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QUANTUM DYNAMICAL ENTROPY AND AN ALGORITHM BY GENE GOLUB  *

GIORGIO MANTICAT
In memory of Gene Golub

Abstract. The problem of computing the quantum dynamical entropythiced by Alicki and Fannes requires
the trace of the operator functiafi(2) = —Qlog 2, where{2 is a non-negative, Hermitean operator. Physical
significance demands that this operator be a matrix of lardero We study its properties and we derive efficient
algorithms to solve this problem, also implementable oralElrmachines with distributed memory. We rely on a
Lanczos technique for large matrix computations develdpe@ene Golub.
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1. Introduction. Fundamental in the theory of classical non-linear dynansitise so-
called Kolmogorov-Sinai (K-S.) entropy, a quantity thatyem positive, implies chaogl]f
One can safely say that it is the single most important piddaformation that one can
get on a dynamical system, and surely it is the single most@rmag word in all dynamics.
Various techniques for its computation exists, and its tmkyapunov exponents via Pesin’s
formula [13] makes it an effective tool. In quantum mechanics, on theritland, a plurality
of quantities can rightly claim to correspond to K-S. enydjoer they tend to this latter in
the classical limit. None of these, though, is simply comapig¢, nor a quantum analogue
of Pesin’s relation exists at the present moment. Theseuifes stem ultimately from the
basic fact that trajectories are not defined for quantunesyst In this paper, | study a version
of “quantum entropy” due to Alicki and Fannef] fthat is based on the notion ebherent
histories It requires the computation of a complex Hermitean, langa—negative full matrix
Q2 and of the trace of the matrix function(2log(£2). | develop computational schemes that
render viable the numerical analysis of this quantity fateyns of physical interest. In this
endeavor, | rely on an algorithm developed by Bai, Fahey aoldil&5[5] to deal with large
scale matrix computation problems.

The plan of this paper is the following: in the next sectionttéduce the matrix under
investigation, with a few words on its quantum mechanica@inithat also help to understand
the breadth and scope of its algorithmic requirements. &wsadith deeper interests in dy-
namics will find reference to the original literature, whilemerical analysts desiring to grasp
the essence of the computational problem may just focuseiirtbar algebra nature of the
equations.

In section3 | study 2 and its symmetries. Then, in sectiénl derive a recursion relation
for computing(2 at increasing values of an integer “tim&Z. This has been originally devel-
oped in B]. A deeper analysis of its properties, performed in secligrermits us to set up a
parallel algorithm for the computation 6f at different values of\/. In sectiong, this idea is
implemented in two algorithms for the computation of the nmatrector product2¥. The
first algorithm runs conveniently on parallel machines vdistributed memory, the second
minimizes the memory storage requirements to achieve tgedtpossible matrix size given
the finite memory space available on any single computers& hfgorithms are instrumental
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in setting up a Lanczos-Montecarlo technique for the comtpuri of the trace of—<2 log §2)
due to Golub, as discussed in sectibrNumerical results are presented in secticamd an
improvement of Golub’s confidence interval estimation isgemnted in sectiof. Finally, a
Lanczos-Montecarlo technique for the direct calculatibthe Jacobi matrix associated with
the spectral measure €f is introduced and tested in secti@f. The need for a numerical
treatment of A-F entropy arises particularly in the field aagtum chaos and decoherence:
the Conclusions briefly mention this problem and summatizentork.

2. Quantum dynamical entropy. Quantum evolution takes place in the Hilbert space
‘H associated with a physical systef]. While in most circumstances this space is infinite
dimensional, we shall assume a finite dimensional reduaticdimensionV, without dealing
here with the reduction problem. Therefore, we shalllet},—o ... n—1 be the canonical
basis ofH = C" and(-, -)» be the usual scalar product in this space. Quantum evolirtion
'H is effected stroboscopically by a unitary operdtorthe “wave-vector® € H specifying
the state of the system at timés mapped intd/¢, the state at time+ 1.

Although no specification of the nature@fother than it can be numerically computed is
necessary here and although we shall present quite gefgattans, for sake of illustration
we shall use in this paper two paradigmatic examples. Theditse operatot/ with matrix
elements

1 o )
21 U, = e—(ﬂ’Ll /N)€27mkl/N’
(2.1 o=

that corresponds to free classical motion on the one-dimeaktorusS; = R/Z, a stable,
completely integrable system.

The second example is the so-calégthntum catinitary evolution operatdy“** = KU,
whereU has been defined in eR.() and K is the operator with matrix elements

1 . 2
(2-2) Ky = \/—Neml /N5k,l7

wheredy ; is the Kronecker delta. The operatdf® is the quantum mechanical version of
the renownArnol'd cat mapof classical mechanicgl], a chaotic systems with positive K-S.
entropy. For a derivation of this operator, its physicatvahce and mostly the relations with
FFT; seeT].

