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Abstract. Among the fastest methods for solving stiff PDE are exponential integrators, which require the
evaluation of �����	� , where � is a negative semidefinite matrix and � is the exponential function or one of the related
“ 
 functions” such as 
������������������������� . Building on previous work by Trefethen and Gutknecht, Minchev,
and Lu, we propose two methods for the fast evaluation of �����	� that are especially useful when shifted systems�������! ��#"$�&% can be solved efficiently, e.g. by a sparse direct solver. The first method is based on best rational
approximations to � on the negative real axis computed via the Carathéodory-Fejér procedure. Rather than using
optimal poles we approximate the functions in a set of common poles, which speeds up typical computations by a
factor of ' to (*) + . The second method is an application of the trapezoid rule on a Talbot-type contour.

Key words. matrix exponential, exponential integrators, stiff semilinear parabolic PDEs, rational uniform ap-
proximation, Hankel contour, numerical quadrature
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1. Introduction. According to Minchev and Wright [33], the main computational chal-
lenge in the implementation of any exponential integrator is the need for fast and computa-
tionally stable evaluations of the exponential and related , functions. We are interested in
solving problems

(1.1) -.0/213.5476�89.;:�<>=
where the matrix 1 represents the spatial discretization of a linear elliptic differential operator
such as the Laplacian and 6 is a nonlinear function in . and < . In many problems 1 is negative
semidefinite. Exponential integrators are time-stepping formulas for (1.1) that separate the
linear term involving 1 , which is solved exactly by a matrix exponential, from the nonlinear
term. The simplest example is the exponential forward Euler method, given by.�?A@;BC/2DFEHG#I;.�?J4LKM< , BN8�KM<O1P=Q6R8#.�?�:><O?S=:
where , B 89TU=P/V89DFWYX[Z*=S\AT . There are many other exponential schemes and some of these
ideas have been reinvented several times [33]. In recent years the interest in exponential in-
tegrators has heightened. Krylov methods to compute , functions were introduced by Saad
[38] and Hochbruck and Lubich [19], Cox and Matthews [8] and Krogstad [25] introduced
one-step methods with ] th order accuracy in many circumstances, and Hochbruck and Oster-
mann [21] showed how ] th order could be achieved for all problems. Exponential multi-step
formulas require fewer matrix function evaluations per step than one-step methods and are
computationally very promising. Recently they have been rediscovered by Beylkin [4] and
Cox and Matthews after being introduced by Nørsett [36] in 1969. Kassam and Trefethen
applied the one-step method of Cox and Matthews to stiff PDEs such as the Korteweg–de
Vries, Kuramoto–Sivashinsky, Allen–Cahn and Grey–Scott equations [23, 24] and compared
them with more standard schemes.^

Received October 31, 2006. Accepted for publication September 13, 2007. Published online on December 13,
2007. Recommended by M. Hochbruck.�

Computing Laboratory, Oxford University, United Kingdom (thoms@comlab.ox.ac.uk). Thomas
Schmelzer is supported by a Rhodes Scholarship.� Computing Laboratory, Oxford University, United Kingdom (lnt@comlab.ox.ac.uk).

1



ETNA
Kent State University 
etna@mcs.kent.edu
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We follow a recent convention [3, 21, 22] and introduce,	_ 89TU=`/ Z8�a�XbZF=c d Be Dgf Bh�ikj Wml _ hnB!o l : aR/pZN:�qr:ms�s�s�s
In addition we define , e 8�T�=t/uD*W , which enables us to utilize the recurrence relation

(1.2) ,	_ 89TU=`/ ,	_ hnB 8�T�=	X ,	_ hRB 89v�=T : a	w�Zgs
For the first few values of a we have, Bx89TU=`/ D*WYXbZT : ,Hy 8�T�=`/ DFWCXzTJXbZT y : ,H{ 89TU=`/ DFWYXzT y \AqPXzT|X[ZT { s
The Taylor series representation of these functions is given by

(1.3) , _ 89TU=`/~}� �� _ Z� c T
� h _ s

The functions ,H_ are entire. Nevertheless, a numerical challenge one encounters in utilizing
them is that a direct computation based on these identities suffers from cancellation errors
for T close to the origin [17, 24]. To address this problem Cox and Matthews [8] made use
of the Taylor series. This technique works for scalars and diagonal matrices. An alternative
stable evaluation is based on (1.2) and a Cauchy integral representation on a circle � of radiusZ centered at T , for � T �U� Zx\Aq . Following Kassam and Trefethen [24] this is

,	_ 8�T�=`/ Zqx�R� d�� , _ 8��F=�YXzT o �P� Z� ���� B ,	_n� T�4LD*��G9�x�
where < � /�qx� � \ � . To avoid cancellation, the circles should not come close to the origin.
This idea can be generalized to non-diagonal matrices 1 , where the contour � has to enclose
the spectrum of 1 :

(1.4) , _ 8�1�=�/ Zqx�R� d � , _ 8��F=R8��*�$X�1P= hRB o �gs
In practice we are interested in � 8�1�=�� rather than � 8�1�= and herein lies a further strength of
this idea. We can evaluate,	_ 8�1�=>�C/ Zqx�R� d�� ,;_ 8��F=R8��*�$X�1P= hRB � o �
by a numerical quadrature scheme that solves a linear system at each node � � on the con-
tour � . In particular this idea is successful for the matrix exponential and it is closely related
to rational approximations as shown in [45]. Instead of evaluating (1.4) for a��uv we give in
§5 an alternative integral representation of ,t_ not involving the function ,H_ in the integrand.

