
Electronic Transactions on Numerical Analysis.
Volume 3, pp. 96-115, September 1995.
Copyright  1995, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University
etna@mcs.kent.edu

GAUSSIAN QUADRATURE FOR MATRIX VALUED FUNCTIONS
ON THE UNIT CIRCLE ∗

ANN SINAP†

Abstract. The Gaussian quadrature formulas for matrix valued functions on the unit circle
are described. It is shown how the eigenvalues and eigenvectors of a unitary lower block Hessenberg
matrix can be used to compute an approximation of a given matrix integral on the unit circle. A
parallel algorithm for this purpose has been implemented on a IBM SP1 and some examples are
worked out.

Key words. orthogonal matrix polynomials, block Hessenberg matrices, quadrature, parallel
algorithm.

AMS subject classifications. 42C05, 41A55, 47A56, 65D32, 65Y05.

1. Introduction. The aim of this paper is to discuss the computation of Gauss-
ian quadrature rules for matrix-valued functions on the unit circle on a high perfor-
mance computer. These quadrature formulas generalize the scalar formulas considered
in [12]. In [1], [10] and [11] the authors describe a divide and conquer method for the
solution of the unitary Hessenberg eigenproblem, which is essentially the problem to
be solved here. We will describe a divide and conquer method for the unitary block
Hessenberg problem which is applied to quadrature rules for matrix-valued functions.
The algorithm is implemented on an IBM SP1 multiprocessor which consists of a few
connected RISC-processors, each of which has its own memory and disk. This gives
a multiprocessor with distributed memory. In order to facilitate communication be-
tween different processors, the user needs instructions which he can call from his C
or Fortran programs. These instructions are part of a message passing library. We
use PVM, Parallel Virtual Machine, which was developed at the Oak Ridge National
Laboratory and is publicly available.

In Section 2 we introduce orthogonal matrix polynomials on the unit circle and
discuss some of their properties. Orthogonal matrix polynomials previously have
been considered by Delsarte, Genin and Kamp [5] and Geronimo [6]. In Section
3 we describe the Gaussian quadrature rules and explain how the eigenvalues and
eigenvectors of a unitary lower block Hessenberg matrix can be used to determine the
quadrature weights. In Section 4 we describe an implementation of the quadrature
formulas on a distributed memory multiprocessor, using a divide and conquer method
to compute the spectral factorization of a unitary lower block Hessenberg matrix.

2. Orthogonal matrix polynomials on the unit circle. Let ρ be a matrix-
valued distribution function on [0, 2π), which defines a matrix-valued measure on the
unit circle (see [5], [6]). We introduce two inner products: a left inner product and a
right inner product. The left inner product is given by

〈P, Q〉L :=
1
2π

∫ 2π

0

P (z) dρ(θ)Q(z)∗, z = eiθ,

∗ Received April 25, 1995. Accepted for publication September 12, 1995. Communicated by L.
Reichel.

† Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, B–3001
Heverlee, BELGIUM, (Ann.Sinap@wis.kuleuven.ac.be).

96

ETNA
Kent State University
etna@mcs.kent.edu

Ann Sinap 97

where P, Q ∈ C p×p [z], the set of p × p matrix polynomials in a complex variable z
and A∗ denotes the Hermitian conjugate of the matrix A. The right inner product is
given by

〈P, Q〉R :=
1
2π

∫ 2π

0

P (z)∗ dρ(θ)Q(z), z = eiθ.

Now we are able to define orthogonal matrix polynomials. Left orthonormal
matrix polynomials φL

n , n = 0, 1, 2, . . ., are obtained by orthonormalizing I, zI, z2I, . . .
with respect to the left inner product,

1
2π

∫ 2π

0

φL
n (z) dρ(θ)φL

m(z)∗ = δn,m I, n, m ≥ 0.

Similarly right orthonormal matrix polynomials φR
n , n = 0, 1, 2, . . ., are obtained

using the right inner product,

1
2π

∫ 2π

0

φR
n (z)∗ dρ(θ)φR

m(z) = δn,m I, n, m ≥ 0.

Both φL
n and φR

n are matrix polynomials of degree n, with a non-singular leading
coefficient. The left orthonormal matrix polynomials are unique up to a multiplication
on the left by a unitary matrix, while the right orthonormal matrix polynomials are
defined up to a multiplication on the right by a unitary matrix. Since there is no
simple relation between left and right orthonormal polynomials we need to analyse
both.

Without loss of generality we only consider matrix distribution functions that
satisfy

1
2π

∫ 2π

0

dρ(θ) = I.

In order to get the reversed polynomial P̃ (z), we take the polynomial P , reverse
the order of the coefficients and take the Hermitian conjugates of these coefficients.
That is,

P̃ (z) := znP

(
1
z̄

)∗
.

These orthonormal matrix polynomials satisfy some simple recurrence relations
(see [5], [6], [15]):

(I − HnH∗
n)

1
2 φL

n(z) = zφL
n−1(z) + Hnφ̃R

n−1(z),

and

(I − H∗
nHn)

1
2 φ̃R

n (z) = φ̃R
n−1(z) + zH∗

nφL
n−1(z),

where (I − HnH∗
n)

1
2 and (I − H∗

nHn)
1
2 are positive definite. We can show the zeros

of these polynomials are located in the open unit disk, and some straightforward ma-
trix computations give us the identity of Christoffel-Darboux for orthonormal matrix
polynomials on the unit circle:

ETNA
Kent State University
etna@mcs.kent.edu

98 Gaussian quadrature for matrix valued function

Theorem 2.1.

(1 − z̄1z2)
n∑

i=0

φL
i (z1)∗ φL

i (z2) = φ̃R
n+1(z1)∗ φ̃R

n+1(z2) − φL
n+1(z1)∗ φL

n+1(z2),

= φ̃R
n (z1)∗ φ̃R

n (z2) − z̄1z2 φL
n(z1)∗ φL

n(z2),

and

(1 − z1z̄2)
n∑

i=0

φR
i (z1)φR

i (z2)∗ = φ̃L
n+1(z1) φ̃L

n+1(z2)∗ − φR
n+1(z1)φR

n+1(z2)∗

= φ̃L
n (z1) φ̃L

n(z2)∗ − z1z̄2 φR
n (z1)φR

n (z2)∗.

