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PRECONDITIONING BLOCK TOEPLITZ MATRICES
�

THOMAS K. HUCKLE
�

AND DIMITRIOS NOUTSOS �
Abstract. We investigate the spectral behavior of preconditioned block Toeplitz matrices with small non-

Toeplitz blocks. These matrices have a quite different behavior than scalar or mulitlevel Toeplitz matrices. Based on
the connection between Toeplitz and Hankel matrices we derive some negative results on eigenvalue clustering for
ill-conditioned block Toeplitz matrices. Furthermore, we identify Block Toeplitz matrices that are easy to solve by
the preconditioned conjugate gradient method. We derive some useful inequalities that give information on the loca-
tion of the spectrum of the preconditioned systems. The described analysis also gives information on preconditioning
ill-conditioned Toeplitz Schur complement matrices and Toeplitz normal equations.
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1. Introduction. We consider ill-conditioned symmetric positive definite (spd) block
Toeplitz (BT) matrices of the form

�����
�						

�
� ����� ����� ����������� �� � � � � ��� ...
...

. . . . . . . . .
...

...
. . . . . .

� ���� � ��� ����� ����� � � � �
���������(1.1)

with small general ����� matrices
�! 

, " �$#�%'&)(�*�*�*�(+&,%-# , � fixed and independent of
&

.
Mainly, we are interested in the case � �/. , because for this case we can display already all
the problems and techniques that are different from the scalar case with � �0# .

Furthermore, we assume that the family of BT matrices
� � �/� ��13254

,
&6�7#8(9.:(9;<(�*�*�*

,
is related to a generating �=�>� matrix function2�13?@4 � 1BA  9C D 13?@4+4FE +C DHG � � �����JIK� ��LNM:O 1 %QP ?R4 I6� � I6� ����LNM:O 1 P ?@4 IS�����
that may be T � , TVU , TVW , or continuous and

.YX
periodic in the interval Z %QX)(+XR[ , which is

equivalent to write that every
A  +C D 1\?@4

, " ( � �]#8(�*�*�*N( � , is T � , TVU , T^W , or continuous and._X
-periodic in Z %QX)(+XR[ as standard scalar-valued functions.

By a simple permutation we can transform the matrix
���

into the �=�>� block form`� � � �	
 a � C �b����� a � C E
...

...a E C � ����� a E C E
����(1.2)

with
& � & Toeplitz matrices

a  +C D �/a�c �Yd +C D , " (+e]�f#g(�*�*�*�( � , related to the same generating

matrix function
2�1\?R4

. Then, each
A  +C D 1\?@4

is the scalar generating function to
ahc �Yd 9C D .i
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Note, that in contrast to multilevel Toeplitz matrices we consider in (1.1) blocks
�  

of
fixed size that will be in general of non-Toeplitz structure. Hence, the analysis derived for the
multilevel case based on trigonometric polynomials [8, 9, 15] cannot be applied in this BT
case. In fact such negative results as in [8, 9, 15] do not hold in the block case; see [10, 12]
for related positive results concerning strong clustering with block circulant preconditioners
and spectral equivalence with band block Toeplitz preconditioners, respectively. So, the BT
case is quite different from the scalar case and the multilevel case.

Block Toeplitz matrices are closely related to Schur complements in Toeplitz matrices,

e.g., Toeplitz Schur complement
a � %ja U�k a ���l k a�m to BT matrix n a � a UaRmoa l�p . So, for � �q.

the given block equations can be reduced to solving Toeplitz matrices and Schur complement
systems of Toeplitz matrices. In the following we will derive theoretical and numerical re-
sults on block Toeplitz systems and also on Toeplitz Schur complements. Note, that also the
Toeplitz normal equations are a special case of a Schur complement, and therefore are related
to block Toeplitz systems.

For a well-conditioned spd Toeplitz matrix
a �

related to a continuous generating func-
tion

Ar1\?@4
there exist various preconditioning techniques that ensure fast convergence of the

preconditioned conjugate gradient (pcg) method; see [2, 7] and the references therein. Fast
Transform preconditioners based on circulant matrices or other classes of matrix algebras
lead to a preconditioned system with clustered eigenvalues for s ���� a�� . Here the computa-
tion of the preconditioner and each step in the pcg algorithm take t 1 &vuxwgy 1 & 4F4 operations
based on fast algorithms for the trigonometric transforms. Hence, if the linear system can be
solved in a bounded number of iterations - independent of

&
- then the whole procedure takest 1 &zuxwgy 1 & 4F4 operations [2, 7]. This case occurs if the symbol is strictly positive or if it is

nonnegative and polynomial.
Another important class of preconditioners for ill-conditioned matrices is based on banded

Toeplitz matrices. If the scalar generating function
Ar13?@4

has only zeros of even order then we
can define a trigonometric polynomial { that has the same zeros of the same order as

A
. Then,{ is related to a band Toeplitz matrix. Furthermore, the preconditioned system | ���� a��

is
well-conditioned with eigenvalues contained in an interval given by the range of

Ar1\?R4+} { 1\?R4 ;
this again leads to fast convergence of the pcg method [3, 10]. In [12] the author considers
also band preconditioners with bandwidth up to

u~w8y 1 & 4
by choosing, e.g., the partial Fourier

polynomial
2 � 1\?@4

for the given Fourier expansion of
2�13?@4

. For well-conditioned matrices
this approach leads to clustered spectrum of the preconditioned system. For ill-conditioned
matrices with singular

2�1\?@4
the banded approximation given by

2)��13?@4
may be indefinite and

therefore in [11, 12] a generalization of the approach in [10] is considered in order to deal
with the ill-conditioned case; see Theorems 3.1, 3.6, and sections 4.1, 4.2 in [11] and sec-
tions 3 and 4 in [12]. Here, we introduce a different banded approximation that can deal with
singular

2�13?@4
also allowing a broader bandwidth.

Aim of this paper is to generalize the positive preconditioning results for circulant and
band preconditioners for Block Toeplitz matrices, e.g., [6, 11, 12, 13, 14], and to derive further
results on the eigenvalue distribution and clustering of preconditioned block Toeplitz systems
and Toeplitz Schur complements (like the normal equations). This also leads to some negative
results on the eigenvalue clustering of preconditioned BT matrices. The paper is organized as
follows. In section 2 some results are presented concerning BT, Hankel Matrices and Schur
complements of BT matrices. In section 3 some spectral and convergence properties are
presented and proved for pcg method applied on BT systems and for preconditioning Toeplitz
Schur complements. General propositions for constructing efficient prconditioners for BT
systems and Schur complements are given in section 4. In section 5 numerical examples
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are presented showing the validity of the theory. Finally, concluding remarks are given in
section 6.