Another method for evaluating the , functions that is widely used nowadays is Padé
approximation, as suggested by Beylkin et al. [4], Hochbruck et al. [20], and Minchev and
Wright [33]. The idea is based on scaling and squaring, which is a popular method for com-
puting the matrix exponential [18, 34]. This approach is restricted to matrices of moderate
dimension as the evaluation of � 891�=�� requires the explicit computation of � 891�= .
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We suggest instead the use of uniform rational Chebyshev approximations or the applica-
tion of the trapezoid rule on Talbot-type contours. The first idea was put forward previously
by Lu [27]. Lu claims that the coefficients are hard to compute and gives the rational ap-
proximation of type 8OZ ] :�Z ] = for , B in a partial fraction decomposition. He used the Remes
algorithm and a multiple precision environment. Here we shall show that in fact, the required
approximations can be computed readily in standard precision by the Carathéodory-Fejér
method as in [44] and [45].

We also discuss in §4 the approximation of these functions in a common set of poles,
which is advantageous in some applications.

Throughout this work we use direct methods to solve linear systems although our ideas
are by no means restricted to them.

2. The asymptotic behavior. Methods based on rational approximations get their power
from the fast exponential decay of the error introduced by the approximant. In the case of, functions we can give precise statements about the convergence. Let � ? denote the set
of all polynomials of degree at most �u��� with real coefficients. Let � � ? denote the set¡>¢ \A£ � ¢ ���C� :�£ �0� ? :�£�¤¥ v`¦ , § : ����� of rational functions. The best rational approx-
imant ¨ �� ? / ¨ �� ? 8 � :�© hPª�« = �L� � ? to the function � on © h /V8�X�¬:kvx® and the minimal
approximation error ¯ � ?°/ ¯ � ?R8 � :k© h = are defined by¯ � ?R8 � :k© h =�±²/p³ � X ¨ �� ? ³k´	µ°/ ¶�·S¸¹�ºA»½¼¿¾ ³ � X ¨ ³k´;µR:
where ³ « ³ ´ µ denotes the À�ÁSÂ -norm on © h . The best approximant ¨ �� ? 8 , _ :�© h = exists and
is unique [30].

Cody, Meinardus and Varga [7] showed that ¯ ?A? 8#Ã�Ä Â 8#ÅÆ=!:�© h = decreases geometrically
as �ÈÇ ¬ . In 1986 Gonchar and Rakhmanov [14] proved that the rate of convergence is
given by

(2.1) É ¶�Ê?NË } ¯ ?A? � Ã�Ä Â 8#ÅÆ=!:�© h � B�Ìk? /2ÍÎ/ ZÏ s qNÐ Ï vNÑCsms�s :
where Í , Halphen’s constant, is the unique positive root of Ò }? � B ?AÓ ¾B�h f hÆÓFj#¾ / BÔ . This con-
stant was studied by Halphen as early as 1886 [16]. The proof by Gonchar and Rakhmanov
confirmed a conjecture by Magnus [28] and previous numerical computations by Trefethen
and Gutknecht [44] and Carpenter, Ruttan and Varga [6].

A sharper result than (2.1) was conjectured by Magnus [29] and subsequently proved by
Aptekarev [2]: ¯ ?A? � Ã�Ä Â 8#ÅÆ=!:�© h �3/uqAÍ ?N@3ÕÖ 8>Z½4Ø×r8>Z*=>= as � Ç ¬s
We define ¯ _ / É ¶�Ê?NË } ¯ ?A?|8 , _ :�© h = B�Ìk? , if this limit exists, and conjecture that the limit does
indeed exist with ¯ _ / ¯ e /�Í for all a .

CONJECTURE 2.1. For all a ��� the asymptotic decay of the error is ¯ _ /Í .
Results about asymptotic convergence for best rational approximations are notoriously

difficult to prove. A successful proof might follow the footsteps of Gonchar and Rakhma-
nov [14], or might be based on induction utilizing recurrence relations for non-normal matri-
ces which we are going to introduce in §4. Numerical experiments give compelling indica-
tions that the conjecture is valid.

For practical purposes we are interested in the number of poles necessary to achieve a
desired accuracy. The asymptotic convergence rate is of limited use here, although it would
serve as a first indicator.
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3. Carathéodory-Fejér approximation on the negative real line. An efficient method
for constructing near-best rational approximations is the Carathéodory-Fejér (CF) method,
which was introduced first for the problem of constructing approximations on the unit disc [42,
43]. By utilizing a conformal map from the unit circle to a real interval or the negative real
line it was shown in [44] that the method is very efficient for real approximation, too. The
idea can also be generalized for other domains in the complex plane [11].

These approximations are so close to optimal that the method can often be regarded as
exact in practice. Magnus [29] has argued that the approximations of Ã�Ä Â 8#ÅÆ= produced by the
CF method differ from the true best approximations by only about Ù 8ÛÚAÜ hÆ? = . The absolute
difference between the best CF and best approximations is below standard machine precision
for � w Ï .

These ideas have not been exploited much over the last two decades. Today we can
compute CF approximations on the fly in fractions of a second. In [45] a MATLAB code is
presented that computes rational approximations of Ã�Ä Â 8#ÅÆ= on the negative real line with an
error as small as qÞÝzZmv hnBàß . We have made some minor modifications to adapt the code for, functions.

