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SEPARABLE LEAST SQUARES, VARIABLE PROJECTION, AND THE
GAUSS-NEWTON ALGORITHM *

M. R. OSBORNHE
Dedicated to Gene Golub on the occasion of his 75th birthday

Abstract. A regression problem is separable if the model can be repiesdas a linear combination of func-
tions which have a nonlinear parametric dependence. Thes=ldewton algorithm is a method for minimizing the
residual sum of squares in such problems. It is known to leEe@fe both when residuals are small, and when mea-
surement errors are additive and the data set is large. Tdeedata set result that the iteration asymptotes to a second
order rate as the data set size becomes unbounded is skétteedvariable projection is a technique introduced
by Golub and Pereyra for reducing the separable estimatiasigm to one of minimizing a sum of squares in the
nonlinear parameters only. The application of Gauss-Newdaninimize this sum of squares (the RGN algorithm)
is known to be effective in small residual problems. The nrasult presented is that the RGN algorithm shares
the good convergence rate behaviour of the Gauss-Newtonithlgp on large data sets even though the errors are
no longer additive. A modification of the RGN algorithm due<aufman, which aims to reduce its computational
cost, is shown to produce iterates which are almost iddritdaose of the Gauss-Newton algorithm on the original
problem. Aspects of the question of which algorithm is pratiée are discussed briefly, and an example is used to
illustrate the importance of the large data set behaviour.
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1. Introduction. The Gauss-Newton algorithm is a modification of Newton’s et
for minimization developed for the particular case whendhgctive function can be writ-
ten as a sum of squares. It has a cost advantage in that itsa@ctalculation of second
derivative terms in estimating the Hessian. Other advastggpssessed by the modified al-
gorithm are that its Hessian estimate is generically pasiiefinite, and that it actually has
better transformation invariance properties than thossessed by the original algorithm. It
has the disadvantage that it has a generic first order ratenveogence. This can make the
method unsuitable except in two important cases:

1. The case of small residualsThis occurs when the individual terms in the sum of
squares can be made small simultaneously so that the assbeanlinear system is
consistent or nearly so.

2. The case of large data set&n important application of the Gauss-Newton algo-
rithm is to parameter estimation problems in data analyémlinear least squares
problems occur in maximizing likelihoods based on the némigtribution. Here
Gauss-Newton is a special case of the Fisher scoring aigofii]. In appropriate
circumstances this asymptotes to a second order convergatecas the number of
independent observations in the data set becomes unbaunded

The large data set problem is emphasised here. This seeksinate the true parameter
vector3 € RP by solving the optimization problem

(1.1) win £, (8, "),
where

1
Fu(Boe™) = 5 € (8.6
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f™ € R™ is a vector of smooth enough functiofis (3,¢™), i = 1,2,...,n, V" has full
column rankp in the region of parameter space of interest, ahd R” ~ N (0,021,,) plays
the role of observational error. The norm is assumed to b&tiidean vector norm unless
otherwise specified. It is assumed that the measurementgwdhat generated the data set
can be conceptualised for arbitrarily largeand that the estimation problem is consistent in

the sense that there exists a seque{ﬁg} of local minimisers of {.1) such tha@n 33,

n — oo. Here the mode of convergence is almost sure convergenceod igference on
asymptotic methods in statistics 5.

REMARK 1.1. A key point is that the errors are assumed to enter theshzaitlitively.
That is, thef]*, i =1,2,...,n, have the functional form

i (B,e) =y —ui (B),

where, corresponding to the case of observations made gmal & the presence of noise,
(1.2) yi' = ni (B) + et

Thus differentiation off;* removes the random component. Algp is directly proportional
to the problem log likelihood and the property of consistelbecomes a consequence of the
other assumptions.

