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DERIVATION OF HIGH-ORDER SPECTRAL METHODS FOR
TIME-DEPENDENT PDE USING MODIFIED MOMENTS *

JAMES V. LAMBERS'
In memory of Gene Golub

Abstract. This paper presents a reformulation of Krylov Subspace t&e@SS) Methods, which build on
Gene Golub’s many contributions pertaining to moments aadsGian quadrature, to produce high-order accurate
approximate solutions to variable-coefficient time-defssnt PDE. This reformulation serves two useful purposes.
First, it more clearly illustrates the distinction betwd€®S methods and existing Krylov subspace methods for solv-
ing stiff systems of ODE arising from discretizions of PDES& methods rely on perturbations of Krylov subspaces
in the direction of the data, and therefore rely on direclaterivatives of nodes and weights of Gaussian quadra-
ture rules. Second, because these directional derivadil@s KSS methods to be described in terms of operator
splittings, they facilitate stability analysis. It will lhown that under reasonable assumptions on the coefficients
the problem, certain KSS methods are unconditionally stabhis paper also discusses preconditioning similarity
transformations that allow more general problems to befrefit this property.
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1. Introduction. Consider the following initial-boundary value problem ineospace
dimension,

1.1 us + Lu=0 on(0,2m) x (0, 00),

(1.2) u(z,0) = f(z), 0<ax<2m,

with periodic boundary conditions

(1.3) u(0,t) = u(2m,t), t>0.

The operatol. is a second-order differential operator of the form
1.4) Lu = —pug, + qu,

wherep is a positive constant ang) is a nonnegative (but nonzero) smooth function. It
follows that L is self-adjoint and positive definite.

In [18], [19], a class of methods, called Krylov subspace spectral (KB&hods, was
introduced for the purpose of solving time-dependent alde-coefficient problems such as
this one. These methods are based on the application ofiteetendeveloped by Golub and
Meurant in P], originally for the purpose of computing elements of theeirse of a matrix,
to elements of the matrix exponential of an operator. It eentshown in these references
that KSS methods, by employing different approximationshefsolution operator for each
Fourier component of the solution, achieve higher-ordeugacy in time than other Krylov
subspace methods (see, for examplé)])[for stiff systems of ODE. However, the essential
guestion of the stability of KSS methods has yet to be addtesEhis paper represents a first
step in this direction.
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Section2 reviews the main properties of KSS methods, including étigaic details and
results concerning local accuracy. The main idea behinsethgethods is that each Fourier
component of the solution is obtained fronparturbationof a frequency-dependektrylov
subspace in the direction of the initial data, instead ofnglsi Krylov subspace generated
from the data. It follows that KSS methods can be reformdlaieerms of directional deriva-
tives of moments. This leads to a new algorithm that reptegée limit of a KSS method
as the size of the perturbation approaches zero, thus agdité cancellation and parameter-
tuning that is required by the original algorithm. This ndgoaithm is presented in secti@n
Compared to the original algorithm, the new one lends itsefe readily to stability anal-
ysis, which is carried out for the simplest KSS methods irtises 4 and5. In section6,
this analysis is repeated for the application of KSS methiodke second-order wave equa-
tion, which was introduced inlp]. Section7 presents homogenizing transformations that
can be applied to more general variable-coefficient secoddr differential operators, in-
cluding a new transformation that can be used to homogensae@nd-order operator with
smoothly varying coefficients, up to an operator of negatikder. These transformations
allow problems featuring these more general operators solved using KSS methods with
the same accuracy and stability as the simpler problem piedén the preceding sections.
In section8, various generalizations are discussed.

2. Krylov subspace spectral methodsWe begin with a review of the main aspects of
KSS methods. Leb(t) = exp|—Lt] represent the exact solution operator of the problem
(1.9, (1.2, (1.3, and let(-,-) denote the standard inner product of functions defined on
[0, 27],

2m

(f(z),g(x)) = ; f(x)g(x) de.
Krylov subspace spectral methods, introducedLi#],[[19], use Gaussian quadrature on the
spectral domain to compute the Fourier components of theisol These methods are time-
stepping algorithms that compute the solution at timé., . . ., wheret,, = nAt for some
choice of At. Given the computed solution(z, ¢,,) at timet,,, the solution at time,, ; is
computed by approximating the Fourier components thatdvbalobtained by applying the
exact solution operator @z, t,,),

@.1) i tin) = ( e=e ™ S(ANa,1) )

Ver

Krylov subspace spectral methods approximate these caenpowith higher-order temporal
accuracy than traditional spectral methods and time-gsiggzhemes. We briefly review how
these methods work.

We discretize functions defined df, 2x] on an N-point uniform grid with spacing
Az = 27w /N. With this discretization, the operatdrand the solution operatdf(At) can
be approximated byW x N matrices that represent linear operators on the space @f gri
functions, and the quantity (1) can be approximated by a bilinear form

(2.2) W(w, tnr1) & &L Sn(At)u(t,),

where

1 ..
6ulj = =€, [u(tn)]; = u(jAw, ty),

[eu]; = N )
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and
(2.3) Sn(t) = exp[—Lnt], [Lnljk = —p[D¥ljk +a(jAz),

where Dy is a discretization of the differentiation operator that&fined on the space of
grid functions. Our goal is to approximate.?) by computing an approximation to

[, = éu(t, 1) = e7Sn(At)u(t,).
In [9], Golub and Meurant describe a method for computing quastdf the form
(2.4) ul f(A)v,

whereu andv are N-vectors,A is an N x N symmetric positive definite matrix, anflis

a smooth function. Our goal is to apply this method with= L, whereL 5 was defined

in (2.3), f(\) = exp(—At) for somet, and the vectora andv are derived froné,, andu(t,,).
The basic idea is as follows: since the matdixs symmetric positive definite, it has real

eigenvalues

b=XM2>2X>--->Anv=0a>0,

and corresponding orthogonal eigenvecigys;j = 1,..., N. Therefore, the quantity?(4)
can be rewritten as

N
ul f(A)yv = Z f()\g)uquq;‘-Fv.

/=1
We leta = Ay be the smallest eigenvalue= \; be the largest eigenvalue, and define
the measurex(\) by
0, if A <a,
OZ(A) = Z;V:l Oéjﬂj, if A <A< Ai_q, aj = uqu7 ﬁj = q;‘FV,
S¥ e, fb<A

If this measure is positive and increasing, then the quaftit) can be viewed as a Riemann-
Stieltjes integral

WA = 10f) = [ ) da.