3. Gaussian quadrature on the unit circle. The integral of an arbitrary
matrix function can be approximated by means of a sum of the form

1
2π

∫ 2 π

0

F (z) dρ(θ)G(z)∗ '
k∑

i=1

F (zi) ΛiG(zi)∗,

where Λi ∈ C
p×p . It will be convenient to choose

Λi =
(

vi,1 . . . vi,mi

)
Ai




v∗i,1
...

v∗i,mi


 ,

where the non-zero vectors vi,1, . . . , vi,mi are linearly independent, the points zi lie
on the unit circle and

∑k
i=1 mi = np. We would like to have a formula which is exact

for as many Laurent polynomials as possible. Denote by Λ−m,n the set of Laurent
polynomials of the form

∑n
i=−m Aiz

i. We restrict ourselves to the left inner product
〈., .〉L, but the procedure can be repeated for the right inner product, 〈., .〉R, as well.

Since the zeros of the orthonormal matrix polynomials lie in the open unit disk,
we cannot use these points in the quadrature formula. We therefore introduce para-
orthogonal matrix polynomials

Bn(z, Wn) := φL
n(z) + Wnφ̃R

n (z),

where Wn is a unitary matrix.
Theorem 3.1. The zeros of the para-orthogonal matrix polynomials Bn(·, Wn)

are the eigenvalues of a unitary lower block Hessenberg matrix.
Proof. Expand the left orthonormal matrix polynomial φL

n into a Fourier series
using the left orthonormal matrix polynomials φL

i , i = 0, 1, . . . , n − 1 and the para-
orthogonal matrix polynomial Bn(·, Wn). This yields,

z φL
i (z) =

i+1∑
j=0

Mi,jφ
L
j (z), i = 0, 1, . . . , n − 2, and

z φL
n−1(z) =

n−1∑
j=0

Mn−1,jφ
L
j (z) + Mn−1,nBn(z, Wn).

ETNA
Kent State University
etna@mcs.kent.edu

Ann Sinap 99

If z0 is a zero of Bn(·, Wn) with root vector v0, then

z0 φL
i (z0)v0 =

i+1∑
j=0

Mi,jφ
L
j (z0)v0, i = 0, 1, . . . , n − 2, and

z0 φL
n−1(z0)v0 =

n−1∑
j=0

Mn−1,jφ
L
j (z0)v0,

and hence z0 is an eigenvalue of the block Hessenberg matrix

Mn :=




M0,0 M0,1

M1,0 M1,1 M1,2

...
...

.
...

...
...

.
Mn−2,0 Mn−2,1 Mn−2,n−2 Mn−2,n−1

Mn−1,0 Mn−1,1 Mn−1,n−2 Mn−1,n−1




.

The blocks of this matrix satisfy

Mi,j = 〈zφL
i , φL

j 〉L, i = 0, 1, . . . , n − 2, j = 0, 1, . . . , i + 1, and

Mn−1,j = 〈zφL
n−1, φ

L
j 〉L − Mn−1,nWn〈φ̃R

n , φL
j 〉L, j = 0, 1, . . . , n − 1, and

Mn−1,n = 〈zφL
n−1, φ

L
n〉L (I + WnH∗

n)−1
.

From the properties of the left inner product and orthogonality we get

〈zφL
k , zφL

l 〉L = 〈φL
k , φL

l 〉L = δk,lI, 0 ≤ k, l ≤ n − 1,

so that for 0 ≤ k, l ≤ n − 2,

min (k,l)+1∑
j=0

Mk,jM
∗
l,j = 〈zφL

k , zφL
l 〉L = δk,lI.

Since 〈Bn(·, Wn), zφL
k 〉L = 0, k = 0, 1, . . . , n − 2, we get

k+1∑
j=0

Mn−1,jM
∗
k,j = 〈zφL

n−1, zφL
k 〉L = 0.

Finally,

n−1∑
k=0

〈Bn(·, Wn), φL
k 〉LM∗

n−1,k = (I + HnW ∗
n) M∗

n−1,n−〈Bn(·, Wn), Bn(·, Wn)〉LM∗
n−1,n

and the equation

〈Bn(·, Wn), Bn(·, Wn)〉L = 2I + WnH∗
n + HnW ∗

n

show us that
n−1∑
l=0

Mn−1,lM
∗
n−1,l = 〈zφL

n−1, zφL
n−1〉L = I.

ETNA
Kent State University
etna@mcs.kent.edu

100 Gaussian quadrature for matrix valued function

Thus, the zeros of the para-orthogonal matrix polynomials lie on the unit circle.
The following theorem shows a further related property.

Theorem 3.2. The multiplicity of the zeros of Bn(·, Wn) is less than or equal to
p and the length of the corresponding Jordan chains is exactly 1.

Proof. Let z0 be a zero of Bn(·, Wn) with multiplicity > p, and let {(vi,0, vi,1, . . . ,
vi,µi−1) : i = 1, 2, . . . , s} be a canonical set of right Jordan chains corresponding to
this zero z0. Since the multiplicity is greater than p, there has to be a least one Jordan
chain with length > 1. Suppose vi,0, vi,1 are the leading vectors of this Jordan chain.
Then

Bn(z0, Wn)vi,0 = 0, vi,0 6= 0, and
B′

n(z0, Wn)vi,0 + Bn(z0, Wn)vi,1 = 0.

The first relation shows that

φL
n(z0)vi,0 = −Wnφ̃R

n (z0)vi,0,

and from the identity of Christoffel-Darboux we get

n−1∑
i=0

φL
i (z1)∗ φL

i (z1) = z1

(
φL

n(z1)
∗
φL

n (z1)
′ − φ̃R

n (z1)
∗
φ̃R

n (z1)
′)

,

where |z1| = 1. We obtain

v∗i,0
n−1∑
i=0

φL
i (z0)∗ φL

i (z0) = −z0v
∗
i,0φ̃

R
n (z0)

∗
W ∗

nB′
n(z0, Wn)

= z0v
∗
i,0φ

L
n(z0)

∗
B′

n(z0, Wn).

On the other hand the identity of Christoffel-Darboux gives us

0 = φ̃R
n (z0)

∗
φ̃R

n (z0) − φL
n(z0)

∗
φL

n(z0),

or

0 = v∗i,0φ̃
R
n (z0)

∗ (
φ̃R

n (z0) + W ∗
nφL

n (z0)
)

= v∗i,0φ̃
R
n (z0)

∗
W ∗

nBn(z0, Wn)

= −v∗i,0φ
L
n(z0)

∗
Bn(z0, Wn).