2. Toeplitz, Block Toeplitz and multilevel Toeplitz matrices. In this section we present
some useful known results that are necessary to obtain the main results in the following sec-
tions.

THEOREM 2.1 (Spectrum of preconditioned BT system, Theorem 4.1 in [6], see also [11,
12]). Let

a ��1B�54
and

a ��1B254
be two sequences of matrices generated by Lebesgue integrable

Hermitian ����� -matrix-valued functions
2

and
�

defined on � � Z %QX)(FXR[ , where
�

is
positive definite for almost every

?�� � , that is, the Lebesgue measure of �h�g��� is zero with���7� ��� ?0� �o� ��1\?R4�� {@�<� . Then all the eigenvalues of
a ���� 1B�54 a ��13254

lie in the (not
necessarily bounded) interval Z � (9��[ , where� �q�+� O �J� �,� ��������� 1�� ���_� 4^ -¡>¢ wg£¥¤Yux¦�w8�F§ L�¨8L £9© M ��ª �^��«�­¬x® ¢ �J� �>� ���¯��°�± 1�� ��� � 4^²-¡>¢ wg£¥¤Yux¦�w8�F§ L�¨gL £+© M ��ª �V�

THEOREM 2.2 (Product of Toeplitz matrices [19]). If
A (F³ � T^W , thena ��1�A ³ 4 %za ��1BA�4 k a �R1 ³ 4 � | � k^´ 1�A�4 k^´ 19µ³ 4 k | � I � � k^´ 1 µA�4 k^´ 1 ³ 4 k � �

with | � 13? � (�*�*�* 4 � 1\? � (�*�*�*N( ? � 4
and � � 13? � (�*�*�* 4 � 1\? ��(�*�*�*N( ? � 4

are matrices picking out
the first

&
entries of an infinite vector, and the infinite Hankel matrix

´ 1BA�4 � �	
�¶ � ¶ U ¶ m �
¶ U ¶ m �
¶ m ��

���� *
COROLLARY 2.3 (Product of band Toeplitz and Toeplitz matrix). For a real trigonomet-

ric polynomial { 1\?R4 and
³ � T^W it holdsa ��1 { ³ 4 �Sa �R1 { 4 a ��1 ³ 4 I � �

and a ���� 1 { 4 a ��1 { ³ 4 �Sa ��1 ³ 4 I � U
with

�  
, " �·#8(9. , matrices of low rank that depends only on { 1\?@4 and not on the dimension&

.
COROLLARY 2.4 (Product of band BT matrix and BT matrix). For a real trigonometric

matrix polynomial | 13?@4 and
�¸� T^W with �=�,� blocks it holdsa �R1 | �54 �Sa �R1 | 4 a ��13�54 I � �

and a ���� 1 | 4 a ��1 | �54 �qa �R1B�54 I � U
with

�  
, " �¹#8(9. , matrices of low rank.

THEOREM 2.5 (Spectrum of Hilbert matrix [18, 7]). Let ´ � be the
& � & Hilbert matrix

to ´ 1�A�4 with ¶  �7# } " , " �7#g(9.<(�*x*~* . Then for any º ²¼»�² X , the number of eigenvalues of´ � with absolute values exceeding
»

is given by.X uxwgy¥& k � L�½�¾ ��� »X k 1 # IK¿ 1 & 4F4 *
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Hence for every cluster of eigenvalues around zero with small radius
»

the number of outliers
is growing like

u~w8y 1 & 4
. This behavior is denoted as weakly clustered because the number of

outliers is allowed to grow like
¿ 1 & 4

.
THEOREM 2.6 (Negative results for multilevel Toeplitz matrices [8, 9, 15]). For ill-

conditioned positive definite multilevel Toeplitz matrices there exist examples where for every
positive definite multilevel circulant preconditioner there holds:

1. If the spectrum of the preconditioned matrix is bounded ( �RÀ)ÁFÂÄÃ-Å ²­Æ , Å indepen-
dent of

&
), then � DHÇ �vÈ º and Å 1 & 4 eigenvalues tend to zero, with Å 1 & 4 tending to infinity

when
&

tends to infinity.
2. If the spectrum of the preconditioned matrix is bounded from below ( �RÀ)É Ê�Ë¼Ì   º ,Ì independent of

&
), then � DQÍÏÎ ÈÐÆ

and Ì 1 & 4 eigenvalues tend to infinity, with Ì 1 & 4�ÈÐÆ
for
& ÈÑÆ

.
Now, let us turn to Schur complements related to BT matrices for � ��.

. The close
relationship between BT matrices and Schur complements is displayed by the equationsn a � a Ua
ÒU aRm p � nQÓ a U a ���mº Ó p k n!Ô � ºº a�m p k n Ó ºa ���m a
ÒU Ó p �� n Ó ºa
ÒU a ���� Ó p k n a � ºº Ô m p k nQÓ a ���� a Uº Ó p �� n Ô � ºº Ô m p k n a � %Qa U%Qa ÒU a m p ��� k n a � ºº a m p(2.1)

with Ô � �Sa � %=a U a ���m a
ÒU and Ô m �­a m %�a
ÒU a ���� a U . Hence, an efficient preconditioner for
a BT matrix directly leads to an efficient preconditioner for both Schur complements Ô � andÔ m . On the other side an efficient preconditioner for one of the Schur complements directly
leads to an efficient preconditioner for the whole BT matrix.

3. BT matrices and Toeplitz Schur Complements. First we present some useful re-
sults on the location of eigenvalues of Schur complements of Toeplitz matrices. These results
are based on the connection between Schur complements and block matrices.