As discussed ind], [6], [7], [9], the integrall[f] can be bounded using either Gauss,
Gauss-Radau, or Gauss-Lobatto quadrature rules, all ahwiield an approximation of the
form

K M
(2.5) I[f1 = wif(t;) + > _vif(z) + RIf],

Jj=1 J=1
where the nodes;, j = 1,...,K, andz;, j = 1,...,M, as well as the weights);,
j=1,...,K,andv;, j = 1,...,M, can be obtained using the symmetric Lanczos al-

gorithm if u = v, and the unsymmetric Lanczos algorithnuit£ v; see [L1].
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In the casen # v, there is the possibility that the weights may not be pasjtivhich
destabilizes the quadrature rule; seefpr details. Therefore, it is best to handle this case by
rewriting (2.4) using decompositions such as
(2.6) u f(A)v = <[’ f(A)(u+dv) — u” F(A)u].
whered is a small constant. Guidelines for choosing an appropvilige foré can be found
in [19, Section 2.2].

Employing these quadrature rules yields the following basbcess (for details seg],
[19]) for computing the Fourier coefficients af(¢,, 1) fromu(¢,,). It is assumed that when
the Lanczos algorithm (symmetric or unsymmetric) is emethy/ + K iterations are per-
formed to obtain thel/ + K quadrature nodes and weights.

forw=-N/2+1,...,N/2
Choose a scaling constafit
Computeu; ~ e Sy (At)e,
using the symmetric Lanczos algorithm
Computeuy ~ e Sy (At)(e,, + 6,u™)
using the unsymmetric Lanczos algorithm
[ﬁnJrl}w = (uz2 —u1) /0w
end

It should be noted that the constaijt plays the role of in the decomposition2(6), and
the subscriptv is used to indicate that a different value may be used for eacte number
w=—-N/2+1,...,N/2. Also, in the presentation of this algorithm ihd], a polar de-
composition is used instead df.(), and is applied to sines and cosines instead of complex
exponential functions.

This algorithm has high-order temporal accuracy, as indithy the following theorem.
Let BLy([0,27]) = sparf e "* }ff_N/QH denote a space of bandlimited functions with
at mostN nonzero Fourier components.

Theorem 2.1. Let L be a self-adjointn-th order positive definite differential operator
on C, ([0, 2]) with coefficients inBLy ([0, 2x]). Let f € BLx([0,2x]), and letM = 0.
Then the preceding algorithm, applied to the probldmi), (1.2), (1.3), is consistent; i.e.

[, — a(w, At) = O(A?K),

forw=-N/2+1,...,N/2.

Proof. See L9, Lemma 2.1, Theorem 2.4]. O

Using results in 9] regarding the error terni®[f] in (2.5), it can be shown that ifi/
prescribed nodes are used in addition to hdree nodes, then the local truncation error is
O(A#?E+My - As shown in [L9], significantly greater accuracy can be achieved for some
problems by using a Gauss-Radau rule with one prescribeglthatlapproximates the small-
est eigenvalue of.. Also, it should be noted that irLp], a variation of Krylov subspace
spectral methods is applied to variable-coefficient seaudér wave equations, achieving
O(At*E+2M) accuracy.

For convenience, we denote by K$S§(a KSS method, applied to the probleini), that
uses aK -node Gaussian rule for each Fourier component. (IKa+ 1)-node Gauss-Radau
rule is used instead, witk” free nodes and one prescribed node approximating the shalle
eigenvalue ofL, then the resulting KSS method is denoted by KS&R( Finally, KSS-
W(K) and KSS-WR[) refer to KSS methods applied to the second-order wave iequiat
using aK'-node Gaussian rule and & + 1)-node Gauss-Radau rule, respectively.
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The preceding result can be compared to the accuracy adhgan algorithm described
by Hochbruck and Lubich in15] for computinge42tv for a given matrixA and vectorv
using the unsymmetric Lanczos algorithm. As discusset5] this algorithm can be used to
compute the solution of some ODEs without time-steppingthis becomes less practical for
ODEs arising from a semi-discretization of problems sucfilay, (1.2), (1.3), due to their
stiffness. In this situation, it is necessary to either ubégha-dimensional Krylov subspace,
in which case reorthogonalization is required, or one canorteo time-stepping, in which
case the local temporal error is oy At¥), assuming &« -dimensional Krylov subspace.
Regardless of which remedy is used, the computationaltefémded to compute the solution
at a fixed timel” increases substantially.

The difference between Krylov subspace spectral methodsrenapproach described
in [15] is that in the former, a differeni-dimensional Krylov subspace is used for each
Fourier component, instead of the same subspace for all @oemts as in the latter. As
can be seen from numerical results comparing the two appesaia [L9], using the same
subspace for all components causes a loss of accuracy astienof grid points increases,
whereas Krylov subspace spectral methods do not suffertincgphenomenon.

In [19], the benefit of using component-specific Krylov subspaga@pmations was
illustrated. A problem of the forml(1), (1.2), (1.3) was solved using the following methods:

e A two-stage, third-order scheme described by Hochbrucklarach in [15] for
solving systems of the form’ = Ay + b, where, in this casdy = 0 and A is an
N x N matrix that discretizes the operatbs. The scheme involves multiplication
of vectors byp(vhA), wherey is a parameter (chosen to %é, h is the step size,
andy(z) = (e* — 1)/z. The computation ofo(vhA)v, for a given vectow, is
accomplished by applying the Lanczos iteratiomtavith initial vectorv to obtain
an approximation te(yhA)v that belongs to the:-dimensional Krylov subspace
K(A,v,m) = spar{v, Av, A%v,..., A"~ 1v}.

e KSS-R(2), with 2 nodes determined by Gaussian quadratuleraa additional pre-
scribed node. The prescribed node is obtained by estimétégmallest eigenvalue
of L using the symmetric Lanczos algorithm.

We chosen = 2 in the first method, so that both algorithms performed theesaomber of
matrix-vector multiplications during each time step. Asincreased, there was virtually no
impact on the accuracy of KSS-R(2). On the other hand, tluisease, which resulted in a
stiffer system, reduced the time step at which the methatd fid] began to show reasonable
accuracy.