But then we have

v∗i,0
n−1∑
i=0

φL
i (z0)∗ φL

i (z0)vi,0 = z0v
∗
i,0φ

L
n(z0)

∗
B′

n(z0, Wn)vi,0

= −z0v
∗
i,0φ

L
n(z0)

∗
Bn(z0, Wn)vi,1

= 0,

and since vi,0 6= 0 and
∑n−1

i=0 φL
i (z0)∗ φL

i (z0) is positive definite, this is impossible.

The theorem below shows that the Gaussian quadrature rules, for the matrix
case, are analogous to the rules for the scalar case (see [14]).

ETNA
Kent State University
etna@mcs.kent.edu

Ann Sinap 101

Theorem 3.3. Let (X, J) be a Jordan pair of the para-orthogonal matrix poly-
nomial Bn(z, Wn) = φL

n(z) + Wnφ̃R
n (z), where {φL

n} is the set of the orthonormal
matrix polynomials with respect to the matrix inner product 〈., .〉L, {φR

n } is the set
with respect to the matrix inner product 〈., .〉R, and Wn is a unitary matrix. Then we
have

〈F, G〉L =
1
2π

∫ 2π

0

F (z) dρ(θ)G(z)∗ '
k∑

i=1

F (zi) Λi G(zi)∗, z = eiθ,

where k is the number of distinct zeros zi of Bn(·, Wn), mi is the multiplicity of zi,
vi,j are the vectors associated with zi,

Λi =
(

vi,1 . . . vi,mi

)
Ki

−1




v∗i,1
...

v∗i,mi


 ,

Ki =




v∗i,1
...

v∗i,mi


 SL

n−1(zi, zi)
(

vi,1 . . . vi,mi

)
,

and

SL
n−1(z1, z2) =

n−1∑
j=0

φL
j (z2)

∗
φL

j (z1).

This quadrature formula is exact for Laurent matrix polynomials

F ∈ Λ−s,t and G ∈ Λ−(n−1−t),(n−1−s),

where 0 ≤ s, t ≤ n − 1.
In order to compute the quadrature weights we need to know the zeros and root

vectors of the para-orthogonal matrix polynomials, but it has been shown that the
zeros of Bn(·, Wn) correspond to the eigenvalues of a lower block Hessenberg matrix
Mn. This property leads to the following theorem, which can be established similarly
to the analogous result for the scalar case considered in [13].

Theorem 3.4. Let U (i,j), j = 1, 2, . . . , mi, be the eigenvectors of the matrix Mn

associated with the eigenvalue zi. Then the associated quadrature coefficient is given
by

Λi =
(

U
(i,1)
0 U

(i,2)
0 . . . U

(i,mi)
0

)
Gi

−1




U
(i,1)
0

∗

U
(i,2)
0

∗

...
U

(i,mi)
0

∗


 ,

where

(Gi)s,t = U (i,s)∗U (i,t),

and U
(i,j)
0 is the vector consisting of the first p components of U (i,j).

ETNA
Kent State University
etna@mcs.kent.edu

102 Gaussian quadrature for matrix valued function

If V (i,j) are the normalized eigenvectors, then the quadrature coefficient is given
by

Λi =
(

V
(i,1)
0 V

(i,2)
0 . . . V

(i,mi)
0

)



V
(i,1)
0

T

V
(i,2)
0

T

...

V
(i,mi)
0

T


 ,

where V
(i,j)
0 is the vector consisting of the first p components of V (i,j).

4. Algorithms to approximate a matrix integral. In view of the results of
Section 3, Gaussian quadrature weights can be computed using the eigenvalues and
the first p components of the orthonormalized eigenvectors of a unitary lower block
Hessenberg matrix. The construction of a parallel algorithm for the approximation of a
matrix integral on the unit circle will be primarily be concerned with the construction
of a parallel algorithm for the computation of the eigensystem of a unitary lower block
Hessenberg matrix. In [1], [10], [11] the problem was treated for the scalar case, p = 1.
In those papers, the authors constructed a divide and conquer algorithm to solve
the problem. In [3] a divide and conquer method for the eigenproblem of Hermitian
matrices is described, and a transformation of a unitary matrix to a Hermitian matrix
is given. We will combine these ideas and construct a divide and conquer algorithm
for the block case.

4.1. A Divide and Conquer Method. In order to divide the problem into
two smaller, but similar problems, we need some properties of Mn. First we show
the unitary lower block Hessenberg matrix Mn can be written as a product of block
Givens reflectors.

Theorem 4.1. The unitary lower block Hessenberg matrix Mn satisfies

Mn = G′′
nGn−1 · · ·G2G1,

where

Gi =




I(i−1)p

−Hi (I − HiH
∗
i)1/2

(I − H∗
i Hi)

1/2 H∗
i

I(n−i−1)p


 , 1 ≤ i ≤ n − 1,

is unitary,

G′′
n =

(
I(n−1)p

K

)
,

and K = −
(
(I − HnH∗

n)−1/2Hn + (I − HnH∗
n)1/2(W ∗

n + H∗
n)−1

)
(I − H∗

nHn)1/2.
Proof. Some straightforward matrix computations show that the matrices Gi,

i = 1, 2, . . . , n − 1, are unitary and the blocks of Mn satisfy

Mi,i+1 = (I − Hi+1H
∗
i+1)

1
2 , 0 ≤ i ≤ n − 2,

Mi,j = −Hi+1(I − H∗
i Hi)

1
2 (I − H∗

i−1Hi−1)
1
2 . . . (I − H∗

j+1Hj+1)
1
2 H∗

j ,

0 ≤ i ≤ n − 2, 0 ≤ j ≤ i,

Mn−1,j = K (I − H∗
n−1Hn−1)

1
2 . . . (I − H∗

j+1Hj+1)
1
2 H∗

j , 0 ≤ j ≤ n − 1.

ETNA
Kent State University
etna@mcs.kent.edu

Ann Sinap 103

Multiplying Mn on the right with G∗
1 and using the fact that Mn is unitary, gives

MnG∗
1 =




I 0 0 · · · · · · 0
0 −H2 (I − H2H

∗
2)1/2 0 · · · 0

0 M ′
2,1 M2,2 M2,3 · · · 0

...
...

...
.

...
...

...
...

.
...

