
Electronic Transactions on Numerical Analysis.
Volume 3, pp. 83-95, September 1995.
Copyright  1995, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University 
etna@mcs.kent.edu

MINIMAL GERSCHGORIN SETS FOR PARTITIONED MATRICES
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Abstract. Making use, from the preceding paper, of the affirmative solution of the Spectral
Conjecture, it is shown here that the general boundaries, of the minimal Gerschgorin sets for parti-
tioned matrices, are sharp, and that monotonicity of these minimal Gerschgorin sets, as a function
of the partitionings, is obtained. These results extend and sharpen an earlier paper from 1970 on
this topic.
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1. Background and Notations. For brevity, we use the notations of the pre-
vious paper [4], so that for n a positive integer, a partition π of ICn is a representation
of ICn as a direct sum of N pairwise disjoint nonempty linear subspaces (cf. [4, eq.
(1.1)]):

ICn = W1+̇W2+̇ · · · +̇WN .(1.1)

Here, π is denoted by π := {rj}Nj=0, with the nonnegative integers {rj}Nj=0 satisfying
r0 := 0 < r1 < · · · < rN := n, where it is assumed, without essential loss of generality,
that

Wj = span {ek : rj−1 + 1 ≤ k ≤ rj} (j = 1, 2, · · · , N),(1.2)

the vectors {ej}nj=1 being the standard column basis vectors for ICn. Then, given
a matrix A in ICn,n and given a partition π = {rj}Nj=0 of ICn, the matrix A is
partitioned, with respect to π, as

A =


A1,1 A1,2 · · · A1,N

A2,1 A2,2 · · · A2,N

...
...

AN,1 AN,2 · · · AN,N

 = [Ai,j ] (i, j = 1, 2, · · · , N),(1.3)

where each submatrix Ai,j represents a linear transformation from Wj into Wi. With
(1.3), we define

Dπ := diag {A1,1; A2,2; · · · ; AN,N}(1.4)

as the block-diagonal matrix of A, with respect to the partition π. As in [4, Section
1], associated with each norm N -tuple

φ := (φ1, φ2, · · · , φN )
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(where each φj is a vector norm on Wj) is a vector norm on ICn, defined by

‖x‖φ := max
1≤j≤N

{φj(Pjx)} (x ∈ ICn)

(where each Pj is the projection operator from ICn to Wj), and, for any matrix B ∈
ICn,n, its induced operator norm, associated with φ, is defined by

‖B‖φ := sup
‖x‖φ=1

‖Bx‖φ.

The collection of all such norm N -tuples φ = (φ1, φ2, · · · , φN ) is then denoted by Φπ.
Fix a matrix A in ICn,n and fix a partition π of ICn. Using a norm argument

introduced by Householder (cf. [1, p. 66]) to obtain inclusion sets for the eigenvalues
of a matrix, let σ(A) denote the spectrum of A, and consider any λ ∈ σ(A). Then,
there is an x 6= 0 in ICn with Ax = λx, and this can also be expressed as

(A−Dπ)x = (λI −Dπ)x,

where I denotes the identity matrix in ICn,n. If λ /∈ σ(Dπ), this implies that

(λI −Dπ)−1(A−Dπ)x = x,(1.5)

which, from the above norm definitions, gives

‖(λI −Dπ)−1(A−Dπ)‖φ ≥ 1 ( any φ ∈ Φπ).(1.6)

Now for φ ∈ Φπ, set

Hφ
π (A) :=

{
z ∈ IC : z /∈ σ(Dπ) and ‖(zI −Dπ)−1(A−Dπ)‖φ ≥ 1

}
,(1.7)

Gφπ(A) := Hφ
π (A) ∪ σ(Dπ),(1.8)

and

Gπ(A) :=
⋂
φ∈Φπ

Gφπ(A).(1.9)

The set Gπ(A) is called the minimal Gerschgorin set for the matrix A in ICn,n, relative
to the partition π. From (1.7)-(1.9), it is evident that Gπ(A) can also be expressed as

Gπ(A) = Hπ(A) ∪ σ(Dπ),(1.10)

where

Hπ(A) :=
⋂
φ∈Φπ

Hφ
π (A)

=
{
z ∈ IC : z /∈ σ(Dπ) and inf

φ∈Φπ
‖(zI −Dπ)−1(A−Dπ)‖φ ≥ 1

}
.

