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A GENERALIZATION OF THE STEEPEST DESCENT METHOD FOR MATRIX
FUNCTIONS*

M. AFANASJEW M. EIERMANN{ O. G. ERNSTAND S. GUTTELT
In memory of Gene Golub

Abstract. We consider the special case of the restarted Arnoldi metbiodpproximating the product of a
function of a Hermitian matrix with a vector which results evhthe restart length is set to one. When applied
to the solution of a linear system of equations, this apgraaincides with the method of steepest descent. We
show that the method is equivalent to an interpolation e@e which the node sequence has at most two points of
accumulation. This knowledge is used to quantify the asgiigpptonvergence rate.
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1. Introduction. To evaluate the expressigifA)b for a matrix A € C"*", a vector
b € C™ and a functionf : C D D — C such thatf(A) is defined, approximations based on
Krylov subspaces have recently regained new attentioicaifp for the case whenl is large
and sparse or structured. I8] we proposed a technique for restarting the Krylov subspace
approximation which permits the calculation to proceedgsi fixed number of vectors (and
hence storage) in the non-Hermitian case and avoids thé@ulisecond Krylov subspace
generation phase in the Hermitian case. The method is basedsequence of standard
Arnoldi decompositions

AV = Vilj +nj1Vjmeren,  J=12....k

with respect to them-dimensional Krylov subspaces,, (A, vj_1ym+1), Where v, =
b/|b]|. Alternatively, we write

AV = Vi Hy, + 11 Vo1 €8,
wheref/,C = [V Vy --- V3] € CnxFm,
H,y
. Ey Hy
Hy, = o g Chmxkm — pli=neel € R™™  j=2... k.
Ey  Hy
The approximation tg¢f(A)b associated with this Arnoldi-like decomposition is given b
fio = ||bl[Vif (Hi) ex

(cf. [6] or [1] for algorithms to computef,) and we refer to this approach as the restarted
Arnoldi method with restart length.
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The convergence analysis of the sequefyié is greatly facilitated by the fact (see, e.g.,
[6, Theorem 2.4]) that

S = Diem—1(A)b,

wherepg,,—1 € Prm—_1 IS the unique polynomial of degree at mést — 1 which interpolates
f at the eigenvalues ol (i.e., at the eigenvalues d@f;, j = 1,2,...,k) in the Hermite
sense. Convergence results for the restarted Arnoldi appabion can be obtained if we are
able to answer the following two questions:

1. Where in the complex pIaner(ﬁk), the spectrum ofi;,, located?
2. For whichA € C do the interpolation polynomials of (with nodal setA(Hy))
converge tof (\)?

We shall address these issues for the simplest form of thesse obtained for a restart length
of m = 1, in which case all Hessenberg matridés arel x 1 and Hj, is lower bidiagonal.
We refer to this method as theethod of steepest descent for matrix functi@msl we shall
present it in greater detail and derive some of its propeitieSection2. In particular, we
shall show that, when applied to the functi6\) = 1/, it reduces to the classicalethod
of steepest descefur the solution ofAxz = b, at least ifA is Hermitian positive definite.

Although not competitive for the practical solution of ssis of linear equations, this
method has highly interesting mathematical propertiesaaramarkable history: More than
100 years after Cauchg]introduced it, Forsythe and Motzkid ] noticed in numerical ex-
periments (see als@]) that the associated error vectors are asymptoticallyesli combina-
tion of the eigenvectors belonging to the smallest and &rgigenvalue ofi, an observation
also made by Stiefel (Stiefel's cage, s&€]] in the context of relaxation methods. Forsythe
and Motzkin also saw that the sequence of error vectors ysriptotically of period 2”. They
were able to prove this statement for problems of dimensica 3 and conjectured that it
holds for alln [10]. It was Akaike P] who first proved this conjecture in 1959. He rephrased
the problem in terms of probability distributions and expéal the observations oL, 10]
completely. Later, in 1968, Forsyth8][reconsidered the problem and found a different
proof (essentially based on orthogonal polynomials) wigieheralizes most (but not all) of
Akaike’s results from the case @i = 1 (method of steepest descent) to the case:af 1
(m-dimensional optimum gradient method).

Drawing on Akaike’s ideas we investigate the first of the twestions mentioned above
in Section3. Under the assumption that is Hermitian we shall see that, in the case of
m = 1, the eigenvalues aoff;, asymptotically alternate between two valugsand p;. Our
proofs rely solely on techniques from linear algebra andatause any concepts from prob-
ability theory. We decided to sketch in addition Akaike'samal proof in Sectiont because
his techniques are highly interesting and hardly known yoda almost any textbook, the
convergence of the method of steepest descent is provem Kaimorovich’s inequality; see,
e.g., [7,§70], [12, Theorem 5.35] or]5, §5.3.1]. Such a proof is short and elegant (and also
gives the asymptotic rate of convergence, at least in a veas#-sense) but does not reveal
the peculiar way in which the errors tend to zero.