0 M ′
n−1,1 Mn−1,2 · · · · · · Mn−1,n−1




,

where

M ′
j,1 = Mj,0(I − H∗

1H1)
1/2 + Mj,1H1

= −Hj+1(I − H∗
j Hj)

1/2 · · · (I − H∗
2H2)

1/2
, 2 ≤ j ≤ n − 2,

and where

M ′
n−1,1 = Mn−1,0(I − H∗

1H1)
1/2 + Mn−1,1H1

= K(I − H∗
n−1Hn−1)

1/2 · · · (I − H∗
2H2)

1/2
.

Repeating this procedure n − 1 times gives

MnG∗
1 · · ·G∗

n−1 =




I
. . .

I
I

M ′
n−1,n−1


 ,

with

M ′
n−1,n−1 = M ′

n−1,n−2(I − H∗
n−1Hn−1)

1/2 + Mn−1,n−1Hn−1 = K.

So we get MnG∗
1 · · ·G∗

n−1 = G′′
n or Mn = G′′

nGn−1 · · ·G1.
The matrices Gi, i = 1, 2, . . . , n − 1, can be factored into three matrices, the

middle of which is Hermitian.
Theorem 4.2.

Gs =




I(s−1)p

I
R∗

I(n−s−1)p


 G′

s




I(s−1)p

R
I

I(n−s−1)p


 ,

where

G′
s =




I(s−1)p

−(HsH
∗
s)1/2 (I − HsH

∗
s)1/2

(I − HsH
∗
s)1/2 (HsH

∗
s)1/2

I(n−s−1)p


 .

The unitary matrix R is given by UV ∗, where Hs = UΣV ∗ is the singular value
decomposition of Hs.

ETNA
Kent State University
etna@mcs.kent.edu

104 Gaussian quadrature for matrix valued function

Proof. The result follow from the properties of the singular value decomposition
of Hs.

The unitary Hermitian matrix G′
s can be written as a block Householder trans-

formation.
Theorem 4.3.

G′
s = I − WW ∗

where

W =




0
...
0(

I + (HsH
∗
s)1/2

)1/2

−
(
I − (HsH

∗
s)1/2

)1/2

0
...
0




∈ C
np×p .

Proof. The result can be established by straightforward computations.
The properties shown allow us to divide the given problem into two smaller prob-

lems. If we define

M(H1, H2, . . . , Hn−1, K) := G′′
nGn−1 · · ·Gs+1GsGs−1 · · ·G1,

then we have

Mn =
(

Isp

M
(2)
n

)
G′

s

(
M

(1)
n

I(n−s)p

)
,

where M
(1)
n is a sp × sp matrix given by

M (1)
n = M(H1, H2, . . . , Hs−1, R),

and the (n − s)p × (n − s)p matrix M
(2)
n satisfies

M (2)
n = M(Hs+1R

∗, Hs+2R
∗, . . . , Hn−1R

∗, KR∗).

So we obtain(
Isp

M
(2)
n

∗

)
Mn

(
Isp

M
(2)
n

)
= G′

s

(
M

(1)
n

M
(2)
n

)
= G′

sM̃n.

This implies that the eigenvalues of Mn and G′
sM̃n are exactly the same, and if v is

an eigenvector of G′
sM̃n, then

(
Isp

M
(2)
n

)
v is an eigenvector of Mn.

Hence, the computational problem is reduced to the following: given the eigen-
systems M

(i)
n = Q̃iΛ̃iQ̃

∗
i , i = 1, 2, determine the spectral factorization of G′

sM̃n =

ETNA
Kent State University
etna@mcs.kent.edu

Ann Sinap 105

(I − WW ∗)M̃n.

Suppose 1 6∈ σ(M̃n) and 1 6∈ σ(Mn). If 1 belongs to one of the spectra, we rotate
the spectra (see below) such that these conditions are fulfilled. Define

F := i(I − G′
sM̃n)

−1
(I + G′

sM̃n).(4.1)

This matrix is Hermitian, has the same eigenvectors as G′
sM̃n and its eigenvalues are

the images of the eigenvalues of G′
sM̃n under the mapping

f(eiθ) := i
1 + eiθ

1 − eiθ
=

− sin θ

1 − cos θ
= −cotg

(
θ

2

)
,

which maps points of the unit circle to the real line.
Similarly we define the Hermitian matrix

F̃ := i(I − M̃n)
−1

(I + M̃n).(4.2)

By means of computations similar to those in [3], we can show the following result.
Theorem 4.4. Let F and F̃ be defined by (4.1) and (4.2) respectively. Then

they satisfy

F − F̃ = V DV ∗,

where

V = (I − M̃n)
−1

W = Q̃(I − Λ̃)
−1

U,

and where

D−1 = U∗




. . .
1
4cotg

(
θ̃j

2

)
. . .


U,

and U = Q̃∗W .
Define NF (λ) as the number of eigenvalues of F < λ and NF̃ (λ) as the number of

eigenvalues of F̃ < λ. Let pos(A) be the number of positive eigenvalues of A, neg(A)
the number of negative eigenvalues of A and nul(A) the number of eigenvalues of A
equal to 0. Let the matrix A+ denote the Moore-Penrose pseudo-inverse of A.

Theorem 4.5. Let F, F̃ ∈ C
np×np be Hermitian matrices satisfying F = F̃ +

V DV ∗, where V ∈ C np×p and D ∈ C p×p is non-singular.
(i) Let λ 6∈ σ(F̃). Then the matrices

(
F − λI 0

0 −D−1

)
and

(
F̃ − λI 0

0 −
(
D−1 + V ∗(F̃ − λI)

−1
V
))

are congruent and

NF (λ) = NF̃ (λ) + pos(Z(λ)) − pos(D−1),

where Z(λ) = D−1 + V ∗(F̃ − λI)
−1

V .

ETNA
Kent State University
etna@mcs.kent.edu

106 Gaussian quadrature for matrix valued function

(ii) Let λ ∈ σ(F̃) with multiplicity µ and let P be an orthonormal base of the
corresponding eigenspace. Then the matrices


 F − λI 0 0

0 −D−1 0
0 0 0µ


 and




F̃ − λI 0 0
0 −

(
D−1 + V ∗(F̃ − λI)

+
V
)

−V ∗P
0 −P ∗V 0




are congruent and

NF (λ) = NF̃ (λ) + pos(Ze(λ)) − pos(D−1),

where

Ze(λ) =

(
D−1 + V ∗(F̃ − λI)

+
V V ∗P

P ∗V 0

)
.

