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Abstract. Being one of the key tools in conformation dynamics, the identification of metastable states of
Markov chains has been subject to extensive research in recent years, especially when the Markov chains represent
energy states of biomolecules. Some previous work on this topic involved the computation of the eigenvalue cluster
close to one, as well as the corresponding eigenvectors and the stationary probability distribution of the associated
stochastic matrix. More recently, since the eigenvalue cluster algorithm may be nonrobust, an optimization approach
was developed. As a possible less costly alternative, we present an SVD approach of identifying metastable states
of a stochastic matrix, where we only need the singular vector associated with the second largest singular value. We
also introduce a concept of block diagonal dominance on which our algorithm is based. We outline some theoretical
background and discuss the advantages of this strategy. Some simulated and real numerical examples illustrate the
effectiveness of the proposed algorithm.

Key words. Markov chain, stochastic matrix, conformation dynamics, metastable, eigenvalue cluster, singular
value decomposition, block diagonal dominance

AMS subject classifications. 15A18, 15A51, 60J10, 60J20, 65F15

1. Introduction. The research for this paper has been motivated by the work on con-
formation dynamics, or more specifically, on the identification of metastable conformations
of biomolecules done by Deuflhard et al., see, e.g., [7], [8], and the references therein. This
problem arises for instance in drug design, where it is important to study different conforma-
tions of the drug molecule in order to optimize its shape for best possible binding properties
with respect to the target molecule [22]. Different conformations, also called aggregates or
metastable states of a molecule are sets of states such that the transition within the set is very
probable whereas the transition between these sets only rarely occurs.

We briefly describe this problem from a mathematical point of view. Given a stochastic
matrix � representing some states of a biomolecule, but including some noise due to mea-
surements, find a permutation � so that �����	��

����� , where � is stochastic and block
diagonal, and � has small entries. The diagonal blocks of � correspond to the metastable
states, and � consists of the noise and also of the small probabilities that the molecule might
move from one aggregate to another. The number of blocks in � is of particular interest, and
it is not known a priori.

The approach to identify metastable conformations of biomolecules presented in [7] in-
volves the computation of the eigenvalue cluster of � close to one, the so-called Perron
cluster, as well as the corresponding eigenvectors. The number of eigenvalues in the cluster,
then, represents the number of different metastable states. The algorithm also uses a sign
structure analysis of the corresponding eigenvectors to identify the different sets. Since this
algorithm may be nonrobust, an optimization approach was developed in [8]. The main idea
of the approach in [8] is to find a transformation of the computed perturbed eigenvectors such�
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that the transformed eigenvectors are contained in a simplex with unit vectors as vertices. The
number of vertices is taken to be the number of diagonal blocks, it may be smaller than the
number of computed eigenvectors. In both approaches the Markov chain is assumed to be
reversible in order to exploit the fact that the transition matrix is then symmetric with respect
to an inner product, which in its definition requires the stationary distribution of the Markov
chain.

The main drawbacks of these two approaches are firstly, that the identification of the
Perron cluster may be difficult or even impossible if the transition matrix of the Markov
chain has no significant spectral gaps; and secondly in the first method, the calculation of the
stationary distribution, although usually well conditioned [11], [16], [20], [29], may be costly
and badly conditioned if the Perron cluster contains many eigenvalues very close to 1; see,
e.g., [25]. In this case, also the identification of the Perron cluster may be difficult or even
impossible. We compare our new method to these two methods of [7] and [8], since they
seem to be the state of the art methods used to identify conformations of biomolecules.

In this paper, we present a different approach to identifying metastable states of a Markov
chain: we find a permutation of a given stochastic transition matrix of a Markov chain, such
that the resulting matrix is block diagonally dominant. We also introduce a concept of block
diagonal dominance different than that used in [7], [8]. In our method we do not need to know
the number of metastable states in advance but instead it is calculated in the process. Hence,
the functionality of the algorithm does not depend on a significant gap in the spectrum of the
transition matrix of the Markov chain. Furthermore, instead of calculating many eigenvectors
or employing costly optimization procedures, we calculate only two singular vectors that
correspond to the two largest singular values. This allows us to use iterative procedures such
as Lanczos or Arnoldi iteration for our computations [3]. Since we are dealing with singular
vectors instead of eigenvectors, we do not need the reversibility assumption on the Markov
chain. Under this assumption, the transition matrix is symmetric in a non-Euclidean scalar
product defined using the stationary distribution. Symmetry on the other hand is needed for
accuracy of calculations. In the case of singular vectors, we do not need this, since singular
vectors form an orthogonal basis.

The basic idea of our algorithm is to calculate the singular vector that corresponds to
the second largest singular value, sort its entries and apply the thus obtained permutation
to the transition matrix. This idea is based on an observation due to I. Slapnicar [23]. Our
strategy partly reflects well-studied ideas from the literature on computer science and discrete
mathematics. In graph partitioning, the Fiedler vector, which is the eigenvector corresponding
to the second smallest eigenvalue of a Laplacian matrix plays an important role, see, e.g.,
[12], [21] for the basics and [1], [24] for further reading. Ideas of using the singular value
decomposition for graph clustering can be found, e.g., in [9], [30], or in the case of the
seriation and the consecutive ones problem, e.g., in [2].

Our paper is organized as follows. In Section 2 we introduce the notation and some
well-known definitions and theorems that we will use throughout the paper. In Section 3,
we formulate some theoretical results for uncoupled Markov chains followed by Section 4,
where we translate these results to the nearly uncoupled case. In Section 5, we describe
our algorithm in detail. Finally, in Section 6, we present some constructed and some real
numerical examples that illustrate the functionality of our new method.

2. Preliminaries. We call a vector ������� , ��

� ����� �"!$#&%('('('(% � positive and we write ��)+*
if all its entries ��� are positive. A matrix ,-�.�/�102� , ,3
4� 56�879� ��% 7:!�#;%('('('(% � is called positive
(nonnegative) and we write ,<)=* ( ,?>@* ) if all entries 5:�87 are positive (nonnegative).
The matrix , is called reducible if there exists a permutation matrix �A�B���10C� , such that
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 H ,I#J# *,/K # ,/K:K9L , where ,I#J#NM:, KJK are square. Otherwise it is called irreducible. We

call the matrix , (strictly) diagonally dominant if O 5 �P� OQ)-R �7:!�#7NS!�� O 5 �87 O for all T	
4UVMXWYWXWXM:Z .

We denote by [ the vector of all ones �"U\MXWYWXWYMXU9�]� . For ^$M_�`�B�/� , we denote by a]^�M:�cb the
Euclidean scalar product.

A scalar de�f� is called an eigenvalue of the matrix , �g���102� if a vector�h�i�/�jM��lk
m* exists, such that ,n�	
Bd2� . Such a vector � is called a (right) eigenvector of ,
associated with d . A vector op�q���jM$ork
s* with ot�I,B
GduoE� is called a (left) eigenvector
of , . Let ,v�w�/�x0C� have the eigenvalues dx�_MyTz

U\MXWYWXW9M:Z . We call {x|],t}Q
B~����u#&�j��� � O d1�JO
the spectral radius of , .

A process is called finite homogeneous Markov chain if it has Z states �V#NMYWXWXWXMJ� � and the
transition probability ��� �N�j���;79��
	�c56�87 is time-independent. The matrix ,s
�� 5_�879� ��% 7:!�#;%('('('(% �
satisfies 56�(7�>�* and R �7:!�# 56�87�
GU for T&M��	
vUVMXWXWYW9M_Z , i.e., it is (row) stochastic and it is called
the transition matrix of a Markov chain. We denote by ����
�� �j�� � �"!�#;%('('('(% � the probability
distribution vector, where � �� is the probability that the system is in state ��� after � steps. We
have, � �� >�* and R ��P!�# � �� 
.U for each � . A distribution vector � is said to be stationary if�1��,�
��1� . A matrix � is called block stochastic if � is block-diagonal, i.e..,

(2.1) �m
��2�P�\�1|]�D#�MXWYWXWXMJ�E�D};M
the matrices � � ���j�\�:0C��� , Tt
3U\MYWXWXWXM_� , are (row) stochastic matrices, and R ��P!�# Z � 
pZ .
For every block � � , we define sets � � of Z � indices corresponding to the block � � . We have� ��"!$# � � 
v�VUVMXWXWYW9M_Zy� and � �J� � 7 
B� for Tnk
+� . We define by � �87 
��	|�� � MJ� 7 } the subblock
of � that contains entries   �;¡ , where �¢�l� � M:£$�¤� 7 .

