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AN APPLICATION OF THE FINITE VOLUME METHOD TO THE
BIO-HEAT-TRANSFER-EQUATION IN PREMATURE INFANTS  *

MARTIN LUDWIG f, JOCHIM KOCH, AND BERND FISCHER
In memory of Gene Golub

Abstract. In this report the development of a finite volume method far time-accurate simulation of the
temperature distribution in a premature infant inside aulator or in an open radiant warmer is described. The
real geometry of a premature infant is obtained from MRTge®m The infants thermoregulation is modelled by
the so-called bio-heat-transfer-equation incorporasiogrce terms and Neumann boundary conditions. The source
terms describe the metabolic heat production, the blooddlusvthe respiratorical water loss whereas the Neumann
boundary conditions model the heat transfer by transepidlewater loss, radiation, convection and conduction. The
numerical solution is carried out by the developed finitaumoé method whose spatial discretization is done by a
3D-mesh-generator from CFD. For the time integration a semlicit multistep method is used. The arising large,
sparse linear systems are efficiently solved with a Kryldsspace method. Some successful test runs using real life
data are presented.
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1. Introduction. In Germany7% of all newborn babies are preterm, corresponding to
about 55,000 of about 800,000 newborn babies per year. Reésoa premature birth may
be diseases of the mother (e.g. high blood pressure, dghmtsudden complications like
infections or shocks. But nevertheless for about half opedimature births no reason can
be found. In order to protect premature infants against-teat water-losses to their sur-
roundings, against infections and hypoxemia, incubatodsopen radiant warmers are widely
used. A description of how these devices work and their hisibdevelopment can be found
in [11], an introduction to the general principles of thermoregjoh of premature infants
in[7].

To better understand the thermoregulation of prematuamisfn a certain micro-climate,
thermoregulatory models and corresponding simulatiotstbave been developed. Using
them it is possible to gain insight into the involved pro@ssand the complexity of the whole
thermoregulatory system. They are systematic tools foetthprmia planning and for the
improvement of warming therapy devices. They allow for ickh studies and for the pre-
diction of physiological phenomena without exposing hurbaings to experiments. In a
clinical setting, a sound simulation of the thermoregolativould allow for a proper tun-
ing of the environmental parameter within the incubatohwiite goal to achieve the optimal
living conditions for the specific newborn.

Hardware simulators (manikins, dummies) are an approaafottel the thermoregula-
tory system. Because it is difficult to manufacture them agatly impossible to adjust them
to new parameters, quantitative models have been of keeresitto scientists and engineers
for a long time. The work of BuBmand][is a milestone of physiological developments. It
contains a synopsis of the physiological basics of thermdation and the development of
a computer model to simulate the dynamic heat transfer pseseof a preterm or newborn
baby in an incubator. The processes of molecular heat ansietabolic heat production
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and heat transfer due to blood flow are modelled as well asebelbsses over the skin by
transepidermal water loss, radiation, and convectiontheamore the control mechanisms
thermogenesis without shivering and vasomotoric contirtthe skin are taken into account.
Nevertheless the disadvantages of the model are obvious.g&bmetry of an infant is re-

placed by a non-realistic compartment model and only homeges temperature profiles can
be computed.

The series of works by Fischer et allL(], Fenner 8] and Wronna 20] has taken first
steps towards a more realistic modeling. The wa# presents the development of a numer-
ical method for the time-accurate computation of the temjpee distribution inside a prema-
ture infant. It is an essential improvement of the model@nésd in B, because it allows for
simulations in realistic 3-dimensional geometries. Femtore the dynamic evolution of the
temperature distributions can be computed. In additioronbt incubator settings, but also
the conditions of an open radiant warmer are modelled. Bssitie boundary conditions are
modified and a new one for conduction is introduced.

