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Abstract. With sn(z) := >.7_, z*/k! denoting the n-th partial sum of e?, let its zeros be denoted by
{zk,n}Z:1 for any positive integer n. If §1 and 2 are any angles with 0 < 61 < 2 < 2w, let Zy, g, be the
associated sector, in the z-plane, defined by

Zgy,oo = {2€C:01 <argz<02}.

If # ({zk,n}zzl N Ze, ,52) represents the number of zeros of s, (2) in the sector Zg, g, . then Szeg showed in
1924 that

lim # ({zr,n 721 N Zo, 6,) _$—h 7

n—o0 n 271—

where ¢1 and ¢2 are defined in the text. The associated discrepancy function is defined by

discn (01,02) := # ({zk,n}gzl ﬂ Zgl,gz) -n <¢22;ﬂ—¢q) .

One of our new results shows, for any 81 with 0 < 61 < m, that
discn (01,27 — 61) ~ Klogn, as n — oo,

where K is a positive constant, depending only on 1. Also new in this paper is a study of the cyclical nature of
discy, (01, 02), as a function of n, when 0 < @1 < 7 and #3 = 27 — 6. An upper bound for the approximate cycle
length, in this case, is determined in terms of ¢ 1. All this can be viewed in our Interactive Supplement, which shows
the dynamical motion of the (normalized) zeros of the partial sums of e and their associated discrepancies.
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1. Introduction. Let s,(z) := Y j_, 2*/k! denote the n-th partial sum of e* for each

positive integer n, and denote the zeros of s, (2) by {zx,n}}_;. Let Zg, g, be the sector in
the complex plane C, defined by

(1.1) Zghgz = {ZGCZ(gl Sargzgé?g},

for angles 61 and 6 such that 0 < 61 < 62 < 27. Let # ({2k,n}}—1 [\ Zo,,0,) represent the
number of zeros of s, (2) that lie in the sector Zy, 9,. A beautiful result of Szeg6 [7] states
that

(12) lim # ({zk,n}zﬂ 0291,92) — ¢2 - ¢1

n—o00 n 2w ’

where if D, is the closed curve (called the Szeg6 curve) in the unit disk which is given by
(1.3) Do :={2€ C:|ze' ™% = 1for |2 < 1},
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then there are unique positive values 7o, (f1) and 7o, (62), in (0, 1), such that 7, (61 )€’ and
Too(62)e2 are points of Do of (1.3). The angles ¢; in (1.2) are then defined by

(1.4) ¢j = 0j — Too(aj) Sinﬁj, 7 =1,2.

The discrepancy function disc,, (61, 02), for the zeros in Zy, g,, is defined as

(1.5) diSC"(01,02) = # ({zk,n}zzl ﬂ291,92) —-n (%) .

It follows from (1.2) that the function disc,, (61, 62) would behave, at worst, like o(n), as
n — 00. Our first aim in this paper is to show in Theorem 2.5 the sharper result that

(1.6) disc,(01,602) ~ Klogn, for all n sufficiently large,

where K is a positive constant depending on #; and 85. It is of interest to note that Szegé [7]
showed that the associated discrepancy function, but now in the w-plane under the mapping

is bounded as a function of n.

Our second aim is to closely study the cyclical nature of the sequence {discy(61,62)}, .
Specifically, for 0 < 6; < 7 and 82 = 27 — 64, the approximate cyclic length, of what we
call the short-term pattern, is determined as a function of ¢;. (Long-term patterns are also
described in Section 3.)

Our third aim in this paper is to illustrate the dynamical motion of the zeros of s,,(nz), as
n varies, with our Interactive Supplement accompanying this paper. This allows the reader to
input 1, in the range /4 < 6 < 37w /4, where 05 := 27 — 6y, and to input n, the degree of
sn(nz), in the range 1 < n < 200. The reader’s computer then graphs the 1 zeros of s, (nz)
in the z-plane. On increasing n, one sees the actual “fanning out” of the zeros of s, (nz),
into the upper and lower half-planes of the z-plane. In addition, the discrepancy function,
disc,, (61, 02), is then displayed to four decimal digits, at each n-th step. This calculation is
based on the stored zeros of all polynomials {s, (nz)}.

n—1- Whose zeros were all determined
to 200 decimal digits.