(1.11)

We remark that the minimal Gerschgorin set Gπ(A), as given above in (1.9) or (1.10),
differs slightly from the definition in [7] of a minimal Gerschgorin set, because the
definition used in [7] uses a somewhat complicated subset of σ(Dπ), rather than
σ(Dπ) itself, as in (1.10) above.



ETNA
Kent State University 
etna@mcs.kent.edu

Richard S. Varga and Alan Krautstengl 85

We next claim that any z in Hφ
π (A) satisfies

|z| ≤ ‖A−Dπ‖φ + ‖Dπ‖φ (any φ ∈ Φπ),(1.12)

for if |z| ≤ ‖Dπ‖φ, the above inequality is trivially satisfied. If |z| > ‖Dπ‖φ, we have,
with (1.7), that

‖A−Dπ‖φ = ‖(zI −Dπ) ·
{

(zI −Dπ)−1(A−Dπ)
}
‖φ

= ‖z
{

(zI −Dπ)−1 (A−Dπ)
}
−Dπ

{
(zI −Dπ)−1 (A−Dπ)

}
‖φ

≥ (|z| − ‖Dπ‖) · ‖ (zI −Dπ)−1 (A−Dπ)‖φ ≥ |z| − ‖Dπ‖φ,

which gives (1.12). Thus, (1.12) shows that Gφπ is a bounded set in IC. Also, it is
evident from (1.7) and (1.8) that Gφπ(A) is closed. Thus, from (1.11), Gπ(A) is also
closed and bounded in IC.

For the fixed matrix A in ICn,n partitioned by π as in (1.3), we define its associated
equimodular class Ωπ(A) (cf. [7, Definition 3]) as

Ωπ(A) := {B = [Bk,`] ∈ ICn,n : Bk,k = Ak,k, and for each pair (k, `) with
k 6= `, Bk,` = eiθk,`Ak,` for some real θk,` (k, ` = 1, 2, · · · , N)}.(1.13)

With σ (Ωπ(A)) :=
⋃

B∈Ωπ(A)

σ(B), we next establish

Theorem 1.1. Let π be a partition of ICn and let A in ICn,n be partitioned by π.
Then,

σ (Ωπ(A)) ⊂ Gπ(A).(1.14)

Proof. We first show that σ(A) ⊂ Gπ(A). Consider any λ ∈ σ(A). If λ ∈ σ(Dπ),
then λ ∈ Gπ(A) from (1.10). If λ /∈ σ(Dπ), let x 6= 0 be such that Ax = λx which
gives

(A−Dπ)x = (λI −Dπ)x.

As λ /∈ σ(Dπ), it follows, as in (1.5) and (1.6), that

‖(λI −Dπ)−1(A−Dπ)‖φ ≥ 1 ( any φ ∈ Φπ);

whence,

inf
φ∈Φπ

‖(λI −Dπ)−1(A−Dπ)‖φ ≥ 1.

From (1.11), we deduce that λ ∈ Hπ(A), and, consequently from (1.10), also that
λ ∈ Gπ(A). Thus,

σ(A) ⊂ Gπ(A).(1.15)

Next, for any z /∈ σ(Dπ), consider the matrix (zI−Dπ)−1(A−Dπ), which, when
partitioned by π, is written as

(zI −Dπ)−1(A−Dπ) =: [Ei,j(z)] (i, j = 1, 2, · · ·N).
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Because Dπ is the block-diagonal matrix of (1.4), it directly follows that the block-
diagonal submatrices Ei,i(z) of (zI −Dπ)−1(A−Dπ) satisfy

Ei,i(z) = O (i = 1, 2, · · · , N),

i.e., in the notation of the previous paper (cf. [4, eq. (1.7)]), (zI −Dπ)−1(A−Dπ) is
a π-invertebrate matrix. From this and from the definition in (1.13), it can be verified
that an application of [7, Theorem 2] gives us that

‖(zI−Dπ)−1(A−Dπ)‖φ = ‖(zI−Dπ)−1(B−Dπ)‖φ (all φ ∈ Φπ, all B ∈ Ωπ(A)) .