The (adjacency) graph of a matrix �¥
¦�  C�879�§�]% 7:!�#;%('('('8% � is defined by letting the vertices
represent the unknowns. There is an edge from node �¨� to node �©7 whenever  c�87ªk
�* . We call
a graph and, hence, the corresponding matrix simply connected if for all T&M��`�G�VU\MYWXWYW9M_Zy�
there exists a path from node T to node � or from node � to node T .

The well-known Perron-Frobenius Theorem (see, e.g., [4, p. 27]) guarantees the exis-
tence and uniqueness of a stationary distribution.

THEOREM 2.1 (Perron-Frobenius Theorem). Let ,4>3* be irreducible with spectral
radius {j|�,�} . Then {x|],t} is a simple eigenvalue and , has a positive left and right eigenvector
corresponding to {j|�,t} . Any positive eigenvector � of a nonnegative matrix , corresponds to{j|�,t} .

In this paper we apply the singular value decomposition to identify metastable states of a
Markov chain. The following well-known theorem (see, e.g., [14, p. 70]) states the existence
of a singular value decomposition.

THEOREM 2.2 (SVD). Let �<�r���10C� . Then, there exist orthogonal matrices «?
� ^/#�MXWXWYW9M_^ � �I�i�/�10C� and ¬.
.� �V#�MXWYWXW9M:� � �I�­�j�x0C� , such that

(2.2) �m
s«�®¯¬ � M
where ®+
��C�§���j|]°j#�MYWXWYW9M:° � } and °j#�>+° K >sWXWXWu>+° � >�* .

We call °x#�MXWYWXWXMJ° � , singular values, ^�#�MXWXWYW9M_^ � , left singular vectors and �¨#�MXWYWXWXM:� � ,
right singular vectors of � . Singular values with multiplicity one are called simple.

3. Uncoupled Markov chains and the SVD. In this section we formulate the theo-
retical basis for the sign structure approach that we use in our algorithm. In Theorem 3.1,
following the lines of [7, Lemma 2.5], we show an important sign structure property for sin-
gular vectors. Subsequently, we explain how we use this property in our approach and state
the advantages of this strategy.



ETNA
Kent State University 
etna@mcs.kent.edu

AN SVD APPROACH TO IDENTIFYING METASTABLE STATES OF MARKOV CHAINS 49

If a block stochastic matrix � is permuted to �±
¥�F�t��� then clearly � and � have
the same singular values. In the following we present an approach to obtain a permutation
matrix ²� that yields ²��
³²�F���v²� where ²� is block-diagonal and reveals the hidden block-
structure of � . We will determine such a ²� by means of the singular value decomposition.
One motivation for our approach is the fact that the singular vectors of � are obtained from
those of � by the same permutation that permutes � to � .

THEOREM 3.1. Let � be a block-stochastic matrix of the form (2.1) with � simply
connected diagonal blocks of order Zy#NMXWYWXWYM_Z�� , denoted by �D#�MXWYWXW9MJ�E� . Let ��� be the set ofZ�� indices corresponding to the block �D� , Ty
GUVMXWYWXW9M:� . Let�s
@²«�®¤²¬ �
be a singular value decomposition of � as in (2.2) and let ²^�#�MXWYWXWXM ²^x� be the � left singu-
lar vectors corresponding to the largest singular value of each of the blocks ��#�MXWXWYWXMJ�E� ,
respectively. Associate with every state � � its sign structure´ �P�\µ�|��©�¶}·�(
-¸ ´ �\µ�| ²^�#9}_�_MYWXWYWXM ´ �\µ�| ²^x�D}6�]¹ M
where ´ �Vµº�C��»x¼½�¨»FU\MJ*2MXU\�¾­¿»x¼ ÀÁ Â UVM ¾ )�**uM ¾ 
�*»FUVM ¾�Ã * W
Then,

i) states that belong to the same block of � exhibit the same sign structure, i.e., for any�¯7 and all �jM:£$�l�17 , we have ´ �"�VµI|�� � }Ä
 ´ �P�\µ�|�� ¡ } ;
ii) states that belong to different blocks of � exhibit different sign structure, i.e., for any�E�:M:�Å7 with TEk
`� and all �¢�¤���6MJ£��¤�17 we have ´ �"�Vµ�|�� � }�k
 ´ �"�VµI|�� ¡ } .

Proof. i) The left singular vectors of a matrix � are the eigenvectors of �E�F� , since from
(2.2) we get �t� � 
@²«F® K ²« � , see, e.g., [14]. Note that the singular values of � are the square
roots of the eigenvalues of �E��� .

Since we have assumed � to have � simply connected blocks, the matrix product �F���E��
is irreducible and we have � � �t�� >�* . Hence, by the Perron-Frobenius Theorem 2.1 we have
that {j|]� � �t�� } is a simple eigenvalue and the corresponding right eigenvector Æ^ � is strictly
positive. Thus, the vector

(3.1) ²^j�I
.� *2MYWXWXWXM:*2McÆ^ �� M:*2MYWXWYW9M:*�� �
is an eigenvector of �E�t� corresponding to the largest eigenvalue of the block � � �E�� , i.e., it is
a left singular vector corresponding to the largest singular value of the block � � . This implies
that states that belong to the same block exhibit the same sign structure.

ii) Since by part i) all states that belong to the same block have the same sign structure,
without loss of generality, we may assume that every block consists of only one state, i.e.,Zp
A� . Then, since ²«Ç
?� ²^/#�MXWYWXW9M ²^x�E���¥� � 0 � is orthogonal, the rows of ²« are also
orthogonal and, hence, no two vectors can have the same sign structure.

Note, that the same results can be obtained for the right singular vectors by considering
the matrix �t��� instead of �E�t� .

To illustrate the sign structure property established in Theorem 3.1 we consider the fol-
lowing example.
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EXAMPLE 3.2. Consider a block diagonal transition matrix of a Markov chain with three
blocks of sizes 2, 3, 2. Then, the three singular vectors � # M_��KVM_��È corresponding to the largest
singular values of each of the blocks are linear combinations of the vectors ²^I� in (3.1). We
have that the vectors ²^/� ��#� K� È�YÉ�©Ê�©Ë�©Ì

²^ #ÍÎÎÎÎÎÎÎÎÏ �� *****
ÐÒÑÑÑÑÑÑÑÑÓ

²^xKÍÎÎÎÎÎÎÎÎÏ **��� **
ÐÒÑÑÑÑÑÑÑÑÓ

²^xÈÍÎÎÎÎÎÎÎÎÏ *****��
ÐÒÑÑÑÑÑÑÑÑÓ

are positive on the block they correspond to and zero elsewhere. A possible linear combina-
tion for the orthogonal vectors �V� could lead to the following sign structure.��#� K� È� É� Ê� Ë� Ì

�V#ÍÎÎÎÎÎÎÎÎÏ �������
Ð ÑÑÑÑÑÑÑÑÓ

� KÍÎÎÎÎÎÎÎÎÏ �� »»»»»
Ð ÑÑÑÑÑÑÑÑÓ

� ÈÍÎÎÎÎÎÎÎÎÏ »»»»»��
Ð ÑÑÑÑÑÑÑÑÓ W

Here, the states � # M&�YK belong to the first block and have the sign structure |¶�	M&�	MX»E} , the
states �©È�M&� É MJ� Ê belong to the second block and have the sign structure |¶�	MX»FMY»E} and the
states � Ë M&� Ì belong to the third block and have the sign structure |¶�	MX»FM;�D} .

The idea to sort the singular vector corresponding to the second largest singular value and
to apply the resulting permutation to the matrix is due to an observation by Slapnicar [23].
This method always works for matrices with only two blocks, see Section 5 for an example,
and usually works for matrices with a few blocks. For larger matrices having more blocks,
however, this simple approach is not sufficient to reveal the block structure.

By using the sign structure property established in Theorem 3.1 we modify this idea
into a recursive bisectioning algorithm that is suitable for large matrices with any number
of blocks. The main strategy is to identify two blocks in each step and apply the sorting
procedure recursively to each of the blocks. The details of the algorithm are presented in
Section 5.

