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Abstract. In this paper we consider the computation of a finite eigenvalue and corresponding right eigenvector

of a large sparse generalised eigenproblem Ax = λMx using inexact inverse iteration. Our convergence theory is

quite general and requires few assumptions on A and M. In particular, there is no need for M to be symmetric posi-

tive definite or even nonsingular. The theory includes both fixed and variable shift strategies, and the bounds obtained

are improvements on those currently in the literature. In addition, the analysis developed here is used to provide a

convergence theory for a version of inexact simplified Jacobi-Davidson. Several numerical examples are presented

to illustrate the theory: including applications in nuclear reactor stability, with M singular and nonsymmetric, the

linearised Navier-Stokes equations and the bounded finline dielectric waveguide.
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1. Introduction. Let A ∈ Cn×n and M ∈ Cn×n be large, sparse and complex. We

consider the computation of a simple, finite eigenvalue and corresponding eigenvector of the

generalised eigenvalue problem

(1.1) Ax = λMx, x 6= 0,

using inverse iteration with iterative solves of the resulting linear systems

(A − σM)y = Mx.

Here σ is a complex shift chosen to be close to the desired eigenvalue. We call this method

“inexact inverse iteration”, and consider the case where the linear system is solved to some

prescribed tolerance only. It is well known that, using exact solves, inverse iteration achieves

linear convergence with a fixed shift and quadratic convergence for a Rayleigh quotient shift;

see [18] and [17]. For more information about inverse iteration we refer to the classic articles

[7] and [19], and the more recent survey [11]. In this paper, we shall explore, under minimal

assumptions, convergence rates attained by inexact inverse iteration, illustrate the theory with

reference to some physical examples, and obtain a convergence result for a version of the

inexact Jacobi-Davidson method.

The paper by Golub and Ye [8] provides a convergence theory of inexact inverse iteration

for a fixed shift strategy for nonsingular M with M−1A diagonalisable. Linear convergence

is proved if a suitable solve tolerance is chosen to decrease linearly. An early paper, which

also considers inexact inverse iteration applied to a diagonalisable problem is the one by Lai

et al. [12]. They provide a theory for the standard eigenproblem with a fixed shift strategy and

obtain linear convergence for both the eigenvalue and the eigenvector if the solve tolerance

decreases depending on a quantity containing unknown parameters. They also give numerical

results on a transformed generalised eigenvalue problem. In [3] a convergence theory is given

for Rayleigh quotient shifts assuming M is symmetric positive definite. Following [8], the

convergence theory in [3] uses a decomposition in terms of the right eigenvectors. One result
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in [3] is that for a variable shift strategy, the linear systems need not be solved accurately to

obtain a convergent method.

An alternative approach to the convergence theory of inexact inverse iteration for general

A and M is presented in [5], where it is shown that inexact inverse iteration is a modified

Newton method if a certain normalisation for the eigenvector and a special update of the shift

is used. The only assumptions are that the desired eigenvalue is simple and finite. It is then

shown that inexact inverse iteration converges linearly for close enough starting values, and

that for a decreasing tolerance quadratic convergence is attained, as would be expected from

a theory based on Newton’s method. The advantage of this approach is that an eigenvector

expansion is not used and so error bounds do not contain a term involving the norm of the

inverse of the matrix of eigenvectors, as appears in [8] and [3]. The disadvantage is that the

convergence rate itself depends on the norm of the inverse of the Jacobian, which is hard to

estimate in practice.

In this paper we consider a quite general setting, where A and M are nonsymmetric ma-

trices with both A and M allowed to be singular, but without a common null vector. We only

assume that the sought eigenpair (λ1,x1) is simple, well-separated and finite. We provide a

convergence theory for inexact inverse iteration applied to this generalised eigenproblem for

both fixed and variable shifts. This theory extends the results of [5], since this new theory

holds for any shift, not just the shift that gives the equivalence of Newton’s method to inverse

iteration. Also, the convergence rate is seen to depend on how close the sought eigenvalue is

to the rest of the spectrum, a natural result that is somewhat hidden in the theory in [5]. We

use a decomposition that allows us to consider nondiagonalisable problems where M may be

singular. To be precise, we use a splitting of the approximate right eigenvector in terms of the

exact right eigenvector and a basis of a right invariant subspace. This is an approach used by

Stewart [27] to provide a perturbation theory of invariant subspaces, and allows us to over-

come the theoretical dependence of the allowed solve tolerance on the basis of eigenvectors,

which appears in [8] and [3]. If a decreasing solve tolerance is required, then we take it to be

proportional to the eigenvalue residual, as done in [3].

Inexact inverse iteration applied to the symmetric standard eigenvalue problem has been

considered by [25] and [2]. Both approaches use a natural orthogonal splitting and consider

fixed and Rayleigh quotient shifts. Linear convergence for the fixed shift and locally cubic

convergence for the Rayleigh quotient shift is obtained if the solve tolerance is chosen to

decrease in a certain way. The approach in [2] is more natural, since the solve tolerance is

chosen to decrease in proportion to the eigenvalue residual. Simoncini and Eldén observe

in [20], that inexact Rayleigh-quotient iteration is equivalent to a Newton method on a unit

sphere and also discuss a reformulation for efficient iterative solves. Notay [15] considers

the computation of the smallest eigenvalue and associated eigenvector for a Hermitian posi-

tive definite generalised eigenproblem using inexact Rayleigh quotient iteration. In practice,

subspace methods like shift-invert (restarted) Arnoldi and Jacobi-Davidson are more likely

to be used in eigenvalue computations, though inexact inverse iteration has proved to be a

useful tool in improving estimates obtained from inexact shift-invert Arnoldi’s method with

very coarse tolerances; see [9].

It is well known that there is a close connection between inverse iteration and the Jacobi-

Davidson method; see [21, 22, 24]. We shall use the convergence theory developed here

for inexact inverse iteration applied to (1.1) to provide a convergence theory for a version of

inexact simplified Jacobi-Davidson.

The paper is organised as follows. In section 2 standard results on the generalised eigen-

problem are summarised and a generalised Rayleigh quotient is discussed. Section 3 provides

the main result of the paper; a new convergence measure is introduced and the main conver-
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gence result for inexact inverse iteration applied to the generalised nonhermitian eigenprob-

lem is stated and proved. Section 4 contains some additional convergence results. In section 5

we give numerical tests on examples arising from modelling of a nuclear reactor and the lin-

earised incompressible Navier-Stokes equations. Section 6 presents a convergence analysis

for the inexact simplified Jacobi-Davidson method and provides some numerical results to

illustrate the theory.

Throughout this paper we use ‖ · ‖ = ‖ · ‖2.

2. Standard results on the generalised eigenproblem. In order to state convergence

results for Algorithm 3.1 we need some results about the generalised eigenproblem. First

recall that the eigenvalues of (1.1) are given by λ(A,M) := {z ∈ C : det(A − zM) = 0}.

We use the following theorem for a canonical form of (1.1), which is a generalisation of

the Schur Decomposition of the standard eigenproblem.

THEOREM 2.1 (Generalised Schur Decomposition). If A ∈ Cn×n and M ∈ Cn×n,

then there exist unitary matrices Q and Z such that QHAZ = T and QHMZ = S are

upper triangular. If for some j, tjj and sjj are both zero, then λ(A,M) = C. If sjj 6= 0,

then λ(A,M) = {tjj/sjj}, otherwise, the jth eigenvalue of problem (1.1) is an infinite

eigenvalue.

Proof. See [6, page 377].

Using this theorem, together with the fact that Q and Z can be chosen such that sjj

and tjj appear in any order along the diagonal, we can introduce the following partition of

the eigenproblem in canonical form:

(2.1) QHAZ =

[

t11 tH
12

0 T22

]

and QHMZ =

[

s11 sH
12

0 S22

]

,

where T22 ∈ C(n−1)×(n−1) and S22 ∈ C(n−1)×(n−1). If λ1, the desired eigenvalue, is finite,

then s11 6= 0 and λ1 = t11/s11. The factorisation (2.1) provides an orthogonal similarity

transform, but in order to decompose the problem for the convergence analysis, we make

a further transformation to block diagonalise the problem. To this end we define the linear

transformation Φ : C(n−1)×2 → C2×(n−1) by

(2.2) Φ(h,g) := (t11h
H − gHT22, s11h

H − gHS22),

where g ∈ C(n−1)×1 and h ∈ C(n−1)×1. (This transformation is a simplification of that

suggested by Stewart in [26].)