But then, we directly see from (1.11) that

Hπ(A) = Hπ(B) (any B ∈ Ωπ(A)) ,

and, by definition (1.13), that the block-diagonal matrix of any B in Ωπ(A) is Dπ.
Hence (cf. (1.10))

Gπ(A) = Gπ(B) (any B ∈ Ωπ(A)) .(1.16)

Applying (1.15) to any B in Ωπ(A) gives, with (1.16),

σ(B) ⊂ Gπ(B) = Gπ(A),

which yields the desired result that σ (Ωπ(A)) ⊂ Gπ(A).

The inclusion (1.14) of Theorem 1.1 is interesting, in that it raises the question of
just how sharp this inclusion is. As we shall see in Section 2, this inclusion is indeed
sharp in a precise sense.

2. The Sharpness of the Boundary of the Minimal Gerschgorin Set.
The object of this section is to establish Theorem 2.1, below. For notation, if T is
any set in the complex plane IC, then T ′ denotes its complement and T̄ its closure (in
the usual topology of IC). The boundary of Gπ(A) is then defined by

∂Gπ(A) := Gπ(A)
⋂
G′π(A) = Gπ(A)

⋂
G′π(A),(2.1)

the last equality holding since Gπ(A) is a closed set from our discussion in Section
1. In addition, int T denotes the interior of a set T i.e., int T := T\∂T . With this
notation, we state our next result as

Theorem 2.1. Let π be a partition of ICn, and let A in ICn,n be partitioned by π.
Then, the inclusion of (1.14) of Theorem 1.1 for the minimal Gerschgorin set Gπ(A)
is sharp in the sense that

∂Gπ(A) ⊂ σ (Ωπ(A)) ⊂ Gπ(A).(2.2)

In other words, each point of the boundary ∂Gπ(A) is an eigenvalue of some matrix
B in the equimodular class Ωπ(A) of A.

To prove Theorem 2.1, we consider the two functions

η(z) := inf
φ∈Φπ

‖(zI −Dπ)−1(A−Dπ)‖φ (z /∈ σ(Dπ)) ,(2.3)
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and

ν(z) := sup
B∈Ωπ(A)

ρ
{

(zI −Dπ)−1(B −Dπ)
}

(z /∈ σ(Dπ)) ,(2.4)

where ρ(F ) denotes in general the spectral radius of a square matrix F (i.e., ρ(F ) :=
max {|λ| : λ ∈ σ(F )}). Noting again that the matrix (zI − Dπ)−1(A − Dπ) is π-
invertebrate for any z 6∈ σ(Dπ), we immediately deduce, from Theorem 2.1 of the
previous paper [4], that

η(z) = ν(z) (z /∈ σ(Dπ)) .(2.5)

And, as shown in [7, Lemma 2], ν(z), and hence η(z), is continuous in IC\σ(Dπ). We
also note, from (1.11), that we can now express the set Hπ(A) as

Hπ(A) = {z ∈ IC : z /∈ σ(Dπ) and η(z) ≥ 1} .(2.6)

We next give a useful result which is a less precise version of a result of House-
holder, Varga, and Wilkinson [2, Theorem 2]. (For completeness, we include its short
proof.)

Lemma 2.2. Let λ ∈ σ(Dπ). If the matrix (zI−Dπ)−1(A−Dπ) remains bounded
(in every entry) as z → λ, then λ ∈ σ(A).

