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SIMPLER BLOCK GMRES FOR NONSYMMETRIC SYSTEMS
WITH MULTIPLE RIGHT-HAND SIDES

�
HUALEI LIU

�
AND BAOJIANG ZHONG

�
Abstract. A Simpler Block GMRES algorithm is presented, which is a block version of Walker and Zhou’s

Simpler GMRES. Similar to Block GMRES, the new algorithm also minimizes the residual norm in a block Krylov
space at every step. Theoretical analysis shows that the matrix-valued polynomials constructed by the new algorithm
is the same as the original one. However, Simpler Block GMRES avoids the factorization of a block upper Hes-
senberg matrix. In consequence, it is much simpler to program and requires less work. Numerical experiments are
conducted to illustrate the performance of the new block algorithm.
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1. Introduction. Block GMRES [13] and its variants [1, 6, 7] are effective for solving
large nonsymmetric systems with multiple right-hand sides of the form�������
	
where

�
is a nonsingular matrix of order � , and

����
�����	�������	������
and

����
���� 	�������	!�"�#�
are

rectangular matrices of dimension �%$'& with &�()� . These block methods often promise
favorable convergence properties [8, 10], and may be effectively implemented on parallel
processors. In practice, if the initial block residual is nearly rank deficient, Block GMRES
should be implemented with initial deflation [2].

Of interest here is the original Block GMRES. Detailed descriptions can be found in
[8, 9, 11]. It is essentially identical to standard GMRES, except that operations are performed
with multiple vectors instead of single vectors. Given an initial guess

�'*
and + *,�-�/.0�1�2*

,
Block GMRES generates an approximate solution

�'3
over the block Krylov subspace4 3 
��5	 + * �6�-7 &98�� 
 + * 	"� + * 	�������	!� 3,: � + * �<;

The approximate solution is of the form
� 3 �=� *?>A@B3

, in which
@63

solves the minimiza-
tion problem C2DFEG�H#I6JLKNM?O PRQ"S�T + * .U� @ T�V 	
(1.1)

with T � T�V the Frobenius norm.
Suppose that a block orthonormal sequence WYX ��	�������	 X 3 	 X 3[Z � \

, with each X^] being
orthonormal, has been produced by the Block Arnoldi process (normally based on a Modi-
fied Block Gram-Schmidt procedure) with the initial block residual + *

. Let _ be the block
dimension of the basis ` 3 �a
 X �Y	�������	 X 3 �

of
4 3 
b�c	 + * �

. Denote by de 3
the block upper

Hessenberg matrix for which
� ` 3 � ` 3LZ � de 3

, by f � the &g$h& identity matrix, and byi �
the zero matrix of order & . Furthermore, j,] �k
 i ��	�������	 f �l	�������	 i ���nm

is the rectangu-
lar matrix whose o th block element is f � , and d+ *

is the &p$
& matrix resulting from the QR
factorization + *q� X � d+ *

. We can write
@ 3�� @ � ` 3,r93

with some _s&p$t& matrix
r93
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and + 3x� + *1.U� @ 3
. Then the minimization problem (1.1) is equivalent to the block least

squares problem y 3x� C2DNEz6H { JR|~}�| T j � d+ *�. de 3,r T V ;
(1.2)

This problem can be solved recursively for each index � up to _ by updating the QR factor-
ization of dec�

(��(-_ ) with Givens rotations. The Frobenius norm y � � T j � d+ * . dec� r � T�V
of the minimum residual of such a least square problem (with j �

of size

 � >�� � &�$
& andde �

of size

 � >�� � &/$t��& now) can then be computed even before the solution

r � �-r
is de-

termined, and this norm y � is equal to the minimum norm in (1.1). After a certain number of
steps, which is normally denoted by _ , the algorithm is restarted if it has not yet converged.

Summarizing we can sketch the ordinary Block GMRES algorithm with restart after _
steps, and, for simplicity, based on Classical Block Gram-Schmidt, as follows.