In a number of special cases there is additional structufe so it becomes a legitimate
question to ask if this can be used to advantage. A nonliregression model is called
separabléf the problem residualb™ can be represented in the form

b?(a7/675n):ygl_z¢ij (ﬂ)ajv i:1727~-~7n~
Jj=1

Here the model has the form of a linear combination exprebged € R™ of nonlinear
functionse;; (8), B € RP. The modified notation

fi'(B,e) = b (o, B,€"),
wi (B) — Z¢z‘j (B)
j=1

is used here to make this structure explicit. It is assumatl ttre problem functions are
¢i; (B) = ¢ (t7,8), j = 1,2,...,m, where thet?’, i = 1,2,...,n, are sample points
where observations on the underlying signal are made. Tikere restriction in assuming

€ [0,1]. One source of examples is provided by general solutioniseofifth order linear
ordinary differential equation with fundamental solutogiven by the; (¢,3). In [1] a
systematic procedure (variable projection) is introduicededucing the estimation problem
to a nonlinear least squares problem in the nonlinear paeasy@ only. A recent survey of
developments and applications of variable projectior]s [To introduce the technique let
¢, : R™ — R", n > m, be the matrix with components;. The rank assumption in the
problem formulation now require[s o, Vgd,a ] to have full column rankn + p. Also
let P, (B) : R™ — R™ be the orthogonal projection matrix defined by

Here P, (8) has the explicit representation

"ol

n

P, (B) =1, — ®, (2] ®,)
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Then
1
Fo = 5= {I1Pay" > + 112 — P) "}

The first term on the right of this equation is independent @ind the second can be reduced
to zero by setting

(1.4) a=a()=(@7v,) " oTy".

Thus an equivalent formulation of (1) in the separable problem is
(1.5) min o= [P ()"

which is a sum of squares in the nonlinear paramefeosly so that, at least formally, the
Gauss-Newton algorithm can be applied. However, now théaiarerrors do not enter addi-
tively but are coupled with the nonlinear parameters irrsgtip the objective function.

The plan of the paper is as follows. The large data set ratowfergence analysis
appropriate to the Gauss-Newton method in the case of eelditirors is summarized in the
next section. The third section shows why this analysis caimmediately be extended to
the RGN algorithm. Here the rather harder work needed toeasi similar conclusions is
summarised. Most implementations of the variable projecthethod use a modification
due to Kaufman4] which serves to reduce the amount of computation needdukifRGN
algorithm. This modified algorithm also shows the favougallrge data set rates despite
being developed using an explicit small residual arguméiwever, it is actually closer
to the additive Gauss-Newton method than is the full RGN rétigm. A brief discussion
of which form of algorithm is appropriate in particular airostances is given in the final
section. This is complemented by an example of a classicfit@tg problem which is used
to illustrate the importance of the large sample convergeate.

2. Large data set convergence rate analysisThe basic iterative step in Newton’s
method for minimizingF;, defined in (.1) is

(2.2) Bii1=B8;i—TJn(B) " VsF, (B)",
Tn (B;) = V3E, (B;) .-

In the case of additive errors the scoring/Gauss-Newtohotketeplaces the Hessian with an
approximation which is constructed as follows. The truedibasis

(2.2) T )= {{vﬁf"}T {Vaf"} +3 f;‘V%ff} :
=1
The stochastic component enters only througB)(so taking expectations gives
1 n -
E{T}(B) =T (B) = — > (i (B) — i (B)) VAL (8),
=1
where
1 T
2:3) Z..(8) = . {{Vaf") {Vaf"} }.
The Gauss-Newton method replacgs(3) with Z,, (3) in (2.1). The key point to notice is

Several points can be made here:
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1. Itfollows from the special form ofy.3) that the Gauss-Newton correcti@n, , — 3,
solves the linear least squares problem

(2.5) min|ly" — p" (8) — Vsu" (B)¢]

2. It is an important result, conditional on an appropriatpezgimental setup, that
7, (B) is generically a bounded, positive definite matrix forralrge enoughd.
A similar result is sketched in Lemna2

3. The use of the form of the expectation which holds at the prarameter values
is a characteristic simplification of the scoring algorithmd is available for more
general likelihoodsT]. Here it leads to the same result as ignoring small residual
termsin @.2).

The full-step Gauss-Newton method has the form of a fixedtpi@ration:

5i+1 - Qn (ﬁz) 5
Qn(B)=B-T,(8) ' VsF, (B)".