Proof. As in [2], let xH 6= 0 be a left eigenvector of Dπ, corresponding to λ.
Then, λxH = xHDπ, which we can write as (z−λ)xH = xH(zI −Dπ). If z /∈ σ(Dπ),
this gives

xH(zI −Dπ)−1 = (z − λ)−1xH ,

and, on post-multiplying the above by the matrix A−Dπ, we have

xH(zI −Dπ)−1(A−Dπ) = (z − λ)−1xH(A−Dπ).(2.7)

If the matrix (zI − Dπ)−1(A − Dπ) remains bounded as z → λ, it is evident from
(2.7) that xH(A−Dπ) = 0. Hence,

xHA = xHDπ = λxH ,

and λ ∈ σ(A).

With Lemma 2.2, we next establish

Lemma 2.3. Let λ ∈ σ(Dπ). If λ /∈ int Gπ(A), then λ ∈ σ(A).

Proof. Consider any λ ∈ σ(Dπ) with λ /∈ int Gπ(A). From Lemma 2.2, it suffices
to show that the matrix (zI−Dπ)−1(A−Dπ) remains bounded (in every element) as
z → λ. Suppose, on the contrary, that (zI −Dπ)−1(A−Dπ) is not bounded in every
element as z → λ. This implies that

lim
z→λ
‖(zI −Dπ)−1(A−Dπ)‖φ = +∞ (any φ ∈ Φπ).
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Hence, from the definition in (2.3),

lim
z→λ

η(z) = +∞.

Thus, there exists a sufficiently small ε0 > 0 such that for every z in the punctured
disk

∆̂(λ, ε0) := {z ∈ IC : 0 < |z − λ| < ε0} ,

we have η(z) ≥ 1. As a consequence of (2.6),

∆̂(λ, ε0) ⊂ Gπ,1(A),

and from (1.10), because λ ∈ σ(Dπ),

∆(λ, ε0) := ∆̂(λ, ε0) ∪ {λ} ⊂ Gπ(A).

But as the above inclusion gives that the entire (unpunctured) disk ∆(λ, ε0) lies in
Gπ(A), then λ is necessarily an interior point of Gπ(A), a contradiction. Applying
Lemma 2.2 then gives that λ ∈ σ(A).

We now come to the

Proof of Theorem 2.1 Regarding the sought inclusions of (2.2), the second inclu-
sion in (2.2) already follows from (1.14) of Theorem 1.1. Consider any z ∈ ∂Gπ(A),
so that z /∈ int Gπ(A). If z ∈ σ(Dπ), then from Lemma 2.3, z ∈ σ(A) ⊂ σ (Ωπ(A)),
the last inclusion following trivially from the fact (cf. (1.13)) that A ∈ Ωπ(A). Thus,
if z ∈ ∂Gπ(A) with z ∈ σ(Dπ), then z ∈ σ (Ωπ(A)).

If z ∈ ∂Gπ(A) with z /∈ σ(Dπ), then η(z) is well defined and from (2.6), η(z) ≥ 1.
On the other hand, as z ∈ ∂Gπ(A), we see from (2.1) that z is in the closure of G′π(A).
This implies from (2.6) that there exists a sequence of complex numbers {zk}∞k=1 with
zk → z and with η(zk) < 1. From the continuity of η in IC\σ(Dπ), it follows that
η(z) = 1. From (2.5), ν(z) = 1 also, so that, from the definition of ν(z) in (2.4),

ν(z) = sup
B∈Ωπ(A)

ρ
{

(zI −Dπ)−1(B −Dπ)
}

= 1.(2.8)

From (1.13), the spectral radius of the matrix (zI − Dπ)−1(B − Dπ), for any B in
Ωπ(A), depends continuously on N2 −N real numbers θk,` with 0 ≤ θk,` ≤ 2π (1 ≤
k, ` ≤ N with k 6= `). From compactness considerations, there exists a B̃ ∈ Ωπ(A) for
which the supremum in (2.8) is attained. Thus,

ρ
{

(zI −Dπ)−1(B̃ −Dπ)
}

= 1.