Suppose we take all the arguments in the interval [0, 2π). Then the function
f(θ) = −cotg

(
θ
2

)
is strictly increasing. If NMn(θ) is the number of eigenvalues of Mn

with argument < θ and NM̃n
(θ) is the number of eigenvalues of M̃n with argument

< θ, then

NMn(θ) = NF

(
−cotg

(
θ

2

))
NM̃n

(θ) = NF̃

(
−cotg

(
θ

2

))
.

These equations and the previous theorem imply that we can localize the eigen-
values of G′

sM̃n = (I − WW ∗)M̃n.
Theorem 4.6.

(i) If eiθ 6∈ σ(M̃n), then

NMn(θ) = NM̃n
(θ) + pos

(
Z

(
−cotg

(
θ

2

)))
− pos(D−1).

(ii) If eiθ ∈ σ(M̃n) with multiplicity µ and if the corresponding orthonormal
basis id P , then

NMn(θ) = NM̃n
(θ) + pos

(
Ze

(
−cotg

(
θ

2

)))
− pos(D−1).

The matrices Z
(−cotg

(
θ
2

))
and Ze

(−cotg
(

θ
2

))
can be rewritten in terms of the

spectral decompositions of the smaller matrices:

Z

(
−cotg

(
θ

2

))
= D−1 + V ∗

(
F̃ + cotg

(
θ

2

)
I

)−1

V

= D−1 + U∗(I − Λ̃∗)
−1
(

Λ̃F + cotg

(
θ

2

)
I

)−1

(I − Λ̃)
−1

U

= D−1 + R∗




. . .

cotg
(

θ
2

)− cotg
(

θ̃j

2

)
. . .




−1

R,

ETNA
Kent State University
etna@mcs.kent.edu

Ann Sinap 107

where R =
(
I − Λ̃

)−1

U and

Ze

(
−cotg

(
θ

2

))
=

(
D−1 + V ∗

(
F̃ + cotg

(
θ
2

)
I
)+

V V ∗P
P ∗V 0

)

=




D−1 + R∗




. . .

cotg
(

θ
2

)− cotg
(

θ̃j

2

)
. . .




+

R R∗E

E∗R 0


 ,

where E = Q̃∗P , with P consisting of the columns of Q corresponding to the eigen-
value eiθ. So E∗R consists of the rows of R and thus the computation of the extended
matrix Ze(.) is the same as that of Z(.).

If the matrix Z
(−cotg

(
θ
2

))
has to be computed for θ close to θ̃j , then we have

overflow problems. In this case we compute

detZ(λ) (λ̃j−1 − λ)
µj−1 (λ̃j − λ)

µj
, λ̃j−1 < λ < λ̃j ,

where λ = −cotg
(

θ
2

)
, λ̃j = −cotg

(
θ̃j

2

)
.

Since the eigenvectors of F and G′
sM̃n are exactly the same, it suffices to explain

how we can compute the eigenvectors of F from those of F̃ . Computations similar to
these in [3] give us the eigenvectors in terms of Mn and M̃n.

Theorem 4.7.

(i) Let eiθ ∈ σ(Mn), but eiθ 6∈ σ(M̃n), and let y ∈ C p×1 be an element of the
null space of Z(−cotg

(
θ
2

)
). Then

Q̃




. . .

cotg
(

θ
2

)− cotg
(

θ̃j

2

)
. . .




−1

Ry

is an eigenvector of (I − WW ∗)M̃n corresponding to the eigenvalue eiθ, and

(
Q̃1

Q̃2Λ̃2

) 
. . .

cotg
(

θ
2

)− cotg
(

θ̃j

2

)
. . .




−1

Ry

is an eigenvector of Mn corresponding to the eigenvalue eiθ.

(ii) Let eiθ ∈ σ(Mn), eiθ ∈ σ(M̃n), and let
(

y
z

)
∈ C (p+µ)×1 be an element of

the null space of Ze(−cotg
(

θ
2

)
). Then

Q̃







. . .

cotg
(

θ
2

)− cotg
(

θ̃j

2

)
. . .




+

Ry + Ez




ETNA
Kent State University
etna@mcs.kent.edu

108 Gaussian quadrature for matrix valued function

is an eigenvector of (I − WW ∗)M̃n, corresponding to the eigenvalue eiθ, and

(
Q̃1

Q̃2Λ̃2

)






. . .

cotg
(

θ
2

)− cotg
(

θ̃j

2

)
. . .




+

Ry + Ez




is an eigenvector of Mn corresponding to the eigenvalue eiθ.
These transformed vectors are orthonormalized with respect to the classical inner

product, but it is also possible to orthonormalize the vectors of the null space with
respect to a new inner product:

(i) If eiθ 6∈ σ(M̃n), then we orthonormalize the vectors {yi} of the null space
with respect to the inner product

〈yi, yj〉 = y∗
i H∗Hyj ,

where

H =




. . .

cotg
(

θ
2

)− cotg
(

θ̃j

2

)
. . .




−1

R.

(ii) If eiθ ∈ σ(M̃n), then we orthonormalize the vectors {
(

yi

zi

)
} of the null

space with respect to the inner product

〈
(

yi

zi

)
,

(
yj

zj

)
〉 = (y∗

i z∗i)
(

H∗H 0
0 Iµ

)(
yj

zj

)
,

where µ is the multiplicity of eiθ as eigenvalue of M̃n, and where

H =




. . .

cotg
(

θ
2

)− cotg
(

θ̃j

2

)
. . .




+

R.

Afterwards these vectors are transformed. This method is more suitable if we
only need the first p components of the orthonormalized eigenvectors.

We already mentioned that the method described above cannot be used if 1 ∈
σ(M̃n) or 1 ∈ σ(Mn). Also we get problems if we have to compute cotg

(
θ
2

)
, with |θ|

or |2π − θ| small (In the examples we have taken < 10−3). Both problems can be
avoided by rotating the spectra over an angle φ. We will choose φ positive.

Since we know the spectrum of M̃n, it is not a problem to check whether eiφ

belongs to this spectrum. To check whether eiφ belongs to the spectrum of Mn, we
use the following theorem.

Theorem 4.8. Let λ 6∈ σ(M̃n). Then det ((I − WW ∗)M̃n − λI) = 0 if and only
if det (Ip − W ∗M̃n(M̃n − λI)

−1
W) = 0.