Having answered the first of the above two questions we stiatikathe second in Sec-
tion 5. We have to consider polynomial interpolation processsedthzasymptotically, on just
two nodesp; andp} repeated cyclically. We shall use Walsh'’s thecotg,[Chapter 11I] on
the polynomial interpolation of analytic functions withitesingularities, which we comple-
ment by a convergence result for the interpolation of a adigntire functions. Putting the
pieces together we shall see thatdifs Hermitian, the method of steepest descent for matrix
functions converges (or diverges) geometrically wlidras finite singularities, i.e., the error
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in stepk behaves asymptotically #, wheref is determined by the eigenvalues 4f the
vector b and the singularities of. For the functionf(\) = exp(7\), the errors behave
asymptotically ag*7* /k!, wheref) depends on the eigenvalueshdtnd on the vectob, i.e.,
we observe superlinear convergence.

Finally, in Section6 we show why it is so difficult to determine the precise valukthe
nodesp; andp;. For a simple example we reveal the complicated relatigriséiween these
nodes on the one hand and the eigenvalued ahd the components of the vectioon the
other.

2. Restart length one and the method of steepest descent foratnix functions. We
consider a restarted Krylov subspace method for the appation of f(A)b with shortest
possible restart length, i.e., based on a succession adiomensional Krylov subspaces. The
restarted Arnoldi method with unit restart length given ilg@ithm 1 generates (generally
non-orthogonal) bases of the sequence of Krylov sp&gésl, b), k£ < L, whereL denotes
the invariance index of this Krylov sequence. Note that/for= 1 restarting and truncat-
ing are equivalent and that this algorithm is therefore alsancomplete orthogonalization
process with truncation parameter= 1; see [L5, §6.4.2].

Algorithm 1: Restarted Arnoldi process with unit restart length.

Given: A, b
o1 :=|b|l, vi:=0b/oy
fork=1,2,... do
w = Avy
Pk ‘= 'v,f'w
w = W — PEUg
ors = [

V41 = w/0k+1

Here and in the sequel, - || denotes the Euclidean norm. Obviousty,;; = 0 if and
only if vy is an eigenvector ofd. Sincewy is a multiple of (A — pr_11)vi_1, this can
only happen if already,_; is an eigenvector ofl and, by induction, if already the initial
vector b is an eigenvector ofl. In this case, Algorithmil terminates in the first step and
f(A)b = f(p1)b = o1 f(p1)v1. We may therefore assume that > 0 for all k.

Algorithm 1 generates the Arnoldi-like decomposition

(2.1) AVi = Vi1 By = Vi By + 010541 €

with Vj, := [v; vy --- v] € C™*¥, the lower bidiagonal matrices

02 P2
By = o3 S C(kJrl)Xk, By = [Ik 0] Ek S (Cka

Pk
Ok+1

ande, € R¥ denoting thek-th unit coordinate vector. The matricés, = By(A, b) will
play a crucial role in our analysis where the following oluddnvariance properties will be
helpful.
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LEmMMA 2.1. For the bidiagonal matrice®3, = By (A, b) of (2.1) generated by Algo-
rithm 1 with dataA and b, there holds:
1.

TP1
ITloz  Tp2

Bk(TAa b) = . . ) T 7é 0.
ITlow 7ok
In particular, for r > 0, there holdsBy (7 A, b) = 7B (A, b).
2. Bik(A—7I,b) = Bx(A,b) — I forr € C.
3. Br(QP AQ, Q" b) = Bi(A, b) for unitary Q € C"*",

Given the Arnoldi-like decompositior2(1) resulting from the restarted Arnoldi process
with restart length one, the approximationdf4)b is defined as

(22) fk = O'1ka(Bk)61, k= 1727"'7

with e; € R¥ denoting the first unit coordinate vector. We state as a fasilt an explicit
representation of these approximants:

LEMMA 2.2.LetI" be a Jordan curve which encloses the field of value$ afd thereby
alsopy, po, ..., pr. Assume thaf is analytic in the interior ofl" and extends continuously
toI'. Forr € Ny and/ € N, we denote by

_ b f(©)
ef = 2mi /F (€ = pe)(C = pes1) - (C = pesr)

the divided difference of of orderr with respect to the nodes, psy1, . .., pryr. Then

oS (i) s () e

r=1 \j=1

¢

Proof. A short proof is obtained using a result of Opitz3[: We have fi, =
01Vi. f(By)er and Opitz showed that

AYf
Ayf A
FB) =D | Af  Ayf  A3f D!
[ AUTFOASTF AT AR
with D := diag (1, o2, H?;z Tjyenns H;?:Q aj), from which the assertion follows immedi-

ately. 0
The following convergence result is another immediate equence of the close con-
nection betweerf, and certain interpolation processes; seelheorem 4.3.1].
THEOREM2.3. LetW (A) := {v Av : ||v|| = 1} denote the field of values df and
letd := max; pew(a) |¢ —n| be its diameter. Lef be analytic in (a neighborhood ofy (A)
and letp > 0 be maximal such thaf can be continued analytically td/, := {\ € C :
mingcy 4y [A — ¢ < p}. (If fis entire, we sep = oc.)
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If p > ¢ thenlim, . fi = f(A4)b and this convergence is at least linear.
Proof. We choos® < 7 < p and a Jordan curésuch thatr < minyewa) [(—A| < p
for every( € I'. Hermite’s representation of the interpolation error

1 A=p1)A=p2)---(A=pr) f(Q)
I T S e (= e res:

(see, e.g..q, Theorem 3.6.1]) gives, fox € W (A),

¢

5 k
S0 -mami<ar 2]
with the constan€’; = lengthT") maxcer | f(¢)[/[27 mineer xew (a) [¢ — Al]. The assertion
follows from a result of Crouzeixd], who showed that

1/(A) = pr—1(A)]| < C2 o [F(X) = pr—1 (M),

with a constantCy, < 12. 0

Note that Theoren2.3 holds for Arnoldi approximations of arbitrary restart Iémgand
also for its unrestarted variant). Note further that we givaave superlinear convergence if
f is an entire function; see als6,[Theorem 4.2].