In fact, for a suitable multiplicative factor eiα with α real, the matrix B̂ := eiα(B̃ −
Dπ) +Dπ, which is an element of Ωπ(A), is such that (zI −Dπ)−1(B̂ −Dπ) has an
eigenvalue unity. Hence, there exists an x 6= 0 in ICn such that

(zI −Dπ)−1(B̂ −Dπ)x = x,

which implies that

(B̂ −Dπ)x = (zI −Dπ)x,
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so that

B̂x = zx.

But as B̂ ∈ Ωπ(A), the above display gives that z ∈ σ(B̂) ⊂ σ(Ωπ(A)). Thus, if
z ∈ ∂Gπ(A) with z /∈ σ(Dπ), then z ∈ σ(Ωπ(A)).

Our next result considers the second inclusion of (2.2) of Theorem 2.1. By suitably
extending the class Ωπ(A), we show that the second inclusion of (2.2) can be made
one of equality. To this end, we set

Ω̂π(A) := {B = [Bk,`] ∈ ICn,n : Bk,k = Ak,k, and there is a τ ∈ [0, 1]
such that for each pair (k, `) with k 6= `, Bk,` = τeiθk,`Ak,`
for some real θk,` (k, ` = 1, 2, · · ·N)} .

(2.9)

We note that the choice τ = 1 in (2.9) shows that Ωπ(A) ⊂ Ω̂π(A).

Lemma 2.4. Let π be a partition of ICn and let A in ICn,n be partitioned by π.
Then,

σ
(

Ω̂π(A)
)
⊂ Gπ(A).(2.10)

Proof. For any z ∈ σ
(

Ω̂(A)
)

, there exists a B̂ ∈ Ω̂π(A) and an x 6= 0 in ICn with

B̂x = zx, and this gives that(
B̂ −Dπ

)
x = (zI −Dπ) x.(2.11)

If z ∈ σ(Dπ), then from (1.10), z ∈ Gπ(A). Otherwise, if z /∈ σ(Dπ), it follows from
(2.11) that

‖(zI −Dπ)−1(B̂ −Dπ)‖φ ≥ 1 (any φ ∈ Φπ).

From (2.9), let τ ∈ [0, 1] be the associated scalar factor associated with B̂. Because
z /∈ σ(Dπ), it follows that 0 < τ (for if τ were zero, B̂ would, from (2.9), reduce exactly
to Dπ, giving σ(B̂) = σ(Dπ), which contradicts the assumption that z /∈ σ(Dπ)).
Consider next the matrix

B := Dπ +
1
τ

(B̂ −Dπ).

It can be directly seen from (2.9) and (1.13) that B ∈ Ωπ(A), and, moreover, that

‖(zI −Dπ)−1(B −Dπ)‖φ ≥
1
τ
≥ 1 ( any φ ∈ Φπ).

Hence, on replacing the matrix A with B in both (2.3) and (2.6), the above inequali-
ties give that z ∈ Gπ(B). But as Gπ(B) = Gπ(A) from (1.16), the desired inclusion
of (2.10) follows.

Next, we have
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Theorem 2.5. Let π be a partition of ICn and let A ∈ ICn,n be partitioned by π.
Then,

σ
(

Ω̂π(A)
)

= Gπ(A).(2.12)

Proof. Consider any z ∈ Gπ(A). If z ∈ σ(Dπ), then as Dπ is an element of
Ω̂π(A), as choosing τ = 0 in (2.9) shows, we have z ∈ σ

(
Ω̂(A)

)
. Next, suppose that

z /∈ σ(Dπ), so that, from (1.10), z ∈ Hπ(A). From (2.5) and (2.6), we have that
t := η(z) = ν(z) ≥ 1. By compactness considerations again, there exists a B ∈ Ωπ(A)
and an x 6= 0 in ICn such that