ALGORITHM 1.1 (Block GMRES).
(i) Given

� *
, set + * ����.��1� *

. If T + * T�V ( TOL, accept
� *

and exit; otherwise,
compute a QR factorization of + *

: + * � X � e �!�
.

(ii) Iterate: for � � � 	�������	 _ , do� e ] � � X m] � X � , o � � 	�������	 � . (These are the possibly nonzero block elements of
the � th block column of de 3

, except for the last one on the subdiagonal.)���X � �=� X � .�� � ]F� � X^] e ] � ;� Compute a QR factorization of �X � : �X � � X � Z � ec� Z � O � ;� Determine the Frobenius norm y � of the residual j � d+ * . de5� r �
of the least square

problem (1.2) with _ replaced by � . (There is no need to determine the solutionr � �=r
yet.)� If y � ( TOL, then go to (iv).

(iii) Set � � _ on exiting the loop.
(iv) Compute the solution

r � ��r
of the least square problem (1.2), and form the

approximate solution
� � ���2* > ` � r � . If y � ( TOL, then accept

� �
and exit;

otherwise, restart: set
�t*,��� �

and go to (i).
An essential component of Block GMRES is the Block Arnoldi process in (ii). It usually

starts with the initial block residual + *
. By shifting the Block Arnoldi process to begin

with
� + *

instead of + *
, we obtain a Simpler Block GMRES that does not require the QR

factorization of a block upper Hessenberg matrix. In this case, W + *�	 X � 	�������	 X 3,: � \
is a basis

of
4 3q
b�5	 + *Y�

, and (1.2) is replaced by an upper triangular least squares problem, which can
be solved immediately.

In Section 2 the Simpler Block GMRES algorithm is formulated. In Section 3 an equiv-
alence between Block and Simpler Block GMRES is established. The numerical stability of
the new algorithm is also discussed. In Section 4 the two algorithms are compared by using
two test matrices taken from the Matrix Market. The following notation is used. Subscripts
denote the iteration index and superscripts distinguish between individual columns in a block.
The symbols vec and � denote the vectorizing operation and the Kronecker product, respec-
tively. The spectral 2-norm of a matrix

�
is denoted by T � T~� . Moreover, � 3��<� 
��,�

is the
largest singular value of

�
, and � 3 ]F� 
��,�

the smallest one. The condition number of a matrix
is � 
b����� � 3[��� 
��,�"� � 3 ]F� 
b���

. d� 3
and d+ 3

are the factors of a QR factorization of + 3
.

2. Simpler Block GMRES. Suppose that + *
is of full rank. Since

�
is nonsingular,� + *

is also of full rank, and in the QR factorization
� + * � X �����"� the &2$�& upper triangular

matrix
� �!�

is nonsingular.
Let X ��	�������	 X 3 be the block orthonormal vectors produced by _ steps of the Block

Arnoldi process. For simplicity, we assume that
4 3 
��5	 + * �

has block dimension _ . From
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the Block Arnoldi process, we have
� X 3,: � � � 3 � � � � � 3 X � with &0$L& matrices

� � 3
, where�R3L3

is nonsingular. Hence,4 3s
b�5	 + *Y�6��7 &98�� 
 + *#	 X � 	�������	 X 3,: � �<	/� 4 3q
b�c	 + * �6��7 &^8�� 
 X � 	�������	 X 3��<;
With square matrices  ¡] of order & we can write

+ * � + 3%> X �   � > ����� > X 3   3 ;
(2.1)

Here we have

X m] + 3 � i ��
 o¢(£_ �<	
(2.2)

+ 3 � + 3,: �L. X 3   3 	
(2.3)

and

  3 � X m3 + 3,: � ;
Define ¤ 3 �¥
   m� 	�������	   m3 � m

. We can write (2.1) as

+ * � + 3�> ` 3 ¤ 3 	
(2.4)

and with � 3 � ¦§
¨

���!�©�����ª��� 3
. . .