The present paper is a brief summary @6]f] Section2 describes the modeling and
computer simulation of the real geometry of a prematureninfigg means of MRT-slices and
the use of a CFD-grid-generator. In secti®dthe mathematical model is outlined. It is an
initial boundary value problem (IBVP) consisting of the thieat-transfer-equation (BHTE)
supplemented by initial and boundary Neumann conditiorfee BHTE describes the tem-
perature distribution inside the preterm baby taking irtocaint the molecular heat transfer,
metabolic heat production, heat transfer due to blood fladwaspiratorical water loss. In or-
der to solve the BHTE numerically, sectidrsurveys the constituent parts of a finite volume
method. First, finite volume methods are a natural choiceflemumerical solution of the
BHTE because they are directly applicable to its integraihifoSecond, the use of unstruc-
tured grids is necessary in order to cope with realistic ggdes. Finite volume methods
are formulated on general control volumes and hence caly basemployed on unstructured
grids, indeed one can even say that they are especiallyraibsigr such grids. In sectidh
numerical test runs using real life data are presented.

2. Modeling the real geometry of a premature infant. Figure2.1is an MRT-image
showing a sagittal intersection of a premature infants bodyng a bulk of such MRT-images
in a commercial image processing tool, which supplies segatien-tools, especially the
Region Growing, a volume image is generated; see FiguteThe subsequent application
of the so-called marching cube algorithm (s&#]] to this volume image yields the baby’s
surface and in addition to that a surface triangulation;FSgare 2.3, The implementation
of a finite volume method on a computer requires the decortippsf the computational
domain into sub-domains of a simple shape, so-called donitomes. A control volumer;
is a subset on which the Gaussian divergence-theorem Hotd=sxample a cube or a prism.
Using the obtained surface triangulation as input dataideggmerator from CFD yields a 3D-
meshD C R? as a model of the infant's body; see Figirg. Here, the interior points were
selected according to the known layer size of the considesetpartments, starting from the
skin, i.e., from the computed surface triangulation. Thepotational mesh includes 5,262
surface-triangles and 101,930 control-volumes.

3. Governing equations. This section contains the essence of a thermoregulatorginod
described in detail by Ludwidlf]. The baby lies on a mattress in an incubator or in an open
radiant warmer. Its body modé) C R? consists of the compartments head, trunk and pe-
riphery (arms and legs). The head is composed of the 4 lakérs fat, bone and kernel
(brain), the trunk and the periphery only of the 3 layers skt and kernel. The regular
boundary of the body model is denoted &yD C OD. Heren : ,D — R? is the outer
unit-normal-vector-field upon this regular boundary. Thiamnts are classified by the basic
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FIG. 2.1. MRT-slice FIG. 2.2.Volume image
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FIG. 2.4. Sagittal and coronal inter-

FIG. 2.3. Surface triangulation section of the 3D-mesh

parameters gestational age, post-natal age and weighteavVler,7’(z,¢) > 0 denotes the
temperature in Kelvin with space variables R? and timet > 0 ([z] = m?, [t] = sec.). The

3 functions), ¢ andp describe the heat conductivity, specific heat and densitlyeoinvolved
tissues. According to Fourier’'s fundamental law of molecuieat transfer the heat flux is

given by
J : DxRY — R, J(z,t) == —\(z) - VT (a,1).

The divergence of the the fieldJ then describes the molecular heat transfer. The diffeaknti

operatorsv anddiv always refer to differentiation in space only. The prodarctierms

QMeNT, x,t), QPY°UT,x,t), Q"W (),
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model the metabolic heat production, the heat transferalbibd flow and the heat loss due
to respiratorical water loss. Because a detailed derivatiould be far beyond the scope of
this report, the reader is referred tg]. The terms

M™WA(T, z,t), M"(T,z,t), M®(T,z,t), M“T,x,t),

model the heat fluxes over the skin by transepidermal wagsy; iadiation, convection and
conduction, respectively. Settingz) := p(x)c(x), the temperature distributiofi : R? x
R, — R satisfies the bio-heat-transfer-equation

H(m)%—f(a:,t) = div(—J)(z,t) + QM (z,t) + QB (x, 1) + QFW (z),

(1) (z,t) € D x R%

(see [L7, 1]), which is supplemented by the initial and boundary cdodi

(3.2) T(x,0) =Ty(z), x€ D,
< J(x,t),n(z) > = M"Y (,t) + M (2,) + M (2,) + M*(a, 1),

(3.3)
(x,t) € 0,D x R,

HereT, : D — R is an initial temperature distribution iP. Exact solutions of3.1) can
only be found in very few cases. Therefore a numerical treatis often necessary.