The advantages of this approach in comparison to the eigenvalue approach presented in
[7] are the following:Ô we do not need to know the number of blocks in advance. Instead, we only set a

tolerance threshold for the size of the entries in the off-diagonal blocks. The number
of identified blocks then reflects the given tolerance, see Section 4;Ô instead of computing all eigenvectors corresponding to the eigenvalue 1, we only
calculate two singular vectors in each recursion step;Ô it is less costly than an optimization approach in terms of runtime, since we need to
calculate only two singular values and vectors per recursion, which can efficiently
be done by Arnoldi-type iterative procedures [19];Ô to compute eigenvectors accurately, it is usually assumed that the transition matrix
is symmetric in a non-Euclidean inner product defined using the stationary distribu-
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tion; for the computation of singular vectors, we do not need this assumption, since
singular vectors are by definition orthogonal;Ô the approach makes use of combinatorial aspects of the problem.

4. Nearly uncoupled Markov chains. In the previous section we have considered un-
coupled Markov chains. In applications, due to perturbations, noise and actual weak cou-
plings between aggregates, the Markov chains are nearly uncoupled. Such a matrix � , con-
sisting of � nearly uncoupled blocks, can be transformed by a permutation matrix � to

(4.1) �F��� � 
m�`�`�

 ÍÎÎÎÎÏ ��#J# �t# K WYWXWÕ�t#_�� K # � KJK WYWXWÕ� K �
...

...
...�n�n#e�n� K ... �t�·�

ÐÒÑÑÑÑÓ M
where the elements of each �E�87 are small. In this case, we are looking for some permuta-
tion matrix ²� , possibly different from the matrix � in (4.1), that permutes � into a block
diagonally-dominant matrix of the form (4.1). In order to define diagonal dominance for
blocks, we need to introduce a measure for the smallness of the off-diagonal blocks or, equiv-
alently, a measure for the largeness of the diagonal blocks.

For this purpose, in Definition 4.2 below, we first define a norm that is more general than
that of [7, Definitions 2.3, 2.4]. The norm used in [7, Definitions 2.3, 2.4] and the [ -norm that
we will use in the following, will then be special cases of the general norm in Definition 4.2.

Let � � MJ� ¡lÖ �¨U\MXWYWXW9M:Zy� be sets of indices. In the following, we denote by � �;¡ 
��|�� � MJ� ¡ } the subblock of � corresponding to the index sets � � MJ� ¡ . For simplicity, for any� , we write � � for the diagonal block � �9� .
DEFINITION 4.1 (Conditional transition probability). Let �Õ
×� ØX�87X�l�-�/�10C� be a

stochastic matrix. Let ��

� �¨#NMXWYWXWYM_� � � � be a positive vector with R ��P!�# ����
.U . Let � � MJ� ¡ Ö�VUVMXWXWYW;M_Zy� be sets of indices with � � � � ¡ 
v� and let � � 
G�¢|�� � MJ� � }9M:� ¡ 
G�¢|�� ¡ M&� ¡ } be
the corresponding blocks.. Then, the conditional transition probability from � � to � ¡ is given
by Ù$Ú |]� � M:� ¡ }Ä
 R �]ÛVÜ�Ý©% 79ÛVÜ�Þ � � O Ø �87 OR �]ÛVÜ Ý ��� W(4.2)

Note that in (4.2), in order to define a norm in the following Definition 4.2, we use absolute
values of Ø;�87 , although in our case these entries are all nonnegative.

DEFINITION 4.2 ( � -Norm). For any vector ��)r* , we define the � -norm of a matrix
(block) � �&¡ by

(4.3) ß9� �;¡ ß Ú �8
 Ù Ú |]� � M:� ¡ }9W
DEFINITION 4.3 (Coupling matrix). Let � # MYWXWXWYMJ� � Ö �VUVMXWXWYW;M_Zy� be sets of indices

such that
� ��P!�# � � 
@�¨U\MYWXWXWXM_Zy� and � �$� � 7 
A� , for all T¤k
3� . Let � � 
à�¢|�� � M&� � } ,��
áUVMXWXWYW9M_� , be the diagonal blocks of the corresponding block decomposition of � . The

coupling matrix of the decomposition is given by the stochastic matrix â Ú
defined by|�â Ú } �;¡ 
 Ù Ú |�� � MJ� ¡ };M

for �jMJ£�
GU\MYWXWYW9M_� .
In [7] and [8] the vector � is taken to be the stationary distribution of the Markov chain,

i.e., �º
.ã , where ãI�I�3

ã�� and ã��y[¤
äU . Hence, the norm used in [7] and [8] is called
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the ã -norm. If we use �l
å[ instead and recalling that Z � is the cardinality of � � , then we
obtain

(4.4) ß9� �&¡ ßXæD
 UZ � ç��ÛVÜ�ÝN% 79ÛVÜ�Þ O Ø;�87¨O8M
and we call this norm the [ -norm. Note that the [ -norm is simply the average row sum of a
matrix (block).

We discuss the difference of the [ -norm and the norm used in [7] and [8] in Section 6.
The advantage of our choice is that we avoid calculating the stationary distribution of the
Markov chain, which, although usually well conditioned [11], [16], [20], [29], may be costly
and badly conditioned if the Perron cluster contains many eigenvalues very close to 1, see,
e.g., [25]. We claim to obtain the same qualitative results with both norms, see Section 6. The
following lemma gives the factors for the equivalence between the two norms (4.3) and (4.4)
for a diagonal block.

LEMMA 4.4. Let �r
¥� Ø9�(7Y�z���j�102� be a stochastic matrix. Let � � Ö �VUVMXWXWYW9M_Zy� be a
set of Z � indices and � � 

��|�� � MJ� � } the corresponding principal subblock. Furthermore,
let ��

� �V#�MXWXWYWXM:� � �§� be a positive vector and �\èêé ë , ��èêì_í the minimum and maximum values
of the entries in �j|�� � }Ä
v�Y���ÄO�Tz�¤� � � . Then, we haveß9� � ß Ú�î � èêì:í��èêé ë ß9� � ß æ î � Kèêì:í� Kèêé ë ßX� � ß Ú W

Proof. We haveß9� � ß Ú 
 R �]% 79ÛVÜ�Ý ���&O Ø9�(7¨OR ��ÛVÜ�Ý ��� M�ß9� � ß9æ�
 UZ � ç��% 79ÛVÜ\Ý O Ø9�(7¨OÒW
Since � èêé ë î � � î � èêì_í for all TQ�º� � , we have thatß9� � ß Ú î R ��% 79ÛVÜ�Ý ��èêì:íuO Ø9�(7¨OR �]ÛVÜ�Ý ��èêé ë 
 � èêì:í��èêé ë W UZ � ç��% 79ÛVÜ\Ý O Ø9�(7¨O\
 � èêì:í��èêé ë ßX� � ßXæ¨W
Similarly, ßX� � ß Ú > R �]% 79ÛVÜ�Ý � èêé ë O Ø �87 OR ��ÛVÜ\Ý � èêì_í 
 ��èêé ë� èêì_í ßX� � ßXæ¨W
Note, that if we take � to be the stationary distribution ã of the Markov chain, then �¨�¯� � can
be arbitrarily close to zero.

In the numerical examples in Section 6, we can see that for the diagonal blocks theã -norm is usually larger than the [ -norm. Lemma 4.4 indicates that even if ß9� � ß Ú is larger
than ß9� � ßXæ , the former cannot exceed the latter by more than a factor �Vèêì:íVïN��èêé ë . Howeverß9� � ß Ú is not always larger than ßX� � ßXæ as the following example demonstrates.

EXAMPLE 4.5. Consider the stochastic matrix�

 ÍÏ *uW"Uf*2W ð **uW"Uf*2W ñ *2WPU*uW òó*2WPU *2W ô ÐÓ W
The stationary distribution of � is given by ã��`
 ¸ *uW"U©ò�õ¨ôö*uW ôVðV÷�òö*2WPUNø�ò2U&¹ . For the first÷�ùl÷ block �F# we have ßX�F#�ß9ú�
m*2W ð2UYôVò Ã *2W ðVûF
.ßX�D#\ß9æ .
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We now use the [ -norm to introduce a measure of the largeness of diagonal blocks.
DEFINITION 4.6 (Nearly uncoupled). We call two or more diagonal blocks of a stochas-

tic matrix nearly uncoupled if the [ -norm of each of the blocks is larger than a given thresholdü:ý2þ 
vU¯»wÿ for some small ÿ	)�* . We call a matrix ²� with

²�å

ÍÎÎÎÎÎÎÎÎÎÎÏ

� # � # K WXWXW�� #_�� K # � K
...