We conclude this section by considering the specific funcfip\) = 1/\. For a non-
singular matrixA, computingf(A)b is nothing but solving the linear systeAw = b. It
is known (cf. B, §4.1.1]) that the Arnoldi method with restart length = 1 is equivalent
to FOM(1) (restarted full orthogonalization method witlstaat length 1; se€lp, §6.4.1]) as
well as to IOM(1) (incomplete orthogonalization methodhwiituncation parameten = 1;
see [L5, §6.4.2]). If we choosg, = 0 as the initial approximation and express the approxi-
mantsf, in terms of the residual vectors := b — Af;., there holds

fi = foo1 + (0102 o) (AT fog = foor + agrp1,
where

1 1 rilme

A = — = - )
pr vl Av, vl Ary

which is known as the method of steepest descent, at ledssiHermitian positive definite.

3. Asymptotics of By, in the Hermitian case. The aim of this section is to show how
the entries of the bidiagonal matri¥, in (2.1) behave for largé:.

We first consider a very special situation.

LEMMA 3.1. For a Hermitian matrixA € C™**™, assume thab and thereforev, are
linear combinations of two (orthonormal) eigenvectorsiof

1 Y
v = z + 22,
V1t |v)? V1t [y)?

wheredz; = \jz; (j =1,2), \y < Ay and||z || = ||22|| = 1. Then, fork = 1,2,.. ., there
holds

1 Y
Vog—1 = V1= 21+ 22,
V1t V142
el

g
z1 + 2.
V1t h? VI +

Vo = V2= —
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Proof. A straightforward calculation shows

AL — Ao 2
Avy —p1v) = ———— z1 —
1= P11 FERNEEE (|’Y| 1 sz)
and
A’l)1 — P11 N —|’y‘

Uy =

5
= P E—
[Avi — proi]| /1T + 2 YV 1+ [v]2

By the same token,

[7[(A1 — A2)

Avy — povp = _(1 t ]2)3/2

(21 =+ 7Z2) )

and therefore
Avy — P2U2

1
[Avy — powaf| /1 + 42

Another elementary calculation leads to the following fesu
COROLLARY 3.2. Under the assumptions of Lemrd, the entriep, andoy1 (k =
1,2,...) of the bidiagonal matrice®; are given by

V3 = (21 + ’}/22) = . 0

p2k—1 = 0X1 + (1 = 0) s,
P2k = (1 — 9)/\1 +6X,, and

Tkt1 = VO = 0) (A2 — A1),

with 6 := 1/(1 + |7|?).

In an asymptotic sense CorollaBy2 covers the general caseAfis Hermitian, which we
shall assume throughout the remainder of this section.

THEOREM 3.3. If A is Hermitian with extremal eigenvalues,;, and A\,,., and if the
vectorb has nonzero components in the associated eigenvectonstiteee is a real number
6 € (0, 1), which depends on the spectrumsfind onb, such that the entriegs, ando1 1
(k=1,2,...) of the bidiagonal matrice®;, in (2.1) satisfy

*

khm P2k—1 = 9>\min + (1 - 9))\Inax =:pP1,
khm P2k = (1 - 9))\min + 9)\max = P;,

khm Ok4+1 = 9(1 — 9) ()\max — Amin) =:0".

The proof of this result will be broken down into the followithree lemmas. It simplifies
if we assume thatl has only simple eigenvalues,

A< Ao < -s < Ay, n>2,
otherwise we replacd by A|,CL(A7,,). By 2, 2, ..., z, we denote corresponding normal-
ized eigenvectorsAz; = \;z;, ||z;|| = 1. We also assume, again without loss of gen-

erality, that the vectob and thereforev; have nonzero components in all eigenvectors:
szb # 0forj = 1,2,...,n. Next, we may assume that is diagonal (otherwise we
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replaced by Q7 AQ and b by Q¥ b, whereQ = [z, 2, ..., z,]; cf. Lemma2.1). Fi-
nally, we assume that = [by,bs,...,b,]T is real. (If not, we replacé by Q¥ b, where
Q = diag(by /|b1],b2/|bal, - - .,bn/|bn|) is @ diagonal unitary matrix. Note th@t” AQ = A
if Aisdiagonal.)

In summary, for HermitianA we may assume that is a real diagonal matrix with
pairwise distinct diagonal entries and tlbais a real vector with nonzero entries.