A result like this suggests that KSS methods are relativedgmsitive to the spatial and
temporal mesh sizes, in comparison to other explicit methtids natural to consider whether
they may be unconditionally stable, and if so, under whatlt@ns. The following sections
provide an answer to this question.

3. Reformulation. From the algorithm given in the preceding section, we setestheh
Fourier componenti™*1],, approximates the derivative

5 (e (e, + s.u™)e] exp[—T,,(6.)Atles ] ,
w 5,=0

whereT, (4,,) is the tridiagonal matrix output by the unsymmetric Lancalg®rithm applied
to the matrixL v with starting vectorg,, and(e,, + d,,u™) (which reduces to the symmetric
Lanczos algorithm foé,, = 0). In this section, we will compute these derivatives anedty.

In the following sections, we will use these derivativesxamine the question of stability of
Krylov subspace spectral methods.
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3.1. Derivatives of the nodes and weightsFor a givend,,, let A, ;, j = 1,..., K,
be the nodes of th& -point Gaussian rule obtained by applying the unsymmetaindzos
algorithm toL 5 with starting vectorg,, and(é,, + d,u”). Letw,, ;,j =1,..., K, be the

corresponding weights. Then, letting — 0, we obtain the following, assuming all required
derivatives exist:

[ﬁnJrlLu _ éHun+1
d ..
= [ef(ew + d,u™)e] exp[—T, (0. )Atle |
w 6,=0
d_|.n o A
=, [ @t a2 wpe
. J=1 5,=0
K K K
(3.1) =&y Z wije A 4 Zw;e_’\fm — At Z wiN;e A
=1 i=1 =1

where the’ denotes differentiation with respect &g, and evaluation of the derivative at
0, = 0. Equivalently, these derivatives are equal to the length’ofimes the directional
derivatives of the nodes and weights, as functions definé&™onin the direction ofu™, and
evaluated at the origin.

It should be noted that in the above expressiorj@idr '], the nodes and weights depend
on the wave numbep, but for convenience, whenever a fixed Fourier componengiisgh
discussed, the dependence of the nodes and weighissonot explicitly indicated.

From the Lanczos algorithni,, (d,,) has the structure

ay B

B oy B
Tw(5w): )
Br—2 ag_1 Pr-1
ﬂK—1 QK

where all entries are functions 6f,. Because the nodes and weights are obtained from the
eigenvalues and eigenvectors of this matrix, it is desirédlse these relationships to develop
efficient algorithms for computing the derivatives of thelas and weights in terms of those
of the recursion coefficients. We will first describe suchoalipms, and then we will explain
how the derivatives of the recursion coefficients can be caeth

The nodes are the eigenvaluesTof(d.,). Becausel,, (0) is Hermitian, it follows that
there exists a unitary matrig® such that

Tw(O) = QgAw (O)[Qg]H

The eigenvalues of,(0) are distinct; seelll]. Because the eigenvalues are continuous
functions of the entries of the matrix, they continue to b&tidct for o, sufficiently small,
and thereford, () remains diagonalizable. It follows that we can write

(32) Tw(&u) = Qw((sw)Aw (5w)Qw(5w)_1v
whereQ,,(0) = Q. Differentiating 8.2) with respect taj,, and evaluating af,, = 0 yields

diag'A/,(0)) = diag(Q.,(0)" T, (0)Q.,(0)) ,
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since all other terms that arise from application of the pmdule vanish on the diagonal.
Therefore, for eacly, the derivatives of the nodes, . . . , A are easily obtained by applying
a similarity transformation to the matrix of the derivatiaf the recursion coefficients;, (0),
where the transformation involves a matrix,, (0), that must be computed anyway to obtain
the weights.

To compute the derivatives of the weights, we consider thwaton

(Tw(éw)_/\jl)wj((sw)zoa j:17~-~aK7

wherew;(d,,) is an eigenvector of,(d,,) with eigenvalue);, normalized to have unit 2-
norm. First, we differentiate this equation with respecé jcand evaluate af,, = 0. Then,
we delete the last equation and eliminate the last compasfewt; (0) andw’;(0) using the
fact thatw;(0) must have unit 2-norm. The resultigA — 1) x (K — 1) system where the
matrix is the sum of a tridiagonal matrix and a rank-one upda@his matrix is independent
of the solutionu™, while the right-hand side is not. After solving this simplestem, as well
as a similar one for the left eigenvector corresponding towe can obtain the derivative
of the weightw; from the first components of the two solutions. It should b&eddhat
althoughT,,(0) is Hermitian, T, (¢,,) is, in general, complex symmetric, which is why the
system corresponding to the left eigenvector is necessary.

3.2. Derivatives of the recursion coefficientsLet A be a symmetric positive definite
nxn matrix and letry be amn-vector. Suppose that we have already carried out the syriemet
Lanczos iteration to obtain orthogonal vectess. . ., r ¢ and the Jacobi matrix

oy B

B ar B
(3.3) Ty —

Brk—2 ax—1 Pr-1
51{—1 (03¢

Now, we wish to compute the entries of the modified matrix

3! el R
B1 G B
(3.4) Ty = - -

Br-2 dx-1 Pr-1
Bk-1 Gk

that results from applying the unsymmetric Lanczos iteratvith the same matrixl and
the initial vectorsry andry + f, wheref is a given perturbation. The following iteration,
introduced in 0] and based on algorithms frorg][ [8], and [22], produces these values.

Algorithm 3.1. Given the Jacobi matrix3(3), the first X + 1 unnormalized Lanczos
vectorsry, ..., rg, and a vectof, the following algorithm generates the modified tridiagona
matrix (3.4) that is produced by the unsymmetric Lanczos iteration Veithinitial vectorr,
and right initial vectotrg + f.

Bo1=0, q1=0, qo="F, 33=733+rlqo,
2y do=0

50 = 52> to
(0]

2
— Pao
a2 1
B3
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forj=1,...,K
b = oj + ijll‘qu'—l + dj715j72tj__1{2
if j < K then
~ 1/2 o
d; = (dj—1Bj-2 + (e — a;)t}/%) /B
qj = (A= a&;1)q;-1 — 671952
B =t 107 +s;1ri qy
_ B
S; = =58,
7T
t]' = B—jz:tj,1
end
end

The correctness of this algorithm is proved29], where it was used to efficiently obtain
the recursion coefficients needed to approxinadfé v (At)(é,, + é,u™) from those used to
approximates Sy (At)e,,. In [20], it was shown that with an efficient implementation of
this algorithm in MATLAB, KSS methods are a viable option smiving parabolic problems
when compared to MATLAB's built-in ODE solvers, even thoubhk former are explicit and
the latter are implicit.