...� 3[3
«�¬
­�® + 3 ��¯ 3 � 	

we get

+ *1.U� @ � + *1.��c
 + *�	 X � 	�������	 X 3,: � ��r�� + 3 > ` 3q
��R3�r�. ¤ 30�<;
(2.5)

We want to determine
@ 3 ® 4 3q
b�c	 + * �

or its coordinates
r93 ®�° 3 �l¯�� with respect to the

columns of ` 3 such that @ 3-�=±#²"³ C2DFEG�H#I6J¢KNM?O PRQ"S�T + *1.�� @ T V ;(2.6)

Equation (2.5) can be written as

vec

 + *1.�� @ �6�

vec

 + 3�� > 
 f � �£` 3��

vec

b�R3,r�. ¤ 30��;

Therefore, (2.6) is equivalent to the minimization problem,C2DNEz T vec

 + 3�� > 
 f � �%` 3��

vec

��R3�r�. ¤ 3�� T � ;(2.7)

Denote by
7 &^8�� 
 f � �£` 3 �

the space spanned by the column vectors of f � �%` 3 . With (2.2)
and (2.4), we have

vec

 + 3 �6´�7 &^8�� 
 f � �%` 3 ��	

vec

 + 3 �6´�7 &^8�� 
 f � �gX 3 �<;

It follows that
r 3 ��� : �3 ¤ 3

solves (2.7). In consequence,
@�3 � ` 3 r 3

is determined and+ 3 � + * .U� @B3
is the residual.
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We can write (2.3) as

vec

 + 3 �6�

vec

 + 3�: ���µ.�
 f � �£X 3 �

vec

   3 ��;

(2.8)

Observing that vec

 + 3���´=7 &98�� 
 f � �£X 3��

, we derive from (2.8) that

T + 3 T �V � T vec

 + 3 � T �� � T vec


 + 3,: ��� T �� . T 
 f � �£X 3 �
vec


   3 � T �� ;
Since f � �gX 3 is a unitary matrix, we have

T + 3 T V �¥
 T vec

 + 3,: � � T �� . T vec


   3�� T �� � �"¶ � 	
or

T + 3 T V ��
 T + 3,: � T �V . T   3 T �V � �"¶ �� T + 3,: � T V 
 � .�
 T   3 T V � T + 3,: � T V � � � �"¶ �� T + 3,: � T Vq· DFE 
b±#²!¸�¸�¹ · 
 T   3 T V � T + 3,: � T V ����;(2.9)

The last formula can be used to update the residual norm even if the block residual itself is
not updated.

Summarizing we obtain the following Simpler Block GMRES algorithm. Again, we
formulate it with restart after _ steps, and, for simplicity, based on Classical Block Gram-
Schmidt instead of Modified Block Gram-Schmidt in the Block Arnoldi process.

ALGORITHM 2.1 (Simpler Block GMRES).
(i) Given

�2*
, set + *2����.��1�2*

. If T + * T V ( TOL, accept
�2*

and exit; otherwise,
compute a QR factorization of

� + *
:
� + *�� X � � �!� .

(ii) Iterate: for � � � 	�������	 _ , do� � ] � � X m] � X � 	 o � � 	�������	 � . �
.� �X � �=� X � . � � : �]F� � X ] � ] � if �
º �

.� Compute a QR factorization of �X � : �X � � X � � �»� .� Either compute   � � X m� + � : �
and + � � + � : �[. X �   � or compute T + � T�V from

the recursion (2.9).� If T + � T�V ( TOL, then go to (iv).
(iii) Set � � _ on exiting the loop.
(iv) Solve the triangular system

� � r � � ¤ �
for

r �
and form the approximate solution� � ��� *¢> 
 + * 	 X �Y	�������	 X � ��r �

If T + � T�V ( TOL, then accept
� �

and exit; otherwise, restart: set
� * �-� �

and go
to (i).

REMARK 2.2. To improve the numerical stability, we may use + *,� + * � T + * T V instead
of + *

in the practical implementation. This is explained in the following section.

3. A comparison with Block GMRES. The following theorem establishes an equiva-
lence between the matrix-valued polynomials of Block GMRES and those of Simpler Block
GMRES.