THEOREM 3.1 (Preconditioned normal equations). Consider the family of Toeplitz ma-
trices

a�� 1BA�4
,
&��/#g(9.<(�*x*~*

with generating function
A

, real Lebesgue integrable. Then it holdsa ��1BA U 4 Ë a �R1BA�4 U *
Proof. We consider the BT matrix

� �
to2�1\?R4 � � n # Ar1\?R4Ar13?@4ÕA U 1\?@4 p *

This matrix
2

is rank-1 symmetric positive semidefinite with eigenvalues � � º and � �# I Ar1\?@4 U . The generating function is positive semidefinite, therefore the BT matrix
� �

is also positive semidefinite. Hence, both Schur complements are positive semidefinite and
therefore

a ��1�A U 4 %Öa U� 1BA�4 Ë­º and Ó � %Öa ��1BA�4 a ���� 1�A U 4 a ��1�A�4 Ë�º (for
a �R1BA U 4 nonsingular).

Note that if
2�13?@4 Ë0º is symmetric positive semidefinite,

� ��1B254
may be even positive

definite, depending on
A

, e.g.,
Ar13?@4 � ? U . Theorem 3.1 can be also shown for general

Toeplitz matrices:
a ��1+× A)× U 4 Ë a
Ò� 1�A�4 a ��1BA�4 .

LEMMA 3.2. Consider Ø , ³ Lebesgue integrable and
³ 1\?R4

nonnegative with× Ø 1\?R4�× U } ³ 13?@4^²qÆ for all
?

, and
a�� 1 ³ 4

and
a�� 1+× Ø × U } ³ 4 nonsingular. Then it holdsa �R1+× Ø × U } ³ 4 Ë a Ò� 1 Ø 4 a ���� 1 ³ 4 a ��1 Ø 4
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and a �R1 ³ 4 Ë a ��1 Ø 4 a ���� 1+× Ø × U } ³ 4 a Ò� 1 Ø 4 *
Proof. Consider the BT matrix

� �
to2�13?@4 � n × Ø 1\?R4�× U } ³ 13?@4 µØ 1\?R4Ø 13?@4 ³ 1\?@4 p *

THEOREM 3.3 (Preconditioned Toeplitz Schur Complement). Let
A

,
³

, Ø Lebesgue inte-
grable and

³
nonnegative,

× Ø × U } ³ ²ÙÆ , and the matrices
a ��1 ³ 4

,
a �R1+× Ø × U } ³ 4 , a ��1BA % × Ø × U } ³ 4

all nonsingular. Then it holds for the Toeplitz Schur complement relative to the matrix2�1\?R4 � � n A µØØ ³ p :

a�� 1BA % × Ø × U³ 4 Ã a�� 1BA�4 %za Ò� 1 Ø 4 a ���� 1 ³ 4 a�� 1 Ø 4 � � Ô � 1BA (Ú³R( Ø 4 *
The eigenvalues of the Toeplitz preconditioned Toeplitz Schur complementa �R1BA % × Ø × U } ³ 4 ��� Ô ��1BA (F³@( Ø 4
are greater or equal

#
.

Proof. Direct Corollary of Lemma 3.2.
Note, that for Toeplitz matrices with generating function

Ar1\?R4
equals zero on a whole

interval, all matrices
a ��1BA�4

will be singular. Furthermore, if in the scalar case
Ar1\?R4

has only
isolated zeros of polynomial order then the smallest eigenvalue tends to zero polynomially
depending on the order of the zeros of

A
. The next theorem displays a basic difference be-

tween scalar Toeplitz matrices and BT matrices. To prove this Theorem we need the following
Lemma

LEMMA 3.4. If
A

is a
._X

periodic continuous function, then the eigenvalues of
aÛ� 1BA U 4 %a�� 1BA�4 U are clustered at zero and the minimal eigenvalue tends to zero exponentially.

Proof. The related Hankel matrix is a compact operator; see [1]. Therefore, the sum of
the eigenvalues of the Hankel matrix is bounded which guarantees the strong clustering, e.g.,
the infinite Hilbert matrix is a bounded operator [4, 17, 18]. Furthermore, Tyrtyshnikov has
shown in [17] that the smallest eigenvalue of the associated Hankel matrix ´ 1BA�4 tends to zero
exponentially.

THEOREM 3.5 (Ill-posed BT matrix). There exist examples with generating function2�1\?R4 ËÙº but Ü L § 1B2�1\?@4+4 � º such that the related BT matrices
� ��13254

are spd. For such a� �
the condition number may grow exponentially with

&
, resp. the smallest eigenvalue may

tend to zero exponentially.

Proof. As example we consider
��� 1B254

to generating function
2 � n # AA A U p . Then

the smallest eigenvalue of
� �

can be bounded from above by the smallest eigenvalue of the
Schur complement

a �R1BA U 4 %�a ��1�A�4 U Ë­º which is exponetially converging to zero following
the previous Lemma 3.4. (To see the relationship between the spectrum of a natrix and the
spectrum of the Schur complement we can consider the Rayleigh quotient). As special exam-
ple we can choose

Ar1\?R4 � ? U . Then
2�13?@4

is singular for all
?

, but
� ��13254

is still spd in view
of Theorem 2.2.
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Now we want to analyse the spectrum of different preconditioned BT matrices. The first
results show, that well-conditioned BT matrices behave similar to scalar Toeplitz matrices.

THEOREM 3.6 (Well-conditioned BT, Theorems 8.4 and 9.3 in [13]). For well-conditioned
spd BT with

2�13?@4 ._X
-periodic continuous the optimal block circulant preconditioner leads

to a strongly clustered spectrum.
THEOREM 3.7. Let

A Ëqº be real
.YX

-periodic continuous with a finite number of zeros
of even order and

a ��1�A U 4 nonsingular. Then the spectrum of
� � �Ýa ��1BA�4 a ���� 1�A U 4 a ��1BA�4 is

strongly clustered around
#
.