(zI −Dπ)−1(B −Dπ)x = tx,

or equivalently, {
1
t
B +

(
1− 1

t

)
Dπ

}
x = zx.(2.13)

Since, for any τ ∈ (0, 1] and for any B ∈ Ωπ(A), the matrix B̂ := τB+ (1− τ)Dπ can
be seen from (2.9) to be an element of Ω̂π(A), we deduce from (2.13) that B̂, with
τ := 1

t , is an element of Ω̂π(A). As z is also an eigenvalue of B̂ from (2.13), then

z ∈ σ
(

Ω̂π(A)
)

.

Note that we can now write the result of (2.2) of Theorem 2.1 in the form

∂Gπ(A) ⊂ σ (Ωπ(A)) ⊂ σ
(

Ω̂π(A)
)

= Gπ(A).(2.14)

3. Monotonicity. The minimal Gerschgorin set Gπ(A) of a fixed matrix A in
ICn,n depends, of course, on the partition π of ICn. The object of this section is to
study this dependence on π. To this end, we recall from Section 1 that if π is a
partition of ICn, i.e., (cf. (1.1)) if

ICn = W1+̇W2+̇ · · · +̇WN ,

then the partition π can be defined in terms of the nonnegative integers {rj}Nj=0,
where r0 := 0 < r1 < · · · < rN := n, and where (cf. (1.2))

Wj := span {ek : rj−1 + 1 ≤ k ≤ rj} (j = 1, 2, · · · , N).

This implies that

dimWj = rj − rj−1 (j = 1, 2, · · · , N).

As in [7], we remark that the various partitions of ICn can be partially ordered. If
π1 = {rj}Nj=0 and π2 = {sj}Mj=0 are two partitions of ICn, we write

π1 ≺ π2(3.1)

if and only if {rj}Nj=0 ⊂ {sj}
M
j=0, and we say that π1 is weaker than π2 (and that π2

is stronger than π1). Evidently, πs := {i}ni=0 is the strongest partition of ICn, i.e.,

ICn = W1+̇W2+̇ · · · +̇Wn and dim Wj = 1 (j = 1, 2, · · · , n),
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while πw := {0, n} is the weakest partition of ICn, i.e.,

ICn = W1 and dim W1 = n.

The main object of this section is the following result which crudely says that a
stronger partition gives a “bigger” minimal Gerschgorin set.

Theorem 3.1. Let π1 and π2 be two partitions of ICn with π1 ≺ π2. Then, for
any matrix A in ICn,n,

σ (Ωπ1(A)) ⊂ σ (Ωπ2(A)) ,(3.2)

and

Gπ1(A) ⊂ Gπ2(A).(3.3)

Proof. If π1 ≺ π2, it is a direct consequence of the definition in (1.13) that any ma-
trix B in Ωπ1(A) is also in Ωπ2(A), which gives Ωπ1(A) ⊂ Ωπ2(A). Then, the inclusion
of (3.2) is evident. Since Gπ1(A) is known to be a closed bounded set in IC, it suffices,
to establish (3.3), to show that ∂Gπ1(A) ⊂ Gπ2(A). For any z ∈ ∂Gπ1(A), Theorem
2.1 gives that z is an eigenvalue of some B ∈ Ωπ1(A). But as π1 ≺ π2, B ∈ Ωπ2(A)
also; whence from (1.14), ∂Gπ1(A) ⊂ σ (Ωπ2(A)) ⊂ Gπ2(A), which gives (3.3).

The inclusion (3.3) of Theorem 3.1 says that a stronger partition gives a “bigger”
minimal Gerschgorin set, but this needs clarification. As was mentioned in [7], if π1

and π2 are two partitions of ICn with

π1 ≺ π2 and π1 6= π2,(3.4)

then from (3.3), Gπ1(A) ⊂ Gπ2(A), but equality in this last inclusion is not ruled out.
Indeed, an example of this is explicitly given in [7], where (3.4) is valid and where
Gπ1(A) = Gπ2(A).