ETNA
Kent State University
etna@mcs.kent.edu

Ann Sinap 109

Proof. Let

Mr :=
(

Inp 0
−W ∗M̃n Ip

) (
Inp (M̃n − λI)

−1
W

0 Ip

)

=

(
Inp (M̃n − λI)

−1
W

−W ∗M̃n Ip − W ∗M̃n(M̃n − λI)
−1

W

)

and

Ml :=

(
Inp 0

W ∗M̃n(M̃n − λI)
−1

Ip

) (
Inp −W
0 Ip

)

=

(
Inp −W

W ∗M̃n(M̃n − λI)
−1

Ip − W ∗M̃n(M̃n − λI)
−1

W

)
.

Then

Ml

(
(I − WW ∗)M̃n − λI 0

0 Ip

)
Mr

=

(
M̃n − λI 0

0 Ip − W ∗M̃n(M̃n − λI)
−1

W

)
.

Since detMl = 1 and detMr = 1 we have det ((I − WW ∗)M̃n − λI) = 0 if and
only if det (Ip − W ∗M̃n(M̃n − λI)

−1
W) = 0.

Thus, we have to check whether the matrix

U∗




. . .

cotg
(

θ̃j−φ
2

)
. . .


U

is non-singular.
Suppose the arguments of the eigenvalues of M

(1)
n and M

(2)
n are combined and

sorted: 0 ≤ θ̃1 ≤ . . . ≤ θ̃m < 2π. First we check whether θ̃1 and θ̃m are not in the
neighbourhood of zero. If this is not the case and 0 does not belong to the spectrum
of Mn, no rotation is needed.

Otherwise additional work is required to avoid problems when computing cotg
(

θ̃j

2

)
.

If the middle point of the interval [θ̃m, θ̃1] corresponds to a point in the upper half
plane, we determine the length of this interval; otherwise we determine the length
of the interval [θ̃1, θ̃2]. If this length is large enough, then we check whether the
middle point belongs to the spectrum of Mn. If not, we take φ equal to this mid-
dle point. In the other case we repeat the procedure for the neighbouring interval
(counter clockwise).

When we have found an angle φ, we subtract this value from all the arguments of
the eigenvalues of M̃n. If necessary we adapt these values so that all the arguments
are in the interval [0, 2π).

ETNA
Kent State University
etna@mcs.kent.edu

110 Gaussian quadrature for matrix valued function

Note that this method does not work in all cases, e.g. if the eigenvalues of Mn

are exactly in the middle of the intervals formed by the arguments of the eigenvalues
of M̃n and 1 belongs to one of the spectra, the above described procedure would not
work. In such a case another method has to be used. Instead of dividing the intervals
into two parts and checking if the middle point satisfies the conditions we asked for,
we can divide the interval in three parts and check if one of the new points satisfies
the conditions. On the other hand, information about the location of the eigenvalues
can help us to choose a proper method.

Bringing everything together gives us the following algorithm to determine the
eigensystem of Mn out of the spectral decompositions M̃

(i)
n = Q̃i Λ̃i Q̃∗

i , i = 1, 2.
1. Combine the eigenvalues of M̃

(1)
n and M̃

(2)
n , determine and sort the arguments.

2. Let m be the number of elements in σ(M̃n) and let 0 ≤ θ̃1 ≤ . . . ≤ θ̃m < 2π.

3. Compute U =
(

Q∗
1 0

0 Q∗
2

)
W (taking into account that W is sparse).

4. Determine φ ≥ 0 such that 1 6∈ σ(e−iφM̃n), 1 6∈ σ(e−iφMn) and no eigenvalues
of e−iφM̃n are in the neighbourhood of zero.

5. Perform the rotations of the eigenvalues of M̃n.
6. Compute R = (I − Λ̃)

−1
U .

7. For j = 1, . . . , m, check whether eiθ̃j belongs to σ(Mn):
(a) Compute Ze

(
−cotg

(
θ̃j

2

))
and determine its inertia (negj , nulj, posj).

(b) If nulj > 0

– Determine N
(
Ze
(
−cotg

(
θ̃j

2

)))
.

– Determine an orthonormal base of the eigenspace of Mn, corre-
sponding to the eigenvalue eiθ̃j .

8. For j = 0, 1, . . . , m, determine the eigenvalues with argument in the interval
(θ̃j , θ̃j+1), where θ̃0 = 0 and θ̃m+1 = 2π:
(a) (neg0, nul0, pos0) = inertia(D−1)

(negm+1, nulm+1, posm+1) = inertia(D−1)
(b) Let M be equal to the number of eigenvalues of Mn with argument in

the interval (θ̃j , θ̃j+1).
(c) If M > 0

– Isolate by means of bisection, using the inertia of the matrix
Z(−cotg

(
θ
2

)
), the eigenvalues with argument in the interval.

– Determine the isolated eigenvalues by using a ‘zerofinder’ on
detZ(−cotg

(
θ
2

)
) = 0.

– Determine the corresponding eigenvectors.
In the next paragraph we describe an implementation of this algorithm on a

distributed memory multiprocessor.

4.2. Implementation of the algorithm. First the data has to be distributed
among the different processors. The master processor divides the system into two
parts and sends the data to its children. After they have received their part of the
data, they compute the singular value decomposition Hs = UDV ∗ and determine the
subsystems and the unitary Hermitian matrix G′

s.
One subsystem M(H1, H2, . . . , Hs−1, R) consists of the first s − 1 arguments of

the original system M(H1, H2, . . . , Hn−1, K), and the argument R = UV ∗ can be
computed from the singular value decomposition of Hs. For the computation of
the other subsystem, namely M(Hs+1R

∗, Hs+2R
∗, . . . , Hn−1R

∗, KR∗), the products

ETNA
Kent State University
etna@mcs.kent.edu

Ann Sinap 111

HiR
∗ and R(I − H∗

i Hi)
1/2R∗, i = s + 1, . . . , n − 1, have to be determined.

The matrix G′
s = I − WsW

∗
s is maintained by storing the 2 non-zero blocks of

Ws. One processor computes and stores W
(1)
s = U(I + D)1/2

U∗, while the other one
computes and stores W

(2)
s = −U(I − D)1/2U∗.

The divide procedure is repeated until each processor has its own part of the
system. This implies that the number of processors has to be a power of 2, i.e.
nproc = 2q, but with the actual configurations this is no problem.