4. Finite volume approximation. Since finite volume methods are especially designed
for equations incorporating divergence terms, they areca ghoice for the numerical treat-
ment of the bio-heat-transfer-equatiéhl). Their basic idea is to eliminate the divergence-
terms by applying the Gaussian divergence theorem. As dt tbguorder of derivatives
is reduced by one. Furthermore they allow for complex gedegeand unstructured grids,
which is another reason to use them f8rlj.

In this section the development of a finite volume method $t)( (3.2) and @.3) is
concisely presented. It consists of a spatial and a timeetigation. The former requires a
suitable transformation of the given initial boundary \&problem. Subsequently an evolu-
tion equation for mean temperatures on the control-volumeas derived. The application
of the method of lines (MOL) then yields a high-dimensionatem of ordinary differential
equations (ODE-system). The subsequent time integragidome by the SBDF(3)-method,
which belongs to the class of semi-implicit multistep meth@dl MEX-methods). The aris-
ing large, sparse linear systems are efficiently solved byBiCGStab method with an ILU
preconditioning.

For an introductory analysis of the finite volume technicuereader is referred t@]|

4.1. Spatial discretization. Setting

Q(x,t) := QMet (. t) + QB4 (x, 1) + Q"W (), (x,t) € D x R*

o(x,t) == MW (2,t) + M"(x,t) + M (x,t) + M (x,t), (x,t) € D x RY,
the given IBVP reads

m(x)%—f(w,t} = div(—J)(z,t) + Q(z,1), (z,t) € D x R*,

T(xz,0) =Typ(z), z €D,
< J(z,t),n(x) > =p(x,t), (x,t)€ 0D xRL.
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In order to apply the finite volume technique, the IBVP has ¢ottansformed into pure
divergence form. This means that the time derivative as agelhe divergence term must not
be multiplied by any function of the space variableConsequently, division by(x) is not
allowed. Defining the transformed temperature

u:R¥*xRy —» R, u(xz,t) == k()T (z,t),

and the transformed heat flux field

A(z) AMz)u(z,t)
CR3 W RF L R3 .: _
v: R xR} — R, v(x,t) : l{(w)Vu(x,t) () Vk(z),
the BHTE is equivalent to
ou ) *
(4.1) E(aj, t) = divv(x,t) + Q(x,t), (z,t) € D xR}

(see B, [20)). Settinguo(z) := x(x)Ty(z), € D, the transformation of the initial condi-
tion yields

4.2) u(z,0) =wup(x), x €D,
whereas the transformed Neumann boundary condition reads
(4.3) <ov(z,t),n(x) >= —p(x,t), (x,t)€drD xRL.

Equations 4.1), (4.2) and @.3) constitute an IBVP for the transformed temperature
DEFINITION 4.1. Given a non-empty control volunae C D, the (spatial) cell average
of u is defined by

1
u;(t) == m/ u(z,t)dr, teRYL,

where|o;| denotes the volume of.
Leto; C D be a non-empty control volume. The evolution in time of thecagated cell
average is described by

E(t) o 8t( t)dx = U—z</ div v ( :rtda‘—|—/ Q:rtda“) t e RY

Using the Gaussian divergence theorem yields the evolutjoequation

dul 1 «

Heren’ : 0,.0; — R denotes the outer unit-normal-vector-field upon the regutaindary
of the cells;. A finite volume method is a discretization of all evolutiopaquations given
by (4.4).

Given two control volumes; C D ando; C D, their common boundary in the interior
of D is denoted byf;;. Given a control-volumer; C D situated at the boundary @, a
triangle of the surface triangulation being part of the ltamy do; is denoted byﬂj. For
a control volumer;, N (i) is defined as the number of boundary parts in the interiab of

(4.4)
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Accordingly, N (i) is defined as the number of boundary parts on the surface dfdtig
which therefore are triangles. The functions

NG)
£IPL(p) ;:Z/ <o(a,t),ni(z) > dS(z), teRY, ic{l,...,N},
=1/ fis

N(i)
LRFL() = 2/7 < oz, t),ni(z) > dS(z), tERL, ie{l,...,N},
Jj=1 ij

LE(t) ::/ Oz, t)dz, teR%L, ie{l,...,N},

describe the heat fluxes over the interior boundary partstleedurface triangles, and the
energy production by the source terms, respectively, wheig the total number of control
volumes. Now the evolutionary equation of the cell averagkss the form

dui 1
t
)

(4.5) (,c{FL(t) + LRPL@) 4 c?(t)) . teR:, ie{l,... N}

|
The modelled processes molecular heat transfer, boundaditons (transepidermal water
loss, radiation, convection, conduction) and source temetabolic heat production, heat
transfer due to blood flow, heat loss due to respiratoricéémlass) are reflected very clearly
by this equation. They determine the evolution in time of ¢b# average. Equatiort(5)
constitutes an ODE system whose dimension is the total nuaflm®ntrol volumes.