CF approximation enables us to estimate the error for all � at once as they appear as
singular values of a certain matrix within the construction process. For the applications we
have in mind, a rational uniform approximation with an error of Zmv hÆá is often appropriate.
The asymptotic behavior discussed in the last section suggests that � /âÜ poles may be
sufficient to achieve this accuracy. Computations confirm that for � /2Ü , the error we commit
by replacing ,	_ by its CF approximation is indeed smaller than Z*v hÆá for aY/ãvä:�ZN:ms�sms ; see
Fig. 3.1. For all exponential integrators we have used it is sufficient to compute ,`_ up toan/ ] .

We use a partial fraction expansion of the rational approximations,¨ ? 8�T�=`/ ¢ ?R8�T�=£m?R89TU= / ¨ } 4 ?�å � B æ åTJXzT å :
where æ å is the residue of the pole T å and ¨ } / ¨ 8Q¬b= . As the denominator £ ? 89TU= is a
polynomial with real coefficients, the poles come in conjugate pairs.

4. Approximation in common poles. When implementing exponential integrators it is
an attractive option to use a set of common poles for all , functions. Using this strategy one
can evaluate ,	_ 8Ûçä1P=àè for several different a by linear combination of the solutions Å å of a
fixed set of systems 891éX[T å ��=OÅ å /êè with only the coefficients of the linearcombination
depending on a . This situation is very frequent when dealing with exponential integrators.
Typically the use of common poles makes exponential integrators faster by a factor of q to Ñäs Ú .
The precise cost savings depend ultimately on the type of integrator being used and whether
it is possible to store ëíì decompositions, etc. Rather than devising an optimization problem
that imposes a set of common poles as a constraint and choosing them so that associated error
functions are as small as possible, we generalize an identity by Saad [38].

PROPOSITION 4.1. Let î W /ðï T ZvñvAò :
where T �Îó . Then ,	_ 8 î W =�/õô , _ 89TU= , _ @;Bx8�T�=v ,	_ 89v�=0ö for a¿/uvS:�Zg:�sms�ss
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FIG. 3.1. Error curves 
S÷���"N��`ø ^ ��"N� for type ��ù*úÛù!� best approximation to 
ä÷ , ûg�Îü*ú>�úÛ'*úÛ( on ýHþ . Note that
the abscissa, the negative real axis in the � -plane, is displayed on a log scale. The dashed lines mark the minimax
errors.

Saad established this identity for a¿/v . He was not concerned with , functions of higher
order. The proof for a	�[v carries over.

Proof. We observe that

î eW /2� andî ?W /õï T ? T ?rhRBv vâò � w�ZNs
As ,	_ 8�T�=`/ Ò }�!� _ B��ÿ T � h _ we get, _ 8 î W =`/ }� �� _ Z� c î

� h _W / ô Ò }�!� _ B��ÿ T � h _ Ò }�� _ @;B B�mÿ T � h _ hRBv B_ ÿ ö / ô ,	_ 8�T�= ,	_ @;B 89TU=v , _ 89vg= ö s
If T is replaced by a matrix 1 this idea has been suggested amongst others by Hochbruck

et al. [20] and Saad [38] for computing , B 891�= . However, this direct approach has two disad-
vantages: the resulting matrix

î I has twice the size of 1 , and it does not inherit properties
such as symmetry from 1 .

Given a rational approximation¨ f _ j 89TU=`/ ¨ } 4 ?�å � B æ åTJXzT å
of , _ , and noting that8 î W XzT å ��= hRB /��� 8�TJXzT å = hRB 8�TJX�T å = hnB T hRBåv XYT hnBå �� :
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the entry of ¨ f _ j 8 î W = approximating , _ @;B is¨ f _ j 8 î W = B�� y / ?�å � B æ å T hnBåTJXzT å s
This identity implies the recurrence relation

(4.1) ¨ f _ @ � j 8�T�=`/ ?�å � B æ å T h
�åTJX�T å : � ���

for rational approximations using common poles of , functions. This generalizes a result by
Minchev [31]. These approximations are far from optimal and yet they provide reasonable
quality on the negative real axis. For

� � v we can give error bounds that provide some
insight.

The matrices

î W are diagonalizable for T¤/ v with eigenvalues v and T , hence

î W /	 W�
íW 	 hRBW . And yet it is not appropriate to estimate the error by

(4.2) ³ � 8 î W =HX , _ 8 î W =�³ y��� y 8 	 W =�³ � 8 
íW =	X , _ 8 
íW =m³ y
where � y 8 	 W =z/ ³ 	 W ³ y ³ 	 hRBW ³ y is the q -norm condition number of

	 W , as the condition
number of

	 W tends to infinity for T approaching the origin, see Fig. 4.1. If this were not the
case we would be able to give a simple proof based on induction for Conjecture 2.1. A more
useful error bound for small T is given by the following result.

THEOREM 4.2. If � and 6 are analytic on the negative real axis © h then³ � 8 î W =HX&6�8 î W =�³�� ��� q À�ÁSÂ�kº ´ µ � � 8��F=	X 6R8��F= � 4 À>ÁäÂ�kº ´ µ � ��� 8��F=HX&6 � 8Û�*= � s
Proof. This is a special case of Theorem 11.2.2 in [13].