2. Background and statement of results. To study the behavior of the zeros of the par-
tial sums s, (z) of €7, it is convenient to study instead the normalized partial sums s, (nz) :=
>k (nz)* /K!, whose zeros, henceforth denoted by {z,n}7_;, have the same arguments
as the zeros of s,(z). This leaves disc,, (61, 62) in (1.5) unchanged. An application of the
Enestrom-Kakeya Theorem (see [4, p. 137, Exercise 2], or [6, p.88, Problem 22]) shows
that all zeros {zx,n}7_; Of sp(nz) lie in the unit disk A := {z € C : |2| < 1} for any
n > 1. From compactness considerations, there are necessarily accumulation points in A for
UpZ, {zk,n}gzl, and Szeg6 [7] established that each such accumulation point must lie on the
curve D, of (1.3), and, conversely, that each point of D, is an accumulation point of these
zeros of s, (nz). Buckholtz [1] later proved that all zeros of all s,,(nz) lie outside of Dy, for
any n > 1, and that

. n 2e
2.1 dist[{zk,n }oe1; Doo] < %,

for anyn > 1,

where

dist{{25,n }i=1; Doo] == max (dist[zi,n; Dool),
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and where dist[2g,n; Doo] := min,ep,, |2k,n — 2|. It was shown in [2] that the exponent of
1/2 for n in (2.1) is the best possible, and that the constant 2e can be reduced in (2.1) to
0.636 657.!

In [2], the following curve was defined for each positive integer n:

|ze' =%|" = 1v/2mn |22
(2.2) Dp:=< 2zeC: |z/<1, and ,
|arg z| > cos™! (2-2)

where 7,,, defined by

n!
Tp 1= —————,
" pne—ny/21n
is the exact error in Stirling’s formula. For calculations of 7,, when n is very large, the
following asymptotic series (cf. Henrici [3]) for 7,, can be useful:
~14 nt + n? 139n3 n as 1 —
T = — e+, n — 00,
12 288 51840
and

-1 =3 b n=7 n="2

12 7360 T 1260 1680 1188

For any fixed § with 0 < § < 1, each D,, curve gives a much better approximation to
where the zeros of s, (nz) lie, in that from [2, Theorem 4],

log 7, = asn — 0o.

1
(2.3) dist[{zk,n } 1=1\Cs; Dn] = O (n_2> , asn — oo,

where Cs := {z € C: |z — 1| < §}. The exponent of 2 for n in (2.3) was shown in [2] to be
best possible.

As defined in (2.2), the curve D, is not a closed curve, so we make the following mod-
ifications of (2.2). First, as will be explained in the proof of Proposition 2.1 in Section 5,
the curve D,, of (2.2) can be extended, for each n > 1, to the boundary of A in two
unique points, e*» and e~**», where 0 < A\, < = for each n > 1. Then, the circular
arc {ei" 1= <o < +)\n} is annexed to the extended D,, curve, thereby producing the

following closed curve D, in A:

= _ [ z€C:|ze' 7" = 1V/2mn |12 io .
(2.4)Dn._{ 2[< 1, and A, < argz < 21 - A, U{e i =AM <0 <+ ).

The curves ﬁn, forn = 1,5, and oo, are given below in Figure 2.1.
We remark that it can be shown that A,, can be expressed as the convergent series

1.704 097  0.280 778 1
25) An = nl/z n3/2 0 <n5/2

),asn—>oo.

With the above definitions, we state the following proposition, whose proof is sketched
in Section 5.
PROPOSITION 2.1. For each positive integer n, the following are valid:

Except for discrepancy numbers discy, (81, 82), which are given to four decimal digits in the Interactive Sup-
plement, we truncate, in the text, the displayed fractional part of noninteger numbers to six decimal digits.