Here, we use this algorithm for a different purpose. Fromekgressions for the en-
tries of T, the derivatives of the recursion coefficients, j = 1,..., K, andg;, j =
1,..., K — 1, can be obtained by setting = &, andf = ¢,u”. By differentiating the
recurrence relations in Algorith®.1 with respect td,, and evaluating af,, = 0, we obtain
the following new algorithm.

Algorithm 3.2. Let T (9) be the tridiagonal matrix produced by the unsymmetric Lanc-
Zos iteration with left initial vector, and right initial vectorrg + of. Letrg,...,rg be the
K + 1 unnormalized Lanczos vectors associated With0). GivenT'x, as defined ing.3),
whose entries are those 8% () evaluated ab = 0, the following algorithm generates the
tridiagonal matrixZ’;. whose entries are the derivatives of the entrie$e{J) with respect
to 4, and evaluated &t = 0.

B_1=0, q-1=0, qo=1£, [83) =rlqo

27/ 217
50:%1 56:7[@%] , t6:*[ﬁ%] , d6:0
forj=1,...,K
o = Sj—lerqj—l +di_1 B2
if j < K then

d; = (d;_18j—2 — a})/Bj-1
q; = (A—a;I)q;-1— 37 ,q; 2
B3 =) 16} + 511

sj = sj-1/B;
EHE
sj = 85-1/05 — Fw 551
B
t =t 1~

end
end

Note that this iteration requires about the same computattieffort as Algorithn3. 1
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3.3. Summary. The new formulation of KSS methods consists of the followingcess
for computing each Fourier componeént 1], from u™.

1. Compute the recursion coefficients, nodes and weightsatbee used to compute
uy ~ &1 Sy (At)e, in the original formulation.

2. Compute the derivatives of the recursion coefficientsl te@btainu, using Algo-
rithm 3.2with ry = €, andf = u". Note that because the vectersj =0, ..., K,
are only involved through inner products, they do not neeletstored explicitly.
Instead, the required inner products can be computed simedusly for allv using
appropriate FFTs.

3. Compute the derivatives of the nodes and weights frometbhbthe recursion coef-
ficients, as described in secti8rL

4. Computda™*!], asin @.1).

Because this algorithm only requires computing the eigeregand eigenvectors of one
K x K matrix, instead of two as in the original algorithm, bothaithms require a com-

parable amount of computational effort. However, unlike driginal algorithm, the new

one does not include a subtraction of nearly equal valuesdoh Fourier component, and
therefore exhibits greater numerical stability for smallues ofo,, .

4. The one-node caseWhenK = 1, we simply havel,,(d,,) = a1 (d.), where
a1(6,) = el Ly(e, + o,u™),
which yields
ay(0) =ell(Ly —a I)u™.
From\; = a; andw; = 1, we obtain
[@" ', = e 861 — At(Ly — ay1)Ju™
Becausey; = pw? +gandLye, = pw?é, + diagq)é.,, it follows that
u"tl = = ONApUIT — Atdiagg)ju”,

whereq = q — gandL = C + V is a splitting of L such that”' is the constant-coefficient
operator obtained by averaging the coefficientd.pfind the variation of the coefficients is
captured by/. The operatoPy is the orthogonal projection on8L y ([0, 27]). This simple
form of the approximate solution operator yields the follagvresult. For convenience, we
denote bySy (At) the matrix such thaa™t!' = Sy (At)u™, for given N andAt.

Theorem 4.1.Letg(z) in (1.4) belong toB L ([0, 27]) for a fixed integetM. Then, for
the problem {.1), (1.2), (1.3), KSS(1) is unconditionally stable. That is, givEn> 0, there
exists a constartt'r, independent oV and At, such that

ISn (A" < Cr,

for0 < nAt <T.
Proof. The matrixC'y has the diagonalization

Oy = Fy'AnFy,
whereFy is the matrix of theV-point discrete Fourier transform, and

A =diagpw? +7), w=-N/2+1,...,N/2.
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It follows that ||e =~ At ||y = e~ 741,
Because(x) is bounded, it follows that

|Px[T — Atdiag@)]]l2 < 1+ AtQ,
whereQ = maxo<, <2~ ¢(x). We conclude that
1Sx (AL)]|2 < @-DAL,

from which the result follows wittC'; = ¢(@= DT, 0
Now we can prove that the method converges. For conveniarcdefine the 2-norm of
a functionu(z, t) to be the vector 2-norm of the restrictionofz, t) to the spatial grid:

1/2
llu(, ||2(Z|UjA:ct) .

7=0

We also say that a method is convergent of ordern) if there exist constant§’; andC,,,
independent of the time stelot and grid spacing\z = 27 /N, such that

u(-,t) — u(, )]s < CLAE™ + CuAz™, 0<t<T.

Theorem 4.2.Let¢(x) in (1.4) belong toB L, ([0, 2x]) for some intege/. Then, for
the problem {.2), (1.2), (1.3), KSS(1) is convergent of ordét, p), where the exact solution
u(zx, t) belongs taC? ([0, 2x]) for eacht in [0, T7].

Proof. Let S(At) be the solution operator for the problem ), (1.2), (1.3). For any
nonnegative integer and fixed grid sizéV, we define

E, = N"'2|S(A)" f — Sn(AL)" f|2.
Then, there exist constantg, Cy; andC such that

Epy1 = N"2|S(A)" T f = Sy (A" f|,
= N7'2|S(A)S(At)™ f — Sn(At)Sn (A)" f|2
N7V2|S(AL)S(AL)™ f — Sn(AL)S(AL)™ f +
SN(At) (A" f — Sn (A Sn (AL |2
< NTV2|S(AH)S(A)"f — Sn(A)S(AL)" || +
N7V2|Sy(A)S(AL)" f — Sy (A SN (A" £ 2
< N2\ S(At)u(tn) — Sy (At)u(ta) |2 + [[Sn (AL) 2By

< C1AE? + CoAtAz? + “AYE,,

where the spatial error arises from the truncation of theiEogeries of the exact solution. It
follows that

CT

E, < C1AL 4+ CyAtAzP) < CLAL + CoAzP

— eCAt_l(

for constants’; andC,, that depend only off". a
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5. The two-node case.Using a 2-node Gaussian rule, the Fourier components of the
approximate solution are given by