LEMMA 2.2. The operator Φ from (2.2) is nonsingular if and only if

λ1 =
t11
s11

/∈ λ(T22,S22).

Proof. See [26, Theorem 4.1].

Hence Φ is nonsingular if and only if λ1 is a simple eigenvalue of (1.1). With Lemma 2.2

we can prove the following result.

LEMMA 2.3. If the operator Φ from (2.2) is nonsingular and G, H are defined by

G =

[

1 gH
12

0 In−1

]

and H =

[

1 hH
12

0 In−1

]

,

where Φ(h12,g12) = (−tH
12,−sH

12), then, with T and S defined in Theorem 2.1,

G−1TH = diag(t11,T22) and G−1SH = diag(s11,S22).
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Furthermore,

‖H‖2=‖H−1‖2= C‖h12‖, C‖h12‖ := (‖h12‖2 +
√

‖h12‖4 +4 ‖h12‖2 + 2)/2,(2.3)

with similar results for ‖G‖2 and ‖G−1‖2.

Proof. If Φ is nonsingular, then the vectors g12 and h12 exist and a simple calculation

gives G−1TH = diag(t11,T22) and G−1SH = diag(s11,S22). Result (2.3) follows by

direct calculation of the spectral radius of HHH.

Note that C‖h12‖ and C‖g12‖ measure the conditioning of the eigenvalue λ1, with large

values of C‖h12‖ and C‖g12‖ implying a poorly conditioned problem. We shall see in section 3

that ‖g12‖ and ‖h12‖ appear in the bounds in the convergence theory.

Combining Theorem 2.1 and Lemma 2.3 gives the following corollary.

COROLLARY 2.4. Define

(2.4) U = QG

and

(2.5) X = ZH.

Then both U and X are nonsingular and we can block factorise A − λM as

(2.6) U−1(A − λM)X =

[

t11 0H

0 T22

]

− λ

[

s11 0H

0 S22

]

.

For our purposes, decomposition (2.6) has advantages over the Schur factorisation (2.1),

since (2.6) allows the eigenvalue problem Ax = λMx to be split into two problems. The

first problem is the trivial λ t11 = s11. The second problem arising from the (n−1)×(n−1)
block is that of finding λ(T22,S22), which contains the (n − 1) eigenvalues excluding λ1.

From (2.6) we have

(A − λ1M)x1 = 0 and uH
1 (A − λ1M) = 0,(2.7)

where λ1 =
t11
s11

is an eigenvalue of (1.1), with corresponding right and left eigenvectors,

x1 = Xe1 and u1 = U−He1, where e1 is the first canonical vector.

Note that λ1 =
t11
s11

is a finite eigenvalue if and only if

(2.8) uH
1 Mx1 6= 0,

since, by (2.6) and the special structure of G and H in Lemma 2.3, we have

s11 = qH
1 Mz1 = eH

1 QHMZe1 = eH
1 G−1QHMZHe1 = eH

1 U−1MXe1 = uH
1 Mx1.

Next, for x ∈ Cn, with xHMx 6= 0, we define the Rayleigh quotient by xHAx
xHMx

. Note that

xHMx 6= 0 does not generally hold, unless M is positive definite. Therefore, instead of the

Rayleigh quotient, we consider the related generalised Rayleigh quotient

(2.9)
cHAx

cHMx
,
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where c ∈ Cn is some known vector, such that cHMx 6= 0. In our computations we take

c = Mx, which yields

(2.10) ρ(x) :=
xHMHAx

xHMHMx
,

and has the desirable minimisation property: for any given x,

(2.11) ‖Ax − ρ(x)Mx‖ = min
z∈C

‖Ax − zMx‖.

(This property can be verified using simple least-squares approximation as in [29, page 203].)

If we normalise x such that xHMHMx = 1, then ρ(x) = xHMHAx.

3. Inexact inverse iteration. We assume that the generalised nonsymmetric eigenprob-

lem (1.1) has a simple, well-separated eigenvalue (λ1 satisfying (2.7) and(2.8)). This section

contains the convergence theory for inexact inverse iteration described by Algorithm 3.1.

ALGORITHM 3.1 (Inexact Inverse Iteration).

Input: x(0), imax.

For i = 1, . . . , imax

1. Choose σ(i) and τ (i).

2. Find y(i) such that ‖(A − σ(i)M)y(i) − Mx(i)‖ ≤ τ (i).

3. Set x(i+1) = y(i)/φ(y(i)).
4. Set λ(i+1) = ρ(x(i+1)).
5. Evaluate r(i+1) = (A − λ(i+1)M)x(i+1).

6. Test for convergence.

Output: x(imax).

Note that we choose λ(i+1) = ρ(x(i+1)) to make use of the minimisation property (2.11).

Also, in Algorithm 3.1 the function φ(y(i)) is a scalar normalisation. Common choices for

this normalisation are φ(y(i)) = z(i)H
y(i), for some z(i) ∈ C

n, or a norm of y(i), such as

φ(y(i)) = ‖y(i)‖ or, if M is positive definite, φ(y(i)) = ‖y(i)‖M.

We introduce a new convergence measure in section 3.1, provide a one step bound in sec-

tion 3.2 and finally give convergence results for both fixed and variable shifts in section 3.3.

In section 4 we discuss some properties of the function φ(y).

3.1. The measure of convergence. In order to analyse the convergence of inexact in-

verse iteration we use a different approach to the one used in [3, 8], where the splitting is done

in terms of the right eigenvectors of the problem. We split the approximate right eigenvector

into two components: the first is in the direction of the exact right eigenvector, and the second

lies in the right invariant subspace not containing the exact eigenvector. This decomposition

is based on that used in [27] for the perturbation theory of invariant subspaces. However, we

introduce a scaling, namely α(i) as in [3], which turns out to be advantageous in the analysis.

Let us decompose x(i), the vector approximating x1, as

(3.1) x(i) = α(i)(x1q
(i) + X2p

(i)),

where q(i) ∈ C, p(i) ∈ C
(n−1)×1 and X2 = XĪn−1, where X is given by (2.5) and

Īn−1 =

[

0H

In−1

]

∈ Cn×(n−1),

with In−1 being the identity matrix of size (n − 1). The scalar α(i) is chosen so that x(i) is

normalised as φ(x(i)) = 1. For the convergence theory we leave the scaling of the eigenvector
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approximate and exact right eigenvector x(i) and x1 open. However, in sections 4 and 5 we

will use ‖Mx(i)‖ = 1.

Clearly, q(i) and p(i) measure how close the approximate eigenvector x(i) is to the sought

eigenvector x1. As we shall see in the following analysis, the advantage of this splitting is

that we need not be concerned about any highly nonnormal behaviour in the matrix pair

(T22,S22). This is in contrast to the approach in [3], where the splitting only exists for posi-

tive definite M and involved a bound on the condition number of the matrix of eigenvectors.

Now set

α(i) := ‖U−1Mx(i)‖,

and multiply (3.1) from the left by U−1M. Using

(3.2) U−1Mx1 = s11e1 and U−1MX2 =
[

e2 . . . en

]

S22 = Īn−1S22,

from (2.6), where ei is the ith canonical vector, we have

1 =
‖U−1Mx(i)‖

α(i)
= ‖s11q

(i)e1 + Īn−1S22p
(i)‖

= ((s11q
(i))2 + ‖S22p

(i)‖2)
1

2 .(3.3)

Thus |s11q
(i)| and ‖S22p

(i)‖ can be interpreted as generalisations of the cosine and sine

functions as used in the orthogonal decomposition for the symmetric eigenproblem, cf. [18].

Also, from (3.3), we have |s11q
(i)| ≤ 1 and ‖S22p

(i)‖ ≤ 1. Note that (3.3) also indicates

why α(i) was introduced in (3.1). This scaling is not used in [27] or [28]. It is now natural to

introduce

T (i) :=
‖S22p

(i)‖
|s11q(i)|

as our measure for convergence. Equation (3.3) shows that T (i) can be interpreted as a gen-

eralised tangent. Using (3.1) we have, for α(i)q(i) 6= 0,

∥

∥

∥

∥

x(i)

α(i)q(i)
− x1

∥

∥

∥

∥

=
‖X2p

(i)‖
|q(i)| ≤ ‖X2‖‖p(i)‖

|q(i)| ≤ ‖X‖‖p(i)‖
|q(i)| ,

and also

‖X2p
(i)‖ =

∥

∥

∥

∥

X

[

0

p(i)

]∥

∥

∥

∥

≥ ‖p(i)‖
‖X−1‖ .