Next, the functionsC!¥Z, LEFL and £ have to be approximated by quadrature for-
mulas. Since this is far beyond the scope of this text, it isttech here and the reader is
referred to |6 again. We dertermine approximating functioh§ ~, LEFZ and LY, and the
discretized evolutionary equation reads
)

(4.6) (L,{FL(t) + LRFL(py 4 L?(t)) . teR", ie{l,...,N}.

= ol

4.2. Time discretization. The approximating functions in4(6) can be separated in
affine-linear and non-linear parts (sé#]). Let

uy ()
u(t) == eRY, teR%,
un(t)

be a vector containing all cell averages. With a veddre R, a real numberl; and a
function L; describing the non-linear parts, one can write

dui - 1

@n S

(D"Tu(t) +d; + Li(t)) , tERY, i€{l,....N}.

ol

Since the temDiTu(t) + d; originates from diffusion processes, the systén)(is likely

to be stiff. Since the time integration of such systems iy fficult, stable schemes have
to be applied; seé5[ 12]. The implicit BDF schemes are the best choice, becausediiamy
for relatively large time steps. Consequently, moderatapgdation times can be expected.
However, in each time step a system of equations has to bedsdlw this work the implicit
BDF(3) scheme is used as a basic scheme for time-integrateira fully implicit treatment
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of the functionZ; would result in memory requirements which cannot be satisfigeneral;
cf. [16]. Therefore, an extrapolation procedure is applied towhich leads to the SBDF(3)
scheme (semi-implicit BDF scheme; s&§ [ With the discretized time base

O=ty<ti <ta<..., tp:=nAt, necN, AteRl,

the approximating cell average vectors

ud up(zh) uf uq (ty,)

S
o
Il
Il
Qﬂ
|
Q
|
£
S
2
S
m
Z
L

uy ug(zN)

and the update vector

n n+1 n
Auf uf " =l
Ay = : = : =u" T —y", neN,

n n+1 n
Auf; Uy —uR

the SBDF(3) scheme applied t#.7) reads fom > 0 andi € {1,..., N},

11 . 3 1
F“Z"LJ’_S — 3ult? 4 §u?+1 — guf‘
1 ; 3 3 1
- At{ (DZTu"+3 + di) + =Lt - =Lt — L.
|oi] |oi| |oi] |0
Setting
n At n+2 n+1 n .
= [di + 3L} = 3L + L] €eR, n>0, i€{l,...,N},
0;
a straightforward calculation with > 0, i € {1,..., N} shows that
11, At )\
—e' — D) Aut?
6 |oil

(4.8)

7, At N\ 3. 1,
= (661 + |Ui|DZ> "t — §elTu"+1 + gelTu" + 7

Equation 4.8) yields a sparse linear system of dimensiérx N. It is solved for the update
Au™t2 n >0, in the(n + 3)rd time step. Starting values are computed with a semi-itpli
one-step method.

We remark that in order to achieve an appropriate resolufdhe computational do-
main D, the total number of cells is chosen very largé £ 101930, cf. sectior?). Therefore
the linear systems4(8) obtained are too large to be solved by a direct method. Antbag
most well-known iterative solvers being applicable to a-sgmmetric system are the Krylov
subspace methods. Here, we applied successfully the Balxadsethod developed by van
der Vorst [L9). For preconditioning an incomplete LU factorization (ILi$ applied. It is
worthwhile noting that the matrix of the syster &) is constant. Thus its entries have to be
calculated only once at the beginning of the whole compantiafr he same holds for the ILU
preconditioning.
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TABLE 5.1
Material properties in[ -], [kgLK}, [£4].
| A ] e |

p
skin | 0.35| 3770.0| 1030.0
fat 0.21 | 2500.0| 1030.0
bone | 0.40| 2170.0| 1030.0
kernel | 0.51 | 3770.0| 1030.0

