_%) [0(s)p(s)] = T(s)p(s) or o(s+1)p(s+1)=o0(—s— p)p(s),

and A(s) is an arbitrary continuous function, not vanishing in the interval (a, b) of orthogo-
nality of P,,. If P,(s; q) possess the discrete orthogonality property (2.3), then the functions
D, (s) satisfy

b—1
©.1) (B(s), B(s)) = 3 @n(s)%(s)%i? = .

Notice that if A(s) = /Vz1(s), then the set (®,), is an orthonormal set. Obviously, in
the case of a continuous orthogonality (as for the Askey-Wilson polynomials) one needs to
change the sum in (6.1) by a Riemann integral [10, 26].

Next, we define the g-Hamiltonian §J,(s) of the form

62) $,(5) = Wj AW Azs),

where

Vo(—s—p+1)a(s) 4 B Vo(—s—p)o(s+ l)eas
Vz(s) Az(s)

L (oEs=m | o(s) )
Az(s) Vz(s)
As in the previous case, one can easily check that

y(8)Pn(s) = X ®n(s).

Now we define the o operators:
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DEFINITION 6.1. Let a be a real number and A(s) and B(s) are two arbitrary contin-
uous non-vanishing functions. We define a family of a-down and a-up operators by

()= —gﬂs)e—aa& (8\/ VU:EZ) } \/ s _)N)> AL)’

) —s— V:c1 VVzi(s)
V:L’l Vm (s) Am ’

respectively. The first result in this case is [3]:

THEOREM 6.2. Given a q-Hamiltonian (6.2) $£),(s), then the operators a%(s) and
al (s), defined in (3.4), are such that for all a« € C, $),(s) = al (s)ak(s).

Our next step is again to find a dynamical symmetry algebra, associated with the operator
$4(s), or equivalently, with the corresponding family of g-polynomials.

DEFINITION 6.3. Let s be a complex number, and let a(s) and b(s) be two operators.
We define the ¢-commutator of a and b as

[a(s), b(s)]c = a(s)b(s) — <b(s)a(s).

al (s):=

We want to know whether the following problem: 7o find two operators a(s) and b(s)
and a constant  such that the Hamiltonian £)4(s) = b(s)a(s) and [a(s),b(s)]c = I, has a
non-trivial solution.

Obviously, we already know the answer to the first part: these are the operators b(s) =
al (s) and a(s) = ak(s), given in (6.3). The answer to the second part of this problem is
summarized in the following two theorems (in what follows we assume that A(s) = B(s)).

THEOREM 6.4. [3]Let (®,,)n be the eigenfunctions of $),(s), corresponding to the
eigenvalues (A\p,)n, and suppose that the problem I has a solution for A # 0. Then the
eigenvalues \,, of the difference equation (3.3) are q-linear or q~*-linear functions of n, i.e.,
An = C1q™ + C3 or A, = Caq™ ™ + Cs, respectively.

THEOREM 6.5. [3] Let $),(s) be the g-Hamiltonian (6.2). The operators b(s) = al,(s)
and a(s) = a}(s), given in (6.3) with B(s) = A(s), factorize the Hamiltonian $),(s) (6.2)
and satisfy the commutation relation [a(s),b(s)]c = A for a certain complex number g, if and
only if the following two conditions hold

Vz(s) \/ Vii1(s — 1)V (s) \/a(s —a)o(—s —p+a) _
Vzi(s —a) \| V(s — a)Az(s — a)

o(s)o(=s—p+1) O
1 o(s—a+1) ols—pt+a)) 1 o(s) | ol=s—p)\ _
Az(s—a) (Vxl(s—a +1) + Vzi(s—a) ) ngl(s) (Vm(s) + Az(s) ) =4

The proof of the theorem 6.5 is similar to the proof of the theorem 4.1, presented here for the
case of the uniform lattice z(s) = s.