. . .
...���n# WXWXW-���

Ð ÑÑÑÑÑÑÑÑÑÑÓ
nearly uncoupled if its � diagonal blocks are nearly uncoupled and the corresponding cou-
pling matrix (see Definition 4.3) is diagonally dominant.

Our algorithm is designed to determine the possibly maximal number of blocks such that
the coupling matrix is diagonally dominant.

In the previous section we have shown that singular vectors that correspond to the largest
singular values of each of the blocks have a specific sign structure. States that belong to the
same block exhibit the same sign structure and states that belong to different blocks exhibit
different sign structures. Since our identification algorithm is based on this sign structure, we
need to show that under certain conditions the assertions of Theorem 3.1 are still true under
perturbations.

4.1. Perturbation theory. In this section we consider componentwise perturbation the-
ory of singular vectors (or equivalently eigenvectors of symmetric matrices) according to [17],
since we are interested not only in the size of the componentwise deviation of the perturbed
singular vector from the unperturbed but also in its sign. For the normwise perturbation the-
ory for singular vectors see, e.g., [26]. A survey of componentwise perturbation theory in
absolute values can be found in [15]. Perturbation theory in terms of canonical angles of
singular subspaces is discussed, e.g., in [5], [10], [27].

Consider the perturbed stochastic matrix�p
 Æ�+� ��� M
for some � )v* . Here both Æ� and � are stochastic. For sufficiently small real � , the matrix,�| � }ê
m����� is a linear symmetric operator that can be written as

(4.5) ,�| � }Ä
�,`� � , � #�� ����| � K }9M
where ,	|]*V}ê
�,�
 Æ� Æ� � is the unperturbed operator and , � #�� 
 Æ� � � � � Æ� � is a Lyapunov
perturbation operator; see [17, pp. 63, 120]. For all real � )å* , the matrix-valued function,�| � } is a product of a stochastic matrix with its transpose, that is symmetric and nonnegative.
Note, that the perturbations here are also symmetric. According to [17, Section 6.2], for such
a ,�| � } there exists an orthonormal basis of eigenvectors 	 � | � } that are analytic functions of � .
In particular, the eigenvectors 	 � | � } depend smoothly on � and admit a Taylor expansion

	 � | � }z

	 � � � 	 � #��� ���h| � K };M(4.6)

where 	 � are the orthonormal eigenvectors of the unperturbed operator , , i.e., linear com-
binations of the vectors ²^/� in (3.1), and 	 � #��� is the (vector) coefficient of the first order error
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that we will derive in the following; see also [17, Section 6.2] for details. The following is a
generalization from eigenvectors to singular vectors of [7, Theorem 3.1] and [8, Lemma 2.1].
Note that in [8, Lemma 2.1] a term is missing.

THEOREM 4.7. Let ,�| � } as in (4.5) have the two largest eigenvalues d/#�| � }h>¥d K | � } .
Suppose that the unperturbed matrix ,G
v,�|]*¨} as in (4.5) can be permuted to ²,G
.�D,E�F�
such that ², has � uncoupled irreducible blocks. Let d/#¢)�d K )3WXWYWê)åd1� be the largest
eigenvalues corresponding to each of the blocks. Then, the perturbed orthonormal eigenvec-
tor 	 K | � } corresponding to the perturbed singular value d K | � } is of the form

	 K | � }Ä
 �ç7:!�# | ¾ 7·� �
� 7©} ²^u7z� � �ç7:!�����# � 	I7\M�	 � #��K�� 	I7·����| � K };M(4.7)

where ²^u7 are the eigenvectors in (3.1) and ¾ 7\M � 7 are suitable coefficients.
Proof. Assume that ², has � uncoupled irreducible blocks and suppose that d�#�MXWYWXWXM&du�

are the largest eigenvalues corresponding to each of the blocks, i.e., the corresponding eigen-
vectors 	 � are linear combinations of the vectors in (3.1). For �­
3UVMXWYWXW9M:� , let � � be the
orthogonal projection onto the eigenspace of the eigenvalue d � . Then, by [17, Sec. II.2.1],
the perturbed projection � � | � } is analytic in � and admits a Taylor expansion� � | � }Ä
�� � � � � � #��� ����| � K };Mê�ª
.U\MYWXWYW9M_�iM
where � � #��� is the coefficient of the first order error as defined in [17, Sec. II.2.1(2.14)], i.e.,� � #��� 
 ç79Û��&#&%('('('(% ���7NS! � Ud � »wd 7 |]� � , � #�� ��7Q�`��7X, � #�� � � }9My��
.U\MXWYWXW9M:�­W
Let �y#;%('('(' % � be the orthogonal projection onto the eigenspace corresponding to the distinct
eigenvalues dj#�MXWXWYWXM&du� . Then,� #&%('('('(% � | � }z
 �ç �"!�# � � | � }Ä

 �ç �"!�# � � � � �ç �P!�# ç79Û��&#&%('('(' % ���7NS!�� Ud1�/»wdC7 |�� � , � #�� � 7 �`� 7 , � #�� � � }I����| � K }Ä



��ê#;%('('('(% �+� � �ç �P!�# �ç7:!�����# Ud � »qd 7 |]�$�], � #�� ��7Q�`��7X, � #�� �$�¶}I����| � K };M(4.8)

since the terms for � î � cancel out. For the corresponding eigenvectors 	·#�| � }9MXWYWXWXM�	y�	| � } ,
we have that

(4.9) 	 � | � }Ä
��ê#;%('('(' % ��| � }�	 � | � };Mê��
vUVMXWXWYW9M_�iW
By plugging (4.6) and (4.8) into the right hand side of (4.9), we obtain

	 � | � }Ä
�	 � � � 	 � #��� ����| � K }Ä

m� #&%('('(' % � 	 � � � | �ç7:!�����# Ud � »qdC7 � 7 , � #�� 	 � ��� #;%('('(' % � 	 � #��� }�����| � K };W
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Comparing the coefficients corresponding to � , we get|��F»w�y#;%('('('(% �t}�	 � #��� 
 �ç7:!�����# Ud � »wd 7 ��7X, � #�� 	 � W
Since |��º»s�y#;%('('(' % ��} is the orthogonal projection complementary to �z#;%('('(' % � , which is the
projection onto the eigenspace corresponding to the eigenvectors 	·#$WYWXWXM�	y� , we obtain

	 � #��� 
 �ç7:!�# ²� � 7 	 7 � �ç7:!�����# Ud � »qdC7 � 7 , � #�� 	 � M(4.10)

with some coefficients ²� � 7 �i� . By inserting (4.10) into (4.6), we obtain

	 � | � }z
�	 � � � 	 � #��� ���h| � K }Ä

 �ç7:!$# | ¾ � 7 � �
� � 7 } ²^ 7 � � �ç7:!�����# Ud � »qdc7 � 7 , � #�� 	 � ����| � K }9M(4.11)

with some coefficients ¾ � 7\M � � 7F�­� , since the eigenvectors 	 � are linear combinations of the
vectors ²^u7 in (3.1).