Using the last two bounds together with (2.5) we obtain

(3.4)
1

‖H−1‖
‖p(i)‖
|q(i)| ≤

∥

∥

∥

∥

x(i)

α(i)q(i)
− x1

∥

∥

∥

∥

≤ ‖H‖‖p
(i)‖

|q(i)| ,

with expressions on ‖H‖ and ‖H−1‖ given by (2.3).

Hence (3.4) yields that
‖p(i)‖
|q(i)| → 0 if and only if span{x(i)} → span{x1}. Further we

have

T (i) ≤ ‖S22‖‖p(i)‖
|s11||q(i)| ,
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and hence, since s11 and S22 are constant, T (i) → 0 if
‖p(i)‖
|q(i)| → 0, and so the function T (i)

measures the quality of the approximation of x(i) to x1. Note that this measure is only of

theoretical interest, since both S22 and s11 are not available.

The following lemma provides bounds on the absolute error in the eigenvalue approxi-

mation |ρ(x(i)) − λ1| and on the eigenvalue residual, defined by

(3.5) r(i) := (A − ρ(x(i))M)x(i).

LEMMA 3.2. The generalised Rayleigh quotient ρ(x(i)) given in (2.10) satisfies

(3.6) |ρ(x(i)) − λ1| ≤ C‖g12‖‖T22 − λ1S22‖‖p(i)‖,

and the eigenvalue residual (3.5) satisfies

(3.7) ‖r(i)‖ ≤ C‖g12‖‖T22 − λ1S22‖‖p(i)‖,

where p(i) is given in (3.1) and C‖g12‖ is given in (2.3).

Proof. Since (A − λ1M)x(i) = α(i)(A − λ1M)X2p
(i), using (3.1) we have

|ρ(x(i)) − λ1| =
|x(i)H

MH(A − λ1M)x(i)|
‖Mx(i)‖2

=
|α(i)| |x(i)H

MHUU−1(A − λ1M)X2p
(i)|

‖Mx(i)‖2
.

Hence, using (2.6) and the definition of α(i), we get

|ρ(x(i)) − λ1| =
‖U−1Mx(i)‖ |x(i)HMHUĪn−1(T22 − λ1S22)p

(i)|
‖Mx(i)‖2

≤ ‖U−1‖‖U‖‖(T22 − λ1S22)p
(i)‖.(3.8)

Now we have

‖U‖ = ‖QG‖ = ‖G‖ and ‖U−1‖ = ‖G−1QH‖ = ‖G−1‖,

since Q is unitary. Hence, from equation (3.8), we obtain

|ρ(x(i)) − λ1| ≤ ‖G‖‖G−1‖‖(T22 − λ1S22)p
(i)‖

≤ C‖g12‖‖(T22 − λ1S22)‖‖p(i)‖,

as required. The eigenvalue residual can be written as

r(i) = (A − ρ(x(i))M)x(i) = (A − λ1M)x(i) + (λ1 − ρ(x(i)))Mx(i)

and hence, using the same idea as in the first part of the proof, we obtain

r(i) = α(i)(A − λ1M)X2p
(i) − α(i)(x(i)H

MH(A − λ1M)X2p
(i))Mx(i)

x(i)H
MHMx(i)

=

(

I− Mx(i)x(i)H
MH

x(i)H
MHMx(i)

)

α(i)(A − λ1M)X2p
(i).
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This yields ‖r(i)‖ ≤ α(i)‖(A−λ1M)X2p
(i)‖ and proceeding as in the first part of the proof

gives the required result.

Lemma 3.2 shows that the generalised Rayleigh quotient ρ(x(i)) defined by (2.10) con-

verges linearly in ‖p(i)‖ to λ1 and the eigenvalue residual r(i) converges linearly in ‖p(i)‖ to

zero. This observation leads to more practical measures of convergence than the generalised

tangent T (i), which is only of theoretical nature. Nonetheless, one must recognise the limita-

tions of this approach: if C‖g12‖ is large, then the error in the generalised Rayleigh quotient

and the residual may be large, even if ‖p(i)‖ is small.

The lemma in the following subsection provides a bound on the generalised tangent T (i)

after one step of inexact inverse iteration, and is a generalisation of Lemma 3.1 proved in [3]

for a diagonalisable problem with symmetric positive definite M.

3.2. A one step bound. In this subsection we provide the main lemma used in the con-

vergence theory for inexact inverse iteration. Let the sought eigenvalue λ1 be simple, finite

and well separated. Furthermore let the starting vector x(0) be neither the solution x1 itself,

that is, p(0) 6= 0, nor deficient in the sought eigendirection, that is, q(0) 6= 0. (This is the

same as assuming that 0 < ‖S22p
(i)‖ < 1.) We have the following lemma.

LEMMA 3.3. Let the generalised eigenproblem Ax = λMx have a simple finite eigen-

pair (λ1,x1) and let (3.1) hold for the approximate eigenpair. Assume the shift satisfies

σ(i) 6∈ λ(T22,S22). Further let

Mx(i) − (A − σ(i)M)y(i) = d(i),

with ‖d(i)‖ ≤ τ (i)‖Mx(i)‖ in Algorithm 3.1 and

(3.9) τ (i) < βα(i) |s11q
(i)|

‖u1‖‖Mx(i)‖ ,

with β ∈ (0, 1). Then

(3.10) T (i+1) =
‖S22p

(i+1)‖
|s11q(i+1)| ≤ |λ1 − σ(i)|‖S22‖

‖(T22 − σ(i)S22)−1‖−1

(

‖α(i)S22p
(i)‖ + ‖d(i)‖

)

(1 − β)|α(i)s11q(i)| .

Proof. Using

(A− σ(i)M)y(i) = Mx(i) − d(i) and x(i+1) =
y(i)

φ(y(i))

from Algorithm 3.1 together with the splitting (3.1) for x(i) and x(i+1) we obtain

φ(y(i))(A− σ(i)M)(α(i+1)x1q
(i+1) + α(i+1)X2p

(i+1))

= M(α(i)x1q
(i) + α(i)X2p

(i)) − d(i).
(3.11)

Using (2.6) we get that

U−1(A− σ(i)M)x1 = (t11 − σ(i)s11)e1,

U−1(A − σ(i)M)X2 =

[

0

T22 − σ(i)S22

]

= Īn−1(T22 − σ(i)S22),

where Īn−1 is defined in (3.2). Thus, multiplying (3.11) by U−1 from the left we obtain

φ(y(i))
(

α(i+1)(t11 − σ(i)s11)q
(i+1)e1 + α(i+1)Īn−1(T22 − σ(i)S22)p

(i+1)
)

= α(i)s11q
(i)e1 + α(i)Īn−1S22p

(i) − U−1d(i).
(3.12)
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Multiplying (3.12) by eH
1 and ĪH

n−1 from the left we split (3.12) into two equations, namely,

φ(y(i))α(i+1)(t11 − σ(i)s11)q
(i+1) = α(i)s11q

(i) − eH
1 U−1d(i)

in the direction of e1 and

φ(y(i))α(i+1)(T22 − σ(i)S22)p
(i+1) = α(i)S22p

(i) − ĪH
n−1U

−1d(i)

in span{e1}⊥. With the left eigenvector uH
1 = eH

1 U−1 and the left invariant subspace

UH
2 :=

[

e2 . . . en

]H
U−1, and assuming that σ(i) is not an eigenvalue of (T22,S22),

as well as s11 6= 0, we get

T (i+1) =
‖S22p

(i+1)‖
|s11q(i+1)|

≤ |λ1 − σ(i)|‖S22‖‖(T22 − σ(i)S22)
−1‖

(

‖α(i)S22p
(i)‖ + ‖UH

2 d(i)‖
)

|α(i)s11q(i)| − |uH
1 d(i)| .

Using (3.9) we obtain

(3.13) T (i+1) =
‖S22p

(i+1)‖
|s11q(i+1)| ≤ |λ1 − σ(i)|‖S22‖

‖(T22 − σ(i)S22)−1‖−1

(

‖α(i)S22p
(i)‖ + ‖UH

2 d(i)‖
)

(1 − β)|α(i)s11q(i)| .

Now ‖U2‖ = 1, since, using equation (2.6) we may write

UH
2 = ĪH

n−1U
−1 = ĪH

n−1G
−1QH ,

and with the special form of G (see Lemma 2.3) we obtain

UH
2 = ĪH

n−1U
−1 = ĪH

n−1

[

1 −gH
12

0 In−1

]

QH =
[

0 In−1

]

QH .