Clearly, given an initial state), quantum evolution yields the components(j) :=
(en, UJep)4 at any future (or past) timg € Z. According to standard usage, the probability
that the quantum system is found in statat time j is given by the square modulus of
¥n (7). As in classical dynamics, “coarse graining” measuremanthe effected, when the
state vector) is not analyzed in all its components, but only in groups efith Formally, if
{Py}k=o,...,r is a family of projection operators, so that= ), P, we can also “measure”
the projection ofy on the range oF, that is, compute the scalar produi¢t, Pyt))s.

To make things easier, without renouncing anything esaleriti this paper we shall
consider two orthogonal projectiori% and P, on half of the Hilbert space each, like in a
head/tail experiment: tak& = 2p and let

(14+k)p—1
(2.3) Po= Y enel, k=01

n=kp

Given these premises, a “quantum history” of a vectas the result of effecting the unitary
guantum evolutiorV preceded at each time by projection on either the head oathleatf



ETNA

Kent State University
etna@mcs.kent.edu

192 G. MANTICA

of the Hilbert space: readers familiar with the double-ekperiment might think of the
motion of a particle hitting at integer times a sequence oéests with two slits. According
to common usage in symbolic dynamics, Greek letters deregaesnce of symbols, like
o = (00,01,...,0m—1). These latter are vectors of lengili, and are also called “words”
in symbolic dynamics. Greek letter with subscripts, likg are therefore the components
of these vectors, i.e. symbols in the alphabet (in our chaitber zero or one). With this
notation, the quantum history of the vectois

(2.4) Yo = (UPy ) (UPs ).
For convenience of notation we shall put
(2.5) U%:=UP,;, j=0,....M—1.

The “amplitude”(v,, ¥, ) should be compared with the measure of the classical phase sp
with symbolic dynamics given by the “word?. In both classical and quantum dynamics
these probabilities add up to ong;_(¢,,%,) = 1. In quantum mechanics, though, interfer-
ence reigns and the produ¢ts, , v,/ ) are non-null also whea # o’.

Complexity of the motion is quantified in classical dynanbgsertain summations over
non-null amplitudes of sequencesof course averaged with respect to the initial conditions.
In the Alicki-Fannes (A-F) quantum formulatio]][ entropy is derived by the spectrum of
the decoherence matri® with entriesD,, -, defined by

1 ’ ’
(26) DUJ/ = NTT(UUM*J - UUOTUUO . UUI\/I—l)’
where the dagger indicates the adjoint and cle&ifly= U, P/ = P,. Observe thaD is a
2M x 2M square matrix, Hermitian, of unit-trace and non-negaseethat the quantum A-F
entropy associated with the unitary evolutibnand the family of projectiong P, } can be
defined as

(2.7) S(U,{P}) = Tr(~Dlog D).

Entropy is therefore the trace of the function of a matrix edentries are themselves ob-
tained by traces of product of operators o¥€r In addition, notice that in dynamics one is
interested in the large—time behavior (here, la¥fje it is then clear that computation Sfvia
egs. R.6),(2.7) is a formidable task, of exponentially increasing compatel complexity.
Yet, the structure revealed by e@.®) permits a reduction of size independent\éf

In fact, observe that the right hand side @f6) can be seen as a scalar product, in
the space of square matrices of sixe between the vectorg” := U% ...U%%-1 and
Ve :=U% ..U v-1, Then, the non-null eigenvalues in the spectrunbafoincide, with
their multiplicities, with those of the operat@racting ink as:

]' o o
(2.8) 0= N;V V7, )%,

where the scalar product is taken in the new space of matticesull detail will be provided
in the next section. Observe here tffahas dimensionalityv2: therefore Q2 has maximal
rank smaller than that d wheneverd! > 2log, N, a condition that is easily realized. On
the other hand, notice that a major physical problem requie analysis of the “classical
limit” of quantum mechanics, that in turn requir&salso to be largeq]. We are really facing
a challenging problem.
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In this paper we study computational techniques to evathaté\-F entropy
(2.9) S(U,{P}) =Tr(—Qlog Q).

In the next section we define precisely the metri€iand we study? and its symmetries.

3. The matrix Q. In this section, we explore the symmetries of the maftixRecall
first that(2 acts in/C, the space of complex square matrices of $izeC is endowed with the
scalar product

(3.0) (V, W)k := Tr(VIW).
QactsinkC as

1 ag o

(3.2) QW:N;V (Vo W)k, WeK,
where the summation ranges over all binary sequences othiedgo; € {0,1}, for j =
0,...,M — 1. In this equation we have set
(3.3) V=01 U= (U, ). (UPy).
U is any unitary operator oveE” (the dynamics) and the projection operat&si = 0, 1,
have been defined in e2.9).