Following the lines of the proof of [8, Lemma 2.1] we can rewrite the second summand
in (4.11) as follows. First, for ��
.U\MXWYWXW9M:� , we expand the perturbed eigenvaluesd � | � }Q
�d � � � d � #��� ���h| � K };M
and rewrite the second summand as a projection in terms of the Euclidean scalar product a_MJb ,�ç7:!�����# Ud � »qd 7 �/7X, � #�� 	 � 
 �ç7:!I���$# Ud � »wd 7 � 	I7VM_, � #�� 	 � � 	I7VW
Now we need an expression for , � #�� . For ��
GUVMXWXWYW9M_� we have,�| � }�	 � | � }Ä
md � | � }�	 � | � };W
We insert all expansions and obtain|�,�� � , � #�� ����| � K }:}9|�	 � � � 	 � #��� ���h| � K }:}z
v|�d � � � d � #��� ����| � K }_}X|�	 � � � 	 � #��� ����| � K }_};W
(4.12)

Comparing the coefficients for the zero order terms in (4.12) yields,�	 � 
md � 	 � W
For the first order terms in (4.12) we get,�	 � #��� �q, � #�� 	 � 
�d � 	 � #��� �`d � #��� 	 � M
which transforms to , � #�� 	 � 
.|�d � �F»i,t}�	 � #��� �+d � #��� 	 � W
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Now, we can rewrite the scalar product expression� 	I7VM_, � #�� 	 � � 
 � 	I7\M©|�d � �F»i,t}_}�	 � #��� �+d � #��� 	 � � 

 � 	 7 M©|�d � �F»i,t}�	 � #��� � �`d � #��� a�	 7 M
	 � b !#" $!&% W
The last term vanishes due to the orthogonality of the unperturbed eigenvectors of a symmet-
ric operator. For the first term, since , is symmetric, we obtain� 	�7\M©|�d � �F»i,t}�	 � #��� � 
 � |�d � �F»i,t}�	I7\M�	 � #��� � 

v|�d � »wd 7 } � 	 7 M
	 � #��� � W
Finally, we can write (4.11) as

	 � | � }Ä
 �ç7:!�# | ¾ � 7 � ��� � 7 } ²^ 7 � � �ç7:!I���$# � 	 7 M
	 � #��� � 	 7 ����| � K }9M
which for ��
m÷ and setting ¾ 7 
 ¾ K 7 and � 7 
 � K 7 , is the result (4.7).

The first sum in (4.7) does not spoil the sign structure as long as ¾ 7 M � 7 have the same sign
or, in case of different sign, � is small enough such that O ¾ 7 OC) � O � 7 O holds for ��
.U\MXWYWXW9M:� ,
respectively. The third term depends on the orthogonality of the first order perturbation of
the second singular vector 	 � #��K with respect to the singular vectors 	Ä����#NMYWXWXWYM
	 � . If it is
close to orthogonal, this term will be close to zero. However, the largeness of the third term
essentially depends on the gap between the second and the |]�ä�BUN} -st unperturbed singular
values. One can see this by considering 	 � #��K , which on the subspace corresponding to the
singular vectors 	y����#�MXWYWXWXM�	 � yields|���»w�y#;%('('(' % ��}�	 � #��K 
 �ç7:!�����# Ud1KÅ»qd 7 ��7X, � #�� 	 K W
The smaller this gap, the smaller the perturbation of the operator has to be in order not to
spoil the sign structure. However, in many practical examples this gap is larger than the gap
between the first � eigenvalues and the rest of the spectrum, which intuitively explains the
better performance of the proposed method over the existing methods based on the Perron
cluster. In the worst case, if the second sum of (4.7) has a different sign than the first sum,
then also

� Ã '''
( R �7:!�# | ¾ 7 � �
� 7 } ²^ 7*) � ''''''

( R �7:!�����# � 	�7\M�	 � #��K�� 	I7+) � ''' Mhas to hold. In this case, up to first order error, the sign will not be spoiled.

5. The algorithm. In this section we propose an algorithm to determine a permutation
of a stochastic matrix that permutes it into block diagonally dominant form (4.1) by recur-
sively identifying diagonally dominant blocks. We first present an identification procedure in
the case of two blocks. Then, we imbed this procedure into a recursive method that works
for any number of blocks. Note that everything that is stated for left singular vectors in this
section applies to right singular vectors as well.
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Consider the case of two nearly uncoupled blocks. Let �F���	�B
r�m��� be a matrix
of the form (4.1) that consists of two blocks ( �<
á÷ ), where � is not known. Since � is
not uncoupled, ���	� is irreducible and from the Perron-Frobenius Theorem 2.1, we know
that � has a simple largest singular value °/# and a corresponding positive left singular vector^/# . Consider now the second largest singular value ° K and the corresponding left singular
vector ^ K .

Since singular vectors are orthogonal (or by the Perron-Frobenius theorem), ^ K must
have a change in sign, i.e., there exist two indeces T and � such that |]^ K }_�:|]^ K }�7 Ã * . From
Theorem 3.1 we assume that states that correspond to values of different sign in ^ K belong
to different blocks. We sort the second singular vector, e.g., in increasing order and use this
permutation to permute the matrix � . Then, we split the permuted matrix ²�p
 ²�F�v²�F� such
that the first block ²� # is of size equal to the number of negative values in ^�K and the second
block ²��K is of size equal to the number of positive values in ^�K . We obtain a matrix ²� that
reveals the hidden block structure of � , i.e., ²� has the same diagonal block structure as � up
to a permutation of the blocks and of the entries within a block.

The following example illustrates the identification procedure in the case of two blocks.
EXAMPLE 5.1. Consider the row stochastic matrix

�m
 ÍÎÎÎÎÏ *uW ÷\*\*V*g*2W ñ\*V*\* * * **uW õ¨*\*V*g*2W ô\*V*\* * * ** * *2W ò\*V*\* *2W ò\*\*V*g*uW õ¨*\*\** * *2W(÷�*V*\* *2W(÷�*\*V*g*uW ôV*\*\** * *2WPUY*V*\* *2WPUY*\*V*g*uW ñV*\*\*
ÐÒÑÑÑÑÓ W

The singular vectors of � are given by

«G
 ÍÎÎÎÎÏ * »n*2W8ø�ûVû\û * »n*uW ô¨û\ûV÷ ** »n*2W ôVûVû\÷ * *uW(ø\û\û\û *»n*uW õcû�ðV* * *2W8ø�ñ\ðuU * *2W õV*VñV÷»n*uW û¨ø�*¨÷ * *2W *\ð\*Vñ * »n*2W ñ2U©ôVû»n*uW ôVñ2U©ò * »n*2W ô\*cø�ô * *2W õV*VñV÷
ÐÒÑÑÑÑÓ W

We can see that the singular vectors are only nonzero on the one block they correspond to.
Now consider the perturbed matrix �`�`� , where

�.
 ÍÎÎÎÎÏ »n*uW *Vò�õcû »n*uW"UVU©÷�ñ *2W *\ñ\ñcø *uW *Vò\ðVò *2W *2U©ðV÷»n*uW *¨û�ð¨÷ »n*uW"U©*�õuU *2W *\ô\ôcø *uW *\õ¨÷2U *2W *Vû�õ\õ*uW *\õ¨÷\ñ *2W *\*uU©û »n*2W *�õCø�ò *uW *uU©û�õ »n*2W *2UN÷\û*uW *¨÷\ûV÷ *2W *\ôVò\ô »n*2W *V÷2U©÷ »n*uW *uU\UN÷ »n*2W *Vû\ô�õ*uW *cø�÷\* *2W *¨ø�ð\ð *2W *V÷\ûV÷ »n*uW *VôVû\ô »n*2WPU\UVUYô
ÐÒÑÑÑÑÓ M

is chosen such that the matrix

²�m
m�`�`�

 ÍÎÎÎÎÏ *uW"U©ôVûVûg*uW ôVñ¨ø�÷ *2W *\ñVñ¨øg*2W *\ò\ðVòö*uW *uUYð¨÷*uW ò\õV*Vñö*uW õ¨ðVû�ð *2W *\ôVô¨øg*2W *�õ¨÷2Ue*uW *¨û�õVõ*uW *\õ¨÷\ñö*uW *V*2U©û *2W(÷\ûV÷Vøg*2W ò2U©û�õ *uW òVñ¨ø\û*uW *¨÷\ûV÷g*uW *Vô\ò\ô *2WPUNø�ñ\ñ *2WPUYñ\ñVñö*uW û�õVòVô*uW *cø�÷\*ö*uW *cø�ð\ð *2WPU©÷Vû\÷ö*2W *\ò�õVõ *uW ôVñ\ñ\õ
Ð ÑÑÑÑÓ M

is again row stochastic. Here, the error matrix � has been obtained as follows. We chose
a random matrix � of same size as � , where the entries that correspond to the diagonal
blocks are uniformly distributed in |6»FUVMXU©} and the entries that correspond to the off-diagonal
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blocks are uniformly distributed in |�*2MYU©} . Then, we computed the matrix �
� ��� , with� �8
åUY*-, K , and this matrix is no longer stochastic. We then scale each row by dividing each
of its elements by the row sum and obtain the stochastic matrix ²� . We have �

×²��»i� and� has zero row sums.