Since QH is unitary we have ‖UH
2 ‖ = 1. Hence,

(3.14) T (i+1) =
‖S22p

(i+1)‖
|s11q(i+1)| ≤ |λ1 − σ(i)|‖S22‖

‖(T22 − σ(i)S22)−1‖−1

(

‖α(i)S22p
(i)‖ + ‖d(i)‖

)

(1 − β)|α(i)s11q(i)| ,

as required.

This bound is a significant improvement over the corresponding results in [8, Lemma 2.2]

and [3, Lemma 3.1] which have a bound involving the norm of the unknown eigenvector

basis matrix. This matrix may be arbitrarily ill-conditioned, and hence may result in an

unnecessarily severe restriction on the solve tolerance in the later theory.

Condition (3.9) asks that τ (i) is small enough and bounded in terms of |α(i)s11q
(i)|,

which can be considered as a generalised cosine. In practice this means that if the eigenvector

approximation x(i) is coarse, |s11q
(i)| is close to zero and hence τ (i) has to be chosen small

enough.

Note that in the case of τ (i) = 0, that is, we solve the inner system exactly, we have

β = 0 as well as d(i) = 0 and hence

T (i+1) ≤ |λ1 − σ(i)|‖S22‖
‖(T22 − σ(i)S22)−1‖−1

T (i).
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As in [28], we introduce the function sep(λ1, (T22,S22)), which measures the separation of

the sought simple eigenvalue λ1 from the eigenvalues λ(T22,S22), as follows,

sep(λ1, (T22,S22)) := inf
‖a‖=1

‖(T22 − λ1S22)a‖(3.15)

=

{

‖(T22 − λ1S22)
−1‖−1, λ1 6∈ λ(T22,S22)

0, λ1 ∈ λ(T22,S22)
.

Using this definition we get

sep(σ(i), (T22,S22)) = inf
‖a‖=1

‖(T22 − σ(i)S22)a‖

≥ sep(λ1, (T22,S22)) − |λ1 − σ(i)|‖S22‖,

and also

T (i+1) ≤ |λ1 − σ(i)|‖S22‖
sep(σ(i), (T22,S22))

T (i)

for the case of exact solves. Since sep(σ(i), (T22,S22)) is a measure for the separation of

the shift σ(i) from the rest of the spectrum, this means that the convergence rate depends

on the ratio
|λ1 − σ(i)|‖S22‖

sep(σ(i), (T22,S22))
. For diagonalisable systems, where T22 is diagonal and

S22 = In−1, this ratio becomes
|λ1 − σ(i)|
|λ2 − σ(i)| , the familiar ratio obtained for inverse iteration.

In the next subsection we give the convergence rate for inexact inverse iteration for certain

choices of the shift and the solve tolerance, using Lemma 3.3.

3.3. Convergence rate for inexact inverse iteration. Assume that the shift σ(i) in Al-

gorithm 3.1 satisfies

(3.16) |λ1 − σ(i)| <
sep(λ1, (T22,S22))

2‖S22‖
,

that is, σ(i) is close to λ1 and certainly closer to λ1 than to any other eigenvalue. Then, using

(3.16), for the first factor on the right hand side of (3.13),

|λ1 − σ(i)|‖S22‖
‖(T22 − σ(i)S22)−1‖−1

≤ |λ1 − σ(i)|‖S22‖
sep(λ1, (T22,S22)) − |λ1 − σ(i)|‖S22‖

<
|λ1 − σ(i)|‖S22‖
|λ1 − σ(i)|‖S22‖

= 1

holds. Note that for diagonalisable systems with S22 = In−1 condition (3.16) becomes

|λ1 − σ(i)| <
1

2
|λ2 − λ1|, where |λ2 − λ1| = minj 6=1 |λj − λ1| and hence |λ1 − σ(i)| <

|λ2 − σ(i)|, a familiar condition for the choice of the shift.

Using Lemma 3.3 we can prove convergence results for variable and fixed shifts σ(i) and

for different choices of the tolerances τ (i).

THEOREM 3.4 (Convergence of Algorithm 3.1). Let (1.1) be a generalised eigenproblem

and consider the application of Algorithm 3.1 to find a simple eigenvalue λ1 with correspond-

ing right eigenvector x1. Let the assumptions of Lemma 3.3 hold and let 0 < ‖S22p
(0)‖ < 1,

that is, x(0) is neither the solution itself nor deficient in the sought eigendirection.
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1. Assume σ(i) also satisfies

(3.17) |λ1 − σ(i)| <
sep(λ1, (T22,S22))

2‖S22‖
‖S22p

(i)‖

and ‖d(i)‖ ≤ τ (i)‖Mx(i)‖, where τ (i) <
α(i)

‖Mx(i)‖‖u1‖
β|s11q

(i)| with 0 ≤ 2β <

1 − T (0). Then Algorithm 3.1 converges linearly, that is,

T (i+1) ≤
(

T (0) + β

1 − β

)

T (i) ≤
(

T (0) + β

1 − β

)i+1

T (0).

If, in addition, τ (i) < α(i)η‖S22p
(i)‖/‖Mx(i)‖ for some constant η > 0, then the

convergence is quadratic, that is, T (i+1) ≤ qT (i)2 for some q > 0, and for large

enough i.
2. If τ (i) < α(i)η‖S22p

(i)‖/‖Mx(i)‖ for some positive constant η and furthermore

(3.18) |λ1 − σ(i)| <
1 − β

2 − β + η + δ

sep(λ1, (T22,S22))

‖S22‖
,

where δ > 0, then Algorithm 3.1 converges linearly, that is,

T (i+1) ≤ qT (i) ≤ qi+1T (0)

for some constant q < 1, and for large enough i.
Proof.

1. If (3.17) holds, then

|λ1 − σ(i)|‖S22‖
‖(T22 − σ(i)S22)−1‖−1

<
|λ1 − σ(i)|‖S22‖‖S22p

(i)‖
2|λ1 − σ(i)|‖S22‖ − |λ1 − σ(i)|‖S22‖‖S22p(i)‖

≤ ‖S22p
(i)‖,

since ‖S22p
(i)‖ < 1. Thus, from (3.14),

T (i+1) ≤ ‖S22p
(i)‖‖α

(i)S22p
(i)‖ + τ (i)‖Mx(i)‖

(1 − β)|α(i)s11q(i)|

≤ ‖S22p
(i)‖ ‖S22p

(i)‖ + β

(1 − β)|s11q(i)| ,

where we have used
τ (i)‖Mx(i)‖

α(i)
≤ β|s11q

(i)|
‖u1‖

≤ β. Now ‖S22p
(i)‖ ≤ T (i) gives

T (i+1) ≤ T (i) T
(i) + β

1 − β
,

which yields linear convergence by induction, if T (0) < 1 − 2β. Quadratic con-

vergence follows for large enough i and for τ (i) linearly decreasing in ‖S22p
(i)‖,

since

T (i+1) ≤ ‖S22p
(i)‖‖α

(i)S22p
(i)‖ + τ (i)‖Mx(i)‖

(1 − β)|α(i)s11q(i)|

≤ ‖S22p
(i)‖‖S22p

(i)‖ + η‖S22p
(i)‖

(1 − β)|s11q(i)|

=
‖S22p

(i)‖
|s11q(i)|

‖S22p
(i)‖(1 + η)

(1 − β)|s11q(i)| = qT (i)2,



ETNA
Kent State University 

etna@mcs.kent.edu

INEXACT INVERSE ITERATION FOR THE GENERALISED EIGENPROBLEM 51

for q = (1 + η)/(1 − β). We have used |s11q
(i)| < 1.

2. If (3.18) holds, then

|λ1 − σ(i)|‖S22‖
‖(T22 − σ(i)S22)−1‖−1

≤ |λ1 − σ(i)|‖S22‖
sep(λ1, (T22,S22)) − |λ1 − σ(i)|‖S22‖

<
|λ1 − σ(i)|‖S22‖(1 − β)

((2 − β + η + δ) − (1 − β))|λ1 − σ(i)|‖S22‖

=
1 − β

1 + η + δ
< 1.

Further, if τ (i) < α(i)η‖S22p
(i)‖/‖Mx(i)‖ in (3.14), then (with the results from the

first part of the proof)

T (i+1) <
1 − β

1 + η + δ

1 + η

1 − β
T (i) =

1 + η

1 + η + δ
T (i),

and hence T (i+1) ≤ qT (i) holds with q = (1 + η)/(1 + η + δ) < 1.