If ¨ f _ @	BOj is the rational approximation induced by ¨ f _ j using the recurrence relation above
we can bound the error byÀ�ÁSÂ�kº ´ µ � ¨ f _ @;BOj 8��F=HX ,;_ @;B 8Û�F= ��� À�ÁSÂ�kº ´ µ ³ ¨ f _ j 8 î � =tX ,	_ 8 î � =m³����� q À�ÁSÂ�kº ´;µ � ¨ f _ j 8��F=HX ,;_ 8Û�F= � 4 À�ÁSÂ�kº ´	µ � ¨�� f _ j 8��F=HX ,��_ 8��F= � s(4.3)

Using approximations in common poles the accuracy of best rational approximations
can not be achieved when using the same number of poles for both ideas. Nevertheless, this
approach is rather robust as the derivatives of the error term in (4.3) are small, too. In the
context of exponential integrators it is important to work with approximations providing an
accuracy beyond the level of the truncation error of the integrator.

We give in Table 4.1 some numerical results for small degrees of the rational approxima-
tions.

The entries in the first column of Table 4.1 can be further improved by introducing a pos-
itive shift � . As DFWJ/uD � DFW h � , we can approximate the second factor by a CF approximation,

(4.4) D W �uD � �� ¨ } 4 ?�å � B æ åT X[8Û�í4LT å = �� s
Lu [27] introduced this shift to deal with matrices that have negative and in addition small
positive eigenvalues. We have observed that a shift of Ù 8OZF= gives only slightly weaker re-
sults for DFW but significantly better rational approximations induced by (4.1) and (4.4) to ,
functions of higher order. We summarize our results in Table 4.2.
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FIG. 4.1. The poles of a CF approximation of ��� of type �9�>'*úk�>'!� have been used to evaluate the 
R� function
on the negative real line. The blue solid curve is the error. The dashed-dotted red curve is the bound induced by
(4.2). The dashed line represents the bound of Theorem 4.2.

TABLE 4.1
Using degree � rational approximations with common poles the maximal error 
 ÷ �`ø is given for ûN� ü*ú>�úÛ'*úÛ(

and �J�Îù*ú��*ú��>ü*ú>�>' . A column represents CF approximations for fixed û . An example: Given the CF approximation
of degree �>ü for 
�� the error committed by approximating 
! with the same poles using identity (4.1) is "m) (�n�$ü�# .
To determine an approximation for the maximal error we have computed the difference in +üü points distributed in�t�>ü�$ to �t�>ü*þ�$ . , e , B ,	y ,H{% s &(' X)&+* Ï s ÑNDYX�v�Ú qrs qPX�vgÑ Ñäs v|Xzvgq , e� / ÚSs ÑgDYXzvgÚ ,¿s.-!' X)&(, Ï s0/xDCXzvNÜ qrs0/xDCXzv ] , BÜ ] s ÜgDYXzv ] ] s vNDYX�vgÜ 1Rs.&(' X)&(2 Ï s ÚADCXzv3/ , yZgs ÜgDYXzvNÑ ÑSs�ZmDYX�v�Ú qrs Ï DCXzv3/ -Rs.*!'$X % & , {% s.4!' X)&+, ZNs0/xDYX�vgÜ ÜSs qADCXzvgÚ ZNs qADCXzvNÑ , e� / Ðäs vgDYXzv3/ 1ns.-!' X % & ZNs ÑNDCXzv3/ Úrs ÚADCXzvNÜ , BÐ Ï s�Z*DYXzvNÜ ] s0/xDYX�vgÐ 5¿s.,(' X %(% Ï s Ï DCXzv Ï , y] s qNDYXzvgÚ ] s Ï DYX�v6/ qrs ÐNDCXzv Ï 7 s.&!'$X % 4 , {% s 5+' X % & qrs Ï DYX�vgÐ ZNs ÚADCXzvNÜ ÑSs ÐNDCXzvgÚ , e� / Zgs�Z*DYXzvNÐ 1ns % ' X % 4 ZNs ÐNDCXzv Ï ZNs vNDCXzv3/ , BZ*v Zgs ÜgDYXzv3/ Úrs ÜNDYXbZ*v 7 s01!' X % 7 ZNs�ZmDCX[Zmv ,HyÏ s�Z*DYXzv3/ /Us ÑNDYX�v Ï qrs0/xDCX[ZNZ % s.2!'$X % 5 ,H{% s *(' X % 4 ] s0/xDYXbZ*v ÑSs�ZmDCXzvNÐ ZNs vNDCXzvNÜ , e� / Zgs ÜgDYX[Zmv *¿s ,(' X % 5 qrs0/xDCX[ZNZ ZNs0/xDCXzv Ï , BZFq qSs ÜgDYXzv Ï ÜSs ÚADYXbZFq 5¿s 7 ' X % - ZNs qADCX[Z*q , yZgs ÐgDYXzvNÐ ZNs vNDYXbZ*v qrs0/xDCX[ZmÑ -Rs.*!'$X % * , {

5. Talbot contours and integrals of Cauchy type. The results of the last section give
us a new perspective on contour integrals, too. If � is a contour enclosing T with winding
number Z , then