Furthermore, consider a permuted matrix �p
m�p²�E� � , where � is a random symmetric
permutation matrix. We obtain

�

 ÍÎÎÎÎÏ *2WPUYô¨û\ûö*2W *\òVð\ò *2W *\ñ\ñcøf*uW *uUYðV÷ö*2W ô\ñcø�÷*2W *V÷Vû\÷ö*2WPUYñVñ\ñ *2WPUNø�ñVñg*uW û�õVò\ô *2W *\ôVò\ô*2W *�õc÷�ñ *2W ò2UNû�õó*2W(÷\û\÷¨øf*uW òVñ¨ø�ûö*2W *\*uU©û*2W *¨ø\÷�* *2W *\ò\õ\õó*2WPU©÷\ûV÷ *uW ôVñ\ñ�õó*2W *¨ø�ð\ð*2W ò�õ¨*\ñ *2W *�õc÷CU *2W *\ô\ôcøf*uW *¨û�õ\õó*2W õVð¨û�ð
ÐÒÑÑÑÑÓ W

The matrix � is of a form in which we usually would get these matrices from applications.
The left singular vectors of � are given byÍÎÎÎÎÏ »n*2W òVûVû�ñ *2W ô\ñV÷V÷ *uW *Vò\ô¨ø »n*2W ôV÷Vû�ñ »n*2WPU©÷\÷\*»n*2W(û�*\õVñ »n*2W(÷Vø\ø�* *uW *cøcU\U »n*2WPUYôVô2U *uW(ø�ð¨ø�ò»n*2W õ¨÷2UYô »n*2W(÷�ô\òuU *uW(ø�ô\*\ñ *2W *¨øVø�û »n*2W õuUY*V*»n*2W(ûVø�ò\ñ »n*2W ò\*\òV* »n*uW ô\õ\õV* *2W *\òVô\ñ »n*2W õV*\ò¨û»n*2W ò\òVò\ð *2W(û�õ\õ¨ñ »n*uW *V*\*\ô *2W8ø�û¨ø�÷ *uW"U©òVû¨ø

Ð ÑÑÑÑÓ W
We now sort the second column, i.e., the left singular vector corresponding to the second sin-
gular value, and obtain the permutation |�õuM&÷CMJò2MJû2MXUN} , which corresponds to the permutation
matrix

²�v
 ÍÎÎÎÎÏ * *ó* Uf** Uf* *ó** * U *ó** *ó* * UU *ó* *ó*
ÐÒÑÑÑÑÓ W

We apply the permutation to the matrix � and obtain

²�

?²�D�v²� � 
 ÍÎÎÎÎÏ *2W ô\ñVñ�õó*2W *\ò\õ\õó*2WPU©÷\ûV÷ *uW *cø�ð\ð *2W *¨ø\÷�**2W(û�õ¨ò\ô *2WPUYñVñ\ñ *2WPUNø�ñVñ *uW *Vô\ò\ô *2W *V÷Vû\÷*2W ò\ñcø�ûö*2W ò2UNû�õó*2W(÷\û\÷¨ø *uW *V*2U©ûö*2W *�õc÷�ñ*2W *Vû�õ\õó*2W *�õc÷CU *2W *\ô\ôcø *uW õ¨ðVû�ð *2W ò�õ¨*\ñ*2W *2U©ðV÷ö*2W *\òVð\ò *2W *\ñ\ñcø *uW ôVñ¨ø�÷ö*2WPUYô¨û\û
ÐÒÑÑÑÑÓ M

which exhibits the original block structure of ²� .
Once we know how to permute one large block that contains at least two subblocks into

two blocks, we can employ this procedure recursively.
We compute a left singular vector corresponding to the second singular value, sort it in

increasing order and apply the permutation. Then, we check if the [ -norm (average row sum)
of the potential blocks is above a given threshold, see Definition 4.6. In this case, we have
found two blocks and proceed recursively with each of the two blocks. Since we measure the
size of the entries in the diagonal blocks and not in the off-diagonal blocks, the threshold can
stay the same for all recursive calls. If the norm of the potential blocks is not above a given
threshold, we cannot split the block any further and stop.

Note, that for the bisectioning procedure, we use only the second singular value and a
corresponding singular vector; we do not compute other singular vectors. It would be natural
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Algorithm 1: Identification of nearly decoupled blocks
Input: Matrix � , threshold 5�.0/C|�

UÅ»iÿ�} .
Output: Number � and sizes ZI�:MITy
.U\MYWXWYW9M_� , of identified blocks in � , a

permutation matrix � such that �F�	���­
��+�`� .

Compute the second left singular vector ^ K of � .1

Sort it in increasing order and use the resulting permutation � to permute the matrix2 � .
Identify two potential blocks ��# and � K by using the change in sign in ^ K .3

The size of the first block is the number of negative values in ^ K , the size of the4

second block is the number of positive values in ^ K .
if the norm of the diagonal blocks is larger than 5�.0/ then5

We have found two blocks and separate them.6

Proceed recursively with step 1. applied to each of the blocks.7

else8

The current block cannot be further reduced.9

Increase the counter of blocks by one.10

to consider not just the the second singular vector, but � singular vectors, if there were �
diagonal blocks. We do not consider such an approach. One reason is that � , the number
of blocks is not known in advance. Also, finding a singular vector corresponding just to the
second singular value is less costly.

A problem may arise if the second and third (or even more) singular values are equal
or not well separated within the perturbation range due to round-off errors. In this case it
is not clear what the singular vector associated with the second singular value is and thus
we cannot decide on the sign-structure. In this case, it may be necessary to carry out a
refinement step, which considers linear combinations of the corresponding singular vectors
in the decision process. Currently, we do not know how to handle this situation. However, in
the examples that we have tested so far (see Section 6) the second and third singular values
are well separated within the perturbation range due to round-off errors. We expect this to be
generally the case for the discussed applications.

Another problem may arise if the the second largest eigenvalue in modulus of the transi-
tion matrix is negative.

EXAMPLE 5.2. Consider the following stochastic matrix�B
 ÍÏ *2W ñ\* *uW"U©*ö*uW"U©**2W *Vû *uW *¨ûg*uW ðV**2WPUY* *uW ñV*ö*uW"U©* ÐÓ M
that obviously has two metastable blocks.

The eigenvalues of � are ¸ UVW *V*\*\* »n*2W8ø\ø�ò¨ø *2W8ø�÷�òcøX¹ , i.e., the second largest eigen-
value in modulus d�
.»n*2W8ø\ø�ò¨ø is negative. If we calculate the singular value decomposition,
we obtain�m
 ÍÏ »n*2W(ûCU *2W õVð »n*2W8øcU»n*2W ô\ð »n*2W8ø�÷ »n*2W *\*»n*2W(ûCU *2W õVð *uW(øCU ÐÓ ÍÏ U\W *2U * ** *uW(ø�ð ** * *uW(ø�* ÐÓ ÍÏ »n*2W õVð *uW û2U »n*2W8øcU»n*2W õVð *uW û2U *uW(øCU»n*2W8ø�÷ »n*2W ô\ð »n*2W *\* ÐÓ W
Here, the left and the right second singular vectors exhibit a sign structure that would break
up the two by two block. This is due to the following fact. The two by two block consists of
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two states, where with a high probability the chain does not stay within the same state. With
a high probability, it cycles between the two states. This means that one could actually view
the two states as one.

In the real world examples that we have tested, this problem does not occur. However, we
propose an algorithm that handles this possible situation. It is based on the Tarjan algorithm
[28], that finds strongly connected components (cycles) of a graph that we construct from
comparatively “large” entries of the transition matrix. For this we use the implementation by
T. A. Davis [6]. The idea is to find states that are connected by “large” probabilities in a cyclic
way, and consider them in a single block. At least for the application of our identification
algorithm such cliques of states can be viewed as one state, since these states belong to one
block.

Note that in the case of diagonally dominant matrices this problem does not occur. There-
fore, before looking for potential cycles, we remove diagonally dominant states, i.e. states
where the probability of staying is larger than the sum of probabilities for leaving the state. As
a second step, we remove comparatively “small” entries in the matrix, since we are only in-
terested in cycles with “large” weights. We merge the states within each found cycle by using
the norms for matrix blocks defined in Section 4. We add the previously removed diagonally
dominant states and run Algorithm 1 to find the metastable blocks. Finally, we redistribute
the states within the cycles to recover the original number of states in � .

The main procedure is outlined in the following algorithm that forms an outer loop for
Algorithm 1.