Proof. We can write
Ar13?@4 � { 13?@4+Þß13?@4 with

Þà1\?R4 Ë e   º and trigonometric poly-
nomial { 13?@4 . Then

a ��1BA�4 �$a �R1 { Þ�4 �$a �R1 { 4 k a ��1BÞ@4 I � � �«a �R1�Þ�4 k a �@1 { 4 I � U with�  
of low rank (Lemma 2.3). In the same way,

a �R1BA U 4 ��� �Ùa ���� 1 { 4 a ���� 1�Þ U 4 a ���� 1 { 4 I ��m .
Because

Æá ãâ Ë Þß13?@4 Ë e   º , a ��1�Þ�4 and
a ��1�Þ U 4 are well-conditioned and can be

approximated by circulant matrices s such that it holds: For each
»ä  º there exist matriceså!æ8(+å!çg(+å!è

and
�äæg(+�äçY(+�äè

for which é å  é U Ã » , " �¼ê<(+ë<(Ïì and
�  

, " �¼ê<(+ë<(Ïì are matrices
of low rank (the rank depends on

»
and not on the dimension

&
) [2, 7] with�ä���Sa�� 1BÞ@4 k a ���� 1BÞ U 4 k a�� 1BÞ@4 I � l ��Sa�� 1BÞ@4 k s ���� 1BÞ@4 s � 1BÞ@4 k a ���� 1BÞ U 4 k s � 1BÞ@4 s ���� 1BÞ@4 k a�� 1BÞ@4 I � l �� 1 Ó I å æ I � æ 4 k 1 Ó I å ç I � ç 4 k 1 Ó I å è I � è 4 I � l � Ó I å I �¹*

THEOREM 3.8 (Well-conditioned Toeplitz Schur complement). For uniformly well-
conditioned spd Toeplitz Schur complements Ô �Ö�Sa�� 1BA�4 %za
Ò� 1 Ø 4 a ���� 1 ³ 4 a�� 1 Ø 4 with real

A
and

³ Ë«º with º ²í× Ø 1\?@4�× U } ³ 13?@4Ö²ãÆ ,
A % × Ø × U } ³   º , all

.YX
-periodic continuous, the

Toeplitz preconditioner | � �qa ��1BAr1\?R4 % × Ø 1\?R4�× U } ³ 13?@4F4 leads to a weakly clustered spectrum
with eigenvalues uniformly bounded away from º and

Æ
. If Ø 1\?R4 is real with zeros of even

order the spectrum of the preconditioned Schur complement is strongly clustered around 1.
Proof. All Ô � and | � are uniformly well-conditioned and the spectrum of | ���� Ô � is

bounded in an interval Z #8( â [ . With the following Theorem 3.9 this proves the first part of
the Theorem. Furthermore, it holds| ���� k Ô � �qa ���� 1�A % × Ø × U } ³ 4 k 1 a ��1BA�4 %va ��1 Ø 4 Ò a ���� 1 ³ 4 a ��1 Ø 4+4 �� Ó I | ���� k 1 a ��19× Ø × U } ³ 4 %za Ò� 1 Ø 4 a ���� 1 ³ 4 a ��1 Ø 4+4 *
If Ø 13?@4 has zeros, then

³ 1\?R4
has the same zeros of double order. If Ø has only zeros of even

order then we can write Ø 1\?@4 � { 1\?R4FÞRî�13?@4 with a trigonometric polynomial { 13?@4 . Further-
more,

³
can be written as

³ 1\?R4 � {RU 13?@4FÞ¯ï<1\?R4 with positive
Þ@î Ë e îH  º and

Þ¯ï Ë e ïh  º .
Then, for real Ø it holdsa Ò� 1 Ø 4 a ���� 1 ³ 4 a ��1 Ø 4 �qa Ò� 1 { Þ î 4 a ���� 1 { U Þ ï 4 a ��1 { Þ î 4 �­a ��1BÞ î 4 a ��1BÞ ï 4 ��� a �R1BÞ î 4 I �
in view of Corollary 2.3. So we have to analyse only the case of well-conditioned

a ��1 ³ 4
which can be treated like in the previous Theorem by using circulant approximations.

Next we consider ill-conditioned matrices. Here it turns out that for BT matrices the
block circulant preconditioner can only ensure a weak clustering but no strong clustering.
The proof of the weak clustering is based on the definition of approximating class of matrix
sequences:

THEOREM 3.9 (Weak clustering of BC preconditioner for BT matrices, Theorem 3.1
in [16]). For the Hermitian Toeplitz Schur complement of T � functions Ô ��1BA (F³@( Ø 4 it holds
that the spectrum is distributed like the spectrum of the Toeplitz matrix

a ��1BA % × ØÏU × } ³ 4 . There-
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fore, the eigenvalues of the preconditioned Schur complement are weakly clustered around
#
.

The same is true for related circulant preconditioners.
THEOREM 3.10 (Counter example with no strong clustering). For the Toeplitz Schur

complement there exist examples, e.g.,
A�� THU , where the above Toeplitz preconditioner from

Theorem 3.9 that leads to a weak clustering, does not lead to a strong clustering.
Proof. Consider the Schur complement Ô ��� 1 aR� 1 { 4 I a�� 1BA U 4F4 %5a�� 1BA�4 U with a trigono-

metric polynomial like { 13?@4 � 1 #<% ½ wð� 13?@4F4 D and function
A

with coefficients ¶  �0# } " . Note
that the sequence ¶  is in ñ3U and therefore the related Fourier series

A
is in T^U . The Toeplitz

preconditioner is given by
a �R1 { 4 . Then it holdsa ���� 1 { 4 k Ô � � Ó I a ���� 1 { 4 k 1 a ��1�A U 4 %za �R1BA�4 U 4F4� Ó I a ���� 1 { 4 k 1 | � ´ 1BA�4 ´ 1BA�4 | � I � � ´ 1BA�4 ´ 1BA�4 � �<4 *(3.1)

Here, ´ 1�A�4 is the infinite Hilbert matrix. Because of Theorem 2.5 the eigenvalues, and
therefore also the singular values are not clustered, and therefore also the eigenvalues ofa ���� 1 { 4 Ô � are not clustered around 1 but each cluster leads to t 1 uxwgy 1 & 4+4 outliers.

THEOREM 3.11 (Counter example for Toeplitz Schur complement preconditioner with
unbounded norm). For the Toeplitz Schur complement Ô � � � � I a ��1BA U 4 %Ka ��1�A�4 a ��1BA�4
with Toeplitz matrices

� �
there exists an example where the Toeplitz peconditioner that leads

to a weak clustering following Theorem 3.9 has unbounded spectrum of the preconditioned
system, e.g., for

A�� TVU .
Proof. Define the skewcirculant matrix

� �,� ¶ ¿_ò {@ñ P ¶Úó 1 .:(�%�#g( º (�*x*~* º (�(�# 4 and
Ar1\?R4

with
coefficients ¶  �Ýô

 
with related Hankel matrix coefficients

ô  
. (Here we use the MATLAB-

notation
af� ¶ ¿_ò {@ñ P ¶Úó 13?@4 to denote the symmetric Toeplitz matrix generated by vector

?
).