(5.1) D W / ZqA�R� d�� D ��YX�T o �gs
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TABLE 4.2
Same as the first column of Table 4.1, but with a shift 8 introduced as in (4.4). The numbers are better, and8¿�&� seems a good choice in practice.��/pZF\Nq ��/pZ ��/�q ��/�ÚZNs ÜNDCXzvNÜ qSs./ADYXzvNÜ /Us ÚADYX�vgÜ ZNs ÚADCXzv ] , e� / ZNs vNDCXzvgÚ Zgs�Z*DYXzvgÚ qrs ÑNDYX�v�Ú qrs ] DCXzv ] , BÜ qrs qADCXzvgÚ qSs ] DYXzvgÚ ZNs ÐNDYX�v�Ú ZNs ÑNDCXzv ] ,	yÏ s0/xDCXzvgÚ ] s ] DYXzvgÚ ] s qADYX�v�Ú Ï s ] DCXzvgÚ ,	{ZNs Ï DCXzvNÐ Ñäs qNDYXzvNÐ ÐSs0/xDYX�vgÐ ZNs0/xDCXzvNÜ , e� / ZNs ÚADCXzv3/ Zgs ÚNDYXzv3/ qrs ÚADYX�v6/ qrs ÐNDCXzvNÜ , BÐ ] s ÑNDCXzv3/ Ñäs ÐgDYXzv3/ Úrs0/xDYX�v6/ ÑSs vNDCXzvNÜ , yZNs ÑNDCXzvNÜ Üäs ÜgDYXzv3/ Úrs ÜNDYX�v6/ ZNs ÜNDCXzvNÜ , {qrs ] DCX[Zmv Ñäs./ADYX[Zmv ZNs vNDYX�v Ï qrs vNDCXzvNÐ , e� / ZNs�ZmDCXzv Ï Zgs./ADYXzv Ï ÑSs ] DYX�v Ï ÑSs Ï DCXzvNÐ , BZmv Ï s vNDCXzv Ï Üäs Ï DYXzv Ï /Us ÚADYX�v Ï ] s ÐNDCXzv Ï ,	yZNs qADCXzvNÐ Zgs vgDYXzvNÐ ÐSs ÐNDYX�v Ï ÑSs qADCXzvNÐ ,	{qrs ÜNDCX[Z*q ] s ÑgDYX[Z*q ZNs qADYXbZgZ qrs ] DCX[Zmv , e� / qrs�ZmDCX[ZNZ Ñäs vgDYX[ZNZ ] s Ï DYXbZgZ ÜSs�ZmDCX[Zmv , BZ*q ZNs vNDCX[Zmv ÚSs ÑgDYX[ZNZ ÐSs0/xDYXbZgZ ÜSs vNDCX[Zmv , yÑSs ] DCX[Zmv qSs ÑgDYX[Zmv ZNs ÐNDYXbZ*v /Us�ZmDCX[Zmv ,	{

When T becomes a matrix 1 instead of a scalar, the same approach works, with the termZF\S8��$XT�= becoming the resolvent matrix 8Û�*��X1�= hnB . In the context of this work � is a
Hankel contour, that is, a deformed Bromwich contour that winds around the negative real
axis in the counter-clockwise sense, see Fig. 5.1. In particular it encloses all eigenvalues of

FIG. 5.1. A typical Hankel contour, winding around the negative real axis (dashed) in the anti-clockwise sense.

the negative semidefinite matrix 1 .
In [46] various choices for such contours are discussed. Although the integral does not

depend on this choice, the convergence of the results gained by an evaluation with the trape-
zoid rule on the contour can be optimized a great deal.

The contour � is represented as the image of the real line © under an analytic function9
. Then (5.1) can be written as

(5.2) D W / ZqA�R� d }h } D;: f i�j9 8 l =HXzT 9 � 8 l = o l s
The integrand is an exponentially decaying function . By truncating © to a finite interval one
therefore commits only an exponentially small error. Following [45] we shall arbitrarily fix
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this interval as < XC�t:>��® . In < XC�t:>��® we take � points l � spaced regularly at a distance qx�;\ � ,
and our trapezoid approximation to (5.2) becomes

(5.3) ��? /�� � hRB ?��� B D � �T Xz� ��= � :
where � � / 9 8 l � = and

= � / 9 � 8 l � = .
Using an optimized version of Talbot’s original contours it is possible to achieve a con-

vergence rate of Ù 89Ñäs Ð Ï hÆ? = [45, 46]. In particular it is possible to get almost down to machine
precision with as few as q ] poles, which come in Z*q conjugate pairs.

The exponential decay of the integrand in (5.2) is missing once we try to generalize the
approach for , functions of higher order. The term , _ is only algebraically decaying, which
is too slow for most applications in practice [26]. An alternative approach to enforce the
exponential decay might be to introduce an additional reparametrization of the real line © by
transformations as discussed in [35].

But given the rational approximation (5.3) of DFW the approximation for , B 8�T�= induced by
(4.1) is , BN89TU=t�� � hnB ?��� B D � � � hnB�TJX7� �>= � s
This is the trapezoidal rule applied to the integral of Cauchy type� B / Zqx�R� dU� D �� Z�3X�T o �g:
which is indeed an alternative integral representation of , B .