The condition foan to be an attractive fixed point is

(@ (3)) <1

wherew denotes the spectral radius of the variational ma@¥jx This quantity determines
the first order convergence multiplier of the Gauss-Newligoridhm. The key to the good
large sample behaviour is the result

(2.6) w (Q; (E}n)) 30, n— oo

which shows that the algorithm tends to a second order cgaméprocess as — oco. The
derivation of this result will now be outlined. A8 £}, (ﬁn) = 0, it follows that

AR AR ()

Now defineW,, (3) : R? — R? by

27) W (8) = o (8)"{Zn (8) - VEF. (B)} -
Then

(2.8) W (8,) =@, (8.) =wa (3) +0 (|5, - 7))
by consistency. By4.4),

29) W, (B) = ~Z. (B) " {VAF. (B) £ (V3F. (B)}}

It has been noted that, (3) is bounded, positive definite. Also, a factdris implicit in
the second term of the right hand side 2fd, and the components &3 F;, (B) are sums
of independent random variables. Thus it follows by an aagilon of the law of large num-
bers [L2], that W, (8) “5 0 component-wise as — co. An immediate consequence is
that

w (Wn (E)) 20, n— .
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The desired convergence rate resalt) now follows from @.8). Note that the property of
consistency that derives from the maximum likelihood catioa is an essential component
of the argument. Also, that this is not a completely strdmtard application of the law
of large numbers because a sequence of sets of observatiaa ¢, i = 1,2,...,n} is
involved. For this case se&J].

3. Rate estimation for separable problems.Variable projection leads to the nonlinear
least squares problerfi.f) where

£ (ﬂasn) = Pn (16) yn7

Fu (8.6 = 5- 0" Pa(B) "

Implementation of the Gauss-Newton algorithm (RGN ald¢pon has been discussed in detail
in [11]. It uses an approximate Hessian computed fr@d)(and requires derivatives of
P, (B). The derivative ofP in the direction defined by € R? is

(3.1) VsP[t] = —PVsd [t] & — (1) V07 [t] P
(32) =A(B,t) + AT (B.1),
where4 € R™ — R", the matrix directional derivativé? is written V;®[t] to emphasise
both the linear dependence vand that is held fixed in this operation, explicit dependence
on bothn and 3 is understood, ané@* denotes the generalised inversedaf Note that
PtP = &F — d*PPt = (0 so the two components &F g P [t] in (3.2) are orthogonal.
Define matricedy, L : R? — R™ by
A(B,t)y =K (B,y)t,
AT (B, t)y = L(B,y)t.

Then the RGN correction solves

(3.3) min [Py + (K + L) t]°,
where
(3.4) LTK =0

as a consequence of the orthogonality noted above.
ReEMARK 3.1. Kaufman 4] has examined these terms in more detail. We have
t"KTKt =y" AT Ay = O (||a|?) ,
t"LTLt = yT AATy = O (|| Py|]?).
If the orthogonality noted above is used then the second ierime design matrix in3.3

corresponds to a small residual term wHgy||? is relatively small and can be ignored .
The resulting correction solves

(3.5) mtin||Py+KtH2.

This modification was suggested by Kaufman. It can be impigetewith less computa-
tional cost, and it is favoured for this reason. Numericglezience is reported to be very
satisfactory P].
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The terms in the sum of squares in the reduced probleB) &re
fi:ZPijyja i:1,2,...,n.
=1

Now, because the noigels coupled with the nonlinear parameters and so does nqifubsa
under differentiationZ,, is quadratic in the noise contributions. An immediate counsace
is that

I, # %5 {VstTVpsf}.

Thus itis not possible to repeat exactly the rate of convergealculation of the previous
section. Instead it is convenient to rewrite equatidm)

-1 n
36) W (0) = - (LvatTvir) {Zfiv%fi} ,
=1

where the right hand side is evaluateddat The property of consistency is unchanged so
the asymptotic convergence rate is again determineg by, (3)). We now examine this
expression in more detail.

LEMMA 3.2.