ETNA

Kent State University
http://etna.math.kent.edu

THE DYNAMICAL MOTION OF THE ZEROS OF THE PARTIAL SUMS OF e* 131

-1 -0.5 0 0.5 1

FIG. 2.1. The curve ﬁn,ﬁ)rn = 1,5, and .

i) The curve D, is a simple closed curve in A which is star-shaped with respect to z = 0;
ii) Foreach® with \,, < 0 < 2m — \,,, there is a unique number rn(0), with 0 < r,(0) <1,
such that z = r,,(0)e? is a point of D,,, and satisfies

z(zet )" i, ()
2.6 AL —_ O
&6) TV 21n(1 — 2) ¢

where U, (0) is defined, on the interval [Ap,, 2w — A,], by

B B . 1 (_ra(®)sing 1\
2.7 n(0) :=n[0 —rn(0)sinf] + 6 + tan (1 —rn(0) cos 0) ’

iii) 0 < ¥, (\,) < 27 for eachn > 1;

iv) For each fixed n > 1, () is a strictly increasing function of 6 on [An, 21 — A,], and
for each integer k with 1 < k < n, there is a unique point 2y, , = fk,neié’“’" on the
curve D,,, with \,, < ék,n < 27 — A\, such that

(2.8) T, (0.n) = 27k;

V) If {zk,n}}_, denotes the (exact) zeros of s,(nz), then, for any zyn notin Cs := {z € C:
|z = 1| < 8}, where § is fixed with0 < § < 1,

1
2.9 |2k, — k| = O (—2) , a8 n — 00,
n

where the constant, implicit in O( #), depends only on 6.
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Next, it would appear that to precisely determine # ({zk,n}_, [ Z6,,6,), one would
need to know many very precise zeros {zg,n},_, of sp(nz). This, for n large, would be a
daunting task! However, we give a very accurate estimate of # ({zkn}zzl N Zgl,gz), which
avoids finding any zeros of s,(nz). This estimate is stated below in Proposition 2.2, after
some preliminary definitions are introduced.

Fixing any #; with 0 < 6; < m, consider any positive integer n such that \,, < 64,
where we see from (2.5) that this inequality holds for all n sufficiently large. Then, from
part ii) of Proposition 2.1, there is a unique number r,, (1), with 0 < r,, (f1) < 1, such that
2 1= 1y, (1) €t is a point of D,, which satisfies (2.6). With ¥,,(61) defined in (2.7), and,
with the following notation’:

{{z)) := greatest integer < z, for any real z,
it follows, from the strictly increasing nature of ¥,, from part iv) of Proposition 2.1, that
(2.10) (T, (61) /2m)) > 0.

This brings us to the statement of
PROPOSITION 2.2. Given any 61 with 0 < 81 < m, the number of zeros of s, (nz) in the
sector —01 < argz < 46, is approximately

2.11) 2((¥n, (61) /2m)),
so that, by symmetry,
(2.12) # ({zk,n}gzl ﬂ Zol,zn—ol) =n —2((¥, (61) /2)).

The proof of Proposition 2.2 is given in Section 5.

To illustrate now the result of (2.12) of Proposition 2.2, suppose that §; = 7/2, and we
choose n = 98, and n = 99. Then, from part ii) of Proposition 2.1, r,, (7/2) and ¥y, (7/2)
are numerically determined to be

2.13) rog(m/2) = 0.384 136, and Wgg(n/2)/27 = 18.816 919, and
: roo(1/2) = 0.383 989, and Ugo(m/2)/2r = 19.008 074.