An orthonormal basis fok can be constructed as
(34) Eij = 61'6}—'7 ’L,j: 1,...,N.

Let us compute the matrix elementsoin this basis:
1 g o
(B:5) Qo krke = (Ejy o LBy o) = NZ(EJMwV (V7 By s )
=N ZTr 32V TV B ).

Traces are then explicitly written as:

(3.6) Tr(E] Vo)=Y (eie;)nle;, Ve = (e, Ve, )n.
of o o *
Tr(V? Bk k) = (ekZa 14 Tekl)H = (eklaV ekQ)Hv

where scalar products il appear and where the asterisk denotes complex conjugation.
Therefore, the matrix elements BF are featured in the final formula fér, that reads:

1 o
B.7) Qo ki ks = NZ(%,V ej2) (ey> V7er, )4 = N Z J1d2 (Vidk,)"

Take now into account the product form of the operdt@r, eq. @.3) and notice that
Ve,, is null unlesse; belongs to the range af, , that is,j» € I, , the set of indices
corresponding to they-th half of Hilbert space:

(3.8) I, = [oop, (o0 + 1)p — 1].
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For the same reasoh; must belong to the same set, and therefore the m@tiscthe direct
sum of two square matrices of maximal rgnk= N/2, half of the original. We can therefore
consider only one of these at a time, when computing the AtFopy, eq. 2.9, that is
additive over the two subspaces. To fix the notation, in thieviing we shall let implicitly
oo = 0, andjs, ko € I, the other case being trivially obtained. Also, with abuseatation,
but without danger of confusion, from now d& will denote the space spanned By ;,
i1=0,....,N—1andj =0,...,p— 1(recall thatN = 2p).

Finally, inspection of eq.3.7) also reveals the symmetry

(39) Qj17127k17k2 = Qzl,kg,jl,jzv
so that(2 is a Hermitian operator ifC.

4. Time dependence of). We have noticed at the end of sectidthat the dimension
of I does not depend oi/, the “time”, that is, the length of the symbolic wosd Yet, 2
obviously does, so that from now on we will indicate this degence explicitly as a super-
script: QM will be the Q) matrix at “time” M. Now, summation over all words of lengftf
in eq. B.7) might lead us to believe that we are still facing an expoia#iptgrowing compu-
tational cost. For these reasons, it is important to exaimidetail the “time” dependence of
the problem.

Not to overburden the notation, since the scalar produdisi®@&ection will all be in the
spaceH, we are allowed to drop the relative subscript. Let us starhfthe computation of

V... The vector/words can be written aso’, o, ), wheres’ is now a vector of length

M — 1. Accordingly,V? = UF,, 1V"/. Inserting an identity into the definition of7
we get

(42) (e, V7ep) =D (e, UPs,, )¢5,V ZUEZ Vi

J3

A quite similar equation holds fdie,, ,V7¢,, ). Using these facts in eq3(7) we get

I 1 On—1 o o’ \x
QJ17J2 ki,ko = N Z Z U7173 Uk1k3 ) VJSJz (Vkakz)
0’50\ 1 J35k3
I M 1 f’M 1\ xM—1
(4'2) Z Z Ujlj's k’lk’i ) Qj:s=j2,k3,k2'

Onpo1 j3,k3

Summations in this equation range frdno N for the indicesj; andks, and on0 and1 for

the variablesr;. In intuitive terms, one can explain this formula in the weod a knowledge-

able reviewer: the left-hand side is the overlap betweerntvald-lines” (or trajectories) of

time-extentM, whose end-points arg:, j») and(ky, k2). It can be expressed as a sum over

all possible ancestors at ting@/ — 1), each with their respective overlap and time-evolution.
Equation §.2) is the basis of a recursive technique initialized by lettitd¥ = 1 in

eg. B.7),

1 o) 0'() *
(4.3) Q47’17j27k1,’f2 - z: V]mz k1k2 :

ao_o 1

When implemented directhyg], this technique requires a storage of the ordeNdf'4 com-
plex quantities, while the computation of the A-F entropy

(4.4) S(U,{Px}, M) = Tr(—QMlog QM)
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calls for the diagonalization of a square matrix of si¥é/2. Needless to say, it becomes
soon impossible to meet these requirementsvagrows. It is the purpose of the present
paper to show how they can be significantly eased. In the etios we analyze the nature

of the recurrence, in order to tackle the memaory requirerfiesit We then face the entropy

computation problem.