THEOREM 3.1. Suppose that _ steps of Block GMRES and _ steps of Simpler Block
GMRES have been taken, respectively. Then, the matrix-valued polynomials constructed by
the two algorithms are the same.

Proof. Let ¼ 3q
b½l�
and ¾ 3s
�½��

be the matrix-valued polynomials constructed by Block
GMRES and Simpler Block GMRES, respectively. And let +c¿ÁÀ3 and +0Â�¿?À3

denote the resid-
uals of the two methods. We have

+ ¿?À3 � ¼ 3 
��,��Ã + * � + * . 3,: �Ä
]N� * � ] Z � + *~Å ]



ETNA
Kent State University 

http://etna.math.kent.edu

SIMPLER BLOCK GMRES 5

and

+ Â�¿?À3 � ¾ 3 
b����Ã + * � + * . 3,: �Ä
]F� * � ] Z � + *~Æ ] 	

where
Å ] and

Æ ] are &0$L& matrices, and where the notation
Ã

is attributed to Gragg [3]. Thus,

+ ¿?À3 . + Â�¿?À3 � 3,: �Ä
]F� * � ] Z � + * 
 Æ ] . Å ] � ® � 4 3 
b�5	 + * �<;

(3.1)

If we let
4 3 �¥
 + * 	"� + * 	�������	"� 3,: � + * �

and Ç?] � Æ ] . Å ] , we can write (3.1) as

vec

 + ¿?À3 . + Â�¿ÁÀ3 �¢�È
 f � � 
b� 4 3��"�

vec

 Ç � ® 7 &^8�� 
 f � � 
b� 4 3����

with Ç �¥
 Ç m* 	�������	 Ç m3,: � � m
. It is easily seen that

vec

 + ¿?À3 �6´�7 &98�� 
 f � � 
�� 4 3 ����	

vec

 + Â�¿?À3 �6´�7 &98�� 
 f � � 
�� 4 3 ����;

In consequence,

vec

 + ¿?À3 . + Â�¿?À3 �6´-7 &98�� 
 f � � 
b� 4 3 ���<;

We then have vec

 +�¿?À3 . +0Â�¿?À3 ����É

. Equivalently,

 f � � 
b� 4 3 �"�

vec

 Ç �6�-É

. SinceÊ 8���Ë 
 f � � 
�� 4 3����¢� Ê 8���Ë 
 f � � $ Ê 8���Ë 
b� 4 3��<	
f � � 
b� 4 3 �

is of full rank. Therefore, Ç ��É
and hence

Å ] � Æ ] , indicating that the two
matrix-valued polynomials are the same.

Note that when & � �
, the theorem reduces to [5, Theorem 1].

Theorem 3.1 indicates that _ steps of Simpler Block GMRES is equivalent to _ steps
of Block GMRES. On the other hand, because no QR factorization of a block upper Hessen-
berg matrix is required, the new algorithm is easier to program and requires

i 
 & � _ � � fewer
arithmetic operations than the original one. For Block GMRES, it is well known that the
number of iterations for termination is expected to decrease as the number of right-hand sides
increases. However, the QR factorization of a block upper Hessenberg matrix is time consum-
ing. Thus the new algorithm offers improvements over the original one. It has been observed
[4, 12], however, that Simpler GMRES is, in general, less accurate than GMRES. In fact,
Simpler GMRES is inherently unstable due to the choice of the basis W + *�	 X � 	�������	 X 3�: � \

.
But, in practice, Simpler GMRES works well if we do not need very high accuracy and if
we restart frequently enough. This has also been observed in our experiments with Simpler
Block GMRES; see Section 4.

In the following, another theorem is established. It indicates that the condition Ì 3 �
 + * 	 X ��	�������	 X 3,: ���
can be controlled during the iteration process of Simpler Block GMRES.