LEMMA 3.4.The sequencfry1 }ren Of the subdiagonal entries @, is bounded and
nondecreasing and thus convergent. Moreowgl,; = o4+ if and only if v, and vy, are
linearly dependent.

Proof. Boundedness of the sequereg. ;1 }xcw follows easily via

0 < opgr = [[(A = pel) vl < [A = pel|| < [|All + [px| < 2] Al
Monotonicity is shown as follows:

o1 = [[(A = prd) v

= o[ (A = prl) v | since|| vyl =1
= |’I)k+1 (A ka)’Uk‘ SinCGO'k+1vk+1 = (A — ka)'uk
= v (A= prd) v sinceA is Hermitian

= v (A= proad + (pryr — pr) )P v
= v (A= prr1D)Pvp + (prg1 — pi) v v
(

= |vk+1 A — pr )T oy sincev, | v

<A = prar Do || || ve]] by the Cauchy-Schwarz inequality
— (A = pres D) v since v | = 1

= O0k42-

Equality holds if and only ifvy, and(A — pgxy1]) k1 = oraovk12 are linearly dependerii

LEMMA 3.5. Every accumulation point of the vector sequefiog},cn generated by
Algorithm 1 is contained inspan{z, z,}, i.e., in the linear hull of the eigenvectors df
associated with its extremal eigenvalues.

Proof. By the compactness of the unit spher€ih the sequence of unit vectofsy, }..cn
must have at least one point of accumulation. Each such adation point is the limit of a
subsequencéuy, }, for which, by Lemma3.4, the associated sequengeg,, 1} converges,
and we denote its limit by*. We conclude that for each accumulation paintthere holds

o1 = ||Au; — (uff Awy)u|| = o*. Furthermore, one step of Algorithmstarting with
an accumulation pointi; as the initial vector yields another accumulation paint and
therefore alsar, = ||Auy — (ug’ Aup)uy|| = o*. Two steps of Algorithm 1 with initial
vectoru, thus result in the decomposition
ufl Ay 0
A [uy ug] = [uy us ug] o* ull Auy |,
0 c*

and from the fact thado, = 03 = o™ we conclude using Lemnta4 thatu, andus must be
linearly dependent, i.eys = xu, for somex. We thus obtain
ufl Ay Ko™

A [’ull ’UQ] = [’U,l ’UQ] A2 with A2 = o* UHAUQ
2

)

which means thatpan{w;, us} is an A-invariant subspace, which in turn is only possible if
span{u;, up} = span{zy, z,,} forsomel < ¢ < m < n.
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We note in passing thaty = [u; ug]H A [u; uz] must be Hermitian—in fact, real and
symmetric—and that consequently= 1 andus = w;; cf. Lemma3.1

Expanding the vectors;, = Z;‘Zl v,.k%; 9enerated by Algorithm in the orthonormal
eigenbasis ofd, we note that, by our assumption that the initial vector reotieficient in any
eigenvector, there holds ; # 0forall j = 1,2,...,n. Inaddition, sincey, € (A1, A\,) and
Vik+1 = Vj,k(Aj — pr)/0rs1, We see that, ;, and~y,, ;. are both nonzero for all. For the
interior eigenvalue$)\j};?;21 it may well happen thas,,, = A; for somek, (cf. Sectiont for
examples), whereupon subsequent vectors of the seqepgeavill be deficient inz;, i.e.,
v = 0forall k > kq. It follows that, for the sequence considered above stadiith an
accumulation points , vy, , andye, ; must also be nonzero for &l

Assume now thatn < n and consider a subsequenr{ag, } converging tou; (without
loss of generalityy,, = v). Forv — oo the Rayleigh quotientp,,, , being continuous
functions of the vectorsy,, , then converge to a limit contained (i, \,,,). Consequently,
An — pr, > Am — pr, > 0 for all sufficiently largev. Sincez” w; = 0 by assumption, we
further have

Tn,1
Ym,1

An —
lim Hl/ ‘ 3 pkn|

0= lim T
v—oo =1 |>\'rn - Pk,,,‘

V—00

‘ Tn,k, o
Yk,

But this is impossible since none of the factors on the rlgntd side is zero angh,, —
Pk, | /| Am — pr, | > 1 for all sufficiently largev. In a similar way, the assumption< ¢ is
also found to lead to a contradiction. O

LEMMA 3.6. For the vector sequencluy }ren Of Algorithm1 there exist nonzero real
numbersy and 3, a? + 32 = 1, which depend on the spectrum#fand onbd, such that

lim wvop_1 =az + 0z, and lim vy = signaf)[—0z + az,],
k—oo k—oo

wheresign(\) denotes the sign of the real number

Proof. We count the candidates for accumulation poiatsf the sequencéuvy }. By
Lemma3.5 u € span{z, z,} and, sincé|u|| = 1, every accumulation point can be written
asu = az + Bz, with o® + 32 = 1. For every vector of this form, there holds

|Au — (u Au)u|]® = 42N\, — A1) = a%(1 — ) (M — M1)%

Since v is an accumulation point of the sequente,}, we have, as in the proof of
Lemma3.4, ||Au — (u Au)ul|| = 0%, i.e.,

N 2
2(1 _ o2) = o )
a“(1—a”) ()\n_)\l

This equation has at most four solutiamsvhich shows that there are at most eight points of
accumulation.