5. Partitioning the Q™ matrix. It is now fundamental to examine in closer detail the
nature of the recurrence in eg¢.®). First of all, although somehow evocative, it does
mean thaf2™ is the M-th power ofQ2!, seen as an operator ovér Nonetheless, eq4(2)
implies a remarkable property. In fact, observe that thees), andk, appear unchanged at
l.h.s. and r.h.s. Therefore, we defiié! (j,, k2) as the square matrix of sizé, with indices
j1, k1 and entrieﬂ%mkm. What we have just observed can be formalized by saying that:

LEMMA 5.1 (Sectorization)The sector matri2 (j,, k2) can be computed recursively
according to eqs.4.2),(4.3).

This lemma is of paramount importance in the numerical imTglistation:

LEMMA 5.2 (Storage and Computational Complexity).

i) The sector matrix2™ (o, ko) can be computed withA/ N* floating point opera-
tions (f.p.0’s). Its computation requires a storageddf? complex entries (c.e’s).

ii) The full matrixQ* can be computed withM (N¢/4 + N°/2) f.p.0’s and stored in
an array of N*/8 + N° /4 c.e’s. It can be computed sector by sector with a storage
of 3N?2 complex entries (c.e’s).

Proof. Matrix iteration @.2) requiresé N2 f.p.o’s for each entry o2 (jy, ks), so that
the full (jo, ko) sector can be computed withV* f.p.o’s. Although there arg? = N2/4
different sectors if2, the symmetry property, eq3.9), implies that onlyp(p + 1)/2 =
N?/8+N/4 of them are fully independent and can be obtained chogsingk-. (Additional
redundancy in the diagonal sectors, that is, those ywith k5 exists but will not be exploited,
because it only provides sub-leading improvements in bathpeitation time and storage size
parameters).

The two matriced’“ can be conjunctly stored in a squaveby N matrix with complex
entries. In fact, we have seen thafe,, is null unlessj, € I, . In addition, the matrix
iteration @.2) requires only two memory arrays of Si2&. 0

REMARK 5.3. Notice that the previous lemmas unveil the possibiityparting the
computation of2* over parallel machines with distributed memory.

6. Computing the matrix-vector product QMWW . Of particular relevance for the Lanc-
zos technigue that we shall outline in sectida the computation of the matrix-vector product
QMW , wherel is a vector inkC. When not necessary, in this section we shall drop the index
M. The heart of our technique is an application of Lenfia

Algorithm 1 : Computation of thj, k2 ) sector of the produdt’ = QWV.

e forj; =1,...,N
— compute the sector produldt ;, (ja, k2) = >, Q3 . (J2, k2) Wi, &,
— accumulate into the result vectdr: W, ;, — W, j, + W, (ja, k2)
e end
Algorithm 1 requires a storage of? c.e’s foriW andW, andN? c.e’s for the sector of the
matrix Q. Computational complexity i8N? f.p.o’s.
Algorithm 2 : Computation of the matrix-vector produdt = QIV.
e forjo=1,...,N/2andky =1,...,N/2, jo < ko
— execute Algorithm 1 and the conjugate Algorithm 1’ stemmfirmgn the sym-
metry property 8.9)

— accumulate the results into the vect®r;, ;,
e end
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It is readily seen that if we want to use Algorithm 2 (a serjgplécation of Algorithm 1)
for the computation of the full matrix-vector proddetV’, the computational complexity is of
N*/2 + N3 f.p.o’s. In addition, we need to store thé? /8 4+ N /4 independent sectors 6,
action that requires a full storage 8t /8 + N3 /4 c.e’s: this is a serious memory limitation
that may limit significantly the Hilbert dimensiaN that can be numerically simulated. We
have devised two procedures to overcome this limitation.

Algorithm 3: Computation of the matrix-vector produldf = Q¥ on parallel comput-
ers with distributed memory an#l processors, ..., 7p.

1. order the set of label§js, ko) with jo > ko, and distribute them among the
processors as equally as possible
2. transmit the input vectdi to all processors
3. in each processat;
e for each pail(jz, k2) assigned to processor
— execute Algorithm 1 and the conjugate Algorithm 1’ stemmiirggn the
symmetry property3.9

— accumulate the results into the vecWri-
e end .
4. accumulate the vectol¥ .

J1,J2
result vectoV;, ;,.

Memory requirement of Algorithm 3 i&/* /8P + N3 /4P +bN? c.e’s on each processor
and computational complexity i&/*/2 + N? f.p.o’s, that can be executed in a real time
proportional to(N*/2 + N3)/P seconds. We assume that the sector§2&f had been
previously computed and stored in each processor. Notateptiocessors communication—
usually, a time-demanding operation—is limited to steps@ 4 and consists of the total
transmission ofV2 c.e’s. This is also the sole significant transmission alserw¢omputing
the matrixQ2: Lemmab5.1is actually the statement of a parallelization property.