Since communication is very expensive we will try to limit it. From step 2 there
is only one subsystem which is explicitly sent to a son, the other subsystem remains
in the actual processor. For example, if nproc = 23, the master processor will send
data to proc 4 and proc 8. In the second step proc 4 sends data to proc 2 and proc 8
sends to proc 6. The other subsystems are kept in proc 4 and proc 8 respectively. In
step 3 this procedure is repeated. The communication scheme is given by

1 2 3 4 5 6 7 8

2 4 6 8

4 8

Master
�

�
��

Z
Z
ZZ

�
��

�
��

�
��

�
��

step=1

step=2

step=3

If we let the processor with number nproc serve additionly as the master processor,
then communication in the first step can be halved.

In each step we will send the first subsystem, while the second stays in the actual
processor. If the architecture permits overlap between communication and computa-
tion, this method implies that the extra amount of work which is needed to determine
the second subsystem can be overlapped by the communication for the first part.

From the moment each processor has its own subsystem, the unitary block Hes-
senberg matrix is computed, and the eigensystem is determined by means of the
LAPACK routine. At this point we can also use other methods, e.g., the QR-method
for unitary matrices which avoids the computation of the matrix itself and is described
in [9] for p = 1. Afterwards, each processor determines the arguments of the eigen-
values, sorts them and permutes the eigenvectors. During the remaining part of the
program the eigenvalues are characterized by means of their arguments.

In the assembly steps some computations can be performed simultaneously. The
computation of the matrix U is performed on the two processors involved in the
computation of the eigensystem of the larger matrix and the computations of loop
(7), and these of loop (8) are performed in parallel. Each processor involved in the
computation of the larger eigensystem treats half of the eigenvalues. Also note that
the computation of the matrix R can be performed in parallel, but then some extra
communication has to be done. Since this is more expensive, each processor will
determine the whole matrix R.

During the next assembly step, we transform the computed argument (+φ), de-
termine the eigenvalue cos θ + i sin θ and compute the contribution of this eigenvalue
to the partial approximation of the integral. During the other assembly steps, we
store the arguments as computed, and afterwards we transform them. All arguments
greater than 2π are brougth back in the interval [0, 2π). During this adaption step we
determine how many arguments are adapted, and during the transmission of the data

ETNA
Kent State University
etna@mcs.kent.edu

112 Gaussian quadrature for matrix valued function

we make sure the arguments are ordered. This procedure avoids explicitly sorting the
arguments, but produces an ordered list which is required by the next assembly step.

As in the real case [13] we will use the LDL* decomposition to compute the
inertia of a Hermitian matrix and from the moment we have located one eigenvalue,
we use a ‘zerofinder’, based on bisection, linear and inverse quadratic interpolation,
to determine the arguments we are looking for.

4.3. Complexity of the algorithm. In the serial algorithm we distinguish
three parts. First we compute the unitary lower block Hessenberg matrix. This can be
done in ≈ 2 p3 n2 complex arithemetic operations. Next we determine eigenvalues and
eigenvectors by means of the LAPACK routine. The number of complex operations is
given by ≈ 25 p3 n3 (see [8]). Finally the quadrature weights have to be determined.
Suppose we have N = n p different eigenvalues. Then the computation of a quadrature
weight can be done in 2p2 complex operations. If F and G are matrix polynomials
of degree grf and grg respectively, we get the function evaluations after performing
2p2(grf +grg) complex operations. Of course F and G can be other matrix functions.
To get the new partial approximation, 2 matrix products and 1 sum have to be
performed. So the total number of complex operations for this third part is given by
n p

(
4p3 + 3p2 + 2p2(grf + grg)

)
, and the total number of complex operations for the

serial algorithm satisfies Nser ≈ 25 p3 n3.

To get an estimate of the number of complex operations for the parallel perfor-
mance of the divide and conquer method, we suppose we have nproc = 2q processors,
with q the height of the binary tree, and we suppose the length of the different sub-
systems in each step is equal. Again we can distinguish three parts. First there
is the division of the system among the different processors which can be done in
≈ (21p3 + p2) q + 6p4 n

(
nproc−1

nproc

)
+ 22

3 p3 + 3p2 complex operations. The LAPACK
routine for the computation of the nproc eigensystems is performed and requires
≈ 25 p3 n3

nproc3 + 2 p3 n2

nproc2 + g p n
nproc complex operations, where is g is the number of com-

putations to compute a trigonometric function. In the assembly steps we do not take
into account the order of the extended matrices Ze(.), and we suppose we need s
evaluations of a matrix Z(.) in order to locate an eigenvalue. If we only take into
account the term n3, the number of complex operations for this third part is given
by ≈ 1

14

(
nproc3−8

nproc3

)
p3 n3. This brings the total number of complex operations for the

parallel algorithm to ≈
(

25
nproc3 + 1

14
nproc3−8

nproc3

)
p3 n3.

The upper bounds for the speed-up of the parallel divide and conquer method
with respect to the serial algorithm using the LAPACK routine satisfy

Snproc =
Nser

Npar
≈ 25 p3 n3 nproc3(

25 + 1
14 (nproc3 − 8)

)
p3 n3

=
350 nproc3

nproc3 + 342
.

Of course these are upper bounds since we only take into account the terms of
n3. Also we do not bring into account the communication. We can show that the
number of messages satisfies Nmess = 4 nproc+2 and the total length of the messages,
expressed in bytes, is given by

Nlen = 16
nproc − 2

nproc
p2 n2 + n

(
24(q − 1)p2 + 4c(4p2 + 3p) + 56p2 − 4p

)
+ 16 nproc p3 + 48 p2.

ETNA
Kent State University
etna@mcs.kent.edu

Ann Sinap 113

The ratio Nlen

Npar
= 16 (nproc−2)nproc2

25 p n shows that n and p have to be large enough
to achieve satisfactory speed-up.

4.4. Example. The results we get are quite similar to these of the real case (see
[13]). For example p = 2, Wn = I and consider the matrix weight function

W (θ) =
(

1 cos θ
cos θ 1

)
.