Note that we use + * � T + * T�V instead of + *
, and therefore

Ì 3x�¥
 + *Y� T + * T V 	 X � 	�������	 X 3,: � �<;
LEMMA 3.2. Suppose that Í �a
bÎ2	 j � 	�������	 j 3 �

, where G is a _q&Ï$t& matrix. ThenT Í T�� ( 
 �L> T Î T �� � �"¶ � .
Proof. Consider a unit vector Ð �¥
 Ð m � 	�������	 Ð m3 � m

, with Ð¢] being &/$ �
matrices. Let

dÐ �È
 � . T Ð � T �� � : �"¶ � 
 i m 	 Ð m� 	�������	 Ð m3 � m 	
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with
i

being a &/$ �
zero matrix. It is easily seen that dÐ is also a unit vector. Therefore,

T Í�Ð T�� � T Î Ð � > 
 � . T Ð � T �� � ��¶ � dÐ T�� ( T Î T��#T Ð � T�� > 
 � . T Ð � T �� � �"¶ � T dÐ T�� ;
It follows that T Í�Ð T � ( 
 �¢> T Î T �� � ��¶ � . Consequently, T Í T � ( 
 �¢> T Î T �� � �"¶ � ;

LEMMA 3.3. Let

Í 3-�
¦§§§
¨

d+ 3,: �ÒÑ : � i � ����� i �
  �<Ñ : � f � ����� i �

...
...

. . .
...  3,: �<Ñ : � i � ����� f �

«�¬¬¬
­

and Ì 3x�È
 + *�� T + * T V 	 X � 	�������	 X 3,: � �
, where

ÑÏ� T + * T V . Then � 
 Ì 3���� � 
 Í 3��
.

Proof. Let + 3�: �5� d� 3,: � d+ 3,: �
be a QR factorization of + 3,: �

, with d+ 3,: �
of order& . By (2.1), we have

Ì 3 ��
 + 3,: �ÒÑ : � > X �   �<Ñ : � > ����� > X 3,: �   3,: �<Ñ : � 	 X �Y	�������	 X 3,: ���<;
It follows that

Ì 3 �¥
 d� 3,: �Y	 X � 	�������	 X 3�: ��� Í 3 ;
Since


 d� 3�: � 	 X ��	�������	 X 3,: ���
is unitary, � 
 Ì 3 �6� � 
 Í 3 �

.
THEOREM 3.4. For Ì 3 ��
 + * � T + * T�V 	 X ��	�������	 X 3,: ���

and T + 3,: � T�V ( T + * T�V , we
have � 
 Ì 3 � (�Ó�& �"¶ � � 
 + 3�: ��� T + * T�V � T + 3,: � T�V ;

Proof. By Lemma 3.3, we can alternatively consider the condition of Í 3
. LetÎ���
�
 d+ 3,: �ÒÑ : � � m 	�
   ��Ñ : � � m 	�������	�
   3,: ��Ñ : � � m � m ;

Then Í 3x�¥
�Î2	 j � 	�������	 j 30�
. It is easily seen that Í : �3 �È
 dÎt	 j � 	�������	 j 3��

, where

dÎ���
�
bÑ d+ : �3,: � � m 	~
n.   � d+ : �3,: � � m 	�������	~
n.   3,: � d+ : �3,: � � m � m ;
By Lemma 3.2, we have

T Í 3 T�� ( 
 �¢> T Î T �� � �"¶ � 	(3.2)

and

T Í : �3 T�� ( 
 �¢> T dÎ T �� � �"¶ � ;(3.3)

Let

ÎÈ�
¦§§§
¨

. d+ : �3,: � Ñ f �
. . . f �

« ¬¬¬
­ Ît
n.�Ñ d+ : �3,: � �<;

Since T + 3,: � T�V ( T + * T�V and T dÎ T�� ( T d+ : �3,: � T �� T Î T�� Ñ � , by (3.2) and (3.3) we have

� 
 Í 3 � ( 
 �¢> T Î T �� � ��¶ � 
 �¢> Ñ � T d+ : �3,: � T �� T Î T �� � �"¶ � ( 
 �¢> T Î T �� �nÑ T d+ : �3,: � T�� ;(3.4)
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It follows from (2.1) that