From (2.12), this gives

#({2ho8Yes N Zrjosmja) = 98— 2((Wog(m/2)/2m)) = 98 — 2(18) = 62, and
#({2h99 oot N Zrj2gnya) = 99— 2((Wog(m/2)/2m)) = 99 — 2(19) = 61.
(2.14) -

Because we have all the zeros of {s,(nz)},_; to an accuracy of 200 decimal digits, it turns
out that the final numbers of (2.14), i.e., 62 and 61, are exactly the number of the zeros of
S98(982) and s99(992), respectively, in the sector 7/2 < §; < 37 /2, without having directly

. .. . . 0
determined any zeros of s,(nz). In addition, in the symmetric sector case of 6 = 5 and

3 1 3 1
0y = _7r, it follows from (1.4) that ¢; = Tr_:z and ¢ = or + —, so that
2 2 e 2 e
¢ — 1 1 1

=-+4+ — =0.617099,
27 em

[\V]

2Note that this is not the floor function |z |, which is defined as the greatest integer < .
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which gives us from (1.5) and (2.14) that

T 37
2’ 2

(2.15)  discos (g 37”) — 41.524233, and discgg ( ) = —0.092 866.
The two numerical discrepancies of (2.15) agree with the rounded numbers, in these cases,
of the Interactive Supplement of this paper.

We remark that using the expression in (2.11) to estimate the number of zeros of s, (nz),
in the sector —f0; < argz < 46, is generally very accurate, but it is evident that this estimate
can be faulty when ¥, (6;)/2r is exceedingly close to an integer, and this can change the
estimate in (2.12) by £2. This will be considered in more detail in Section 5.

Our next result gives an equivalent representation for disc,, (61, 2 — 6;), where its proof
is given in Section 5.

PROPOSITION 2.3. Given any 61 with 0 < 01 < 7, assume that 8 = 21w — 01, the

symmetric case. Then, for any positive integer n,

disc,, (01,62) = {\I’n7(r91) - 2<<‘Iln2(fl)>>}

(91 1 1 rn(01) sin 01
(2.16) T + T tan (1 —7(61) cos 0y

nsinby . 6,) - m(&)]} .

+

We remark that each of the three quantities in braces, in (2.16), can be seen to be positive.
For example, the first term in braces in (2.16) can be seen, using (2.10), to satisfy

v,(0 ¥,(6
(2.17) 0 < {M - 2((%))} <2, any 6, with0 < 6; <, anyn > 1.
m i
Next, we have the result of Proposition 2.4, whose proof is again given in Section 5.

PROPOSITION 2.4. Given any fixed 81 with0 < 61 < T,

log(2mn) Too(61) sin 6y
2 1 — reo(61) cosbq

n sin 6

(2.18)

(17 (01) — 700 (01)] ) , asn — 00.

Then, because of the properties of the terms in braces in (2.16), we have
THEOREM 2.5. Given any 61 with 0 < 6y < 7, assume 03 = 2w — 6. Then,

(2.19) disc, (61,602) ~ Klogn, as n — oo,

where K > 0 is dependent only on 0.
To numerically illustrate here the result of (2.19) we have, in the case §; = g, that, as
shown in Section 5,

e B[ () ()] =3[ () -2~

as n — oo. This means that the last term in braces in (2.16) tends slowly to +00 as n — oo,
while the other two terms in braces in (2.16) can be seen to be bounded. More concretely, we

have that for 6; = g,

1
2.21) n [rn (f) . —] —12.356 575, for n = 10°.
™ €
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3. The interesting oscillations of disc,,(61,62) in the symmetric case. One of the
most intriging results, from this research, is that actual calculations of {disc,, (61, 02)}3021,
in the symmetric case, produce patterns of two distinct types, which likely could not have
been conjectured purely from theoretical results. For the symmetric case, these patterns can

be classified as

short-term patterns of increases of the disc,,(61,62), and
3.1 . .
long-term patterns of increases or decreases of the disc, (61, 62).

Both of these patterns can be immediately seen from our Interactive Supplement, which was
written in Java by our third author. On setting #; = 7/2, one sees, at the bottom of the screen,
a short-term pattern of a sequence of four or five successive increases in disc, (7/2, 37/2),
where the increases at each step are approximately 0.3829, followed by a long-term pattern,
in which the short-term patterns are successively slightly increasing or slightly decreasing
from step to step. This can also be seen to be the case in other choices of 61, as well. We
remark that these short-term and long-term patterns are valid only for symmetric sectors.