On the other hand, with or without parallel computers, onedrastically diminish the
memory requirement, at the expense of increasing compattatne:

Algorithm 4: Computation of the matrix-vector produtt = QMW with minimal
storage requirement.

e for each labe(j, ko) with jo > ko
— compute the sector matrix™ (j,, ks)
— execute Algorithm 1 and the conjugate Algorithm 1’ stemmfirogn the sym-
metry property 8.9
— accumulate the results into the vector;
e end

Algorithm 4 attains the minimal memory requirement6a¥? c.e’s. Computation time
is augmented by the need of computing the ma@i¥, that brings the total computational
complexity to grow Iike%MN6 + %MNL”. This may become significant in the Lanczos
algorithm that we shall describe in the next section.

1,J2

produced in all processors, [ = 1,..., P, into the

1,J2

7. Computation of the entropy: The algorithm of Golub et al. Computation of the
spectrum of by full-matrix techniques is not viable a¢ grows. Yet, we are interested not
so much in the spectruper se as in the entropy functiom(4). Therefore, in view of the
results of section$ and6, the Lanczos’ technique developed by Golub et &l.becomes
an interesting possibility. In this section, we sketch th&ads that permit the application of
Golub’s algorithms 1 and 2 of referencd ithout major modifications. We shall refer to
them as G1 and G2.

In essence, G1 is based on the construction of the trididgepeesentation of? in the
Krylov basis P] associated with a randomly chosen initial vecgy € K. For complex?,
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differing from Golub’s case, we choose the entriesiiéfin the set of complex numbers
{#£1, i} with equal probability §]. W; is then conveniently normalize€l is Hermitian and
its tridiagonal representation is real.

This tridiagonal matrix is then easily diagonalized, anel¢ntropy

is estimated via Gaussian summation. In addition, sincespleetrum ofQ2 is contained in
the set[0, 1], Gauss-Radau formulae can also be employed. Sfiteg = —alog(x) is

the integrand for the computation of the entropy, it is rBaftiund that the derivatives of
satisfy the relationg®>™)(z) < 0 and "+ (z) > 0 for all z > 0 andn > 1, so that
Gaussian summation and Gauss-Radau with a prescribed/aigeratz: = 1 both provide
upper bounds to the quantiti¥;, f(2)W;)x, while Gauss-Radau with prescribed eigenvalue
at zero yields a lower bound. In the following, we shall iratie with S! the lower bound
obtained with the Gauss-Radau formula with prescribedwijae at zero, and witK}* the
upper bound obtained by the usual Gauss formula.

The Monte-Carlo algorithm G2 consists in taking a statidtaverage over a large num-
ber of realizations of the random vectdr;, : = 1,..., I, of the values provided by the
algorithm G1. The predicted value féf is then the mean of the average upper and lower
bounds, and a confidence interval is derived on the basis efféing’s inequality. We shall
come back to this statistical estimate later.

We ran algorithm G2 endowed with algorithm 3 of the previcedtion for matrix-vector
multiplication on a cluster of parallel computers with MRinamunication protocol. The
dimension of the Hilbert space waé = 27 (corresponding t&2 of size2'?), M ranged
from 1 to 30, the dimension of the Jacobi matrix was six (s€eerGauss-Radau) and the
number of trial vectorsl, was 1000. In this paper, we show data obtained with 14 psocss
also to underline the fact that our algorithm is not bound ¢okwvith a number of processors
equal to a power of two. Figuré.1 displays the timél, (in real seconds) spent by each
processor in the matrix computation part, ed.2), in each iteration from\/ to M + 1 and
the timeT7, required by the Lanczos algorithm, again at each iteration.

8. The algorithm of Golub et al.: Results. We can now start by showing results ob-
tained for the quantum cat evolutidff*. Figure8.1displays a sample dof = 1000 realiza-
tions of the algorithm G1 withh/ = 11 and N = 27 and six Gaussian points. Upper values
S and lower valuesS! are almost coincident for the same sample item (the largést-d
enced := max{S¥ — S!,i = 1,..., I} is about3.7 10~?%), while different samples feature
a much larger range, of amplitude 0.59917. In keeping wittulss notation this value is
Umaz — Limin, WhereU,, ., :== max{S¥ i =1,...,I}andL,,;, := min{S},i =1,...,I}.

In Table8.1 we report these data fdv/ ranging from 1 to 14. According to algorithm
G2, itis then possible to extract from this table statid@éstimates o5 (U, { P}, M). Before
doing that, though, we observe thatis always several orders of magnitude smaller that
Unmaz — Lmin. Moreover, we want to further analyse the sample dgjtaor Sﬁ for that
matter.