In order to get an idea of the errors, we take F = G = I. This gives the following
relative errors

n Serial nproc = 2 nproc = 4 nproc = 8
50 0.18837E-14 0.34917E-14 0.26711E-11 0.56827E-11
100 0.14999E-14 0.60959E-14 0.32993E-12 0.38065E-11
150 0.12240E-14 0.45497E-14 0.11105E-02 0.11106E-02
200 0.56191E-14 0.48696E-14 0.53183E-11 0.40449E-06
250 0.32259E-14 0.21086E-14 0.61844E-09 0.82521E-02
300 0.41379E-14 0.13186E-13 0.39806E-08 0.11105E-02
350 0.49843E-14 0.50799E-12 0.19537E-05 0.19537E-05
400 0.42870E-14 0.18732E-12 0.12672E-07 0.19110E-07

If we take the same weight function, but

Wn =

(√
3

2
1
2

− 1
2

√
3

2

)
,

the para-orthogonal matrix polynomials and the corresponding lower block Hessen-
berg matrix change. So we get different quadrature points and weights. In this case
the relative errors are given by

n Serial nproc = 2 nproc = 4
50 0.17135E-14 0.78051E-13 0.33033E-11
100 0.41476E-14 0.56785E-12 0.84741E-12
150 0.19120E-14 0.20545E-12 0.11105E-02
200 0.46207E-14 0.41349E-11 0.92175E-11
250 0.46015E-14 0.55666E-12 0.61858E-09
300 0.27673E-14 0.19644E-10 0.39795E-08
350 0.75841E-14 0.89610E-10 0.19569E-05
400 0.55404E-14 0.18533E-11 0.12673E-07

In both cases we notice the same problem: if the number of processors increases,
the number of assembly steps increases and also the relative errors increase. The-
oretically there are no problems with multiple eigenvalues or with eigenvalues with
very little seperation, but in practice, errors arise when computing the inertia and
determinants of the Weinstein matrices Z(.) and Ze(.) (see [2], [3]). If this problem
can be fixed, the algorithm can have a practical value.

The execution times and the corresponding speed-ups are given by

ETNA
Kent State University
etna@mcs.kent.edu

114 Gaussian quadrature for matrix valued function

50 100 150 200 250 300 350 400

Degree of matrix polynomial

0

200

400

600

800

1000

1200

E
l
a
p
s
e
d

t
i
m
e

s s s

s

s

s

s

s

o o o o o o
o

o

x x x x x x x x
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

s : serial
o : nproc=2
x : nproc=4∗ : nproc=8

50 100 150 200 250 300 350 400

Degree of matrix polynomial

2.0

4.0

6.0

8.0

10.0

12.0

14.0

S
p
e
e
d
-
u
p

o

o
o o

o
o o

o

x

x

x

x

x x

x

x

∗ ∗
∗

∗
∗ ∗ ∗

∗

o : nproc=2
x : nproc=4∗ : nproc=8

Since the upper bound for the speed-up on 2 processors is equal to 8, the tim-
ing and corresponding speed-up are execellent. On 4 processors we are much farther
away from the maximum, but nevertheless we get a good speed-up. The speed-up
on 8 processors is very poor, and the elapsed time is more than that of 2 processors.
Performing some analysis about the time spent in communication and computation
will give an explanation for the poor results when using 8 processors. It is possible
to show that the number of complex operations performed in one second is approx-
imately 11.5, 9.0, 3.0, 0.4 for 1, 2, 4 and 8 processors respectively. This significant
decrease of operations performed in one second is due to the fact that we have only
counted the number of operations (sum, subtraction, product, division) and did not
bring into account the large number of tests which require much more time than an
operation. This is also the reason why the results are so poor for a large number of
processors.

Acknowledgments. I would like to thank W. Van Assche for his careful reading
of this manuscript.

ETNA
Kent State University
etna@mcs.kent.edu

Ann Sinap 115

REFERENCES

[1] G.S. Ammar, L. Reichel and D.C. Sorensen, An implementation of a divide and conquer
algorithm for the unitary eigenproblem, ACM Trans. Math. Softw., 18 (1992), pp. 292-307.

[2] P. Arbenz, Divide and conquer algorithms for the bandsymmetric eigenvalue problem, Parallel
Comput., 18 (1992), pp. 1105–1128.

[3] P. Arbenz and G.H. Golub, On the spectral decomposition of hermitian matrices modified
by low rank perturbations with applications, SIAM J. Matrix Anal. Appl., 9 (1988), pp.
40–58.

[4] C.F. Borges and W.B. Gragg, A parallel divide and conquer algorithm for the generalized
real symmetric definite tridiagonal eigenproblem, in Numerical Linear Algebra, L. Reichel,
A. Ruttan, R.S. Varga, eds., de Gruyter, Berlin, 1993, pp. 11-29.

[5] Ph. Delsarte, Y. Genin and Y. Kamp, Orthogonal polynomial matrices on the unit circle,
IEEE Trans. Circuits Systems I Fund. Theory Appl., 25 (1978), pp. 149–160.

[6] J.S. Geronimo, Matrix orthogonal polynomials on the unit circle, J. Math. Phys., 22 (1981),
pp. 1359–1365.

[7] I. Gohberg, P. Lancaster, L. Rodman, Matrix Polynomials, Academic Press, New York,
1982.

[8] G.H. Golub and C.F. Van Loan, Matrix Computations (2nd edition), The John Hopkins
University Press, Baltimore, 1991.

[9] W.B. Gragg, The QR algorithm for unitary Hessenberg matrices, J. Comput. Appl. Math.,
16 (1986), pp. 1-8.

[10] W.B. Gragg and L. Reichel, A divide and conquer method for the unitary eigenproblem, in
Hypercube Multiprocessors, M.T.Heath, ed. , SIAM, Philadelphia, 1987, pp. 639-647.

[11] W.B. Gragg and L. Reichel, A divide and conquer method for unitary and orthogonal eigen-
problems, Numer. Math., 57 (1990), pp. 695-718.

[12] W.B. Jones, O. Nj̊astad, W.J. Thron, Moment theory, orthogonal polynomials, quadrature
and continued fractions associated with the unit circle, Bull. London Math. Soc., 21 (1989),
pp. 113-152.

[13] A. Sinap, Gaussian quadrature for matrix–valued functions on the real line, to appear in J.
Comput. Appl. Math.

[14] A. Sinap and W. Van Assche, Polynomial interpolation and Gaussian quadrature for matrix-
valued functions, Linear Algebra Appl., 207 (1994), pp. 71–114.

[15] A. Sinap and W. Van Assche, Orthogonal matrix polynomials and applications, to appear in
J. Comput. Appl. Math.