With the eigenvectors õ  of
� �

, relative to the standard eigendecomposition to
� �

based on
the Fourier matrix, we consider the Rayleigh quotients õ Ò � � õ  and õ Ò ´ � õ  . It can be
shown by direct computation that it holds õ Ò ´  õ  � t 1 # } & 4 . Therefore, for the eigenvec-
tor to small eigenvalues of

� �
it holds õ Ò �äö õ  � t 1 # } & U 4 , and the Rayleigh quotient ofõ Ò 1 � � I ´ �<4 õ  } õ Ò � � õ  is unbounded.

THEOREM 3.12. For the normal equations
aß� 1BA�4 U the Toeplitz preconditioner

a�� 1�A U 4
from Theorem 3.9 guarantees only a weakly clustered spectrum, e.g., for real

A�� TQU .
Proof. Consider

Ar1\?R4 Ë¸º with coefficients ¶  �÷# } " , " �÷#8(9.:(�*�*�*
;
a ��1BA�4 U precondi-

tioned by
a ��1BA U 4 leads toÓ %za ���� 1BA U 4 k a U� 1�A�4 �­a ���� 1BA U 4 k 1 a ��1�A U 4 %za U� 1�A�4F4 ��­a ���� 1BA�4 k 1 | � ´ 1BA�4 ´ 1BA�4 | � I � � ´ 1BA�4 ´ 1BA�4 � � 4(3.2)

and t 1 uxwgy 1 & 4+4 outliers in view of Theorem 2.5.
Finally, let us summarize the clustering results on preconditioning multilevel and block

Toeplitz matrices by multilevel or block circulant preconditioners:
1. For

e
-level Toeplitz matrices with equispaced grid, blocksize

&
, and total size ø �& D

there may be t 1 ø c D ��� d3ù D 4 �q& D ��� outliers (this includes also the scalar Toeplitz case
with t 1 # 4 outliers and the 2-level case with ø �S& U and t 1 & 4 � t 1ûú ø 4 outliers).

2. For a BT matrix of size ø � � k & , with fixed � , there may be t 1 uxwgy 1 ø 4+4 �t 1 uxwgy 1 & 4+4 outliers in the ill-conditioned case.
So, in the ill-conditioned case for scalar Toeplitz matrices we get strong clustering while

for BT and
e

-level Toeplitz matrices we get only a weak one. Nevertheless, the pcg method
for BT systems converges much faster ( t 1 u~w8y 1 ø 4F4 outliers) than the one for

e
-level Toeplitz

systems ( t 1 ø c D ��� d3ù D 4 outliers).
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4. Finding efficient preconditioners for BT matrices and Toeplitz Schur Comple-
ments. An important class of preconditioners for scalar and multilevel
Toeplitz matrices is given by trigonometric polynomials, resp. band Toeplitz matrices. A
polynomial BT matrix is defined as a matrix with generating function whose entries are
trigonometric polynomials. Unfortunately, given an ill-conditioned BT matrix it is not ob-
vious whether one can find a spectral equivalent trigonometric polynomial BT matrix. So for
the three examples2 � 1\?R4 � n ? U ?? # I ? U p ( 2 U 1\?R4 � n ? U × ?Û×× ?r× # I ? U p ( 2 m 1\?R4 � n ? U I6ü × ?Û× æ ?? # I ? U p
(4.1)
with small

ü   º , the polynomial BT matrix| 1\?R4 � n . 1 #H% ½ wð� 13?@4F4+4 �+¬x® 1\?R4�F¬x® 1\?R4 # I . 1 #Q% ½ wð� 13?@4F4+4 p Ë-º(4.2)

is spectral equivalent to
2 �

and
2 m

, but for
2 U we cannot find a spectral equivalent polynomial.

Note, that
2 �

and
2 U have the same determinant, trace, and eigenvalues.

In the following, we present a recipe to define a trigonometric polynomial BT matrix
for given

2�13?@4
. For simplicity we assume that

2�13?@4
has

? � � º as only singularity. First,
we compute Ü L § 132�13?@4+4 and assume that at

? � � º it allows the expansion Ü L § 132�13?@4F4 �ý ? D I t 1+× ?Û× D � � 4 . We split the partial functions
A Çþ 1\?R4

of
2�1\?R4

into
A Çÿ 13?@4 � A � Çÿ 13?@4 IA & Çþ 1\?@4

with
A � Çÿ 13?@4 differentiable up to order

e
and

A & Çþ 1\?R4 � t 19× ?r× D � � 4 not necessarily
differentiable at

? �
. Then, we can reduce the partial function

A � Çÿ 13?@4 to the coefficients#g( ? � (�*�*�*�( ?������
that give a contribution to the leading term

? D
in Ü L § 1B2�1\?@4+4 . In

A � Çÿ we
can replace the occuring terms

?��
, � � º (�*�*�*�( ñ Çþ by trigonometric polynomials of the form�+¬~® 13?@4��

or
1 .à%Ä. ½ w8� 1\?@4+4�� ù U . In this way we can define a trigonometric polynomial BT matrix

where Ü L § 1 | 13?@4F4 has the same singularity as Ü L § 1B2�1\?@4+4 . If the resulting polynomial has no
other singularity and is positive definite it may lead to a spectral equivalent preconditioner.
We can prove the following result.

THEOREM 4.1. Let
2�1\?R4

be the generating matrix function for an spd ill-conditioned
BT matrix with singularity at

? � � º . The determinant of
2�13?@4

at
? � � º is assumed to be

of the form Ü L § 1B2�1\?R4F4 � ý ? D I t 19× ?r× D � � 4 . Suppose that we have found a trigonometric
matrix polynomial | 13?@4 such that all the scalar functions � Çþ 1\?R4 in

	 1\?R4 � 2�13?@4 % | 13?@4 are
approximated at º such that � Çþ 1\?R4 � ý Çÿ ? D I t 19× ?r× D � � 4 . Furthermore assume that | 1\?@4 is
spd and | 1\?R4H  º for

?�
� º . Then the spectrum of the preconditioned system
a ���� 1 | 4 a ��1B254

is uniformly bounded away from º and
Æ

.
Proof. Note, that Ü L § 1 | 1\?R4F4 � Ü L § 132�13?@4+4 I t 1+× ?Û× D � � 4 near º . The entries of | ��� 1\?R4 k132�13?@4 % | 13?@4F4 are also bounded near

? � � º because Ü L § 1 | 13?@4+4 � ý ? D I t 1+× ?Û× D � � 4 .
Therefore, the eigenvalues of the preconditioned system | ��� 1\?R4Ú2�1\?R4 are bounded from
above. Furthermore, | ��� 1\?@4F2�1\?R4Q  º for all

?
.