9. Experimental statistical analysis and improved probabhlistic bounds. We have
observed at the end of the previous section that the samp&ivasU,,,,.. — L,;, are or-
ders of magnitude larger than the upper-lower bound diffiege and indeed we have reasons
to believe this to be the general case. Then, it is not worémdimg computer time to com-
pute the Gauss-Radau formula: we shall now consider unighel Gaussian summation.



ETNA

Kent State University
etna@mcs.kent.edu

198 G. MANTICA
52
51 X X X X X X X X X X X X .
50
49
48
2
= a7
&
i
46 ¥
.
45 s
44
43 ¢ : : ¥ : #
42
2 4 6 8 10 12
I
FiG. 7.1. Computation time versus processor indéX = 0, . . ., 13) of algorithm G2 and G3. Units are real

seconds Ty, (red +'s) is the time required for updating tH@™ matrix with N = 27, while T}, (green x’s, value
divided by ten for graphical convenience) is the time reeghipy the Lanczos algorithm G1 repeated fo= 1000

random initial vectord¥V;. All values forM = 1, ..., 30 are reported.

Statistical data extracted froth= 1000 samples of the quantum cat evolution wh= 27 and six Gaussian

TABLE 8.1

points. Symbols are defined in the text.

=

0|

Umax

Lmin

Umam — Lmin

O©Coo~NOUA,WNPRE

0.365320e-0
0.925000e-0
0.522670e-0
0.107000e-0
0.960000e-0
0.720000e-0
0.620000e-0
0.690000e-0
0.730000e-0
0.997000e-0
0.137570e-0
0.593880e-0
0.375400e-0
0.323500e-0

0.128128e-01

0.674307e-01
0.297215e+00
0.806697e+00
0.111395e+01
0.168792e+01
0.202631e+01
0.243792e+01
0.305548e+01
0.347071e+01
0.379457e+01
0.416238e+01
0.446022e+01
0.457285e+01

0.364302e+01
0.347163e+01
0.315047e+01
0.360842e+01
0.377458e+01
0.335986e+01
0.364741e+01
0.373945e+01
0.397821e+01
0.415136e+01
0.439375e+01
0.458430e+01
0.474224e+01
0.483109e+01

Accordingly, our final formula for the entropy will be

(9.1)

S(U,{Py}, M) ~ S

1
u
E SZ 5
i=1

~] =

0.363021e+01
0.340420e+01
0.285326e+01
0.280172e+01
0.266063e+01
0.167194e+01
0.162110e+01
0.130153e+01
0.922735e+00
0.680642e+00
0.599170e+00
0.421922e+00
0.282027e+00
0.258243e+00
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FIG. 8.1. Sample entropies lower bound% (green x's) and upper bounds* (red +'s) for M = 11 and six
Gaussian points versus sample numbhedbata sets are almost coincident, on the scale of the figune.horizontal
dotted line is the sample average.

whereS! indicates the Gaussian summation result§pr= (W;, —QM log(QM)W;). We
now turn to the problem of deriving a confidence interval$¢t/, { P}, M).

Clearly,S* is a realization of a random variable of meaand finite variance?: there-
fore, the sample average is itself a random variable, with the same mean, and standard
deviationn/+/I. In addition, because of the central limit theorem, therittistion of S tends
to the normal, wheri tends to infinity, and we might think of using this fact to irope the
Hoeffding’s bounds.

In the case at hand, moreover, tiheividual sample valuess; appears to be approxi-
mately normally distributed, the more so the larger the eafi)/: this is apparent in Fig-
ure9.1, where we compare the Gaussian distribution functign) := 1 (erf(z) + 1) with the
experimental distribution functions of the standardized random variables= (S; — ) /n.
All quantities (includingu andn) are estimated from the = 1000 samples of the previous
section, and various values df are reported.

Therefore, we can safely assume that the sample mgaare normally distributed to
high precision, and we can derive a confidence interval obglndity p according to the
standard values; )2 of common usage in statistics:

G Ui o ¢ 1
9.2 S+z —=5+7Z—.
(9:2) (1+p)/2ﬁ P T
Confidence intervals derived via Hoeffding’s inequalityvbdahe same form9(2), where
Z§ =nz(14p),2 is replaced byz[":

1 2
H .__ _ . - [
(9.3) Z, = (Unaz — Limnin) 2log(l_p),

the usual Chebyshev inequality yields in turn €2 with ZpT given by

(9.4) A= \/%_p.
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unit variance, versus and M (red dots). Green lines: distribution function of the nofmendom variableF'(z)

(independent oi\/).