To conclude this section, we connect the results of this paper with known results
in the literature concerning minimal Gerschgorin sets. First, in the special case that
the partition is the strongest partition πs of ICn (i.e., dim Wj = 1 for j = 1, 2, · · · , n
in (1.2)), the results of Theorems 2.1 and 2.5 of this paper reduce to the original
results of [6]. We mention that the proofs of these results in [6] depended solely on
the Perron-Frobenius theory of nonnegative matrices, which sharply differs from the
analysis used here. In this regard, we mention that Levinger [5] later obtained a new
characterization of the minimal Gerschgorin set in the strongest partition case, which,
via the Perron-Frobenius theory, is equivalent to the definition of Hπs(A) of (2.6). In
this sense, our results in this paper could be viewed more as a generalization of the
results of Levinger [5] than of those of [6].

The connection of the results of this paper with those of [7] is certainly very
strong. The analogs of Theorems 2.1 and 2.5 do appear in [7], except that two addi-
tional hypotheses were needed in [7] in deriving the same results. One of the additional
hypotheses, called π-regularity in [7], turns out to be a consequence of the new affir-
mative solution of the Spectral Conjecture in [4]. The other additional hypothesis,
called π-irreducibility in [7], is not needed because of the new treatment here of the
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spectrum of the associated block diagonal matrices. (This is where Lemmas 2.2 and
2.3 play a role.) We also mention that the set Ω̂π(A), as defined here in (2.9), is in
general a smaller set than that defined in [7], because just one τ in [0, 1] is associated
with each matrix B in Ω̂π(A) of (2.9), whereas its counterpart in [7] assigns a possibly
different τ in [0, 1] to each non-diagonal submatrix of B in Ω̂π(A).

4. Examples. For simplicity, consider the 3× 3 complex matrix with diagonal
elements 1+ i,−1+ i,−i and let its off-diagonal elements be given by the first 6 digits
of the decimal expansion of the number π := 2 arctan 1 = 3.14159 . . ., i.e.,

A :=

 1 + i 3 1
4 −1 + i 1
5 9 −i

 .(4.1)

It can be readily verified that the eigenvalues of A, truncated to four decimal digits,
are

σ(A) = {5.8129 + 0.4468i,−2.0764− 0.3197i,−3.7364 + 0.8728i}.(4.2)

Then, all possible partitions of IC3 are given by

π1 := πw = {0, 3};
π2 := {0, 1, 3};
π3 := {0, 2, 3};
π4 := πs = {0, 1, 2, 3}.

(4.3)

By definition, we have

π1 ≺ π2 ≺ π4,(4.4)

and

π1 ≺ π3 ≺ π4,(4.5)

which implies from Theorem 3.1 that

Gπ1(A) ⊂ Gπ2(A) ⊂ Gπ4(A),(4.6)

and

Gπ1(A) ⊂ Gπ3(A) ⊂ Gπ4(A).(4.7)

We next explicitly determine the minimal Gerschgorin sets
{
Gπj (A)

}4

j=1
for the

matrix A of (4.1). First, because π1 of (4.1) is the weakest partition of IC3, then
A = Dπ1 . From this, it follows from (1.11) that Hπ1(A) = ∅, and from (1.10) that
Gπ1(A) = σ(Dπ1) = σ(A), where σ(A) is given in (4.2). Next, we consider π4, the
strongest partition of IC3. Then, its associated block-diagonal matrix is

Dπ4 =

 1 + i 0 0
0 −1 + i 0
0 0 −i

 ,
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and for any B ∈ Ωπ4(A), we have (cf. (1.13)).