Note that the inverse of
2�13?@4

can be written as
2 ��� 1\?R4 � 2�1\?R4��+} Ü L § 132�1\?R4F4 . With this

notation the condition in Theorem 4.1 can be formulated in the form that for | 1\?@4 all entries
of the matrix

� � � 2�13?@4
� 	 1\?@4 have to be of the form
� Çÿ 1\?@4 �-³  ? D I t 19× ?r× D � � 4 .

Now let us return to the general problem of preconditining ill-conditioned BT matrices
or Toeplitz Schur complements. We are interested in BT matrices where the solution can be
reduced to the solution of scalar Toeplitz systems.

THEOREM 4.2 (BT Schur complement I). Given a BT matrix with � �¸. . The solution
of the BT system can be reduced to solving scalar Toeplitz systems if one of the Schur comple-
ments Ô ��1 ³ 4 � �qa ��1�A�4 %ha
Ò� 1 Ø 4 k a ���� 1 ³ 4 k a ��1 Ø 4 or Ô ��1BA�4 � �Sa �R1 ³ 4 %ha ��1 Ø 4 k a �R1BA�4 k a�Ò� 1 Ø 4
is well-conditioned. We call Ô ��1 ³ 4 and Ô ��1�A�4 dual Schur complements.
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Proof. This is a direct consequence that via (2.1) we can reduce the BT matrix to scalar
Toeplitz matrices and one of the Schur complements. Furthermore, in view of Theorem 3.8
we have efficient preconditinoers for well-conditioned Toeplitz Schur complements.

Note that for ill-conditioned
. � . BT matrix one of the Schur complements may be

ill-conditioned and the other may be well-conditioned, e.g.,
2�1\?R4 � n ? U ?�} .?R} . # p .

THEOREM 4.3 (BT and Schur complement II). Given the pair of dual Schur comple-
ments Ô ��1BA�4 and Ô ��1 ³ 4 . Then the solution of Ô ��1BA�4 can be reduced to the solution of Ô ��1 ³ 4 .
Therefore, for ill-conditioned Ô ��1�A�4 we can find an efficient preconditioner if Ô ��1 ³ 4 is well-
conditioned or if there exists an efficient preconditioner for Ô ��1 ³ 4 .

Proof. Again, the result follows from equation (2.1) and Theorem 3.8.
One example is 2�13?@4 � n A {{ {@U p

with trigonometric polynomial { . Then for the Schur complement it holdsaR� 1�A�4 %va�� 1 { 4 a�� 1 { U 4 ��� a�� 1 { 4 �Sa�� 1BA�4 % Ó I ��(
in view of Corollary 2.3 with

a ��1 {@U 4 �qa ��1 { 4 a ��1 { 4 I � .
THEOREM 4.4. Given a BT matrix with generating matrix function

2�13?@4
Lebesgue

integrable that admits the factorization2�1\?R4 � T 1\?R4 k � 13?@4
with T 13?@4 a trigonometric matrix polynomial and

� 13?@4
a triangular matrix or vice versa.

Then the solution of
a ��13254

can be reduced to solving scalar Toeplitz systems and band ma-
trices.

Proof. We consider a BT matrix in the form (1.2). In view of Corollary 2.4 the matrixa�� 13254
can - up to low rank - be transformed in the product of a band matrix and a triangular

matrix with Toeplitz matrices on the main diagonal blocks.
One example is2�1\?@4 � n Ar13?@4 Ø 13?@4Ø 1\?R4 Ø 13?@4 p � n # #º # p k n A % Ø ºØ Ø p

with real
A

, Ø)T � functions and the above Schur complement factorization according to (2.1).
THEOREM 4.5. Given a BT matrix with generating matrix function

2�13?@4
Lebesgue

integrable that admits the factorization2�1\?@4 ��� 13?@4 k � 13?@4 k � 1\?@4
with

� 1\?R4
and
� 1\?@4

trigonometric matrix polynomials and
� 1\?R4

a triangular matrix. Then
the solution of

a�� 13254
can be reduced to solving scalar Toeplitz systems and band matrices.

Proof. We consider a BT matrix in the form (1.2). In view of Corollary 2.4 the matrixa ��13254
can - up to low rank - be transformed in the product of a band matrix and a triangular

matrix with Toeplitz matrices on the main diagonal blocks.
One example is2�1\?R4 � n Ar1\?@4 Ø 1\?R4Ø 13?@4 Ar13?@4 p � 1 # } . 4 n # ## %�# p n A I Ø ºº A % Ø p n # ##b%�# p

with
A

and Ø real T � functions.



ETNA
Kent State University 
etna@mcs.kent.edu

40 T. K. HUCKLE AND D. NOUTSOS

TABLE 5.1
Number of eigenvalues of the circulant preconditioned well-conditioned BT system outside � ��� ����������� .

Size 2*10 2*20 2*40 2*80 2*160 2*320
outliers 9 5 5 5 5 5

TABLE 5.2
Number of eigenvalues of ��� outside � ��� ������� ������� for Toeplitz preconditioned Toeplitz normal equations.