TABLE 9.1

Confidence valueg&,, with p = 0.99 for the same case of Tabsel

=

ZH

zl |

ZG

O©oOo~NOULE,WNPRE

0.590861e-€01
0.554075e+01
0.464403e+01
0.456015e+01
0.433051e+01
0.272129e+01
0.263854e+01
0.211840e+01
0.150187e+01
0.110783e+01
0.975224e+00
0.686731e+00
0.459033e+00

0.458289ef0
0.535940e+0
0.470522e+0
0.451669e+0
0.366327e+0
0.296183e+0
0.250148e+0
0.195064e+0
0.153929e+0
0.117137e+0
0.893929e+0
0.660134e+0
0.457901e+0

0.420323e+00

0.336077e+0

0.106781ef01
0.124874e+01
0.109632e+01
0.105239e+01
0.853543e+00
0.690107e+00
0.582845e+00
0.454500e+00
0.358653e+00
0.272929e+00
0.208285e+00
0.153811e+00
0.106691e+00
0.783060e-01

In Table 9.1 we report theZ, values withp = 0.99 for the same case of Tab&l We
observe that while Chebyshev’s and Hoeffding's inequesitijive comparable results (the
former being indeed better than the latter in most cases)dhmal estimate is superior (that
is, narrower) by a factor of about four at this valueyofn terms of computer time, this means
a most significant reduction of a factor of 16/inthe number of Lanczos’ evaluations needed
to attain the same accuracy.
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10. The Jacobi matrix of the spectral measure of. In this section we propose an
alternative to the algorithm G2 just presented and utiliz&dcording to the latter, a Jacobi
matrix is computed for each random vecidt, i = 1,...,1. We want now to compute a
single Jacobi matrix for the estimation of the entropy fiowes (U, { P }, M). In this section,
Q will be a shorthand notation fa2* .

Technically, the Jacobi matrices computed in the algori@2correspond to the spec-
tral measures’ defined as follows: letv; be the eigenvectors &t and \; the associated
eigenvalues. For any € R let §, be the atomic measure at Then,»* is the measure

(10.1) V=0 I(W, )k
J

In physics, this measure is called the “local density ofestatEntropy, in turn, is the integral
of the functionf(z) = —alog(z) with respect tav, the spectral measure 6, called the
“density of states” in the physics literature:

(10.2) vi=)Y by
J

It is therefore the Jacobi matrix ofthat we need to compute.
To do this, recall thaf2 is an operator froniC to itself. Introduce the linear spackof
such operators, endowed with a scalar product just as dofiefor any©, = € L

(10.3) (0,8) :=Tr(0'5),

where obviously the trace is taken in the new space: forcay L

(104) TT(@) = Z(Ekvh GEk,l)/Cv
k,l

beingEy;,k=0,...,N—1,1=0,...,N/2 —1the basis vectors df, given by eq. 8.4)
and by the remark at the end of sectin

Define the sequence of polynomials(2) of degreen in £ initialized byp_1(Q2) = 0,
po(©2) = I (0 andI being the null operator and the identity 41) that satisfy the three-term
relation

(10.5) Opn () = bpy1Pn41(2) + anpn(Q) + bppr-1(Q),

with real coefficients:,,, b, > 0, n = 0,.... The definition is unique if we enforce that
these polynomials (each of which is an operatof)rbe orthogonal with respect to the scalar
product (L0.3 and normalized fon > 0:

Of course, these amotthe orthogonal polynomials of a measure ofemas a matter of fact,
the coefficients,,, andb,, do depend o). Yet, they serve our scope:

LEMMA 10.1. The coefficients,, andb,,, n = 0, ..., are the entries of the Jacobi
matrix of the measure associated with the Hermitian matriX.

Proof. We start by observing that

/ dv = N?/2 = (po(€), po(Q)) ¢ = Tr(I) = wo,
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and that

an == (po(2), Qpo(Q))z = Tr() = > Aj = 1.
j
vp andv; are the first two moments of. Furthermore, it is easily seen that the coefficients
a,, andb,, are constructed as

(10.7) an = (Pn(2), Wn(Q))c = TT(pn(Q)TQPn(Q))v

and

(108) bi—o—l = ((Q - an)pn(Q) - bnpn—l(Q>7 (Q - a7L>pn(Q) - bnpn—l(Q))E-

and thatT'r(g(?)) = >_; 9(\;) = [ g(x)dv(x) for any continuous functiop. Therefore,
pn(x) computed via eq.10.5 with z in place ofQ2 and the coefficients,, andb,, derived as
above, is the:-th orthogonal polynomial of. a

A Lanczos algorithm for the computation of this Jacobi mafdllows directly from
the previous lemma and can be easily set up, at least in phincyet, this algorithm faces
two main computational difficulties. Firstly, it requiresraputation of the traced.0.7) and
(10.9. Secondly, it requires the storage of three Lanczos veptpr: (2), p (), pn—1(€2),
each of which of sizeéV*/4.