Assume now thaty is sufficiently close to such an accumulation point= u; =
az + [z,. Since all operations in Algorithrhare continuousyy 1, for & sufficiently large,
will be arbitrarily close to

o A— (ulHAul)ul
A = (wf" Auy)ui |

(which is also an accumulation point ¢t} different fromw, sinceas # 0). Moreover,
vk 2 Must then be close to

= sign(af)[—Fz + az,]

Uz

_ A (W Aw)u
A = (w3’ Auz)ws |

u3 =az + Bz, = u.
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Since we already know there are only finitely many accumutgtioints of{ vy, }, we conclude
that the sequenciy;, } must asymptotically alternate betweepandus. O
The assertion of Theoref3now follows by elementary calculations, e.g.,

lim poy = lim ol Avyy = uf Awy = (az + fz0)" Alaz + Bz,)
= a2)\min + ﬁz)\max = 9/\min + (1 - 9))\mmu
whered := o?.

4. Akaike’s probability theory setting. Theorem3.3, the main result of the previous
section, is implicitly contained in Akaike’s pape?][from 1959. His proof is based on the
analysis of a transformation of probability measures: Awédl-known (see, e.g.,17]) a
Hermitian matrix4A € C™*™ and any vectow € C" of unit length give rise to a probability
measure: on R, assigning to any sét/ C R the measure

(4.1) (M) = /M wN) X, w) =Y wli(A = A;),
j=1

whered denotes the Diraé-function, \; < Ay < --- < A, are the eigenvalues of (we
assume again without loss of generality tHatasn simple eigenvalues) with corresponding
eigenvectors;, ||z;|| = 1,j = 1,2,...,n, and where the weights are givenby = |z v|?.
For a fixed matrixA4, this correspondence between unit vectorand probability measures
1 supported onA(A) is essentially one-to-one (if we do not distinguish betwgeators
v = [v1,v2,...,0,)T @ndw = [wy,wa, ..., w,]T with |v;| = |w;| forall j = 1,2,...,n).
In this way, each basis vectoy, generated by the restarted Arnoldi process with unit restar
length (Algorithm1) induces a probability measurg whose support is a subset&fA).

The Lebesgue integral associated wihl) is given by

[ ruyar=Y"wroy)
R =
for any functionf defined onA(A). In particular, the mean qf,
Pp = / Aw(A) dA = ijz»)\j = v Av,
R =
is the Rayleigh quotient af and A, and the variance qf is given by
7= [ pPu)x = D = ) = (A = gDyl
j=1

the squared norm of the vectarv — (v Av)v. We now see that the (nonlinear) vector
transformation

Av — (v Av)w
[|Av — (vH Av)v]|’

underlying Algorithml can be rephrased as a transformation of probability mesgure; =
Ty, where

Vg1 = Tvp, where Tv :=

(4.2) (Tp)(M) = /M P"’“rw@) dy, if M(M):/M w(X\) d\.

Op
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As above, we assume that and thusv, & > 1, is not an eigenvector od, which implies
that the support of:;, consists of more than one point and therefere= o, > 0. We
also remark that the transformatiof.?) 1 — 7w is not only well-defined for probability
measures with finite support but for any probability measthiese first and second moments
exist.

The crucial points in the proof of Theoredm3were to show that the subdiagonal entries
oy, of By, which we have now identified as the standard deviationg,pform a nondecreas-
ing sequence (see Lemra) and tha, 1 = o, can only hold ifv, is a linear combination
of two eigenvectors ofd; see Lemma.5 Akaike based his proof on explicit formulas for
the mean and variance of the transformed medsgure

1
pru=pu+ o [ O g w() i
O JR

m

(cf. [2, Lemma 1]) and

2 _
JTH—O'

+ i4 det(Ms), where M; := {/()\ — p) " w(N) dX
o Jr

2
"
0<k,j<2

is the(3x 3)-moment matrix associated with, g) = [ f(A)g(A)w(X) dA; cf.[2, Lemma 2].
SinceMs; is positive semidefinite it follows tha;tQTM > aﬁ, with equality holding if and only
if M3 is singular, which can only happen if the supporagonsists of two points or less.

5. Convergence for functions of Hermitian matrices. As mentioned previously our
convergence analysis is based on the close connection éretrylov subspace methods
for approximatingf (A4)b and polynomial interpolation; see, e.d5, Theorem 2.4]. For the
vectorsf;, of (2.2), we have

fo =01V f(Br)er = pr—1(A)b,

wherep,_1 € Pr_ interpolatesf in the Hermite sense at the Rayleigh quotienfs=
vf Av; (j = 1,2,..., k). If Ais Hermitian there holds (see Theor&n)

(5.1) lim pop_1 = pj] and lim pox = p3,
k—oo k—oo

with two numbersp} and p; both contained in the convex hull df(A4). In other words,
asymptotically, the restarted Arnoldi approximation ffA)b with unit restart length is
equivalent to interpolating at just the two nodeg; and p3 with increasing multiplicity.
Interpolation processes of such simple nature are wellngioted. To formulate the conver-
gence results we need additional terminology: &or 0, we define the curves