Size 10 20 40 80 160 320 640
outliers 2 2 2 2 2 2 2

5. Numerical Results. First, we present numerical examples related to the Theorems
from sections 3 and 4.

EXAMPLE 5.1. Table 5.1 presents an example for Theorem 3.6 with optimal circulant
preconditioner for BT matrix to2�1\?R4 � n # I × ?Û× } X × ?r× } X× ?r× } X # p
with

?�� Z %QX)(FXR[ . The spectrum is clustered and the number of outliers is bounded.
EXAMPLE 5.2. Next we display Theorem 3.7. Table 5.2 shows the number of outliers

for a Toeplitz preconditioned Toeplitz normal equations. The function
Ar1\?R4 � ? U has zero

of even order at º and we consider the matrix ø � � � a�� 1\? U 4 k a ���� 1\? l 4 k aR� 13? U 4 with?÷� Z %QX)(+XR[ . Note, that ø � is spectral equivalent to matrix
a�� 13? U 4 U preconditioned bya�� 1\? l 4

.
EXAMPLE 5.3. Table 5.3 presents an example for Theorem 3.8 with strong clustering

for the optimal circulant preconditioned well-conditioned dual Toeplitz Schur complementsÔ � � Ó I a ��1+× ?Û× 4 %'a �R1+× ?Û× 4 k a �R1+× ?Û× 4 and Ô U � Ó %'a �R19× ?r× 4 k a ���� 1 # I × ?r× 4 k a ��1+× ?Û× 4 with?�� Z %QX)(+XR[ .
EXAMPLE 5.4. Next we consider the strong clustering described by Theorem 3.8. Ta-

ble 5.4 deals with the Toeplitz Schur complement
. Ó I a ��1\? U 4 %=a ��13? U 4 k a ���� 13? l 4 k a ��13? U 4

preconditioned by
a �R1 # I ? U 4 with

?,� Z %QX)(FXR[ .
EXAMPLE 5.5. Table 5.5 presents an example for Theorem 3.10 with Toeplitz precondi-

tioner for Toeplitz Schur complement
a ��1 { 4 I a �R1�A U 4 %5a U� 1BA�4 ; the preconditioner is given bya ��1 { 4 with

Ar13?@4 � × ?Û×
,
? � Z %QX)(FXR[ , and { 13?@4 � .«% . ½ w8� 13?@4

, resp.{ 13?@4 �që�% � ½ w8� 1\?R4 I . ½ w8� 1 . ?@4 .
EXAMPLE 5.6. We display Theorem 3.10 by Table 5.6. For the Toeplitz Schur com-

plement
� � I a�� 1BA U 4 %'a U� 1�A�4 we choose the preconditioner

� �
with

Ar1\?@4 � × ?Û×
with

?z�Z %QX)(FXR[ and
� � 1 { 4 the skewcirculant matrix given by the polynomial { 1\?@4 �«.h%�. ½ wð� 1\?R4 ,

resp. { 1\?R4 �Së�%�� ½ w8� 13?@4 I . ½ w8� 1 . ?R4 .
EXAMPLE 5.7. Table 5.7 presents an example for Theorem 4.1 with polynomial BT

preconditioner | 1\?R4 for the three BT matrices
2 � 1\?R4

,
2 U 1\?@4 , and

2 m 1\?R4
from (4.1) and (4.2).

We see, that | leads to bounded spectrum when applied on
2 �

or
2 m

.

EXAMPLE 5.8. We consider the matrix function
2 � n # ?? . ? U p . The associated BT

matrix generated by
2

is: � ��1B254 � n Ó � a ��1\?@4a Ò� 1\?R4 ._a �R1\? U 4 p *
For the solution of the BT system � ��1B254 M � Ø
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TABLE 5.3
Number of eigenvalues outside � ��� ��������� ����� as example for strong clustering for well-conditioned Toeplitz

Schur complement with circulant preconditioner.

Size 10 20 40 80 160 320 640
outliers !#" 3 2 2 2 2 2 2
outliers !%$ 3 2 2 2 2 2 2

TABLE 5.4
Number of eigenvalues outside � ��� ������� ������� as example for strong clustering for well-conditioned Toeplitz

Schur complement with Toeplitz preconditioner.

Size 10 20 40 80 160 320 640
outliers 2 2 2 2 2 2 2

we choose as preconditioner the block band Toeplitz matrix:n Ó � a ��1 �+¬~® 13?@4+4a �R1 �+¬~® 1\?@4+4 ._a �R1 .ä%�. ½ w8� 13?@4+4 p *
The Schur complements of the above BT matrix areÔ � � Ó ��% 1 # } . 4 k aR� 13?@4 Ò k a�� 1\? U 4 ��� k a�� 1\?R4 (
which is well-conditioned in view of Theorem 3.1 and does not need any preconditioning,
and

Ô U �Ù._a�� 1\? U 4 %va�� 1\?R4 Ò k aR� 13?@4 (
which is ill-conditioned and needs preconditioning. For this we choose the band Toeplitz
preconditioner a ��1 .ä%�. ½ wð� 1\?R4F4 *
In Table 5.8 we give the number of iterations of the pcg method for various values of

&
and

for using various preconditioners. Thereby, we use the following abbreviations:
BT: cg for block Toeplitz System,
BBT: Block band Toeplitz preconditioning for block Toeplitz System,
CBT: Block circulant preconditioning for block Toeplitz System,
WS: cg for well-conditioned Schur complement,
IS: cg for ill-conditioned Schur complement,
BIS: Band Toeplitz preconditioning ill-conditioned Schur complement, and
CIS: Circulant preconditioning for ill-conditioned Schur complement.

We have to remark that for this example we get only a weak clustering and not a strong
clustering for the band Toeplitz preconditioned ill-conditioned Schur complement, since the
Hankel matrix related to the function

?
is similar to the Hilbert matrix (Theorem 3.10). Hence,

the number of iterations in the
ì
th column shows a logarithmic growth.

Since the dual Schur complement is well-conditioned we get a strong clustering for the block
band Toeplitz preconditioner applied on the block Toeplitz system (Theorem 4.2). As a con-
sequence, the number of iterations in the

;
rd column tends to be constant.

For the circulant preconditioned matrix for the Schur complement as well as for the block cir-
culant preconditioned matrix for the BT system we get only a weak clustering (Theorem 3.9).
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TABLE 5.5
Number of eigenvalues of outside � ��� ������� ������� as an example for no strong clustering for Toeplitz precondi-

tioned Toeplitz Schur complement.

Size 10 20 40 80 160 320 640 1280
outliers &('*),+.-0/1&(24365��
78���9���
����� : 2 2 2 2 3 3 4 4

outliers &('*)9+;-0/1&(2431<���7>=4�
���,�������
� : 2 2 3 4 4 6 6 8

TABLE 5.6
Maximum eigenvalue as an example for unboundedness for Toeplitz preconditioned Toeplitz Schur complement.

Size 10 20 40 80 160 320 640 1280?;@BA*C
for &('*)9+;-0/1&(24315���78���,���
����� : 3.1 6.0 12.2 25.3 52.2 106.7 216.5 437.1? @BA�C

for &('D)9+;-�/6&(2E36<���7>=4�����9�����
��� : 2.0E1 1.8E2 1.6E3 1.4E4 1.1E5 9.2E5 7.5E6 6.0E7

Therefore, the number of iterations in the F th and
�
th columns show logarithmic growth.