The first difficulty can be overcome by the same statisticahidpplied in G2: rather
than computing traces as summations over allXttg2 vectorsEy, ;, choose a fixed set of
random vector§W;,i = 1,..., I}, and estimate the trace in eq.0(3 as

(10.9) Trp(0) ~ % SO (W, 0W ).

K2

The second difficulty can be avoided by noticing that in ssmgaiomputation of the
traces 10.7) and (L0.8 only requires the vectors, (<2)W;, that can be obtained via repeated
actions of the matriX2 in the recursion relation1Q.5. Therefore, the resulting algorithm
ends up to be a variation of G2:

Algorithm 5: Lanczos-Monte Carlo computation of the Jacobi matrix of

e setpy =1,bp=0
e forj=0,...,J
1. seta=0
—fori=1,...,1
x generate the random vectidf; and the three-term sequenggV’; for
n=0,...,J, as well as the vectdep; W;
* compute the scalar produ@; W;, Qp; W)k
x accumulate the result into the variahle

— end

2. seta; =a/l

3. seth=0
—fori=1,...,1

x generate the random vectidf; and the three-term sequengghV’; for
n=20,...,7,a8s well as the vectaX; = (Q — aj)iji — bjpj_lwl-
* compute the scalar producX;, X;)«
x accumulate the results into the variable
—end
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4. Setbj+1 = b/[
e end
Of course, all the usual precautions to be observed in Laraigorithms apply here, like
early terminations for small at step 4. Once the Jacobi matrixiohas been obtained, it can
be easily diagonalized, and Gaussian integration perfdrifike advantage of this technique
is that diagonalization is performed only once, and it caeffected at every value of. In
Figure10.1we show the estimated entropy versudsand./. We notice that good results can
be obtained already at = 2. Computation complexity can improve upon that of G2 if the
vectorsp; (£2)W; can be stored in memory for three consecutive valugs of

FiG. 10.1.A-F entropys for the quantum cat evolution versii§ and Jacobi sizd (red lines). HereN = 27,
Sample is sizéd = 1000. The green symbols at = 8 report the data obtained with the Algorithm G2. Perfect
accordance is observed.

11. Conclusions. Quantum chaos, two exampledVe can now finally enjoy the dis-
play of the A-F entropiesS(U, { Py}, M) versusM as confidence intervals for the two
paradigmatic examples introduced in sectiriNotice however that plots displayed refer to
the contribution of thery = 0 sector of the matrix (see e3.6) and the related discussion),
that turns out to correspond exactly to one half of the totél@. Figurell.1displays, ver-
susM, thep = 0.99 confidence intervals that, thanks to the normal estimatesafon9, are
smaller than symbol size. In the former case, the cat mappseree a linear initial increase
of S(U,{P;}, M), followed by saturation to the maximum attainable vaff&’* = log (V).
This termination is induced mathematically from the finéss of the Hilbert space of the
system, and physically by the effect of quantum interfegetic the second case, a sublinear
increase, also with a saturation, is observed.

Physical analysis takes off from this poirt, [3]. In the renown problem of quantum
classical correspondence, this logarithmic time barfiecpuld be beaten following the pre-
scriptions of decoherencé(): the present work aims at developing analytical and nucaéri
techniques to address this problem rigorously. It is ouvmion that the numerical tech-
niques presented in this paper will open the way to investiga up to now impossible with
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conventional algorithm<].

In conclusion, | have presented in this paper a series ohtqabs that will render viable
the computation of the A.F. entropy for systems of physintdriest. These techniques rest
on the algorithmic properties of ti&" matrices introduced in the original worR][and here
systematically investigated, and on a blend of parallelmatng algorithms and the Lanczos’
technique of Golub. In addition, | have shown how the normepprty of the distribution of
statistical samples permits to largely improve the siatisbounds provided ing], allowing
a significant reduction in computer time. Finally, an alguri for the direct computation of
the Jacobi matrix associated to the spectral measufE"ohas been presented. Its perfor-
mance, in comparison with the previous algorithms, willlbeabject of further investigation.
Outside the present problem, this last algorithm might lialevance in the study of singular
continuous measures and of their Fourier transfortis2].

5.5

————————————————————————————————————————— S T a T S I BN

4.5

3.5

25 o

15

0.5
0 5 10 15 20 25 30

M

FiG. 11.1. Confidence intervals for the entroywith p = 0.99 for the quantum cat evolution (magenta x’s)
and the free rotation (red +'s) versus/. Here, N = 27, and six Gaussian points have been used. Sample size
I = 1000 is such that the confidence interval, although plotted, ialenthan symbol size. The horizontal line is
atS = log(27) and the inclined line has slope= .3466 ~ log(2)/2. Notice that data displayed in these plots
are for theoy = 0 sector of the matrix2: see eq. .9).
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