[ﬁn+1]w — éfu’n (wlef/\lAt + (1 o w1>ef/\2At) + wll (67/\1At o e*)\gAt) o
(5.1) At (wiAje ™ MA  (1 — wy)Ape 2287)

To obtain the derivatives of the nodes and weights, we usiellogiing recursion coefficients
and their derivatives. For convenience, when two colummors@re multiplied, it represents
component-wise multiplication:

o =pw® +7
0‘/1 = [éw(l]Hun
g =q"q
(83) = [-piwe,d — pe,d” + aé.q— fie,) u"
as = ar + {pld)?d + [&*]"[a]} /5}

2, 2~/ 2 =11 A 2 =111 A

ah = =20} + (@6, — 4w’p°q e, + diwp®q" e, + p*q"" e +
4iwpqd'e, + 3pqd’ e, + 2pqd'q'é, —
({pla1"a+[a’]"[a]} /87)[2pivd e, + pd"é.] —

(a2 — a1)d%é, — 2iwpgd’e, ) u" /B

It follows that

a1+ g \/(061 — )% + 403

)\1)2 == 9 + 2 ’
; _0itahy (i —ag)(af —ap) 2(67)’
e 2 2y/(a1 — az)? + 4032
wy = —ﬂ%
P (e M) Y
W — (B _ BE2(a1 = M)(ah = A)) + (BY)]
P (o — M)+ B (1 = A1)? + 67 '

It should be emphasized that these formulas are not meard tsdéd to compute the
derivatives of the recursion coefficients, nodes, and wsititat are used in the new formu-
lation of KSS methods introduced in secti8nthe algorithms presented in that section are
more practical for this purpose. However, the above forsale still useful for analytical
purposes. A key observation is that the derivatives of ttder@nd weights, taken collec-
tively for all w, define second-order differential operators. This leadkeadollowing result.

Lemma 5.1. Let C be a constant-coefficient, self-adjoint, positive defiséeond-order
differential operator, and le¥” be a second-order variable-coefficient differential ofera
with coefficients inBL,, ([0, 27]) for some integeil. LetC and Vy be their spectral
discretizations on amV-point uniform grid. Then there exists a constahtindependent of
N and At, such that

|Ate” N2y || < B.
Proof. For fixed N andAt, let Ay (At) = Ate=“~AtVy. Then, the row ofd v (At)
corresponding to the wave humheincludes the elements

2
Ate™CHOM S5+ €)Y, = -M/2+1,...,M/2,

=0
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whereC()\), the symbol ofC', is a second-degree polynomial with negative leading coeffi
cient, andy; is the Fourier transform of thgth-order coefficient of. If we examine the
function

F(N,t) =te N*INT Nt >0,

wherec is a positive constant, we find that for the valueg of interest,; = 0, 1,2, f(z,t)
is bounded independently &f and¢. This, and the fact that the number of nonzero Fourier
coefficients is bounded independently/éf yield the theorem’s conclusion. [

It is important to note that the fact that< 2 is crucial. For larger values gf f(N,t) is
still bounded, but the bound is no longer independentYafndt. Now, we are ready to state
and prove one of the main results of the paper.

Theorem 5.2.Let¢(x) in (1.4) belong toB L, ([0, 2x]) for some intege/. Then, for
the problem {.2), (1.2), (1.3), there exists a constafit such that

1S3 (At)]|oo < C,

whereSN(At) is the approximate solution operatéYN(At) for KSS(2) on anvV-point uni-
form grid with time ste@\¢. The constan€’ is independent oV and At.
Proof. It follows from (5.1) that

SN(At) _ wle—ClAt + (1 _ wl)e—CQAt + [e—ClAt _ B_CQAt}W{ _
Atfwie” AV 4 (1 — wy)e” O,
whereW; = diagw:(w)), C; is a constant-coefficient differential operator with symbo
Ci(w) = \i(w), andeZV;f = \i(w), where’ denotes the directional derivative df(w) in

the direction off.
The symmetric Lanczos algorithm assures thigti = 1, 2, is positive definite, so

(52) HefciAtHoo _ efAi(())At.
From Lemmab. 1, we can conclude that there exist constantandW such that
(5.3) [Ate OBl < Vip, i=1,2, || Ate” AWl < W,

whereW, = I — W;. Because\; (w) — Az(w) is a constanf, independent of., we can
conclude that

(5.4) At[[lem a0 — =AW = A [[(1 - el At oty

< WrlAol.
Putting together the bounds.p), (5.3) and 6.4) yields

IS5 (A)]loo < max e MO8 L W X| + Vi,
ie{1,2}

from which the theorem follows. 0

It should be emphasized that this result is not sufficienbtectude unconditional stabil-
ity, as in the 1-node case, but it does demonstrate the didglabKSS methods with respect
to the grid size.
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6. Application to the wave equation. In this section we apply Krylov subspace spectral
methods developed i §] to the problem

61) { GEB ;L)L_uu(zgr, ) o

with the initial conditions

(6.2) u(z,0) = f(x), u(z,0)=g(x), z€/(0,2n),
where, as before, the operatbiis as described irnl(4).

6.1. Structure of the solution. A spectral representation of the operafoallows us
the obtain a representation of the solution operator fthpagato) in terms of the sine and
cosine families generated lyby a simple functional calculus. Introduce

(6.3) Ri(t) = L™Y?sin(tVL) : Z sin tﬁ (02, Yon s

(6.4) Ry(t) = cos(tV'L) : Zcos (t )P )on s

where\;, Ao, ... are the (positive) eigenvalues 6f andy, o, ... are the corresponding
eigenfunctions. Then the propagator 6fl) can be written as

Ro(t)  Ri(t) ]

P(t) = .

Q [ “LRi(t) Ro(t)

The entries of this matrix, as functions 6f indicate which functions are the integrands in
the Riemann-Stieltjes integrals used to compute the Focoimponents of the solution.