1
(3.7) —oT®, - G, n— oo,
n

where

1
Gij = : ¢ (t) &5 (1) o (t)dt, 1<4,j<m,

and the density is determined by the asymptotic properties of the methodjéoerating
the sample pointg}’, i = 1,2,...,n, for large n. The Gram matrixG is bounded and
generically positive definite. L&, = I — P,. Then

1 1
where

T

di=] o (t) d2(ts) -+ Im(ti) |

This gives arD (1) component-wise estimate which applies also to derivatifémth P,
andT;, with respect tq3.
Proof. The result 8.7) is discussed in detail irf]. It follows from

LT _1s, (1) = G 1

)

by interpreting the sum as a quadrature formula. Positifi@iteness is a consequence of the
problem rank assumption. To deriv& &) note that

T, =, (@70,) " o7

1 1
n n
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The starting point for determining the asymptotics of thevesgence rate of the RGN
algorithm as» — oo is the computation of the expectations of the numerator andmhinator
matrices in 8.6). The expectation of the denominator is bounded and geibrigositive
definite. The expectation of the numeratords(1) asn — oco. This suggests strongly
that the spectral radius @’ (B) — 0, n — oo, a result of essentially similar strength to
that obtained for the additive error case. To complete thefprequires showing that both
numerator and denominator terms converge to their expesawith probabilityl.

Consider first the denominator term.

LEMMA 3.3.Fix 3 = 3.

1
~€ {VsfTVsf} = o® My + Mo,

whereM; = O (1), n — oo, and M, tends to a limit which is a bounded, positive definite

n

matrix when the problem rank assumption is satisfied. Inij¢teese matrices are

VﬁPw Vﬁpij,

My =

S\H

n n

Z Vot Vo — > > Vaul VT

j=1k=1

S|

Proof. Set
n
VEIvE =Y VIV

4

Il
-

(VPZJ Yj Z Vlecyk
j=1 k=1

[
M=

<,
Il
—

<.
Il

To calculate the expectation note that it follows from etprafl.2) that
(3.9 E{yiynt = 0?0k + 15 (B) e (B)
where

pi (B) = ef e (B).
It follows that

1 1 n n n n
€ {Vef' Vst = - Y R (VaPy) VP4 D> mim (VsPy)" VP
i=1 Jj=1 j=1k=1

= O'2M1 +M2

To showM; — 0 is a counting exercisel/; consists of the sum of? terms each of which
is anp x p matrix of O (1) gradient terms divided by?* as a consequence of Lem®&. M,
can be simplified somewhat by noting t@t?:l P;;i; = 0identically in3 by (1.3) so that

Y 1w VePiy ==Y VsuPy.
j=1 j=1
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This gives, using the symmetry éf =1 — T,

n n n n n n
DD > mik (VaPy)' VaPu =Y > Vou; VaurPii P
=1 j=1k=1 =1 j=1 k=1
n n
(3.10) =D > Vou VP
j=1k=1
=D VoufVou; = > > Veu, VourTik.
j=1 j=1k=1

Boundedness of\f, asn — oo now follows using the estimates for the size of thg
computed in Lemma&.2. To show thatl/, is positive definite note that it follows fron3(10
that

dp® dp
tT Myt = — {I—T}——">0.
2Tt { }dt*O

As HT%’%H < H%’f” this expression can vanish only if there is a directiog R? such

that % = ~u for somey # 0. This requirement is contrary to the Gauss-Newton rank
assumptionthat ® Vz®a | has full rankm + p. 0

LEMMA 3.4. The numerator in the expressiod §) definingiv,,(3) is

n n

SUEVEE =D vk ViPa
i=1

i=1 j=1 k=1

LetMs = 1€ {321, /3 i} then

MgZ%ZO’2 V%Pu*ingV%Pzg )

i=1 =1

and M3 — 0, n — oo.
Proof. This is similar to that of Lemma.3. The new point is that the contribution ids

from the signal termg;(3) in the expectation3.9) is

Z Z Z 1Py V3 Py = 0,

i=1j=1k=1

by summing ovey keeping: andk fixed. The previous counting argument can be used again
to give the estimaté/; = O (1), n — oc. 0
The final step required is to show that the numerator and devadan terms in 8.6)
approach their expectationsas— oo. Only the case of the denominator is considered here.
LEMMA 3.5.