Algorithm 2: Identification of nearly decoupled blocks in the presence of cycles with
“large” weights

Input: Matrix � , threshold 5�.0/C|�

UÅ»wÿ�} .
Output: Number � and sizes Z � M�Ty
vUVMXWXWYW9M_� , of identified blocks in � , a

permutation matrix � such that �F��� � 
��+�`� .

Find and temporarily remove diagonally dominant states in � .1

Temporarily remove “small” entries in � .2

if the current matrix � has strongly connected components then3

Temporarily merge the states within every strongly connected component into4

one state.
Add the previously removed diagonally dominant states to � .5

Run Algorithm 1 on the current matrix � and apply permutation.6

Redistribute the states within every strongly connected component.7

A nice side effect of this procedure is that the transition matrix to which Algorithm 1 is
applied, is typically much smaller than the original matrix if many cycles have been merged.
Note that the additional preprocessing in Algorithm 2 has complexity of 1ª|�Zh�wZ/Z32c} , whereZ is the size of the transition matrix without the diagonally dominant states and Z/Z32 the
number of “large” nonzero entries. Thus, it is comparatively cheap to perform, and would
add very little computational complexity to Algorithm 1, where singular values and vectors
of the whole transition matrix are calculated.

6. Numerical tests. In this section, we present three types of numerical examples. In
Section 6.1 we discuss examples constructed in a manner similar to Example 5.1, with a
fixed block structure, with random entries, random added noise, and permuted with a random
permutation, resulting in matrices for which we know the hidden structure. We illustrate the



ETNA
Kent State University 
etna@mcs.kent.edu

AN SVD APPROACH TO IDENTIFYING METASTABLE STATES OF MARKOV CHAINS 61

ability of the algorithm to recover a hidden structure and discuss limitations of the algorithm
in the presence of large perturbations.

In Section 6.2, we show results for the molecule n-pentane, that was also used as a test
example in [7], and in this case we obtain the same results. In Section 6.3, we present two
slightly more challenging examples, where the algorithms in [7] and [8] have difficulties
identifying the metastable states.

For numerical tests, Algorithm 1, was implemented in MATLAB R
4

Version 7.0 and run
on a PC with an Intel(R) Pentium(R) 4 CPU 3.20GHz processor. The relative machine pre-
cision was eps 
�÷2W ÷V÷�*�õ�ù�UY*-, #6Ë . In all example figures, we denote by Z the number of
unknowns and by Z32 the number of nonzero elements in the matrix.

6.1. Constructed examples. The first example illustrates the ability of our method to
recover a hidden block structure. It is constructed in the same manner as Example 5.1 in
Section 5, is of size Z¤
�òVò\ñ and has Z32	
vU\U©ò\ð\*Vô nonzero entries.

n = 338   nz = 113906

original matrix

100 200 300

100

200

300

n = 338   nz = 113906

after random permutation

100 200 300

100

200

300

n = 338   nz = 113906

after one run

100 200 300

100

200

300

n = 338   nz = 113906

after recursive application

100 200 300

100

200

300

FIGURE 6.1. Random example revealing 8 blocks

In Figure 6.1, the upper left matrix is the original block diagonally dominant matrix,
where we clearly can distinguish the diagonal blocks. The corresponding coupling matrix
is diagonally dominant with values slightly larger than *2W(û on the diagonal. Hence, the per-
turbation here is quite large. The upper right matrix is a random symmetric permutation of
the first matrix. Here, no structure can be seen. The lower left matrix depicts the recovered
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blocks after the calculation of one singular vector and the application of the corresponding
permutation. One can see, that the block structure is to a large extent recovered but some parts
are not fully restored yet. The lower right matrix now depicts the recovered structure after
recursive application of the algorithm. We can see that we have obtained the same blocks as
in the original matrix up to permutation of the blocks and the entries within a block.

For some examples with such a large perturbation as in the previous example, the algo-
rithm may fail as we can see in the random example in Figure 6.2. Here, the structure cannot
be recovered.

n = 338   nz = 113906

original matrix

100 200 300

100

200

300

n = 338   nz = 113906

after random permutation

100 200 300

100

200

300

n = 338   nz = 113906

after one run

100 200 300

100

200

300

n = 338   nz = 113906

after recursive application

100 200 300

100

200

300

FIGURE 6.2. Random example where the algorithm fails due to a very large error

In general, one can say that the smaller the perturbation the better the algorithm recovers
the hidden structure. We have tested 3 types of randomly generated examples. In the first
type the diagonal entries of the coupling matrix are slightly larger than 0.5, in the second they
are between 0.6 and 0.7, and in the third type the diagonal entries of the coupling matrix are
about 0.9. We have run 1000 examples of each type. The structure could be recovered in the
first case in 57,6%, in the second case in 85% and in the third case in 98,1% of all cases.

For comparison reasons, we have also run our algorithm using the right singular vectors
instead of the left singular vectors. For the same 3 types of examples as in the previous
paragraph, the optimal solution was found in the first case in 61,3%, in the second case in
84,9% and in the third case in 98,1% of all cases.

The performance could be slightly enhanced by running the algorithm a second time
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using the right (left) singular vectors in case that it failed to find the optimal solution in the
first run using left (right) singular vectors. In this case we obtained the optimal solution in the
first case in 65,2%, in the second case in 87,8% and in the third case in 99,5% of all cases.

From this we may already conclude that as for some other problems (see, e..g., [18] and
the references therein) the choice of left versus right singular vector may be important; see
further our experience with harder problems in sections 6.2 and 6.3. At this point it is not
clear that left or right singular vector should be preferred since both produce good results.
This issue still needs to be further studied. Unless specified otherwise we have used left
singular vectors for our computations.

6.2. n-Pentane. The example of n-pentane was presented in [7, Section 5.2]. We will
use this example to discuss the difference or the equivalence of the ã -norm used in [7] and the[ -norm proposed in Section 4. This example is of size Z�
s÷\ûVû and has Z32�
Bô\õVô�õ nonzero
entries.

n = 255   nz = 6464

original matrix

50 100 150 200 250

50

100

150

200

250

n = 255   nz = 6464

recovered block structure

50 100 150 200 250

50

100

150

200

250

FIGURE 6.3. Algorithm 1 using the 5 -norm for n-Pentane (Ph300) revealing 7 blocks of sizes 46, 24, 36, 20,
42, 47, 40.

In Figure 6.3 we illustrate the results of our algorithm using the [ -norm. We obtain 7
blocks of sizes 46, 24, 36, 20, 42, 47, 40. Both coupling matrices âqæ and â­ú are diagonally
dominant; see [13] for the values of their entries.

To compare the norms, we now run our algorithm using the ã -norm. The result that
we obtain is depicted in Figure 6.4. We see that we obtain the same block structure up to
permutation of the blocks. The coupling matrices â æ and â ú are the same as for Algorithm 1
run with the [ -norm. In this example it does not make any difference which norm we use for
calculations except for the cost, as already discussed.

Our next example is the same molecule but in a different temperature setting. This exam-
ple is of size Zl
mò\*cø and has Z32�
.UYðuU\U©ô nonzero entries. Again, we first run the algorithm
using the [ -norm. In this case, we obtain only 5 blocks depicted in Figure 6.5. The corre-
sponding coupling matrices â æ and â ú are both diagonally dominant; see [13] for details.
If we also run the algorithm using the ã -norm, then we obtain the six blocks, one more than
with the [ -norm. The result is depicted in Figure 6.6.