B =

 1 + i 3eiθ1 eiθ2

4eiθ3 −1 + i eiθ4

5eiθ5 9eiθ6 −i

 (any {θj}6j=1 real),(4.8)

so that for any B ∈ Ωπ4(A),

(zI −Dπ4)−1(B −Dπ4) =

 0 3eiθ1

z−1−i
eiθ2

z−1−i
4eiθ3

z+1−i 0 eiθ4

z+1−i
5eiθ5

z+i
9eiθ6

z+i 0

 (z /∈ σ(Dπ4)) .(4.9)

To determine ∂Hπ4(A), it suffices from (2.5) and (2.6) to find those z, not in σ(Dπ4),
for which ν(z) = 1, where (cf. (2.4))

ν(z) := sup
B∈Ωπ4(A)

ρ
{

(zI −Dπ4)−1(B −Dπ4

}
.(4.10)

From the Perron-Frobenius theory of nonnegative matrices (cf. [8, p. 28]), the choice
of the real numbers {θi}6i=1 in (4.9), which maximizes ρ

{
(zI −Dπ4)−1(B −Dπ4)

}
clearly leads to the nonnegative matrix

Mπ4(z) :=

 0 3
|z−1−i|

1
|z−1−i|

4
|z+1−i| 0 1

|z+1−i|
5
|z+i|

9
|z+i| 0

 (z /∈ σ(Dπ4)) .(4.11)

whose spectral radius is then the quantity ν(z) in (4.10). On computing the charac-
teristic polynomial for the matrix Mπ4(z), it can be verified that ν(z) = 1 if and only
if

|z−1−i| · |z+1−i| · |z+i|−9|z−1−i|−5|z+1−i|−12|z+i|−51=0.(4.12)

Using MATLAB, the set of z’s satisfying (4.12) determines the curve C4 = ∂Hπ4(A),
and this is shown in Figure 4.1. But because the eigenvalues {1 + i,−1 + i,= i} of
Dπ4 all lie in the interior of C4, it follows (cf. (1.10)) that C4 = ∂Gπ4(A) = ∂Hπ4(A).
In a similar way, it can be verified that the set of z’s satisfying

|z − 1− i| · |z2 + z − 8 + i| − |17z + 56 + 7i| = 0,(4.13)

determines the curve C2 := ∂Gπ2(A) where π2 = {0, 1, 3}, and that the set of z’s,
satisfying

|z + i| · |z2 − 2iz − 14| − |14z + 47− 14i| = 0,(4.14)

determines the curve C3 := ∂Gπ3(A) where π3 = {0, 2, 3}. The latter curves are also
given in Figure 4.1, along with the three points of the σ(A), which are shown as small
solid disks. It is interesting to see in Figure 4.1 that the set Gπ3(A) consists of two
disjoint compact sets, whose boundaries are denoted by C3a and C3b. Note also from
Figure 4.1 that all eigenvalues of A of (4.1) lie on C2, while two eigenvalues of A lie
on C3a and one eigenvalue of A lies on C3b. Moreover, Figure 4.1 directly shows that
the set inclusions of (4.6) and (4.7) are clearly valid for the partial orderings in (4.4)
and (4.5).
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Fig. 4.1. The curves Cj := ∂Gπj (A) for j = 2, 3, 4, and σ(A).

Finally, a visual “verification” of (2.12) of Theorem 2.5 is given in Figure 4.2,
for the matrix A of (4.1) and for the strongest partition π4 of IC3 of (4.3). Here, on
selecting a finite set of values of τ in [0, 1], and on selecting a finite set of values of
each θj in [0, 2π] for j = 1, 2, · · · , 6, all eigenvalues of each matrix B̃, given by

B̃ =

 1 + i 3τeiθ1 τeiθ2

4τeiθ3 −1 + i τeiθ4

5τeiθ5 9τeiθ6 −i

 (where B̂ ∈ Ω̂π4(A)),(4.15)

were determined and plotted in Figure 4.2, showing that the set of all these eigenvalues
do indeed tend to “fill out” the minimal Gerschgorin set Gπ4(A), as established in
(2.12) of Theorem 2.5.
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Fig. 4.2. Points of σ(Ω̂π4 (A)) and Gπ4(A).
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