Thus we have proved Theorem 3.4.

Note that if β is chosen close to zero, that is, more accurate solves are used for the inner

iteration (see (3.9)), then according to Theorem 3.4, which requires β < (1 − T (0))/2, T (0)

is allowed to be close to one, and hence the initial eigenvector approximation is allowed to be

coarse. In contrast, for a larger value of β, which allows the solve tolerance τ (i) to be larger,

we require that T (0) is very small and hence the initial eigenvector approximation x(0) has to

be very close to the sought eigenvector. Also, note that ‖u1‖ = 1 + ‖g12‖, so that if ‖g12‖ is

large, then ‖u1‖ is large and the solve tolerance satisfying (3.9) may be small. Note also that

condition (3.9) is the same condition as τ (i) < β|uH
1 Mx(i)|/ ‖u1‖ in Lemma 3.1 of [3].

REMARK 3.5. One way of choosing τ (i) < α(i)η‖S22p
(i)‖/‖Mx(i)‖ is to use

τ (i) = C‖r(i)‖,

where r(i) is the eigenvalue residual which is given by (3.5) and satisfies ‖r(i)‖ := O(‖p(i)‖),
and C is a small enough constant.

REMARK 3.6. We point out two shift strategies:

• Fixed shift: With a decreasing tolerance τ (i) = C1‖r(i)‖ for small enough τ (0) and

C1 the second case in Theorem 3.4 arises. If the shift satisfies (3.18), that is, the

shift is close enough to the sought eigenvalue, then Algorithm 3.1 exhibits linear

convergence.

• Rayleigh quotient shift: A generalised Rayleigh quotient shift σ(i) = ρ(x(i)) chosen

as in (2.9) satisfies (see (3.6)) |σ(i) −λ1| = C2‖p(i)‖ for some constant C2. Hence,

for small enough C2 it will also satisfy (3.17). Therefore, with a decreasing tolerance

τ (i) = C1‖r(i)‖ quadratic convergence is achieved for small enough τ (0).

Finally we would like to discuss the application of Theorem 3.4 to the case of positive

definite M and diagonalisable M−1Ax = λx; see [3]. In this case S is the identity matrix,

and T can be represented by a diagonal matrix. Condition (3.17) then becomes

|λ1 − σ(i)| <
|λ1 − λ2|

2
‖p(i)‖,

which is the same condition as that in [3].
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4. Further convergence results. This section contains some additional convergence

results including an analysis of the behaviour of the normalisation function φ(y) from Algo-

rithm 3.1 during inexact inverse iteration.

First we give an extension of Lemma 3.2 which provides a lower bound on the eigenvalue

residual in terms of p(i).

LEMMA 4.1. Let the assumptions of Lemma 3.2 be satisfied. Then the following bound

holds:

‖p(i)‖ ≤ 1

α(i)

1

sep(ρ(x(i)), (T22,S22))
‖r(i)‖ ≤ ‖G‖

sep(ρ(x(i)), (T22,S22))
‖r(i)‖.

Proof. With ‖UH
2 ‖ = 1 (see remarks after Lemma 3.3) and UH

2 = ĪH
n−1G

−1QH we

have

‖r(i)‖ ≥ ‖UH
2 r(i)‖ = ‖ĪH

n−1G
−1QH(A− ρ(x(i))M)x(i)‖

= ‖ĪH
n−1G

−1QH(A − ρ(x(i))M)ZZHx(i)‖
= ‖ĪH

n−1G
−1(T − ρ(x(i))S)ZHx(i)‖

= ‖ĪH
n−1G

−1(T − ρ(x(i))S)HH−1ZHx(i)‖

=

∥

∥

∥

∥

ĪH
n−1

[

t11 − ρ(x(i))s11 0H

0 T22 − ρ(x(i))S22

]

H−1ZHx(i)

∥

∥

∥

∥

.

With H−1ZH = X−1 and using (3.1) as well as the special structure of ĪH
n−1, we then obtain

‖r(i)‖ ≥
∥

∥

∥

∥

∥

α(i)

[

0H

In−1

]H [
t11 − ρ(x(i))s11 0H

0 T22 − ρ(x(i))S22

]

X−1(x1q
(i) + X2p

(i))

∥

∥

∥

∥

∥

= α(i)

∥

∥

∥

∥

∥

[

0H

In−1

]H [
t11 − ρ(x(i))s11 0H

0 T22 − ρ(x(i))S22

]

(q(i)e1 + Īn−1p
(i))

∥

∥

∥

∥

∥

= α(i)
∥

∥

∥
In−1(T22 − ρ(x(i))S22)p

(i)
∥

∥

∥
.

The definition of the separation (3.15) yields

‖r(i)‖ ≥ α(i) ‖(T22 − ρ(x(i))S22)p
(i)‖

‖p(i)‖ ‖p(i)‖ ≥ α(i)sep(ρ(x(i)), (T22,S22))‖p(i)‖.

Finally, using 1 = ‖UU−1Mx(i)‖ ≤ ‖U‖α(i) and ‖U‖ = ‖G‖ gives the bound on α(i) and

the desired result.

Lemmas 4.1 and 3.2 show that the eigenvalue residual is equivalent to ‖p(i)‖ as a mea-

sure of convergence, provided λ1 is a well-separated eigenvalue, though, of course, in prac-

tice, if ‖G‖ is large, then a small residual does not necessarily imply a small error. The

following proposition gives upper and lower bounds on
1

φ(y(i))
in terms of ‖r(i)‖.

PROPOSITION 4.2. Let (λ(i),x(i)) with ‖Mx(i)‖ = 1 be the current approximation to

(λ1,x1). Assume that y(i) is such that

Mx(i) − (A − σ(i)M)y(i) = d(i), where ‖d(i)‖ ≤ τ (i) < 1.

Then

(4.1) ‖r(i+1)‖ ≤ 1 + τ (i)

φ(y(i))



ETNA
Kent State University 

etna@mcs.kent.edu

INEXACT INVERSE ITERATION FOR THE GENERALISED EIGENPROBLEM 53

and

(4.2)
1 − τ (i)

φ(y(i))
≤ ‖r(i+1)‖ + |ρ(x(i+1)) − σ(i)|,

where r(i+1) = Ax(i+1) − ρ(x(i+1))Mx(i+1).

Proof. We have (A − σ(i)M)y(i) = Mx(i) − d(i) and, since x(i+1) =
y(i)

φ(y(i))
,

Ax(i+1) − σ(i)Mx(i+1) =
1

φ(y(i))
(A − σ(i)M)y(i).

Hence

(4.3)
‖Ax(i+1) − σ(i)Mx(i+1)‖

‖Mx(i) − d(i)‖ =
1

φ(y(i))
.

Finally, ‖Mx(i) − d(i)‖ ≤ 1 + τ (i) together with the minimising property of ρ(x(i+1)) (see

(2.11)) yields the first bound (4.1). In order to obtain the second bound, equality (4.3) gives

1

φ(y(i))
≤ ‖Ax(i+1) − ρ(x(i+1))Mx(i+1)‖ + |ρ(x(i+1)) − σ(i)|‖Mx(i+1)‖

‖Mx(i)‖ − ‖d(i)‖

≤ ‖r(i+1)‖ + |ρ(x(i+1)) − σ(i))|
1 − τ (i)

,

which yields (4.2).

Proposition 4.2 provides the following result. If we chose the shift to be σ(i) := ρ(x(i)),
then

1 − τ (i)

φ(y(i))
− |ρ(x(i+1)) − ρ(x(i))| ≤ ‖r(i+1)‖ ≤ 1 + τ (i)

φ(y(i))
.

From section 3, convergence of inexact inverse iteration yields ‖p(i)‖ → 0. By Lemmas 3.2

and 4.1, convergence of inexact inverse iteration implies ‖r(i)‖ → 0 as well as |ρ(x(i)) −
λ1| → 0. The last property also yields |ρ(x(i+1)) − ρ(x(i))| → 0, if inexact inverse iteration

converges. Therefore Proposition 4.2 shows that inexact inverse iteration converges if and

only if φ(y(i)) → ∞ as i → ∞. Note that φ(y(i)) := ‖My(i)‖ in Proposition 4.2.