6.2. Solution using KSS methodsWe briefly review the use of Krylov subspace spec-
tral methods for solvingd. 1), first outlined in [L2].
Since the exact solution(z, t) is given by

u(z,t) = Ro(t) f(x) + Ri(t)g(x),

whereRy(t) and Ry (t) are defined in.3), (6.4), we can obtaifu™*!],, by approximating
each of the quadratic forms

ct(t) = (e, Ro(At)[é, + d,u"]) ,
C;(t) = <éwaR0(At)éw )
55 (t) = (ew, Ri(At)[e, + d.uf])
Sy (t) = <éwa Rl(At>éw )

whereé,, is a nonzero constant. It follows that
), = SOl | 0 -5
v O 0w

Similarly, we can obtain the coefficients of an approximation ofi;(x, t) by approximating
the quadratic forms

~

"= —(é,, LRi(At)[é, + d,u"]) ,

o0
~

v
~

~—~ o~~~

~
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As noted in [L8], this approximation ta::(z, t) does not introducany error due to differ-
entiation of our approximation af(x,t) with respect ta—the latter approximation can be
differentiatedanalytically.

It follows from the preceding discussion that we can compuite@pproximate solution
u(z,t) at a given timel” using the following algorithm.

Algorithm 6.1. (KSS-W(K)) Given functiong(z), f(z), andg(x) defined on the inter-
val (0, 27), and a final timel", the following algorithm from12] computes a functioi(z, t)
that approximately solves the problef), (6.2) fromt =0tot =T.

t=0

while t < T do
Select a time steAt
f(z) =u(x,1)

g9(x) = u(x, 1)
forw=—-N/2+1to N/2do
Choose a nonzero constait
Compute the quantities’, (At), ¢, (At), st (At), s, (At),
ch (ALY, ¢ (At), st (At), ands; (At)

G (AL) = & (ch (A1) — ¢ (A1) + & (sh(A) — s (A1)
T (At) = 5-(ch (AL — ¢ (AL)) + 5= (sh(AL) — s, (At))
end

iz, t+ At) = N | &, (x)iu(At)
Gy (z,t+ At) = SN &, ()0, (AL)
t=t+ At

end

In this algorithm, each of the quantities inside fbeloop are computed using quadra-
ture nodes. The nodes and weights are obtained in exactgathe way as for the parabolic
problem (L.2), (1.2), (1.3). It should be noted that although 8 bilinear forms are nexgLifor
each wave numbev, only three sets of nodes and weights need to be computedhand
they are used with different integrands.

6.3. Convergence analysis\We now study the convergence behavior of the preceding
algorithm. Following the reformulation of Krylov subspaspectral methods presented in
section3, we letd,, — 0 to obtain

[ = (e e e 1)1

_Aesin(VARe) cos(vawt) | | @l

¢ [ sin(vVAt) == cos(vAxt) } { A } ~

D>

H..n
4 }+
e

wut

D>

M=

k=1

w

M=

Pt "ovae | VA cos(vAgt) sin(v/Axt) N,
(6.5) w 0 a7 SI(VARD) { A }
' k ﬁ sin(v/Axt) 0 PV

where )}, andwy, are the derivatives of the nodes and weights, respectivetiie direction
of u”, and\) andw), are the derivatives in the direction of.
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We first recall a result concerning the accuracy of each compoof the approximate
solution.

Theorem 6.2. Assume thaf (z) and g(x) satisfy (..3), and letu(z, At) be the exact
solution of 6.1), (6.2) at (z, At), and leta(z, At) be the approximate solution computed by
Algorithm6.1. Then

‘<éuﬂu('7 At) - ﬂ(-, At)>| = O(At4K)7

whereK is the number of quadrature nodes used in Algorithi

Proof. See [L2]. |

To prove stability, we use the following norm, analogoushattused in 12] to show
conservation for the wave equation:

1/2
[0 V) 2y = (u Lyu+vHv) 2.

Let L be a constant-coefficient, self-adjoint, positive defisgeond-order differential opera-
tor, and letu(¢) be the discretization of the solution @.() at timet. Then it is easily shown,
in a manner analogous t&4, Lemma 2.8], that

[(u(®), we(®)llzy = [I(F; &)l

wheref andg are the discretizations of the initial datér) andg(z) from (6.2).

Theorem 6.3.Letg(z) in (1.4) belong toBL ([0, 27]) for some integed. Then, for
the problem {.1), (1.2), (1.3), KSS-W(1) is unconditionally stable.

Proof. Lets,, = sin(,/a1At) andc,, = cos(y/a1At). In the casdl = 1, (6.5) reduces

to
ant! c 1 ¢ oHyn
l: ﬁn+1 = - v Ve éLﬁIUn -
t w Va1Sw Cw w
At S~ efdvyur 1
201 | (Jaic, Sw el Vyup
1 R ,
(6.6) 0 a@yrese | [ elfVyu
' ﬁsw 0 é‘IjVNU? ’

where we use the splitting = C + V' as in sectior8, with corresponding spectral discretiza-
tions L, Cy andVy. The first two terms ing.6) yield the Fourier component!]., of the
exact solution at timé\¢ to the constant-coefficient problem

0%v
w +C’U = 0,

At
v(x,0) = u(x, t,) + 7PNC'_1V1Lt(x,tn),
At
ve(x,0) = ug(z, ty) — 7PNVu(x,tn).
It follows that
n+1 n+1y(2 n ny|2 At -1~ n ~_n\|2
1™ w e < [, vi)lle + - Oy auy’, qu™) & +

At 8/2. o —1/2~ g
SOy auy oy Paun)|z.
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which yields
~ At
ISn(ADIE <1+ S +7 77,

where( is as defined in the proof of Theorefnl Because > 0, we can conclude that
there exists a constantsuch that| Sy (At)||¢ < e*?t, and the theorem follows. O
Theorem 6.4. Let g(z) in (1.4) belong toBL ([0, 27]) for some integetM. Then,
for the problem {.1), (1.2), (1.3), KSS-W(1) is convergent of ord€3, p), where the exact
solutionu(x, t) belongs taC? ([0, 2x]) for eacht in [0, T7.
Proof. Analogous to the proof of TheoremMs2 and5.2, except that th€’-norm is used
instead of the 2-norm. 0O

6.4. The two-node caseWe will not prove stability for the 2-node case here. Instead
we will provide numerical evidence of stability and a costnaith another high-order explicit
method. In particular, we use the method KSS-W(2) to solvecarsd-order wave equation
featuring a source term. First, we note thap(f, ¢) andu(x,t) are solutions of the system
of first-order wave equations

e [2] L ] lE) e

with source term$(x, t) andG(z, t), thenu(z, t) also satisfies the second-order wave equa-
tion

0%u 0%u , ou
(6.8) Froie a(x)b(x)@ +a (x)b(x)% +bF, + G,

with the source ternb(x) F,(z,t) + G(x,t). In [14], a time-compact fourth-order finite-
difference scheme is applied to a problem of the fodn7)( with

F(z,t) = (a(z) — o®)sin(z — at),

G(z,t) = a(1 — b(x)) sin(x — at),
a(z) =1+0.1sinz,
b(x) =1,

which has the exact solutions

p(z,t) = —acos(xz — at),

u(z,t) = cos(x — at).
We convert this problem to the forng.@) and solve it with initial data

(6.9) u(x,0) = cosx,

(6.10) ut(x,0) = sinx.