THEOREM 5.1. Let ? be a closed contour encircling the points v and T �ãó with
winding number Z . Then , _ 8�T�=`/ Zqx�R� d6@ D �� _ Z�YXzT o �gs

Proof. Multiplying the Taylor series representation (1.3) of ,	_ 89TU= by T _ reveals that ,	_ 8�T�=
is the regular part of the Laurent series for D W \AT _ :D WT _ / ,	_ 89TU=¿4 _ hnB��� e Z� c T � h _ s
Given the linearity of the path integral it is sufficient to show that�M/ Zqx�R� d @ _ hnB��� e Z� c � � h _ Z�CXzT o �
vanishes. Changing the order of summation and integration yields�°/ _ hRB��� e Z� c Zqx�R� d @ � � h _ Z�CXzT o �Ns
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If T°/�v all integrals vanish. Let T�¤/�v and define � � / ByBA �(C @ � � h _ B� h W o � . The integrals � �
are solved by residue calculus� � /�DCÃ À ï � � h _�CXzT :kv ò 4EDCÃ À ï � � h _�CXzT :kT ò s
The latter residue is T � h _ . The residue of

� µ ¼� h W at the origin, where § is a positive integer, is
given as Z8 § XbZF=c o � hRBo � � hRB Z�CXzTGFFFF � � e / Z8 § X[Z*=!c o � hRBo3H � hnB ZH FFFF I � h W /pXYT h � :
which implies � � /2v for all

� /2vä:�s�sms!:�a�X[Z .
In this integral representation the integrand is exponentially decaying along a Hankel

contour and is therefore of greater practical use than (1.4). Although contour integrals need
more points than optimal rational approximations they are somewhat more flexible when
adaptive integrators are implemented as

(5.4) , _ 8�ç 1�=�/ Zqx�R� d � D�J �8�çÆ�F= _ 8Û�m� Xz1P= hnBo �N:
where ç is a time step. This identity may give hope that ,t_ 8Ûçä1P= can be evaluated with the
same resolvent matrices independently of ç . Unfortunately, a balance of the truncation and
discretization error cannot be maintained. The truncation error grows as ç shrinks, whereas
the discretization error grows with ç . However, accuracy can be maintained throughout cer-
tain ranges of ç . Experiments to identify them for the exponential are reported in [45].

Exponential integrators, such as the method by Krogstad, often need ,`_ 8�ç 1�=àè and,	_n� By ç 1��Rè . Using best rational approximation we have to solve � linear systems for both
products. Achieving similar accuracy with Talbot contours it is typically enough to solve q �
linear systems once and to apply (5.4). Hence, we do not expect a trade-off with respect to
best rational approximations in this situation.

6. Exponential integrators. It would go far beyond the scope of this article to introduce
exponential integrators in detail. Instead we have decided to pick two typical but rather dis-
tinctive members of the huge family of exponential integrators. Various others are classified
in [33].

Quite often exponential integrators have close relatives amongst the more established
methods. There are exponential versions of Runge-Kutta methods and multistep methods
which try to overcome the problems of their relatives for stiff problems by treating the linear
term exactly.

A typical exponential Runge-Kutta method is the one-step method of Krogstad [25]. Like
the method of Cox and Matthews [8] it has ] th order accuracy in many circumstances. In the
worst case the order reduces to q for Cox and Matthews or Ñ for Krogstad. Order reduction has
been studied in detail by Ostermann and Hochbruck [21]. They have introduced a scheme that
gives ] th order in all cases. We follow their formulation and introduce exponential Runge-
Kutta methods for (1.1) as .Æ?A@	Bí/2.�?|4bç �� � � B � � 8Ûçä1P=�KJ? � :ì ? � /�.�?|4bç � hnB�å � B H � å 8Ûçä1P=LKJ? å :
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FIG. 5.2. Error curves 
 ÷ ��"N�`� ø�M ÷0N ��"N� . The rational approximation ø�M0O N is constructed by an appli-
cation of the trapezoid rule with '�P nodes (symmetric with respect to the real axis) to (5.2) with QS�SR!���'�Pn� ü*) +ü*�B"�RLTVU�Wk��ü*) ù�P!ü�"�R!� �$ü*) ù*�>''	�Þü*) 'ù�P!+�XYR!� ; see [45, 46]. In addition we have used a shift 8 �é� . The
functions ø M ÷0N with û6Z�ü are induced by (4.1).

KJ? å /6�89<O?J4 æ å ç¿: ì ? å =¿4Ø13.Æ?�s
In order to simplify the notation we use the abbreviations, � � å / , � � å 8�ç 1�=�/ , � 8 æ å çä1P=R: q �)[\� �
and , � / , � 8�ç 1�=Rs
We only give the method of Krogstad:æ B /2væ y / By H y BC/ By , B�� yæ { / By H { B / By , B�� { X , y � { H {ky / , y � {æ ßP/ Z H ßBC/ , B�� ßYX7q ,Hy � ß H ß { /uq ,	y � ß��BC/ , B�X�Ñ ,	y 4 ]�,	{ � y /uq ,	y X ]g,H{ � { /u� y ��ß�/pX ,Hy 4 ]�,	{

The implementation can be done “columnwise”. Starting with KM?gB it is possible to eval-
uate all matrix-vector products of the first column. We calculate the savings introduced by
approximating in common poles in the first column by counting the matrix-vector products.
The terms

H y B and
H { B can be solved by solving one set of shifted linear systems rather than

two sets. The terms
H ß!B and � B need an alternative set of poles, as a different scaling parame-

ter æ is used. In such situations contours offer some flexibility through equation (5.4). Using
optimal poles we would have to solve the systems for , B , , y and , { . Thus we save the factorÚg\Nq for the first column. Repeating the argument for all columns we save a factor of Z*q�\xÜ in
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total. This factor does not take into account the additional initial costs of computing the ëíì
decompositions for Ú instead of q sets of shifted systems.