Let us point out that the g(respectively, g~!)-linearity of the eigenvalues is a necessary
condition in order to provide that the solution of problem 1 exists. But this condition is not
sufficient. For example, if we take the discrete g-Laguerre polynomials L% (x; ¢) (for more
details see [3]) with a # qfl/ 2 the problem has not a solution, but A,, is a g-linear function
of n.
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6.1. Examples. We present here only two examples, others can be found in [3].
6.1.1. The Al-Salam & Carlitz I g-polynomials Ul (z;q). We start with the very

well known case: the Al-Salam & Carlitz I polynomials [20]. The corresponding normalized
functions (3.2) are

_ (qmaaiqu;Q)oo(_a)"q(g) 2 qinamil
Enle) = \/(1 - 9)(¢;9)n(g, a,9/a; q)ooA () 261 < 0

e s
Qa; , T:=q".

1 1
Putting A(s) = +/Vz1(s) = /zk,, where k, = ¢2 — ¢~ 2, we have that the functions
(®,,)n satisfy the orthogonality condition

1
dgr
‘/Va @n(m)ém(.’ﬂ)@ = (Sn,my

where the integral fal f(z)d,z denotes the classical Jackson g-integral.
For these polynomials o(s) + 7(s)Vx1(s) = a, therefore @ = 0 and ¢ = ¢~ 1. The
g-Hamiltonian has the form

_¢Vale—D—a) , Val-ga)a—gz) ,

$q(s) = (q— 1)2$2 ) €
+(ﬁ(q(w—l)m+z(1+q—qw))>17 —_—
(q—1)"z?

Consequently, §),(s)®,(s) = ¢ 7 _q)z ®,,(s) and the operators (z = ¢°)

are such that
al(s)at(s) = Hy(s), and [a*(s),a’(s)];-1 =

A straightforward calculation shows that the operators ' (s) and a+(s) are mutually adjoint.
A similar factorization was obtained earlier in [6] and more recently in [4] with the aid of a
different technique.

The special case of the Al-Salam & Carlitz I polynomials are the discrete g-Hermite I
hn(x;q), = ¢°, polynomials, which correspond to the parameter a = —1 [20].

6.2. Continuous g-Hermite polynomials. Let us now consider the particular case of
the Askey-Wilson polynomials when all their parameters are equal to zero, i.e., the continuous
g-Hermite polynomials [20]. In this case o(s) = C,q>*.
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Let us choose A(s) = B(s) = y/Vz1(s). In this case @ = 1/2 and ¢ = 1/q. The
corresponding Hamiltonian is given by
-1 Coq —a Csq o
s)= - e+ - e’
$a(s) k2+/sin 0 (sin(9+%logq)\/sin(G—H'logq) sin(f— 5 log q)/sin(6—ilog q) )

N 1 Co_q2s Co_q—2s 7
kZsinf \ sin(f+ ilogg) sin(d — Llogq)

and the a-operators

1 C. g2s 1 C _qg—2s
+ =20 o —e 20 il .
a1/2(3) € \/_kg sin @ sin(6 + % log q) € \/—kg sinfsin(f — £loggq)’

C q2s 1 C q725 1
1 — v : 20s _ i : 20s
Gy /5 (s) \/—k,? sin @sin(f + £ log q) € \/—kg sinfsin(d — £ logq) ¢

’

are such that

at(s)a*(s) = $4(s) and [a‘L(S),aT(s)]l/q _ ‘lkﬁ

Another possible choice is A(s) = B(s) = 1 [12], hence a straightforward calculation
shows that the two conditions in Theorem 6.5 hold if ¢ = ¢!, thus A = 4Cakq_ L. With this

choice the orthogonality of the functions &, is fi 1 24.(8)®m(s)dz = Op . In this case, the
Hamiltonian is

Coq e 9 e 4 ( 1+4g¢ )
=== : ; S (I S I
Da(s) k2 {sianin(0+%ln q) + sin(f—3Ing)sind /g qg+q!—2cos26 ’

and

N/ — 1 1
aJ«(S) = a¢ ( ) Co (egasqs —6_588q3> ,

* = % sind

at(s) = a' , (s) v-C, ( s—to, _ s %ex)_

- k,sinf

With these operators

() = a’(s)a*(s) and [cﬁ(s),aT(s)]qq =

This case was first considered in [12].
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