(5.2) Ls:={AeC: [x=pil[]A—p3| = 6%},

known aslemniscateswith foci p; andps. If p; = p3 these reduce to concentric circles of
radiusé. Otherwise, if0 < § < dp := |pf — p3|/2, T's consists of two mutually exterior
analytic Jordan curves. When= ¢§,, we obtain what is known as thigernoulli lemniscate
for which these curves touch gt + p3)/2, whereas fop > §, the lemniscate is a single
analytic Jordan curve. Obviously, its interiort I's containsp; and p; for everyé > 0,
I'y CintI's for 0 < < 6, and every\ € Cis located on exactly ong;.

fLemniscates of polynomials of degrgare also known a®vals of Cassini
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We first assume thaf is analytic in (an open set containing) and p3 but not entire,
i.e., that it has finite singularities in the complex plandiefie exists thus a uniqug > 0
such thatf is analytic inint I's, but not inint I's for anyd > 4y,

(5.3) df :=max{J : fisanalyticinintI's}.

THEOREM 5.1 (Walsh L8, Theorems 3.4 and 3.6])Let the sequencgy, po, ... be
asymptotic to the sequenpg, p3, p3, ps, ... in the sense of5.1). Assume thaf is defined
in all nodespy, po,... and letp,_; € Pr_1 be the polynomial which interpolates at
P15 P25+ Pk Thenlimg . pp—1 = f uniformly on compact subsets oft I's,. More
precisely, there holds
|1/lc < =

limsup | f(A) — pr—1(N\) for A € int I's.

k—o0
For A Z int I'5, the sequencépy_1(\)}x>1 diverges (unless is one of the nodegs;).

It remains to investigate the convergence of the intergmigiolynomials iff is an entire
function. We here concentrate ¢if\) = exp(7)), 7 # 0, which among entire functions is
of the most practical interest. We remark, however, thatahewing argument applies to all
entire functions of order and typd | and can be generalized to arbitrary entire functions. We
further note that the following theorem could be easily deglfrom more general results of
Winiarski [19] or Rice [L4], but we prefer to present an elementary and self-contgineaf.

THEOREM5.2. Let the sequence,, po, . . . satisfy the assumptions of Theorér and
let pr—1 € Pr—1 be the polynomial which interpolate&\) = exp(7\) at p1, p2, ..., pk-
Then{pi_1} converges tg’ uniformly on compact subsets@f More precisely, there holds

me[MﬂM—phﬂMWﬂgéthmAeﬁﬁﬁ
k—o0
wheree = exp(1).

Proof. We first interpolatef (\) = exp(7)\) at the node®; andp} repeated cyclically,
i.e., atp], p5, p1, 05, P1, ... By pi_; € Pr—1 we denote the polynomial which interpolates
f at the firstk points of this sequence, and bjy € P, the corresponding nodal polynomial.
For A € int I's, Hermite’s error formulaZ.3) implies

§ B 1 ()\) TC q*(A) Cj
F) = pra(N) = Tm/p (0 ¢ = Z ! 2mi /Fn qII’E(C) C—i)\dc’

is the interpolation error for the functigii\) =

4. (M) ¢
wheren > 4. Note that/. i =

n 45 (
which vanishes foj = 0,1,. ..,k — 1. Hence,
S| 7 (\) <
(N~ ph 1) JZ_IH; 2 Jry 4(C) C— A
B 1 ¢kt
k( )k-l Jgo (k+)! 2mi Jr, q5(C) ¢—A

and therefore,

S 1 engtty) [ V[
£ = 2] < a2 ;J, e ) L] s 9]

Cery, cery [q;(C)
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where we used!/(k+34)! < 1/j!. Assume that is even, them; () = [(A—p1) (A —p5)]F/2
and thus|q;(\)| < 6%. We further setCy := maxcer, [¢| ~ 1 (for n — o0), Co :=

M ~ 1 (for y — co) andC; := 5- % ~ 1 (for 5y — o). Now,

2
max IvaErIraarsal
cely [C=pilIC—p3

KUFO) = pia (W] < 88 714 G372 O exp(|7|Ch).
Using Stirling’s formulak! ~ 27k (k/e)* (for k — oo), and taking thé:-th root we obtain

(5.4) timsup [k[£(\) = pi s VY] < 6lrle Vo,
k—o00
which is valid for everyn > §. SinceC, — 1 for n — oo we arrived at the desired
conclusion, at least if the two nodg$ andp; are cyclically repeated. A minor modification
shows that this inequality holds also for okld
It remains to show that5(4) is valid if we interpolatef(\) = exp(rA) in nodes
P1, P2, P3, - - - Satisfying 6.1). We use again a result of Walshg, §3.5], who proved that

Tim (A= pr)(A = pa) - (= i) /F = lim (g (V)]

uniformly on any compact set that does not contain one of tuesp, , ps, p3, . . ., Which,
together with 2.3), completes the proof. 0O

Now all that remains is to translate the preceding intemmaresults to the matrix set-
ting. Introducing the quantity

64 :=inf{d : A(A) CintTs} = max{|(A — p})A = p3)|/2 : X e A(A)},

we are now in position to formulate our main result.