Exponential relatives of classic multistep methods are more attractive in terms of the
underlying linear algebra than exponential Runge-Kutta methods. An early reference is an
article by Nørsett [36], but they have been rediscovered recently by Beylkin [4] and also by
Cox and Matthews [8]. Livermore has applied them to problems from magnetohydrodynam-
ics [26]. Ostermann et al. [37] have analyzed their stability and Calvo and Palencia [5] gave
details about the starting process for abstract Cauchy problems. A complete derivation is
given in the thesis of Minchev [32].

The underlying formula for (1.1) is here

(6.1) . ? /2D J I . ?UhRB 4bç �� _ � e^] _ 6 ?Uh _ s
The coefficients ] _ are linear combinations of matrix functions. The explicit ( ] e ¥ v�= expo-
nential Adams-Bashforth method of order ] is given by

�__� ] B] y] {] ß
��``� / �__� Z ZgZF\AÜ q Zv XYÑ X3Ú XYÑv ÑU\Aq ] Ñv XJZF\AÑ XJZ XJZ

��``� �__� , BA8�ç 1�=,Hy 8�ç 1�=,H{ 8�ç 1�=, ß�8�ç 1�=
��``� s

This method serves as the predictor. An implicit exponential Adams-Moulton method may
serve as corrector,

�__� ] e] B] y] {
��``� / �__� v Zx\xÑ Z ZZ Zx\Aq X3q XYÑv XJZ Z Ñv XJZF\AÜ v XJZ

��``� �__� , B 8�ç 1�=, y 8�ç 1�=, { 8�ç 1�=, ß 8�ç 1�=
��``� s

It is standard for classic multistep methods to perform only the first step of a fixed-point
iteration to solve (6.1). This idea is often referred as “PECE” form [10, Chapter 7.4]. Com-
paring the predicted and corrected result serves as an error control in implementations of the
classic multistep methods. In order to predict . ? it is necessary to evaluate DaJ I . ?rhRB and,	_ 8�ç 1�=à6 ?UhRB , a`wpZ . It is sufficient to solve two sets of shifted linear systems when working
with a set of common poles. For a

�
-step method we therefore save the factor 8 � 4éZ*=k\Aq

when using the same set of poles for , B :�s�sms!: , � . This factor does not take into account the
possibility to reuse the poles for , BF:ms�s�sm: , � to compute D�J I .Æ?rhRB . Using that approach we
reduce the number of ë�ì decompositions by a factor of q and may achieve an additional
speedup by solving linear systems with q right-hand sides rather than solving q linear sys-
tems with one right-hand side each. Next one has to evaluate 6�89.n?Æ:><O?S= in order to compute] e by solving again a set of shifted systems. All other coefficients are linear combinations of
vectors already available from previous steps.

7. Numerical experiments. In this section we illustrate the potential of exponential
integrators relying on rational approximations by two examples. Both examples are nonlinear
reaction-diffusion equations with rather large diffusion constants to make the linear term both
stiff and dominant in the evolution. The equations are posed in Z D and q D, which results in
advantageous band structures in the finite difference discretizations of the diffusion term.

These particular equations could be solved more efficiently using a diagonalization by
means of Fourier transforms, or by spectral collocation methods. It should therefore be em-
phasized that they serve solely as a convenient means to illustrate our technique for dealing
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with , functions. Errors introduced by the spatial discretization are not taken into account
here.

We compare exponential integrators with established numerical methods for stiff systems
of ordinary differential equations. Although we have worked with a uniform mesh in time, we
find that our implementation can be competitive even with state-of-the-art adaptive methods
such as Radau collocation methods [15] or the multistep backward differentiation formulas
of MATLAB [40] when applied to reaction-diffusion equations with a mild nonlinearity. The
methods we have compared are:b The explicit exponential Runge-Kutta methods of Krogstad. We used two CF ap-

proximations of , Bx8��F= and , BN8 By �*= with Z*q poles each, and varied the number of
poles; see Figures 7.2 and 7.3.b The exponential multistep methods of order ] , Ü and Ð . Starting values were com-
puted using MATLAB’s ode15s integrator. The startup calculation was not taken
into account in the timings. We used a CF approximation of the exponential with ZFq
poles and a shift of �P/ Z .b MATLAB’s ode15s integrator, which is an adaptive solver based on backward dif-
ferentiation formulas. Rather than reducing the stepsize to achieve higher accuracy,
we reduced the tolerances for the absolute and relative error. The method is implicit
and the linear systems are solved using direct methods, that is UMFPACK, which
has been incorporated with effective matrix reorderings in MATLAB’s ode15s in
recent releases.b The method RADAU5, which is an implementation of a fifth-order implicit Runge-
Kutta method of RADAU IIA type, with Ñ stages and automatic stepsize control. For
this we used a MATLAB implementation adapted from the thesis of Tee [41]. The
code is available online.1

The results reported here depend very strongly on the underlying numerical linear al-
gebra, and in particular, an exponential integrator may perform better or worse than a com-
petitor simply because of a switch from a direct method to an iterative method or vice versa.
Therefore, for consistency, we used direct methods for all of our computations, relying on
UMFPACK as the common underlying framework for solving all linear systems. The com-
plex shifted symmetric matrices were reordered using a sparse reverse Cuthill-McKee order-
ing and symmetric approximate minimum degree permutations [9].