Our next theoretical result here has to do with the short-term patterns.

THEOREM 3.1. Given any 61 with0 < 6, < 7, assume that 02 = 27 — 04, the symmetric
sector case, and let ¢y be determined from (1.4). Then, the length £ of each short-term pattern
is at most

A 27
3.2) £:=1+ {—J ,
¢
Sor all n sufficiently large, where the floor function | x| is defined as the greatest integer < .
As an example of the result of (3.2), consider the case of §; = 7 and 6 = ?T’r. It follows

from (1.4) that r, (7/4) = 0.538 278, and ¢; = 0.404 778. In this case, (21)—’1' = 15.522 544,
so that from (3.2),

é=1+{2—”J = 16.

$1
In this case, the short term pattern consists of at most 16 steps. This can be seen, from our
Interactive Supplement, with 6; = T» to be correct. Similarly, for 0, = 5 and 6y = 37’7,

Too(m/2) = 1 = 0.367 879, and ¢; = 1.202 916, so that (21)—’17 = 5.223 291, so that

A~ 27
{=1+|—| =6.
LﬁlJ

In this case, the short term pattern consists of at most 6 steps. Again, this can be verified from
our Interactive Supplement.

4. Extensions. With 6; satisfying 0 < 6; < m, and with 6 := 27 — 61, we have
considered only symmetric sectors in the previous sections, and we now extend these results
to general sectors Zy, g,, of (1.1), where 0 < 6, < 62 < 2w. Note however that since the
zeros, of the real polynomial s, (nz), occur in conjugate complex pairs, we may assume,
without loss of generality, that 0 < 61 < m. Then, 65 either satisfies 7 < 63 < 27, or
0<61 <6, <m.

With 51 := 27 — 607 and éz := 271 — @5, we consider the following three cases.

Case . 0 <O <m,m<0;<2mand0 < 6; < 6, < 7, which is shown in Figure 4.1.
It is then geometrically evident, from Figure 4.1, that

# ({zkm}zzl ﬂ Z91,02) _ # ({zk,n}Z:1 N Zal,él) ‘;‘# ({Zk,n}zzl N Zég,az) |
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1 = -
1
6,
0.5 \ |
/
/
(/ RN/
L 0 _|
0 : A
\
X
-0.5 / —
0,
~1
1 _
| | | | |
-1 -0.5 0 0.5 1

FIG.4.1. Case 1: 0 < 01 < m, w < 02 < 27, and 0 < 61 < 2 < .

and, on using the definition of (1.5), it can be verified that

@.1) discn (61, 65) = [discn(é?l, f1) + discn (02, 02)] /2.

Case2.0< 0y <m 7 <0y <2m,and0 < By < 0, < m, which is shown in Figure 4.2.
Similarly, we obtain

4.2) discn (81,05) = [discn(ég,ﬁg) + discn(al,él)] /2,

The final case to be considered is
Case 3. 0 < 01 < 05 < m, which is shown in Figure 4.3, and it similarly follows that

.3) disca(61,05) = [disca(61,01) — disca(6:,02)] /2,

Thus, we have shown how the general function disc,, (61, 62) can be expressed in terms of
symmetric sectors. This will be used below to extend the result of Theorem 2.5, on symmetric
sectors, to general sectors. Its proof is given in Section 5.

THEOREM 4.1. Given any angles 81 and 0 with 0 < 81 < 02 < 27, then,

(4.4) disc,(01,02) ~ Klogn, as n — oo,

where K > 0 is dependent only on 61 and 0-.
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1 = B -
2
01
0.5 |- \ -
/
/
f{ N/
L 0 _|
0 : P\
\
\
05 - / .
b,
2
1= _
| | | | |
-1 0.5 0 05 |

FIG.4.2. Case2: 0 < 01 < 7,7 < 02 < 2m, and 0 < O3 < 61 < .