We end this section with an application of inexact inverse iteration to block structured

systems of the form Ax = λMx, where

A =

[

K C

CH 0

]

and M =

[

M1 0

0 0

]

,

and M1 is symmetric positive definite. Matrices with this block structure arise after a mixed

finite element discretisation of the linearised incompressible Navier-Stokes equations. If

the desired eigenvector is written in terms of the velocity and pressure components x =
[xH

u xH
p ]H , the incompressibility condition CHxu = 0 holds. If the system (A−σ(i)M)y(i) =

Mx(i) is solved inexactly, we cannot guarantee that CHx
(i)
u = 0, even if the starting guess

satisfies CHx
(0)
u = 0: we only know that ‖CHx

(i)
u ‖ ≤ τ (i). The following corollary shows

that inexact inverse iteration need not enforce the incompressibility condition at each outer

iteration.
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COROLLARY 4.3. Let the assumptions of Proposition 4.2 be satisfied and consider inex-

act inverse iteration applied to the block structured system

[

M1x
(i)
u

0

]

−
[

K − ρ(x(i))M1 C

CH 0

]

[

y
(i)
u

y
(i)
p

]

=

[

d
(i)
u

d
(i)
p

]

, where ‖d(i)‖ ≤ τ (i).

Then ‖CHx
(i)
u ‖ → 0 as i → ∞.

Proof. From Algorithm 3.1 and Proposition 4.2 we have

‖CHx(i+1)
u ‖ ≤ ‖CHy

(i)
u ‖

φ(y(i))
≤ τ (i)

φ(y(i))
→ 0 as i → ∞.

5. Two numerical examples. Finally, we give two test problems for our theory. We

chose problems Ax = λMx which are not necessarily diagonalisable and with singular M,

since problems with positive definite M (including the standard problem M = I) have been

extensively investigated by other authors; see, for example, [2, 3]. The paper by Smit and

Paardekooper [25] contains examples for the standard symmetric eigenproblem and that of

Golub and Ye [8] discusses the standard diagonalisable problem M−1Ax = λx. A nuclear

reactor problem similar to the one in the following example with M singular is considered in

[12]. However, in [12] the problem is first transformed into a standard eigenproblem.

EXAMPLE 5.1 (Nuclear Reactor Problem). The standard model to describe the neutron

balance in a 2D model of a nuclear reactor is given by the two-group neutron equations

−div(K1∇u1) + (Σa,1 + Σs)u1 =
1

µ1
(Σf,1u1 + Σf,2u2),

−div(K2∇u2) + Σa,2u1 − Σsu2 = 0,

where u1 and u2 are defined on [0, 1]×[0, 1] and represent the density distributions of fast and

thermal neutrons respectively. K1 and K2 are diffusion coefficients and Σa,1, Σa,2, Σs, Σf,1

and Σf,2 measure interaction probabilities and take different piecewise constant values in

different regions of the reactor, which for this example are given in Figure 5.1 and Table 5.1.

The largest µ1 such that 1/µ1 is an eigenvalue of the system equation is a measure for

the criticality of a reactor, with µ1 < 1 representing subcriticality and µ1 > 1 representing

supercriticality. The aim is to maintain the reactor in the critical phase with µ1 = 1. The

boundary conditions for g = 1, 2 are

ug = 0 if x1 = 0 or x2 = 0,

Kg
∂ug

∂xi
= 0 if xi = 1, for i = 1, 2.

Discretising the problem using a finite difference approximation on an h × h grid, where

h = 1/m, we obtain a 2m2 × 2m2 discrete eigenproblem Au = λMu, where A and M

are both nonsymmetric and M is singular. We seek the smallest eigenvalue λ1(= 1/µ1),
which determines the criticality of the reactor. We choose m = 32, which leads to a system

of size n = 2048. For initial conditions, we take x(0) = [1, . . . , 1]H/
√

n. In fact, the exact

eigenvalue is given by λ1 = 0.9707 and cos(x1,x
(0)) ≈ 0.44.

We use a fixed shift and a variable shift strategy. The vector x(i) is normalised such that

‖Mx(i)‖ = 1, that is, φ(y(i)) =

√

y(i)HMHMy(i) in Algorithm 3.1. For the inner solver

we use right-preconditioned GMRES with an incomplete LU -factorisation as preconditioner.

We perform three different numerical experiments.
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FIG. 5.1. Nuclear reactor problem geometry.

TABLE 5.1

Data for the nuclear reactor problem.

K1 K2 Σa,1 Σa,12 Σs Σf,1 Σf,2

Region 1 2.939e-5 1.306e-5 0.0089 0.109 0.0 0.0 0.0079

Region 2 4.245e-5 1.306e-5 0.0105 0.025 0.0 0.0 0.0222

Region 3 4.359e-5 1.394e-5 0.0092 0.093 0.0066 0.140 0.0156

Region 4 4.395e-5 1.355e-5 0.0091 0.083 0.0057 0.109 0.0159

Region 5 4.398e-5 1.355e-5 0.0097 0.098 0.0066 0.124 0.0151

Region 6 4.415e-5 1.345e-5 0.0093 0.085 0.0057 0.107 0.0157

(a) Inexact inverse iteration using a fixed shift σ(i) = σ = 0.9 and a decreasing solve toler-

ance τ (i) for the inner solver which satisfies

(5.1) τ (i) = min{0.1, ‖r(i)‖},

where r(i) is defined by (3.5). The iteration stops once the eigenvalue residual satisfies

‖r(i)‖ < 10−9.

(b) Inexact inverse iteration using a variable shift given by ρ(x(i)) from (2.10) and a decreas-

ing solve tolerance τ (i) for the inner solver which satisfies (5.1). The iteration stops once

the eigenvalue residual satisfies ‖r(i)‖ < 10−14.

(c) Inexact inverse iteration using a variable shift given by ρ(x(i)) from (2.10) with a fixed

solve tolerance, which we chose to be τ (i) = τ (0) = 0.4. This iteration also stops once

the eigenvalue residual satisfies ‖r(i)‖ < 10−9.

Figure 5.2 illustrates the convergence history of the eigenvalue residuals for the three dif-

ferent experiments described in (a), (b) and (c) above. The choice of (5.1) to provide a solve

tolerance τ (i) is consistent with the discussion in Remark 3.5 and the assumption in Theo-

rem 3.4. We have used this decreasing tolerance throughout our computations. As proved in

Theorem 3.4, case (2), inexact inverse iteration with a decreasing solve tolerance and with a

fixed shift, chosen to be close enough to the desired eigenvalue, exhibits linear convergence,

as shown in Figure 5.2, case (a) (see also the discussion on the fixed shift in Remark 3.6). If

we use a generalised Rayleigh quotient as a shift (where the Rayleigh quotient is close enough

to the sought eigenvalue) and a fixed solve tolerance τ (0) the Algorithm 3.1 converges linearly

(case (c)), whereas for a decreasing tolerance quadratic convergence is readily observed (case

(b)). This covers case (1) in Theorem 3.4, we also refer to the discussion on the Rayleigh

quotient shift in Remark 3.6.
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FIG. 5.2. Convergence history of the eigenvalue residuals for Example 5.1 using fixed shift σ = 0.9 and

variable shift and fixed or decreasing tolerances (see tests (a), (b) and (c)).

We would like to note that all three methods have the same initial eigenvalue residual.

Both methods (a) and (c) exhibit linear convergence, but the method with a variable shift

and fixed solve tolerance performs better than the fixed shift method with a decreasing solve

tolerance. This improvement in the behaviour of method (c) over (a) may be explained by

close examination of the asymptotic constants in the expressions for linear convergence in

Theorem 3.4. For a good starting guess (that is a T (0) close to zero) and a small enough β
with β < (1 − T (0))/2, the constant of linear convergence for method (c) may be much

smaller than one, and hence smaller than the convergence rate for method (a). In our particular

computations the constants for linear convergence are about 0.82 for method (a) and about

0.32 for method (c).

The total amount of work is measured by the number of matrix-vector multiplications

given in Figure 5.2. We can observe that method (b), inexact Rayleigh quotient iteration with

a decreasing solve tolerance, achieves the fastest convergence rate with smallest amount of

work.

EXAMPLE 5.2 (The Linearised Steady Navier-Stokes Equations). For the stability anal-

ysis of the steady state solutions of the Navier-Stokes equations generalised eigenproblems

of the form Ax = λMx arise, where A and M have a special block structure, that is,

A =

[

K C

CH 0

]

and M =

[

M1 0

0 0

]

.

Of particular interest for the stability analysis are the leftmost eigenvalues of the system.