1 a.s.
(vngvﬁf) 3 My, n— 0.
n
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Proof. The basic quantities are:

1 T
(av,@f vﬁf>

1 n
=2 Vsl Vsl
=1

% Z Z (vﬂPz’j)T Yj Z Vs Py
k=1

i=1 j=1

1 n n n
= - Z Z Z {pjp + (Hjer + prej) +jent (Vgpij)T Vi Pi.

i=1 j=1k=1
The first of the three terms in this last expansionds. Thus the result requires showing that
the remaining terms tend t Let
wr = & (VsPy)', wf R

j=1
As, by Lemma3.2, the components 0¥ 3 P;; = O (%) it follows by applications of the law
of large numbers that

T 220, n— oo,

componentwise. Specifically, givén> 0, there is am such that

Vi, |77l

<¢d Vn > mng with probability 1.
Consider the third term. Let

S, = % SN eien (VaPiy)t VP,

L =1 j=1 k=1
1 — o
i=1
Then, in the maximum norm, with probability 1 far> ng,

1Sl oo < P82,

showing that the third sum tends@ n — oo almost surely. A similar argument applies to
the second term which proves to ©g0). O

These results can now be put together to give the desirecogence result.

THEOREM 3.6.

Wy (B) 220, n— oo.

Proof. The idea is to write each component tethin (3.6) in the form
Q=E{Q}+(Q-£{Q}),

and then to appeal to the asymptotic convergence resuétblissied in the preceding lem-
mas. 0
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REMARK 3.7. This result when combined with consistency sufficesstatdish the
analogue of%2.6) in this case. The asymptotic convergence rate of the RGbrittign can
be expected to be similar to that of the full Gauss-Newtonhoat While the numerator
expectation in the Gauss-Newton method)jisind that in the RGN algorithm i© (1) by
Lemma3.4, these are both smaller than the discrepanties- £ {Q}) between their full
expressions and their expectations. Thus it is these gigooy terms that are critical in
determining the convergence rates. Here these correspdad of large numbers rates for
which a scale 00 (n=1/2) is appropriate.

4. The Kaufman modification. As the RGN algorithm possesses similar convergence

rate properties to Gauss-Newton in large sample problends as the Kaufman modification

is favoured in implementation, it is of interest to ask if dbtshares the same good large
sample convergence rate properties. Fortunately the ansivethe affirmative. This result
can be proved in the same way as the main lemmas in the preséatisn. This calculation is
similar to the preceding and is relegated to the Appendixhigisection the close connection
between the modified algorithm and the full Gauss-Newtorhoeeis explored. That both
can be implemented with the same amount of work is showflh First note that equation
(2.5) for the Gauss-Newton correction here becomes

2
min
S, 03

y-ta-[® Vs ]| 55 ]

Introducing the variable projection matrix permits this to be written:

min [Py — PV (@) 68 + min||(I = P) (y = Vs (2) 9B) — @ (e + Sa)|*.

Comparison with3.1) shows that the first minimization is just

in||Py — Ko .
min || Py — K58

Thus, givena, the Kaufman search direction computed usiBd)(is exactly the Gauss-
Newton correction for the nonlinear parametersxlis set using1.4) then the second mini-
mization gives

Sa=—-9"Vg(Pa)is
(4.1) ="V [0p ¢Ty,

while the increment irx arising from the Kaufman correction is
a(B+8) —a(8) = (Vo@Ty) 38+ 0 (168]°)

Note this increment is not computed as part of the algorithoexamine 4.1) in more detail
we have

d(b_'_ - T —1 d(I)T Td@ T -1 7 T —1 d(pT
7_—@ P) (7<I>+<1> E)(@ o) o' + (01 0) o
G KL AP, 7t 420
=— (") el + (¢'9) -
= (®7®) " AN

dt dt
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The second term in this last equation occurdii) Thus, setting3 = ||d3]| t,

—1 doT
ba— (V@ty) 68 = — 68 (27 @) =Py + 0 (13BI*).