Before we present the results in detail, we shall take a moment to describe common
properties of the graphs describing the performance of the methods being used. In Figures 7.2
and 7.3 the vertical axes represent the relative error. For all experiments we have computed
an “exact” solution by using ode15s with very tight error tolerances. The error is then
calculated as the q -norm of the difference between the approximation and the exact solution,
divided by the q -norm of the solution. Thus the error plotted in the graphs is a relative one.
The scaling of the horizontal axes varies. The relative time-steps displayed are scaled by the
overall simulation time scale. A relative timestep ç implies that Zx\Aç steps have been taken.
The computer time displayed is the CPU time we have measured. As is well known, such
timings should not be relied upon too precisely, since in MATLAB we have limited control
of internal routines optimizing certain code fragments. The number of evaluations of 6 refers
to the number of evaluations of the nonlinear reaction term.

The experiments were performed with MATLAB 7.4 on a HP workstation xw4200 with
a Ñäs q GHz Pentium ] processor and Z GByte of RAM running Windows XP.

1See the webpage of the author: www.comlab.ox.ac.uk/thomas.schmelzer

www.comlab.ox.ac.uk/thomas.schmelzer
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FIG. 7.1. Solution of the Fisher equation.

7.1. The Fisher equation. The Fisher equation [12] is a one-dimensional reaction-
diffusion problem with a “logistic” reaction term. G /�cÞ.+d�d34 ¨ .H8OZCX�.R= Å �e< vS:kqx®Ûs
For the experiments reported here we chose cV/ väs v�Ú and ¨ /pvSs vSZ . The initial function is
chosen as . e 8#Å¿:�<t/uvg=`/2Ã!Ä Â 8>X3qAvAÅ�=	X&Å	8#Å0Xzqg=�f�g À y 8ÛÚxÅ �;\AqN=!s
The boundary values are fixed as.	89Å0/uqS:><>=t/uvS: .H8#Å /vS:�<>=`/ Zgs
We solve the equation for v � < � vSs�Z . The equation is semidiscretized by standard finite
differences with a Ñ -point stencil on a regular grid with h Å[/ ZF\NqAvNvgv . This results in an
extremely stiff system. The matrix 1 introduced by this discretization is of dimension i /Z ÏgÏNÏ and tridiagonal. The left-most eigenvalue of the scaled matrix c 1 is approximatelyX3q5Ý�Zmvkj . Tridiagonal systems can be solved in Ù 8 i = operations, so the matrix is very well
suited for any integrator based on rational approximation.

The results in Figure 7.2 emphasize the power of exponential integrators. In the first plot
one should note the large relative timesteps of Ù 8OZmv hRB = . This implies that only Z*v steps have
been taken. In the second plot one sees that exponential integrators outperform radau5 and
ode15s. The Krogstad, Multistep ] and Multistep Ü curves in this plot have benefitted by
factors of approx. q , qrs Ú and ÑSs Ú , respectively, through the use of common poles. In the third
plot graphs labeled Krogstad ? show the relative error of Krogstad’s method when using only� poles. The tremendous advantage of exponential integrators is revealed in fourth plot. They
need far fewer evaluations of the nonlinear term.
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FIG. 7.2. Results for the Fisher equation.

7.2. The Allen-Cahn equation in q D. The Allen-Cahn equation in q D reads as [1]. G /�l h . 4u8#.�X&. { =!s
We solve this equation for v � < � väs�Z with l /2väs�Z on the square < vS:�Z�® y with homogeneous
Neumann boundary conditions. The initial condition is a trigonometric polynomial:. e / æ Ô� � � B Ô�å � B ¨ � å f�g À 8#�Q�RÅÆ=mf�g À 8 [ �onS=s
The coefficient matrix p is constructed, so as to be arbitrary but reproducible, by taking the
first Ü ] digits of � :¨ B�BC/uÑS: ¨my BY/pZN: ¨*{ B3/ ] :ís�sms!: ¨ B y /2ÚS:½sms�s!: ¨ ÔkÔ /uqSs
These numbers are then normalized by ¨ � å / ¨ � åÚ XbZgs
The parameter æ is chosen such that ÊrqAÄ � . e � / Z on the square. For the spatial discretization1 of the Laplacian we use standard finite differences on < vS:mZ!® y . The matrix 1 is of dimensionZmv ß Ý&Z*v ß and symmetric.
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FIG. 7.3. Results for the Allen-Cahn equation in ' D.

The results of the experiment are shown in Figure 7.3. Broadly speaking the conclusions
for this experiment are like those for the Fisher equation. Again the use of common poles has
speeded up the Krogstad and multistep timings by factors of q to ] .

8. Conclusions and outlook. We have shown that , functions can be evaluated for ma-
trix arguments efficiently using rational approximations constructed via Carathéodory-Fejér
approximation or contour integrals. This enables us to implement competitive exponential
integrators for large stiff systems of ODEs. The rational approximations are typically twice
as fast as the contour integrals as they require half as many poles for the same accuracy.

Exponential integrators rely on the fast evaluation of the matrix-vector product ,`_ 891�=��
for several a at once. Therefore we proposed the approximation in a set of common poles as
in equation (4.1) and found that this enables us to reduce the work per step dramatically.

We should also mention that similar techniques can be used for other functions of inter-
est [39].
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