(The right half-plane is the stable region in our formulation.) We consider incompressible

fluid flow past a cylinder with Reynolds number equal to 1. Using a mixed finite element

discretisation of the Navier-Stokes equations the above block structured systems arises, where

K is 1406×1406 and nonsymmetric, C is 1406×232 and has full rank, and M1 is 1406×1406
and symmetric positive definite. The system has 1638 degrees of freedom. The leftmost
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TABLE 5.2

Incompressibility condition ‖CHx
(i)
u ‖ in the course of inexact inverse iteration without the application of π.

Outer it. i ‖r(i)‖ ‖CHx
(i)
u ‖ ‖CHy

(i)
u ‖

1 3.2970e-01 0 1.2446e-02

2 1.9519e-02 1.3454e-04 4.7833e-03

3 1.1518e-02 2.0178e-04 7.3705e-03

4 7.3977e-03 4.4779e-04 1.6494e-02

5 3.5684e-03 2.8949e-04 1.2807e-02

6 1.0365e-03 1.6762e-04 1.3858e-02

7 1.1658e-04 3.3947e-05 1.1832e-02

8 7.1789e-06 2.8401e-07 3.2990e-03

9 1.3820e-06 1.0094e-07 5.9614e-03

10 5.2651e-07 6.0768e-08 1.0112e-02

11 1.6630e-07 1.6899e-08 8.9196e-03

12 5.3896e-08 3.1178e-09 3.8395e-03

eigenvalues of the problem correct to two decimal places are given by

λ1/2 = 0.21 ± 0.16i,

and we aim to find the complex eigenvalue λ1 nearest to 0.21+0.16i. We normalise x(i) such

that ‖Mx(i)‖ = 1, that is, φ(y(i)) =

√

y(i)H
MHMy(i) as in the first example. The con-

vergence performance of the three methods considered in the previous example is repeated

in this example and we do not reproduce the results here. Rather, we look at the incompress-

ibility condition CHx
(i)
u = 0 and examine how it behaves under inexact inverse iteration.

In particular we ask if there is any advantage to be gained by imposing the incompressibility

condition after each inexact solve. To this end we carry out inexact inverse iteration using a

variable shift given by ρ(x(i)) from (2.10) and a close enough starting guess. We use a fixed

solve tolerance τ (i) = τ (0) = 0.1. The iteration stops once the eigenvalue residual satisfies

‖r(i)‖ < 10−7. To impose the incompressibility condition after an inner iteration we replace

x
(i)
u by πx

(i)
u where the projection π is defined by

π := I− C(CHC)−1CH .

We compare two methods: the projection π is not applied at the start of each outer iteration i;
and π is applied at the beginning of each outer iteration. In this case, after each inner solve

we apply π to y
(i)
u , such that

CHx(i+1)
u = CH y

(i)
u

φ(y
(i)
u )

= 0.

For both experiments we take the initial condition such that CHx
(0)
u = 0.

Tables 5.2 and 5.3 show the eigenvalue residual ‖r(i)‖, ‖CHx
(i)
u ‖ and ‖CHy

(i)
u ‖ at

each outer iteration i. The second column of Table 5.3 shows ‖CHx
(i)
u ‖ before projection

is applied for the beginning of the next outer iteration step. We observe that there is almost

no difference between performing inexact inverse iteration with or without projection at the

beginning of each outer step. We also see ‖CHx
(i)
u ‖ → 0 as i increases, as predicted by

Corollary 4.3, and hence, the application of the projection π at every step is not necessary.

Also note that in both tables ‖CHy
(i)
u ‖ ≤ τ (0) = 0.1.
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TABLE 5.3

Incompressibility condition ‖CHx
(i)
u ‖ in the course of inexact inverse iteration with the application of π.

Outer it. i ‖r(i)‖ ‖CHx
(i)
u ‖ ‖CHy

(i)
u ‖

1 3.2970e-01 0 1.2446e-02

2 1.9631e-02 1.3454e-04 4.7833e-03

3 1.2169e-02 2.0592e-04 7.5205e-03

4 1.1431e-02 4.4542e-04 1.6396e-02

5 5.9688e-03 2.9315e-04 1.2954e-02

6 3.0500e-03 1.6095e-04 1.3298e-02

7 4.3488e-04 3.4289e-05 1.2147e-02

8 8.4934e-06 2.8349e-07 3.2432e-03

9 1.7348e-06 1.0312e-07 6.2898e-03

10 7.9410e-07 6.0285e-08 1.0026e-02

11 2.9405e-07 1.6987e-08 8.9189e-03

12 6.4187e-08 3.1543e-09 3.8886e-03

6. A convergence theory for inexact simple Jacobi-Davidson method. In this section

we show how the convergence theory obtained in section 3 may be applied to a simplified ver-

sion of the inexact Jacobi-Davidson method. The Jacobi-Davidson method was introduced

by Sleijpen and van der Vorst, see [22] and [24] for the linear eigenproblem, and it has been

applied to the generalised eigenproblem and matrix pencils; see [4] and [21]. A survey has

been given in [10]; see also [1]. A convergence theory for Jacobi-Davidson applied to the

Hermitian eigenproblem has been given in [30] and for a special inner solver in [14]. The re-

lationship between a simplified version of Jacobi-Davidson method and Newton’s method for

exact solves has been established in several papers; see, for example, [22, 23, 24], and [15].

Here we provide a convergence theory for a version of an inexact simplified Jacobi-Davidson

method for the generalised eigenvalue problem (1.1), and also present some numerical results

to illustrate our theory.

6.1. A simplified Jacobi-Davidson method. First, we briefly describe one possible ver-

sion of a simplified Jacobi-Davidson algorithm for the generalised eigenvalue problem (1.1);

see [14, Algorithm 2.1] and [30, Algorithm 3.1] for similar algorithms for standard Hermitian

eigenproblems.

Assume (ρ(x(i)),x(i)) approximates (λ1,x1), and introduce the orthogonal projections

P(i) = I − Mx(i)x(i)HMH

x(i)HMHMx(i)
and Q(i) = I − x(i)x(i)H

MHM

x(i)HMHMx(i)
.

With r(i) defined by (3.5) solve the correction equation

(6.1) P(i)(A − ρ(x(i))M)Q(i)s(i) = −r(i), where s(i) ⊥ MHMx(i),

for s(i). An improved guess for the eigenvector is given by a suitably normalised x(i) + s(i).

For other choices of projections and discussions on the correction equation (6.1) we refer

to [21]. The motivation behind the Jacobi-Davidson algorithm is that for large systems which

are solved iteratively, the form of the correction equation (6.1) is more amenable to efficient

solution than the corresponding system for inverse iteration. Also, in practice, a subspace

version of Jacobi-Davidson is used with each new direction being added to increase the di-

mension of a search space, but we do not consider this version here. Algorithm 6.1 provides

a precise description of the method we discuss in this paper.
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ALGORITHM 6.1 (Simplified Jacobi-Davidson (Jacobi-Davidson without subspace ac-

celeration)).

Input: x(0), imax.

For i = 1, . . . , imax

1. Choose τ (i).

2. r(i) = (A − ρ(x(i))M)x(i).

3. Find s(i) such that ‖P(i)(A − ρ(x(i))M)Q(i)s(i) + r(i)‖ ≤ τ (i)‖r(i)‖
for s(i) ⊥ MHMx(i).

4. Set x(i+1) = (x(i) + s(i))/φ(x(i) + s(i)).
5. Test for convergence.

Output: x(imax).

The function φ is a normalisation, which for both practical computations and theoretical

comparisons between Rayleigh quotient iteration and Jacobi-Davidson, is taken to be the

same as in Algorithm 3.1.

In this section we shall provide a convergence theory for the inexact simplified Jacobi-

Davidson method given in Algorithm 6.1. To do this we shall first show the close connection

of inexact simplified Jacobi-Davidson with inexact Rayleigh-quotient iteration and then apply

the convergence theory in section 3. Though simplified Jacobi-Davidson is not used in prac-

tice its convergence may be considered as a worst-case scenario for the more usual subspace

Jacobi-Davidson procedure, and the convergence results here can be similarly interpreted.

First, we point out the following well-known equivalence between the simplified Jacobi-

Davidson method and Rayleigh quotient iteration for exact system solves, which has been

proved in [14, 16, 24], and in [21] for the generalised eigenproblem.

LEMMA 6.2. Suppose the correction equation in Algorithm 6.1 has a unique solu-

tion s(i). Then the Jacobi-Davidson solution x
(i+1)
JD = x(i) + s(i) satisfies

(A − ρ(x(i))M)z(i+1) = Mx(i),

where

(6.2) z(i+1) =
1

γ(i)
x

(i+1)
JD , with γ(i) =

x(i)H
MHMx(i)

x(i)H
MHM(A − ρ(x(i))M)−1Mx(i)

.