We see that we have the same blocks except that the block of size 88 is subdivided into
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n = 255   nz = 6464

original matrix

50 100 150 200 250

50

100

150

200

250

n = 255   nz = 6464

recovered block structure

50 100 150 200 250

50

100

150

200

250

FIGURE 6.4. Algorithm 1 using the 6 -norm for n-Pentane (Ph300) revealing 7 blocks of sizes 46, 24, 36, 47,
20, 42, 40.

n = 307   nz = 19116

original matrix

100 200 300

50

100

150

200

250

300

n = 307   nz = 19116

recovered block structure

100 200 300

50

100

150

200

250

300

FIGURE 6.5. Algorithm 1 using the 5 -norm for n-Pentane (Ph500) revealing 5 blocks of sizes 88, 37, 71, 51, 60.

two blocks of sizes 45 and 43. If we look at the coupling matrices, we can see the reason.
The ã -norm coupling matrix

â ú 

ÍÎÎÎÎÎÎÏ *2W8ø�ô\õ¨÷ö*2W *V÷\ò\ôg*uW *V*\òVôö*uW *Vð2UYò *2W *\ñV*\ñö*2W *\ò\ô¨û*2W *\ô¨÷�ñ *2W8ø�ð¨÷CU *uW"UVU©÷\òö*uW *V*\ô\ð *2W *\*cø�ðö*2W *2UYñV**2W *V÷�õV* *2W(÷Vø�ñ�õö*uW û\ñ�õc÷g*uW"U©*Vû�õó*2W *\*¨û�ñö*2W *\*V÷2U*2WPU©û2UYô *2W *\*\õVòg*uW *¨÷�ô¨ûg*uW(øVø�ò\ñ *2W *V÷¨øNõ *2W *2UYô\õ*2W(÷CU©*¨øg*2W *\*cø�ñg*uW *V*V÷\òö*uW *\õVò\* *2W ô\ðcø\ø *2W *\ò\ñVô*2W *¨ø�ñ¨øg*2W *2UYõVôg*uW *V*\*cø *uW *¨÷CUYò *2W *\ò¨÷�*ö*2W ñVû\÷¨ø

ÐÒÑÑÑÑÑÑÓ
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n = 307   nz = 19116

original matrix

100 200 300

50

100

150

200

250

300

n = 307   nz = 19116

recovered block structure

100 200 300

50

100

150

200

250

300

FIGURE 6.6. Algorithm 1 using the 6 -norm for n-Pentane (Ph500) revealing 6 blocks of sizes 37, 45, 43, 71,
51, 60.

is diagonally dominant. Yet, the [ -norm coupling matrix

â æ 

ÍÎÎÎÎÎÎÏ *uW õ¨ñ\ð¨øg*2W *¨ø�ôVûö*2W *\ò¨û�õö*uW"UVUYðuUe*uW ÷V÷�*�õó*2W *Vû\ñ\ð*uW"UNûVø�ô *2W(û\÷\ð\* *2WPU©û\ð\òg*uW *¨÷CU©òö*uW *Vð\ñ\* *2W *\ò\õVñ*uW *Vò\ôVûö*2W(÷\û\*¨øg*2W(û\ûV÷�òg*uW"U©ò\òVôö*uW *¨÷\÷�ñ *2W *\*\õ¨÷*uW"UNû�ñVûö*2W *V÷�õ\õó*2WPUY*uUYôg*uW ôuU©û\*ö*uW *¨÷�ñ\ñ *2W *¨øCUYñ*uW"U©òV÷�ð *2W *2UN÷�ò *2W *\*Vò�õö*uW *Vò�õ¨ñö*uW ôcø�÷\ûö*2WPUXõVõV**uW"UVUY*Vûö*2W *V÷\*\ô *2W *\*uUYòg*uW"UYõuUVUe*uW *cøcUYô *2W ôVû�õVð

ÐÒÑÑÑÑÑÑÓ
has one value smaller than 0.5 on the diagonal. Hence, with both norms we obtain the same
qualitative results, meaning that the additional block that we obtain using the ã -norm is not
diagonally dominant in the [ -norm.

Using right instead of left singular vectors for these examples leads to the same number
of blocks in the first example, although of different size and, hence, with a different diago-
nally dominant coupling matrix. A slight improvement can be achieved with right singular
vectors in the second example, where we obtain the six blocks depicted in Figure 6.7 with
both coupling matrices being diagonally dominant, whereas with the left vectors we obtain 6
blocks with only â ú being diagonally dominant, see [13] for details.

6.3. Two more difficult cases. In this section we present two cases where the algo-
rithms presented in [7] and [8] have difficulties identifying metastable conformations.

For the first matrix, that is of size Zm
AU©û\ñ and has Z32i
á÷�õ¨ñ\*Vô nonzero entries, the
difficulties are that the algorithms in [7] and [8] identify the number of blocks by looking
at spectral gaps. In this example, the spectrum of the matrix does not have any gaps. Our
algorithm, on the contrary, does not need to know the number of blocks in advance but it
is calculated in the process. Using right singular vectors, which is the better choice here,
we obtain 8 blocks depicted in Figure 6.8. Here, both coupling matrices âiæ and â­ú are
diagonally dominant; see [13] for the values of their entries.

The second example which is of size Z¤
.UNøVø�÷ and has Z32�
B÷\ñ\ð\õVòV÷ nonzero entries is
problematic in a different way. Here, we have a very large cluster of eigenvalues very close
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n = 307   nz = 19116

original matrix

100 200 300

50

100

150

200

250

300

n = 307   nz = 19116

recovered block structure

100 200 300

50

100

150

200

250

300

FIGURE 6.7. Algorithm 1 run using right singular vectors for n-Pentane (Ph500) revealing 6 blocks of sizes
99, 33, 36, 23, 53, 63.

n = 158   nz = 24806

original matrix

50 100 150

50

100

150

n = 158   nz = 24806

recovered block structure

50 100 150

20

40

60

80

100

120

140

FIGURE 6.8. Algorithm run using right singular vectors for a matrix without a spectral gap (Pmatrix2) reveal-
ing 8 blocks of sizes 34, 20, 18, 14, 31, 14, 19, 8.

to 1. This makes the matrix very badly conditioned, especially as far as the calculation of
the stationary distribution is concerned. Also, the algorithms in [7] and [8] have difficulties
identifying the right number of blocks. In Figure 6.9, we depict the results calculated with
the [ -norm and using left singular vectors. This is the maximum number of blocks that we
can identify, such that the coupling matrix is diagonally dominant. Yet, blocks of very small
sizes probably do not make a lot of sense from the chemical point of view. However, this is
not a problem, since smaller blocks can always be merged into larger blocks. An alternative
strategy could be to restrict the minimal block size in advance. In this case, we would only



ETNA
Kent State University 
etna@mcs.kent.edu

AN SVD APPROACH TO IDENTIFYING METASTABLE STATES OF MARKOV CHAINS 67

n = 1772   nz = 289432

original matrix

500 1000 1500

500

1000

1500

n = 1772   nz = 289432

recovered block structure

500 1000 1500

500

1000

1500

FIGURE 6.9. Algorithm 1 using the 5 -norm for a badly conditioned matrix with a large eigenvalue cluster very
close to 1, revealing 77 blocks of sizes 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6,
6, 6, 6, 7, 7, 9, 11, 12, 12, 12, 13, 20, 21, 21, 23, 23, 23, 25, 26, 27, 29, 29, 29, 33, 34, 34, 46, 46, 56, 59, 60, 69, 74,
81, 81, 88, 90, 91, 100, 116 sorted in ascending order.

split up into blocks if they are of required size. Using right singular vectors in this case leads
to only 55 blocks.

From the examples presented in this section we conclude that if the perturbation is not too
large, a block diagonally dominant structure can be recovered or identified by the proposed
algorithm. Both norms, the [ -norm and the ã -norm can be used for calculations. Qualita-
tively, one obtains similar results. Since for the real examples the “correct” answer is not
known, we cannot decide, which norm is the “better” one. However, it is much cheaper to
use the [ -norm, and for a large eigenvalue cluster around U , the calculation of the stationary
distribution may be badly conditioned. Also, we may conclude from these examples that to
optimize the results it makes sense to use left or right singular vectors depending on the prob-
lem. The question of whether to choose left or right singular vectors is an interesting issue
that needs further investigation.

7. Conclusions. In this paper, we have presented a bisectioning algorithm for identify-
ing metastable states of a Markov chain based on the calculation and sorting of a singular
vector corresponding to the second largest singular value. The algorithm determines a num-
ber of blocks, such that the coupling matrix is diagonally dominant. Hence, we do not need
to know the number of blocks in advance but it is calculated in the process. This is the main
difference to most other methods that use the SVD or spectral analysis. Another advantage of
our approach is that it does not depend on a significant spectral gap between the Perron clus-
ter and the rest of the spectrum in the transition matrix of the Markov chain. Thus, matrices
without a spectral gap or with a very large Perron cluster can be treated. A third advantage is
that we calculate only two singular vectors instead of many eigenvectors. This allows to use
iterative procedures such as Lanczos or Arnoldi iteration. We suggest to abstain from using
the stationary distribution in the norm needed to determine the diagonally dominance, since
its calculation may be costly and badly conditioned. We show that the same qualitative results
can be achieved using an alternative norm. This is illustrated by numerical experiments.
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