+ *�Ñ : � � d� 3�: � d+ 3,: � Ñ : � > X �   � Ñ : � > ����� > X 3,: �   3,: � Ñ : � ;
Equivalently,

+ * Ñ : � �¥
 d� 3,: �Y	 X �Y	�������	 X 3�: ����Î2;
Therefore,

T Î T�� � T + * T�� Ñ : � ( T + * T�V Ñ : � � � ;
(3.5)

On the other hand, we also have

T d+ : �3,: � T�� � � 
 d+ 3,: ���"� T d+ 3,: � T�� (p& �"¶ � � 
 + 3�: ���!� T + 3,: � T�V ;
(3.6)

By (3.4), (3.5) and (3.6), an upper bound for � 
 Í 3 �
is established:� 
 Í 3 � (�Ó<& ��¶ � � 
 + 3,: ��� T + * T�V � T + 3,: � T�V .

Since � 
 Ì 3 �6� � 
 Í 3 �
, the proof is complete.

By Theorem 3.4, � 
 Ì 3��
is bounded by � 
 + 3,: � �

and T + * T V � T + 3,: � T V . We may
choose a rather small _ to have a small T + * T V � T + 3,: � T V , so that � 
 Ì 30�

is controlled
well. When & � �

, the bound reduces to the one presented in [12, Lemma 3.1] A detailed
explanation for normalizing the initial residual can also be found in [12].

4. Numerical experiments. In this section, Simpler Block GMRES is tested and com-
pared with Block GMRES. For convenience, the two algorithms are denoted as SBGMRES( _ )
and BGMRES( _ ), respectively. The test matrices were taken from the Matrix Market [14].
All computations were carried out using Matlab. For each example, a plot shows Ô ¹#³ � * T + 3 T V
as a function of the number of iterations is presented. We take _ =10 and

� * ��É
. The right-

hand sides are chosen randomly.
EXAMPLE 4.1. The matrix is PSMIGR3, which comes from records containing counts of

persons by sex and age who migrated across counties in the USA between 1965 and 1970. It is
a real unsymmetric matrix of size N=3140 with 543162 nonzero entries. We have & � Ó right-
hand sides, restart every _ � � É

iterations, and the convergence tolerance is
� i Ð � � É : �»Õ

.
Figure 4.1 shows that the two algorithms are almost equivalent with respect to the reduction
of the residual, until the residual norm comes near the convergence tolerance.

0 25 50 75 100 125 150
−15  

−12.5

−10  

−7.5 

−5   

−2.5 

0    

Log. residual norm vs. the number of iterations

SBGMRES(10)
BGMRES(10)

FIG. 4.1. Example 4.1

EXAMPLE 4.2. The matrix is JPWH991, which arises from computer random simula-
tion of a circuit physics model. It is a real unsymmetric matrix of size N=991 with 6027
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nonzero entries. We have & � � É
right-hand sides, restart every _ � � É

iterations, and the
convergence tolerance is

� i Ð � � É : � � . It is seen from Figure 4.2 that SBGMRES(
� É

) is
comparable to BGMRES(

� É
). On the other hand, recall that Simpler Block GMRES is much

easier to program than Block GMRES.

0 20 40 60 80 100 120 140 160
−14

−12

−10

−8

−6

−4

−2

0

2

Log. residual norm vs. the number of iterations

SBGMRES(10)
BGMRES(10)

FIG. 4.2. Example 4.2

5. Conclusion. A Simpler Block GMRES algorithm for solving nonsymmetric systems
with multiple right-hand sides was presented and studied. It was shown that _ steps of
Simpler Block GMRES are equivalent to _ steps of Block GMRES. On the other hand,
the new algorithm does not require the factorization of a block upper Hessenberg matrix,
so it is easier to program and has lower computational cost per iteration. It works well in
practice despite the theoretical limitations on the accuracy and conceivable problems with
linear dependence of the block residuals, which, in theory, might require deflation.
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