) doT - dP
The magnitude of this resulting expression can be shown sortzdl almost surely compared
with [|63|| whenn is large enough using the law of large numbers and consistnbefore.
The proximity of the increments in the linear parameters e identity of the calculation of
the nonlinear parameter increments demonstrates the aligeenent between the Kaufman
and Gauss-Newton algorithms. The small residual resulsudsed in11].

5. Discussion. It has been shown that both of the variants of the Gauss-Nealtm-
rithm considered possess similar convergence propentlasgje data set problems. However,
that does not help resolve the question of the method of ehniany particular application.
There is agreement that the Kaufman modification of the R@riaghm has an advantage
in being cheaper to compute, but it is not less expensive timarfull Gauss-Newton algo-
rithm [11]. Thus a choice between variable projection and Gauss-dewiust depend on
other factors. These include flexibility, ease of use, anthglbehaviour. Flexibility tends to
favour the full Gauss-Newton method because it can be apgliectly to solve a range of
maximum likelihood problems7] so it has strong claims to be provided as a general purpose
procedure. Ease of use is just about a draw. While Gaussddewtjuires starting values for
botha and3, given3 the obvious approach is to computg3) by solving the linear least
squares problem. Selecting between the methods on somarigppeidiction of effectiveness
appears much harder. It is argued 2 that variable projection can take fewer iterations in
important cases. There are two significant points to be made h

1. Nonlinear approximation families need not be closed eEsly if the data is inad-
equate then the iterates generated by the full Gauss-Newagrtend to a function
in the closure of the family. In this case some parametereguill tend tooo and
divergence is the correct answer. The nonlinear paramed@rbe bounded so it is
possible for variable projection to yield a well determireatswer. However, it still
needs to be interpreted correctly. An example involving@aeiss-Newton method
is discussed inf].

2. There is some evidence that strategies which eliminatéribar parameters in sep-
arable models can be spectacularly effective in exporigiittiag problems with
small numbers of variable$], [9]. Similar behaviour has not been observed for
rational fitting B] which is also a separable regression problem. It seems ther
something else going on in the exponential fitting case asoilditioning of the
computation of the linear parameters affects directly kbt conditioning of the
linear parameter correction in Gauss-Newton and the acgufathe calculation of
P, in variable projection in both these classes of problemshdiuld be noted that
maximum likelihood is not the way to estimate frequenciegctvlare just the non-
linear parameters in a closely related probleifi][ Some possible directions for
developing modified algorithms are considereddh [

The importance of large sample behaviour, and the need fopppate instrumentation
for data collection are consequences of the result thatmani likelihood parameter esti-

mates have the property thgt (Bn — B) is asymptotically normally distributed p]. The

effect of sample size on the convergence rate of the GausgeNenmethod is illustrated in
Table5.1for an estimation problem involving fitting three Gaussi@als plus an exponen-
tial background term. Such problems are common in scierdtdia analysis and are well
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TABLE 5.1
Iteration counts for peak fitting with exponential backgrdu

n oc=1 o=2 oc=4
64 7 16 nc
256 11 21 50
1024 7 17 18
4096 6 6 7
16384 6 6 7

30 ‘ 30

- N W

AP 15
Data ;‘f. ﬂ b '|
values “ L | [ Iy

Data points, n=g4

FiG. 5.1.No convergence: fit aftei0 iterations caser = 4, n = 64

enough conditioned if the peaks are reasonably distincsutih cases it is relatively easy to
set adequate initial parameter estimates. Here the choséel iis

(t—.5)2 t—.75)2

(t—.25)2 (
w(x,t) = 5e 10t 4 186_% 4+ 15e” 03 4 10e™ 015

Initial conditions are chosen such that there are randoanseaf up to 50% in the background
parameters and peak heights, 12.5% in peak locations, évdir2peak width parameters.
Numbers of iterations are reported for an error procesgspanding to a particular sequence
of independent, normally distributed random numbers datechdeviations = 1, 2, 4, and
equispaced sample points= 64, 256, 1024, 4096, 16384. The most sensitive parame-
ters prove to be those determining the exponential backgkoand they trigger the lack of
convergence that occurred when= 4, n = 64. The apparent superior convergence be-
haviour in then = 64 case over the = 256 case for the smaller values can be explained
by the sequence of random numbers generated producing enaneréble residual values in
the former case. The sequence used here corresponds tetlypiéirter of the sequence for
n = 256.