From Lemma 6.2 it is clear that for exact solves one step of simplified Jacobi-Davidson

produces an improved approximation to the desired eigenvector that has the same direction

as that given by one step of Rayleigh quotient iteration. Hence, as observed in [24], if the

correction equation is solved exactly, the method converges as fast as Rayleigh quotient it-

eration (that is quadratically for nonsymmetric systems). The next section shows how we

can find a similar equivalence between inexact Rayleigh quotient iteration and the inexact

Jacobi-Davidson method.

6.2. Inexact Jacobi-Davidson and Rayleigh quotient iterations. Assume we have an

eigenvector approximation x(i). We compare one step of inexact Rayleigh quotient iteration,

that is,

(6.3) (A − ρ(x(i))M)y(i) = Mx(i) − d
(i)
I ,

where ‖d(i)
I ‖ ≤ τ

(i)
I ‖Mx(i)‖, with τ

(i)
I < 1, with one step of inexact Jacobi-Davidson

method, that is,

(6.4) P(i)(A − ρ(x(i))M)Q(i)s(i) = −r(i) + d
(i)
JD, for s(i) ⊥ MHMx(i),
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where ‖d(i)
JD‖ ≤ τ

(i)
JD‖r(i)‖ and τ

(i)
JD < 1. First, we transform (6.4) into a system of the form

(6.3), as follows. Since Qs(i) = s(i) and r(i) = P(i)r(i) = P(i)(A− ρ(x(i))M)x(i), we can

write (6.4) as

P(i)(A − ρ(x(i))M)(x(i) + s(i)) = d
(i)
JD, s(i) ⊥ MHMx(i),

or

(A − ρ(x(i))M)(x(i) + s(i)) = γ(i)Mx(i) + d
(i)
JD,

where γ(i) is chosen such that s(i) ⊥ MHMx(i). Finally we obtain

(6.5) (A − ρ(x(i))M)
x(i) + s(i)

γ(i)
= Mx(i) +

d
(i)
JD

γ(i)
,

where (see (6.2))

γ(i) =
x(i)H

MHMx(i) − x(i)H
MHM(A − ρ(x(i))M)−1d

(i)
JD

x(i)H
MHM(A − ρ(x(i))M)−1Mx(i)

.

The linear system (6.5) is of the form (6.3), and under the assumption that

‖d(i)
JD‖

|γ(i)| ≤ τ
(i)
I ‖Mx(i)‖,

we can apply the theory of section 3. Thus, we obtain the following corollary from Theo-

rem 3.4.

COROLLARY 6.3. Let the assumptions and definitions of Theorem 3.4 hold and let

(6.6) τ
(i)
I := τ

(i)
JD

‖r(i)‖
|γ(i)| .

Then Algorithm 6.1 converges

• linearly, if τ
(i)
I <

α(i)

‖Mx(i)‖‖u1‖
β|s11q

(i)|, with 0 ≤ 2β < 1 − T (0), and

• quadratically, if, in addition, τ
(i)
I < α(i)η‖S22p

(i)‖/‖Mx(i)‖ for some constant

η > 0.

Proof. Note that

(6.7)
‖d(i)

JD‖
|γ(i)| ≤ τ

(i)
JD

‖r(i)‖
|γ(i)| := τ

(i)
I ‖Mx(i)‖

and using τ (i) := τ
(i)
I in Theorem 3.4 gives the result.

EXAMPLE 6.4 (Bounded Finline Dielectric Waveguide). Consider the generalised eigen-

problem Ax = λMx, where A and M are given by bfw782a.mtx and bfw782b.mtx

in the Matrix Market library [13]. These are matrices of size 782, where A is real non-

symmetric and has 7514 non-zero entries, M is real symmetric indefinite and has 5982 non-

zero entries. We seek the smallest eigenvalue in magnitude which is given by λ1 = 564.6.

Our only interest in this paper is the outer convergence rate, (though, for information we

use GMRES for the inner solves in Algorithm 6.1). We use a variable shift given by the

generalised Rayleigh quotient ρ(x(i)), and either a decreasing tolerance which is given by

τ (i) = min{0.05, 0.05 ‖r(i)‖} or a fixed tolerance given by τ = 0.05.
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FIG. 6.1. Convergence history of the eigenvalue residuals for Example 6.4 using Rayleigh quotient shift and

inexact solves with fixed tolerance.
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FIG. 6.2. Convergence history of the eigenvalue residuals for Example 6.4 using Rayleigh quotient shift and

inexact solves with decreasing tolerance.

Figures 6.1 and 6.2 illustrate the convergence history for inexact Rayleigh quotient it-

eration and simple Jacobi-Davidson. We observe that a decreasing solve tolerance in the

simple Jacobi-Davidson method with generalised Rayleigh quotient shift leads to quadratic

convergence (Figure 6.2), whereas with a fixed solve tolerance only linear convergence may

be achieved with a small enough tolerance (Figure 6.1). For comparison we have also plotted

the results for inexact inverse iteration with a generalised Rayleigh quotient shift, where both

the same decreasing tolerance τ (i) and fixed tolerance τ were used as for the simple inexact

Jacobi-Davidson method.
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FIG. 6.3. Convergence history of the eigenvalue residuals for Example 6.5 where ‖r(i)‖/|γ(i)| > 1
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FIG. 6.4. Convergence history of the eigenvalue residuals for Example 6.5 where ‖r(i)‖/|γ(i)| < 1

Since, in this paper, we are only concerned about the outer convergence rate, from (6.7)

we note that in theory the quantity ‖r(i)‖/|γ(i)| is crucial for the comparison of the perfor-

mance of the two methods. We note the following:

• If ‖r(i)‖/|γ(i)| < 1, then there is the potential that one step of the simple inex-

act Jacobi-Davidson method will perform better than one step of inexact Rayleigh

quotient iteration.

• If ‖r(i)‖/|γ(i)| > 1, then there is the potential that one step of the inexact Rayleigh

quotient iteration will perform better than one step of inexact simple Jacobi-Davidson

method.

The following example illustrates this further.
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TABLE 6.1

Values for ‖r(i)‖/|γ(i)| in Figures 6.3 and 6.4 for fixed tolerance solves

It. 1 2 3 4 5 6 7 8 9 10

Fig. 6.3 27.4226 8.5952 4.0588 1.7692 1.3867 7.6525 1.2368 13.5016 1.2238 12.0983

Fig. 6.4 3.0399 0.7159 0.3132 0.1470 0.1706 0.4316 0.1368 0.7833 0.1401

EXAMPLE 6.5. We construct two simple test examples, one for which the quantity

‖r(i)‖/|γ(i)| turns out to be greater than one, and one for which this quantity is less than

one. We use a standard eigenproblem Ax = λx with A = diag(1, 2, . . . , 500) and set either

A(1, 2 : 300) = 1 (case (a)) or A(1, 2 : 300) = 10 (case (b)). Clearly, in the second

problem the nonnormality has been increased. We seek the smallest eigenvalue λ1 = 1 and

use GMRES for the inner solves. Further we use a variable shift given by the generalised

Rayleigh quotient ρ(x(i)) and a fixed tolerance given by τ = 0.1. We compare inexact

Rayleigh quotient iteration and inexact simple Jacobi-Davidson. Both methods have linear

convergence and stop once the eigenvalue residual satisfies ‖r(i)‖ < 10−10.

Figure 6.3 illustrates the convergence history of the eigenvalue residuals for the two

methods discussed above for case (a), the mildly nonnormal case. The corresponding values

of ‖r(i)‖/|γ(i)| are listed in the second row of Table 6.2 and turn out to be greater than one.

As expected in this case, the convergence rate of inexact Rayleigh quotient iteration is better

than the convergence rate of inexact simple Jacobi-Davidson with Rayleigh quotient shift. On

the other hand, Figure 6.4 shows the convergence history of the eigenvalue residuals for case

(b), there the nonnormality of the problem is larger. The corresponding values of ‖r(i)‖/|γ(i)|
are listed in the third row of Table 6.2 and are found to be less than one after the first iteration.

As predicted, the convergence rate of inexact simple Jacobi-Davidson with Rayleigh quotient

shift is better than inexact Rayleigh quotient iteration in this case.

Finally, we note that for Example 6.4 the quantity ‖r(i)‖/|γ(i)| was greater than one

throughout the computations, leading to a faster convergence rate for inexact Rayleigh quo-

tient iteration. Further investigation onto this quantity is future research.
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