The results of applying both methods to this problem are shiowFigure6.4, for the case
« = 1. Due to the smoothness of the coefficients, the spatial etigetion error in the
Krylov subspace spectral method is dominated by the terhpma, resulting in greater than
sixth-order accuracy in time.

Tables6.1 and 6.2 illustrate the differences in stability between the two hoets. For
the fourth-order finite-difference scheme froiv], the greatest accuracy is achieved for
cmaxAt/ Az close to the CFL limit of 1, where,,.x = max, \/a(x)b(x). However, for
KSS-W(2) this limit can be greatly exceeded and reasonatalgracy can still be achieved.
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Wave equation with source terms

107 Gustafsson/Mossberg, 4th—order |
— — — Krylov, 2-node Gaussian

107*F .
5
o - ~
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10°F S ]
~
> ~N
~
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~
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~N
0.6283 0.3142 0.1581

time step

FIG. 6.1. Estimates of relative error in the approximate solution aftgem €.8), (6.9), (6.10 with periodic
boundary conditions, at = 8w, computed with the time-compact fourth-order finite-déffee scheme fromi]
(solid curve) and a Krylov subspace spectral method (dasheek). In the finite-difference scheme= At/Ax =
0.99, and in the Krylov subspace spectral method, a 2-point Gansguadrature rules are used, ard = 40 grid
points.

TABLE 6.1
Relative error in the solution of5(8) with the time-compact fourth-order finite difference soleefrom [L4],
for various values ofV.

CmaxAt/Az | N | error
10 0.0024
0.99 20 | 0.00014
40 | 0.0000088

7. Homogenization. So far, we have assumed that the leading coefficient of the ope
ator L is constant, to simplify the analysis. We now consider a grsecond-order self-
adjoint positive definite operator

(7.1) L = —Das(x)D + ap(x),
with symbol

L(w,8) = az(2)€ — ay(2)i€ + ao ().

Instead of applying a KSS method directly to the probléni)(with this operator, we use
the fact that KSS methods are most accurate when the coeffici¢ . are nearly constant
(see [L9, Theorem 2.5]) and use similarity transformations to hoemize these coefficients,
effectively preconditioning the problem. In this sectiove discuss these transformations.
We begin with a known transformation that homogenizes thditey coefficientz(z), and
show how it can be used to generalize the stability resudts fihe previous sections. Then,
we introduce a new transformation that can homogeaiZe) whenaz(x) is constant, and
demonstrate that such a transformation can improve theaxcof KSS methods.
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TABLE 6.2
Relative error in the solution 06(8) with KSS-W(2), for various values df= At/Ax.

At/Az | N | error
32 64 | 0.007524012
16 64 | 0.000145199
8 64 | 0.000008292

7.1. Homogenizing the leading coefficientWe first construct @anonical transforma-
tion ® that, while defined on the region of phase spgté@r| x R, arises from a simple
change of variable in physical spages= ¢(x), whereg(x) is a differentiable function and

2m

1
¢'(x) >0, Avg¢’ = o/, ¢'(s)ds = 1.

The transformatio® has the form

Using this simple canonical transformation, we can homizgetie leading coefficient
of L as follows: Choose(x) and construct a canonical transformatidfy, n) by (7.2) so
that the leading term of the transformed symbol

(7.3) L(y,m) = L(z,£) o ®(y,n) = L(¢~ " (1), ¢' (¢~ ())n)

is independent of.

We can conclude by Egorov’s theorem (sé fhat there exists a unitary Fourier integral
operatotl/ such thatifA = U~! LU, then the symbol oft agrees with. modulo lower-order
errors. InfactUf(y) = |Dé*(y)|~'/2f o ' (y). Therefore, using the chain rule and
symbolic calculus (see below), it is a simple matter to caestthis new operatad(y, D).

Applying (7.3) and examining the leading coefficient of the transformedisyl yields

¢'(x) = claz(2)] 12,

where the constant is added to ensure that A¢g = 1. This transformation is used by
Guidotti, et al. in [L2] to obtain approximate high-frequency eigenfunctions afeaond-
order operator.

In the case wherey(z) = 0, 0 is an eigenvalue with corresponding eigenfunction equal
to a constant function. However, because of the fadbar—* ()| ~*/2 in U f(y), the constant
function is not an eigenfunction of the transformed operaltofollows that in the splitting
L = C + V, whereL is the transformed operator ari¢, as in previous sections, is the
constant-coefficient operator obtained by averaging tledficeents of L, thenC' is positive
definite, even thougtl is positive semi-definite. Therefore, the stability residtated in
Theorem4.1and Theoren®.3 can still apply toL.

7.2. Symbolic calculus.For homogenizing lower-order coefficients, we will rely diet
rules ofsymbolic calculuso work with pseudodifferential operators (s&€Jf [17]), or x»dO,
more easily and thus perform similarity transformationsoth operators with much less
computational effort than would be required if we were tolgpgmnsformations that acted
on matrices representing discretizations of these opstato

We will be constructing and applying unitary similarity tisformations of the form

L=U*LU,
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whereU is a Fourier integral operator, and, in some casésl@. In such cases, it is necessary
to be able to compute the adjoint of/@O, as well as the product gfdO.
To that end, given a differential operatdr the symbol of the adjoint* is given by

1ot o
al dx> 0«

(7.4) A(2,8) =)

[e3

Az, €),

while the symbol of the product of two differential operatetB, denoted byAB(z, ¢), is
given by

1 0*A0“B

(7.5) AB(z,¢) = ZJ@@T@

«
These rules are direct consequences of the product ruléffiereshtiation.

7.3. The pseudo-inverse of the differentiation operator.For general)dO, the rules
(7.4), (7.5 do not always apply exactly, but they do yield an approxiomat However, it
will be necessary for us to work withhdO of negative order, so we must identify a class of
negative-orderydO for which these rules do apply.