EXAMPLE 5.9.
2 � n # ? U? U . ? l p (�a ��13254 � n Ó � a ��1\? U 4a ��1\? U 4 ._a ��13? l 4 p * We use as block

band Toeplitz preconditioner for the BT system the matrix:

n Ó � a ��1 .ä%�. ½ wð� 1\?R4F4a �R1 .ä%6. ½ wð� 1\?R4F4 .Ya ��1F1 .ä%�. ½ w8� 13?@4+4 U 4 p
and as band Toeplitz preconditioner for the ill-conditioned Schur complement the matrix:a ��1F1 .ä%'. ½ w8� 1\?@4+4 U 4 *
In Table 5.9 we give the number of iterations of pcg method as we have done in Table 5.8.
The meaning of “*” is that the number of iterations exceeds the dimension of the considered
matrix.

We get the same remarks as in the previous example except the band Toeplitz precondi-
tioned ill-conditioned Schur complement. Note, that the Hankel matrix related to the function? U is a compact operator (Theorem 3.4, see also [1]). Consequently, the number of iterations
in the

ì
th column tends to be constant.

EXAMPLE 5.10.
2 � n ? U �U ? U�U ? U ? U p (�a ��1B254 � n a ��1\? U 4 �U a ��1\? U 4�U a ��13? U 4 a ��1\? U 4 p * We use as

block band Toeplitz preconditioner for the BT system the matrix:

n aR� 1 .�%'. ½ w8� 1\?@4+4 aR� 1 #Q% ½ w8� 1\?@4+4a�� 1 #Q% ½ wð� 13?@4F4 a�� 1 .�%�. ½ w8� 13?@4F4 p *
Both Schur complements are the same Toeplitz matrix:

ml a�� 1\? U 4 , so we use as band Toeplitz
preconditioner for the ill-conditioned Schur complement the matrix:;

F
a�� 1 .ä%'. ½ w8� 13?@4+4 *

This example is a special case of Theorem 4.5, so
2

can be written in the form2�1\?R4 � 1 # } . 4 n # ## %�# p n mU ? U ºº mU ? U p n # ##b%�# p *
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TABLE 5.7
Minimum and maximum eigenvalue of the preconditioned spectrum GIH "� 36JK:%LMG � 31N;OP: , Q�RS���95��,T .

Size 10 20 40 80 160 320 640? @VU � � ? @BA�C for NM" 0.83,2.4 0.81,2.6 0.80,2.7 0.80,2.9 0.80,2.9 0.80,2.9 0.80,3.0? @VU � � ?;@BA�C for N $ 0.1,9.0 4E-2,26.9 1E-2,96.5 4E-3,4E2 1E-3,1E3 4E-4,6E3 1E-4,2E4? @VU � � ?;@BA�C for NXW 0.90,8.0 0.84,8.9 0.82,9.4 0.81,9.8 0.80,9.9 0.80,10.1 0.80,10.1

TABLE 5.8
Iterations for BT system and for Schur Complements of example 5.8&

BT BBT CBT WS IS BIS CIS
4 8 7 5 2 2 2 2
8 15 10 12 3 4 4 4

16 31 12 14 3 8 8 5
32 64 14 15 3 17 9 5
64 128 14 16 3 39 10 6

128 202 14 16 3 86 11 6
256 350 14 18 3 187 11 6
512 619 13 19 4 395 12 9
1024 1189 13 20 4 819 12 10

Theorem 4.5 is applied, which means that the problem is reduced to solve the scalar Toeplitz
system of the matrix

a ��13? U 4 . This system is efficiently solved by band Toeplitz precondi-
tioned method to get superlinear convergence. Since

2
could be written also as the product:2�13?@4 � n ? U ºº ? U p n # �U�U # p (

where the first factor is a diagonal matrix function with roots of even order and the second one
is a constant positive definite matrix function, we can use efficiently the block band diagonal
Toeplitz preconditioner

	 13?@4 � n a �@1 .ä%'. ½ w8� 1\?R4F4 ºº a ��1 .ä%�. ½ w8� 13?@4+4 p *
In Table 5.10 we give the associated numbers of iterations for all the methods mentioned
above, where the column named by BBDT corresponds to the block band diagonal Toeplitz
preconditioner. We get superlinearity in all preconditioned methods which confirms the va-
lidity of Theorem 4.5.

It should be mentioned here that the block band diagonal Toeplitz preconditioner for this
example could be obtained also by Theorem 3.1 of [12], as an analogous preconditioner has
been obtained in the Example 4.2 of the same paper.

6. Conclusions. We have characterized different methods to reduce the solution of BT
matrices or Toeplitz Schur complements to the solution of scalar Toeplitz matrices. Fur-
thermore, we have developed different preconditioning methods for block Toeplitz matrices
and Toeplitz Schur complement matrices. In ill-conditioned cases we have to reckon witht 1 uxwgy 1 & 4+4 outliers and growing iteration count with increasing

&
. Furthermore, we have

developed results on the spectrum of preconditioned BT matrices and Toeplitz Schur com-
plements. We have shown that for some cases neither circulant preconditioner nor banded
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TABLE 5.9
Iterations for BT system and for Schur Complements of example 5.9&

BT BBT CBT WS IS BIS CIS
4 4 4 3 2 2 2 2
8 11 7 6 2 4 4 4

16 25 9 9 2 9 8 6
32 * 12 12 2 28 10 8
64 * 16 11 2 * 12 11

128 * 18 15 2 * 13 10
256 * 20 17 2 * 14 14
512 * 20 25 2 * 14 15

1024 * 20 24 2 * 14 24

TABLE 5.10
Iterations for BT system and for Schur Complements of example 5.10&

BT BBT BBDT IS BIS
4 2 2 2 2 2
8 4 4 4 4 4

16 8 7 7 8 7
32 16 9 9 16 9
64 36 10 10 37 10

128 82 10 10 82 10
256 177 10 10 177 10
512 372 11 11 372 11
1024 768 11 11 768 11

preconditioner lead to an efficient iterative method. In such cases as alternative method the
Multigrid approach for BT matrices [5] may be preferable, because these methods can also
deal with zeros of uneven order in the generating function.
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