THEOREM 5.3. Let A be Hermitian and letf denote a function which is analytic in a
neighborhood of the spectral intervl,in, Amax] Of A. For the approximantg, generated
by the Arnoldi method with unit restart length and initialkcter b, there holds:

If f possesses finite singularities, then
ims 1k < 04
limsup | f(A)b — fil /% < 5.

k—o0

whered; is defined by5.3).
If f(A) =exp(TA), T # 0, then

lim sup [kuf(A)b —fillVE < balr]e.

k—o0

Proof. SinceA is Hermitian, i.e., normal, there holds
A)b — < — D b|.
[ £(A)b — fill < s [f(A) = pr—1(M)] | B]]

Now Theorem$.1and5.2imply the desired conclusion. [

We next derive a necessary and sufficient condition for theegence of the method
of steepest descent. As before, we expandktite basis vectow, generated by the Arnoldi
method with unit restart length in the orthonormal eigeidatA asv;, = Z?:l VjkZj. AS
noted already in the proof of Lemn&a5, it is possible that at some indéy in Algorithm 1
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the Rayleigh quotienpy, coincides with an eigenvaluk;, (2 < jo < n — 1). In this case
Yo, k+1 = ’yjmk()\j — pi)/ok+1 = 0forall & > kq. But since

f(AYD — fi = f(A)vpyr = Zf )7Viks17, for some ‘restart functionf

(cf. [6, Theorem 2.6]), there followsjf(f(A)b — fx) = 0forall k£ > kq or, in other words,
fi has no error component in the direction=pf.
Consider now an eigenvalug, (2 < jo < n—1) with A;, # pj, for all k. The sequence

— Yo,k ()‘jo - pk‘)(/\jo - pk‘+1)
A/n,k (>\n - pk)(/\n - karl)

tends to0 for £ — oo (see LemmeB.6), the second factor of the right-hand side tends to
[(Xjo = PT)(Njo = p3)I/1(An = p7)(An — p5)|. Consequently, we have

[(Njo = P1)(Njo — p2)] < [(An = pT)(An = p3)1,
i.e., the lemniscat€s-, with

6% = (A = P1)(An = p3)IV2 = (A1 = p1) (A1 = p2)|'2,

which passes through the extremal eigenvaluesl o€ontains all other eigenvalues in its
interior (at least those which are relevant for the convecgef the steepest descent method).

THEOREM 5.4. Denote byi's- the lemniscate of the familp.2) which passes through
Amin @Nd Amax. Then the method of steepest descent for compyitidgb converges if and
only if I's« and its interior contain no singularity of.

We conclude this section by an obvious consequence.

COROLLARY 5.5. Let f be a function analytic ifAmin, Amax] Which has no singular-
ities in C \ R. Then the method of steepest descent for compytiigb converges. The
convergence is at least linear with convergence factor

Yjo,k+2
'7n,k+2

)\max - )\min
0= ,
|CO - )\max| + |CO - Amin‘
where( is a singularity off closest toAmin, Amax)-
Proof. Convergence follows from Theore‘ﬁn4 Denoting the foci of the lemniscat&s

(5 2) by P1L = ( min + )\max) Y andp2 ()\mm + )\max) + Yy Y S [0 ()\max - )\min)]a
the convergence factor is given by

* «171/2
|>\max - le)‘max - p2|:| / _ |: ()‘max - >\min)2 - 4’)/2
Co — pillco — P3| (1¢0 = Amax| + [Co = Amin|)? — 72|

which is a monotonically decreasing functiomgfi.e., it attains its maximal value for = 0.
O

1/2

Functions satisfying the assumptions of this corollarchsas e.g.,f(\) = log()\),
f(\) = VX etc., play important roles in applications. Among them &gfl()\) = 1/ and,
if we assume thatl is positive (or negative) definite, then we regain the walbn result
that the classical method of steepest descent convergesaveibnvergence factor which is
not greater than

)\max - )\min _ k=1
‘)\max‘+|>\min| /<5+17

wherex = A\pax/Amin 1S the condition number ofl.
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FiG. 6.1. The functiony1, vz, v3] — p.

6. Location of the foci. We have not been able to determine the exact location of
the foci p; and p3. Of course, by Theorer.3 they are contained in the open interval
(Amins Amax) @nd lie symmetric to%()\min + Amax)- If %()\min + Amax) IS @n eigenvalue
of A (and if v; has a nonzero component in the corresponding eigenveb#ar) t

* * 1
lp1 — P3| < 5\/5(/\max — Amin)

because otherwise the lemniscate passing thrayghand,,,.. would not contair‘é— (Amin+
Amax) iN its interior.