Let A be anm x n matrix of rankr, and letA = ULV be the singular value decompo-
sition of A, whereU*U = I,,, V'V = I,, and¥ = diagoy,...,0,,0,...,0). Then, the
pseudo-inversésee [LO)) of A is defined as

AT =vytuT,
where then x m diagonal matrix>™ is given by

N -
0y

yt =

0

We can generalize this concept to define the pseudo-invétke differentiation operatob
on the space diw-periodic functions by

DW@:):% i " (iw) ta(w), Z+={ S_l iig ~

w=—00

The rules {.4) and (7.5 can be used for pseudodifferential operators defined ubifg
see [Lg]. This allows us to efficiently construct and apply unitampiarity transformations
based on)dO of the form

U= Z ao(z)[DF]™.
a=0

We now consider such transformations.
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7.4. Lower-order coefficients. It is natural to ask whether it is possible to construct a
unitary transformatio/ that smoothd. globally, i.e. yield the decomposition

U*LU = L(n).

In this section, we will attempt to answer this question. Weksto eliminate lower-order
variable coefficients. The basic idea is to construct a feanmmationU,, such that
1. U, is unitary,
2. The transformatiol. = U7 LU, yields an operatol = Y7 aq(z) (2)°
such thai,, (x) is constant, and
3. The coefficient$s(x) of L, where§ > «, are invariant under the similarity trans-
formationL = U*LU,,.
It turns out that such an operator is not difficult to congtriarst, we note that it is a
skew-symmetric pseudodifferential operator, thee= exp[¢] is a unitary operator, since

U*U = (exp|g])* exp[@] = exp[—¢] exp¢] = I.

We consider an example to illustrate how one can determipeeatorg so thaty = exp[d]
satisfies the second and third conditions given above. @ensi second-order self-adjoint
operator of the form

L = asD? + ap(x).

In an effort to transfornd so that the zeroth-order coefficient is constant, we apystmi-
larity transformation. = U* LU, which yields an operator of the form

L= L+ (Lo~ 6L) + (L6~ 6L)6 — (Lo — oL)] +
S6(6L6) — (BL)6) + -

Since we want the first and second-order coefficients 6 remain unchanged, the pertur-
bationE of L in L = L + E must not have order greater than zero. If we require ¢hzas
negative orderk, then the highest-order term inis L¢ — ¢ L, which has ordet — &, so in
order to affect the zeroth-order coefficientlofve must have be of order—1. By symbolic
calculus, it is easy to determine that the highest-ordefficant of Lo — ¢ L is 2a2b" ()
whereb_; (z) is the leading coefficient af. Therefore, in order to satisfy

ao(r) + 2a2b” | (x) = constant
we must havé’ ; (z) = —(ao(z) — Avg ap)/2a2. In other words, we can choose

1
b_ =-——D"
1(2) Sy (ao()),
where DT is the pseudo-inverse of the differentiation operdfintroduced in sectiof.3
Therefore, for our operatar, we can use

1
= i[b_l(yc)DJr — (b_1(z)D")*] = b_1(z)D" + lower-order terms
Using symbolic calculus, it can be shown that the coeffict#rdrder —1 in L is zero. We
can use similar transformations to make lower-order caeffts constant as well. This will

be explored in21].
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Convergence for various levels of preconditioning (smooth coefficients, Gaussian rule)
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Fic. 7.1. Estimates of relative error in the approximate solutiaqz, ¢t) of (1.1), (1.2), (1.9 atT = 1,
computed using no preconditioning (solid curve), a sinifijatransformation to make the leading coefficient of
Ly = U*LU constant (dashed curve), and a similarity transformatiomtakeL, = Q*U*LU(Q constant-
coefficient modulo terms of negative order. In all cades= 64 grid points are used, with time stepst = 27 for
j=0,...,6.

We conclude this section with a demonstration of the benéfihis homogenization.
Figure 7.1 depicts the temporal error for an operafoof the form (7.1), with smooth co-
efficients. Because the coefficients are already smoothpgemzingas(x) only slightly
improves the accuracy, but homogenizingz) as well yields a much more substantial im-
provement.

8. Discussion. In this concluding section, we consider various genertitina of the
problems and methods considered in this paper.

8.1. Higher space dimension.In [20], it is demonstrated how to compute the recur-
sion coefficientsy; andg; for operators of the fornrbu = —pAu + ¢(z, y)u, and the ex-
pressions are straightforward generalizations of theesgions given in sectioh for the
one-dimensional case. It is therefore reasonable to stiffugsfor operators of this form,
the stability results given here for the one-dimensionakageneralize to higher dimensions.
This will be investigated in the near future. In additionngealization of the similarity trans-
formations of sectiofT is in progress.

8.2. Discontinuous coefficientsFor the stability results reported in this paper, partic-
ularly Theorenb.2, the assumption that the coefficients are bandlimited isiatult can be
weakened to some extent and replaced by an appropriate psarabout the regularity of
the coefficients, but for simplicity that was not pursuedehé&tegardless, these results do not
apply to problems in which the coefficients are particuladygh or discontinuous. Future
work will include the use of KSS methods with other basesiaf tunctions besides trigono-
metric polynomials, such as orthogonal wavelets or multelet bases introduced id]
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8.3. Higher-order schemes.As the number of quadrature nodes per component in-
creases, higher-order derivatives of the coefficients rmekided in the expressions for the
recursion coefficients, and therefore the regularity chowl that must be imposed on the
coefficients are more stringent. However, even with= 1 or K = 2, high-order accuracy
in time can be achieved, so it is not a high priority to purdus direction, except in the case
of KSS-R(2), as the prescribed node significantly improwesieacy for parabolic problems,
as observed inl[9.

8.4. Summary. We have demonstrated that for both parabolic and hyperiatiable-
coefficient PDE, KSS methods compute Fourier componentses$dlution from directional
derivatives of moments, where the directions are obtaingu the solution from previous
time steps. The resulting reformulation of these methodititites analysis of their stability,
and in the case of sufficiently smooth coefficients, uncaowki stability is achieved. There-
fore, KSS methods represent a viable compromise betweetothputational efficiency of
explicit methods and the stability of implicit methods. Wdugh these analytical results apply
to a rather narrow class of differential operators, theylampplied to problems with more
general operators by means of unitary similarity transagioms, which have the effect of
preconditioning the problem in order to achieve greateuismy.
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