TABLE 5.2
Boundary condition sets.

| Tair | vH | Tewr | Turr | Surr | FL | kmat | Tmat
RBD1 | 309.25K | 77.0 | 293.15K | 297.6K | 0.00% 5.0 0.05% 309.25 K
RBD2 | 293.15K | 50.0 | 293.15K | 293.15K | 140.0-%% | 30.0<™ | 14.0%— | 312.15K

5. Numerical results. This section presents the results of numerical tests. Thexe w
carried out by the developed finite volume method for an infdrose weight, gestational age,
and post-natal age was 1,240 kg, 32 weeks, and 3 days, regbecthe layer thicknesses
of the involved tissues were estimated by statistical meefing4]. Their values are 0.001
m for skin and fat and 0.005 m for bone. The heat conductsjispecific heats and specific
weights of the involved tissues are listed in Tablé see B, 18]. Note that skin, fat, bone,
and kernel are from a clinical point of view the relevant paotbe considered.

The boundary condition sets listed in Tallle€ were used for the numerical test runs.
The set values determine the heat fluxes over the infants(ski section3). The set RBD1
describes the standard case, i.e., the incubator standsoonawith a given temperature
Tsurround @nd the air velocityF'L inside the incubator is pre-set. The infant lies on an
insulating mattress with known heat-transfer-coefficignt;. The air temperaturgy;, and
the relative humidity- H of the incubator have been calculated with the optimizatioh[13].
The temperature of the mattress is chosen equal to the guetature,7;,,; = Ty;-. The
radiation temperaturéy, rr of the incubator is given by its interior wall temperatutg, g1
denotes the power supply of a radiant heater and is set tpaaree no radiant heater is taken
into account in the incubator case.

The boundary condition set RBD2 describes the case of the cguiant warmer. It
stands in a room with a given temperattg,..ouna = Tuir @and the air velocityF’ L inside
this room is known. The room is air conditioned with a relatvumidity of 50%. The
radiation temperatur@y,; gy is given by the wall temperature which is identical with the
air temperature, i.eTyrr = Towir = Tsurround- The radiative power suppl§ ;g was
estimated with the simulation tool4]. The infant lies upon a heated mattress with known
heat transfer coefficientt,,,; and temperatur@;,,;.

Three representative of altogether six numerical test anapresented here. Their main
features are listed in Tabte3. The test cases TEST1a and TEST1b refer to the incubatar case
whereas TEST2 describes the infant in the open radiant wafrhe only difference between
TEST1la and TEST1b is the activity of the source terms. Inra@eetter demonstrate their
effects, TEST1a is treated with heat production and wittbod flow, whereas TEST1b is
treated with both of them.

Remarks concerning the test runs:

1. TEST1a starts with a constant initial temperature distion of 7; (z) = 310.15K
= 37°C (cf. (3.2). TEST1b starts with the temperature distribution of TE& Bfter 60
minutes. TEST2 starts with the temperature distributioa t#st case not presented here.
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TABLE 5.3
Test cases.
B.c. Heat- | Blood- Resp.
set to tE At | nuaee | prod. | flow | water losses
TESTla| RBD1 | 0.0s| 3600s| 0.1s| 36000| on off off
TEST1b| RBD1 | 0.0s| 3600s| 0.1s| 36000| on on off
TEST2 | RBD2 | 0.0s| 2700s| 0.1s| 27000| on on on

t = 0 min. t =12 min.

t = 24 min. t = 36 min.

ao

t = 48 min. t = 60 min.

FiG. 5.1. TEST1a.

2. For each test run the maximum time step size for a stabdgration was deter-
mined by numerical experiments. Thereafter, we tried evear fiteps. The obtained heat
distributions were visually indistinguishable from theplayed ones. For the retransformed
temperature vectors

uy u'y T
" = L eRN, n>o0,
K(z?) r(z™)

the update vectors

Auy Aul;
k() K(xN

T
AT”;:T"H—T”:( )> eRY, n>0,

were computed. A typical convergence plot is depicted iruféd.5. The convergence
criterion ||AT™||. < 5 - 107K was chosen andz denotes the corresponding stopping

13-

time. The total number of time steps is giveniby,, = 25 = &,



ETNA
Kent State University
etna@mcs.kent.edu

TEMPERATURE SIMULATION OF PREMATURE INFANTS 145

305.72 307.475 309.23 310.985 312.74

FIG. 5.2. Scale of temperature ifi].