More precise information is only available in very specialations: Assume that(A)
is symmetric with respect té()\min + Amax)s

1 1
|)\j - 5()\min + )\max)‘ = |)\n+17j - 5()\min + )\max)‘
forj=1,2,...,n/2if nisevenandfoj = 1,2,...,(n—1)/2if nis odd. In the latter case

this means thak,,;1)/2 = %()\min + Amax). In addition, we require that the coefficients of
v = Y7 7j,1%; are symmetric as well:

Yi1 = i’)/nlef]}lv .7 = 17 27 ceey |_TL/2J

It is then easy to see that =
)\max)-

As a case study, we consider the fixed mattix= diag(—1, 0, 1) together with a real
vectorv; = [vy1,72,73]%, |vi| = 1, 7173 # 0. The restarted Arnoldi process with unit

3 (Amin + Amax) for everyk and thuspi = p5 = §(Amin +
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02 03 04 05 06 07 08 09
71

FIG. 6.2. The functiony1, y3] — p.

restart length (Algorithni) then generates a sequedeg = [y1.x, 2.k, ¥3.k) " fr>1 Of unit
vectors as follows,

Y1 k41 Y1k 1 Yk(=1 = pr)
(6.1) Yk+1 | =T | vk | = > —Y2,kPk ,
V3, k41 Y3,k R s k(1= pr)
with pr = =73, + V34 Okl = \/(ﬁk +72,) — (v, —73%,)? and the initial vector
V11,721, 73.1]7 == [v1,72,73)T . We know from Lemma.6that
« -
lim vy,_1 = 1| O and lim v = sign(af) 0 ,
k—o0 ﬁ k—oo o

for some nonzero real numbeis3, o2 + 32 = 1, and that consequently (cf. Theorén)
Py = klim v Avop_ 1 = —a® 4+ 32 and p; = klim v Avgy, = a® — % = —pi.

Denoting byp = |pi| = |p3| the common modulus of these two nodes we are interested in
the mapping = p(71, 72, v3) which is defined on the unit spherelt¥ with the exception
of the great circles; = 0 andv3 = 0. Figure6.1illustrates this function.
We first observe certain symmetries: Obviously the eightore¢+~;, £+, +73]7 lead
to the same value gf. Moreover, we have(v1, y2,v3) = p(v3, 72, 71); see 6.1). The great
circley, = 0 is of special interest: If we seleet = [y1,0, /1 —~?]7 as the starting vector
of the iteration 6.1), thenwvy, 1 = v andwvy, = vo = [—/1 —~2,0,v7 for everyk;
cf. Lemma3.1 A simple computation yields

p=p(%07 1 —v%) = |vf Avy| = |1 — 297].

Therefore, for a suitable choice of, the functionp attains every value if0,1). Values
of p contained in(v/2/2,1) are attained if we seleat; on the ‘red subarcs’ of the great
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circle v, = 0; see Figures.1. Note thatp = p(v1,v2,73) € [0,1/2/2) whenevery, # 0.
Consequentlyp is discontinuous at every point of those arcs.

We next determine combinations ¢f, 2 and~s; which lead to the valug = 0: If
we start the iteration withy, = +/2/2[+1,0,£1]7 then, for the Rayleigh quotienjs, =

vl Avg, there holdgp, = 0 for all k& > 0. We setS, := {v/2/2[+1,0,£1]7}. Now we
define inductively the sets

Spi={v:TveS 1}, (=1,2,...,
and note that, for starting vectoos € S, there holds;, = 0 for all £ > ¢.

Toiillustrate these sets in a more convenient way, we eliteing, = (1—~%, —~3,)"/?
from the transformatiofi’ defined in 6.1) and considep as a function of the two variables
and~s; see Figures.2. For symmetry reasons we can restrict our attentidn4o~yy, v3 < 1.
The intersection of the sef and this restricted domain will be denoted By. We have

Ro = {[y1,7]" :m =7 = v2/2},
Ry ={,7]" : 3 =m}

Ry ={v,7)" : y3=1-m}

Rs = {[71,73]" : p(71,73) = 0},

wherep(vi,73) = 12+ =1 —73 +27873 173 1113+ 2077 +27193 —4iaE 2.
Figure6.3shows these sef;, £ = 0,1, ..., 5, whereR, andR5 were computed numerically
using Newton’s method.
1 ~c ~
0.9 Tl
0.8
07 P
0.6
22 05 )
041 '
0.3H R \

0.2 '

R
0.1 4 !
v

0

0 0.1 02 03 04 05 06 07 08 09 1
8

FIG. 6.3.The setsy, £ =0,1,...,5.

In summary, determining the fopif andp? requires the analytic evaluation of the func-
tion p = p(v1, 72, v3) which, even in the simple example considered here, appeaastable.



222

ETNA

Kent State University
etna@mcs.kent.edu

M. AFANASJEW, M. EIERMANN, O. G. ERNST, AND S. GTTEL

7. Conclusion. We have given a convergence analysis of the restarted Arapfatox-

imation for functions of Hermitian matrices in the case witlem restart length is one. The
analysis is based on an earlier result of Akaike given in &@glbdity theory setting, which
we have translated into the terminology of linear algebnd, r@sults of Walsh on the conver-
gence of interpolation polynomials. In particular, we hatewn that the restarted Arnoldi
method exhibits, asymptotically, a two-periodic behavidioreover, we have characterized
the asymptotic behavior of the entries of the associategdétdrerg matrix. The precise loca-
tion of the asymptotic interpolation nodes is a complicatest, as was illustrated for a simple
example. These results may be viewed as a first step towad#gstanding the asymptotic
behavior of the restarted Arnoldi process.
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