Plots for the fits obtained far = 4, n = 64 ando = 4, n = 256 are given in Fig-
ure 5.1 and Figure5.2, respectively. The difficulty with the background estimatin the
former shows up in the sharp kink in the fitted (red) curve rtear 0. This figure gives
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|

i

Data points | n=256

FIG. 5.2. Fit obtained: caser = 4, n = 256

the result aftei50 iterations whene(1) = 269 andx(2) = 327 so divergence of the back-
ground parameters is evident. However, the rest of the kigheing picked up pretty well.
The quality of the signal representation suggests possdiecompactness, but the diverging
parameters mix linear and nonlinear making interpretadibtihe cancelation occurring dif-
ficult. A similar phenomenon is discussed iff.[ This involves linear parameters only, and
it is easier to see what is going on. The problem is attribtiddck of adequate parameter
information in the given data. The green curves give the fitioled using the initial parame-
ter values and is the same in both cases. These curves martade the middle peak fairly
well, so the overall fits obtained are quite satisfactorye phoblem would be harder if the
number of peaks was not known a priori.

Appendix. The variational matrix whose spectral radius evaluatefdnarﬂetermines the
convergence rate of the Kaufman iteration is

Q’z[—(%KTK) V3F
1
(anK) ( thv fi+ Lf )

It is possible here to draw on work already done to establistkey convergence rate result
(2.6). Lemmas3.3and3.5describe the convergence behavioufpf= 1 { KT K + LTL}
asn — oo. Here it proves to be possible to separate out the propestigse individual
terms by making use of the orthogonality &f and L, cf. (3.4), once it has been shown

that L& {L (8, e)T L(B, s)} %% 0,n — oo. This calculation can proceed as follows. Let
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t € RP. Then
3 {%tTLTLt} - %5 {ETPV5(I) ot (@) v [t)” Pe}
- %5 {eTPvﬁcb it] (@7®) ' Vo [6)7 Ps}

1
= — trace {ng) [t] GV [t]" PE {ee”} P} + smaller terms
_- O[] G Vo [t)T (I—T I
—Ftrace{Vﬁ [t] Vs®[t]” (I - )}+ smaller terms

This last expression breaks into two terms, one involvirguthit matrix and the other involv-
ing the projectiori’. Both lead to terms of the same order. The unit matrix terragjiv

trace {Vg@ [t]G~'V3® [t]T} =t {Z ‘I’iGl‘I’?} t,

=1
where
_ 09y

(\I]i)jk - aﬁk )

v, : R™ — RP.
It follows that
0?2 & 1T 1
EZ\LG Vi =0(~]), n—oo
=1
To complete the story note that the conclusion of Len¥acan be written
1 as. o)1 1
—(K"TK+L"L)“% ¢ {—KTK + —LTL} , m— oo
n n n
If %KTK is bounded, positive definite then, using the orthogon#lity),
Lo Lo Lo as. 17 Lo
—K'K|-K'K-&8{-K'K = —K'KES—-L'Ly, n— .
n n n n n
This shows thal};K T K tends almost surely to its expectation provided it is bodngesitive

definite forn large enough and so can be cancelled on both sides in the ekpression.
Note first that the linear parameters cannot upset boundsdne

a(ﬂ) = ((I)T(I))i1 (I)Ty
—at - <G1 +0 <1>) ®le
n n
=a+46, [6],=o0(1),

wherea is the true vector of linear parameters. Positive defingsriellows from

o 7 d®" _dP
dd 2 dd 2
|G| - |rGam| =0

Equality can hold only if there i such that’2 « (3) = v®a (8). This condition was met
also in Lemma3.3.
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