Ay,
lVV AV,
ANV,
N '%‘\&?A

FiG. 5.3.TEST1a at = 60 min.

3. The stopping criterion for the residual of the incorpedalinear solver BiCGStab
with ILU preconditioning was set to = 10710,

4. All test runs were carried through on an AMD Athlon XP2708ith 1 GB RAM.
Table 5.4 contains computing times and the number of required timpsste satisfy the
convergence criterion.

TABLE 5.4
Computing times and time steps.

| Computing time| Time steps
TESTla 2h 28 min 3.5 x 10*
TEST1b 2h 31 min 3.6 x 10*
TEST2 1h 54 min 2.7 x 10*

Remarks concerning the temperature distributiofRggures5.1, 5.3 5.4, 5.6, and5.7
visualize the obtained temperature distributions. The @volution in a sagittal intersection
as well as the temperature distributions on the surfacetaners

1. TEST1a (Figure5.1and5.3) is a test case for the heat production. Corresponding
to the distribution of heat production inside the body, thabgl temperature maximum is
settled in the brain region whereas a local temperaturemaniis built up in the kernel of
the trunk. These two concentrations of heat energy are isnpesed by the cooling effect of
the air and by the insulating effect of the mattress. Thefee®sfalso can be observed in the
surface temperature distributions in Figr& The lowest temperatures occur on the top side
of the infant. This is due to the cooling effect of the air adlae to the low heat production
in the periphery. The highest temperatures occur at the bigekof the infant. Again the
global temperature maximum in the brain is prominent.
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t = 0 min.

t = 6 min. t =9 min.

t =12 min. t = 60 min.
FiG. 5.4. TEST1b.

107

AT

I . . \ . . .
0 0.5 1 15 2 25 3 35 4
x10

FIG. 5.5. Convergence history: Number of time steps|\MAT™ ||~ for TEST1a.

2. TEST1b (Figur&.4) is a test case for the blood flow source term. The sagittals/ie
in Figure5.4 show off the distributing effect of the blood flow. Each temgiare maximum
is successively decreased and the heat energy is unifolistljbdted over the whole body.
The boundary layers with contact to the air are warmed fottithe being { < 12 min.).
However, the heat production and the distributing blood ft@wnot maintain this state. The
heat losses to the surrounding air are too large and cool ttmvpoundary layers again. As a
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t = 0 min. t = 5 min.
o
|w . y
- 4
t = 10 min. t = 15 min.

t = 30 min. t = 45 min.

FIG. 5.6. TEST2.

result, steep temperature gradients can be observed itethgysstate solutiont = 60 min.;
see also Figuré.5).

3. InTEST2 (Figure$.6and5.7) a heated mattress is used. As expected the boundary
layers with contact to the air as well as those with contattéomattress are warmed during
the first ten minutes. Subsequently the whole body is unifprmarmed and a temperature
maximum is built up in the brain, which extends through thekbaf the head to the heated
mattress. The plots in FiguEe7 show the surface temperature distributions of the steady st
solution aftert = 45 min.. The simultaneous effects of the radiant warmer anchéated
mattress are evident. The corresponding sagittal- andnabiatersections in Figuré.7
show off the maximum in the head as well as the warming of thelevhody including the
periphery.

These results show that the model and the developed metbely gield the expected
temperature distributions. Especially the effects of thierse terms and the boundary con-
ditions are modeled correctly. Thus, the method is suitédl¢he solution of the bio-heat-
transfer-equation and can be used to analyze the thermateguphenomena of premature
infants. The required computing time is moderate.

6. Conclusions. The development of a finite volume method for the simulatibiem-
perature distributions in premature infants has been ptedeThe method is an improvement
of previous ones since it can be applied to complex realigametries. The use of a semi-
implicit BDF-method guarantees a stable and accurate ititegration. The arising large,
sparse linear systems have been solved efficiently with il&Btab algorithm with ILU
preconditioning. The numerical test runs show that reeligtsults which can be achieved
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moderate computation times. Thus, the developed ndeitha proper tool to analyze

systematically the thermoregulation of premature infants
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