1L _
1
6>
W ]
/
/
I{ DN/
0 l\ )/.\O |
\
\
-05 / —
6,
~1
1L _
| | | | |
-1 -0.5 0 0.5 1

FI1G. 4.3. Case 3: 0 < 61 < 02 < .
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5. Proofs. Proof of Proposition 2.1. For each positive integer n, let A, be the largest
positive number such that e isa point of D,,, i.e., from (2.4),

5.1 en(1=cosAn) — -/ 2mn(2 — 2 cos /\n)l/2 = 21/ (1 — cos )\n)l/z.
With v,, := 2n(1 — cos \,,), the squaring of the expression in (5.1) gives
(5.2) e’ = 2772vp,.

Then, the largest of the two positive solutions of (5.2), called v,,, can be expressed as the
convergent expression

(5.3) vp, = 2.903 948 + —
n

0.254204  0.005 843 1
- =40
n n

),asn—)oo.

From (5.2) and vy, := 2n(1 — cos A,), it can then be verified that

1 v_n} _ 1.704 097 n 0.280 778 0 1
- \/ﬁ n3/2 n5/2

2n

which was stated in (2.5). Then, improving slightly on the discussion in [2, Section 3], it
follows that, for any 6 with A,, < 8 < 2w — A, there is a unique positive r,,(6) < 1 such
that r,, (6)e? is a point on D,,. Thus, having annexed the circular arc {z = e : =)\, < 6 <
+A,} to form the curve ﬁn, then f)n is a simple closed curve in A which is star-shaped with
respect to z = 0, giving part i) of Proposition 2.1. Part ii) of Proposition 2.1 then follows
from equations (3.12) and (3.13) of [2].

It can be verified from (5.4) and (2.7) that ¥4 (\;) = 4.022 922 radians, and that ¥, (\,,)
is strictly decreasing in n to /2 = 1.570 796, as n — oo. Thus,

(54) A\, =cos! { > , asn — 00,

(5.5) T, (\p) < 27 = 6.283 185, foreachn > 1,

from which part iii) of Proposition 2.1 follows.

Next, for any fixed n > 1, it was stated in [2, p. 118] that ¥,,(0) is a strictly increasing
function of § on the interval [cos ™' (2=2) ,2r — cos~' (2=2)], where the end-points of this
interval come from the definition of the curve D,, in (2.2). Recalling that the curve D,, of (2.4)
is just an extension of the curve D,, to the boundary of A, the proof from [2] similarly shows
that ¥, () is a strictly increasing function of § on the longer interval [A,, 27w — \,], where
An is the largest number such that e**» is a point of D,,, and this gives iv) of Proposition 2.1.

Finally, the proof of v) of Proposition 2.1 again comes directly from [2, p. 118], com-
pleting the proof. O

Proof of Proposition 2.2. With Proposition 2.1, assume that A\, < 6; < m, and let
2 = 1 (61)e?" be the associated unique point of Dy, i.e.,

z (zet=2)"

T2 (1 — 2)

which means solving the following equation for 7,,(6;):

=1

’

1—7,(01) cos 61"
(5.6) r(01) [rn(gl)e ] -1

TaV2mn {1 — 2r,(61) cos0; + 7‘%(91)}1/2

Then from (2.7), compute ¥,,(61), as well as {(¥,,(61)/2x)). This latter number then esti-
mates the number of zeros of s,,(nz) in the sector 0 < 6 < 6y, and, as s,,(nz), with positive
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coefficients, has no zeros on the positive real axis, the even number 2((¥,(61)/27)) esti-
mates the total number of zeros of s,(nz) in the symmetric sector —8; < § < 6y. Thus,
n — 2((P,,(01)/27)) estimates the total number of zeros of s,(nz) in the complementary
symmetric sector [0, 2w — 6;], which is stated in (2.12). O

This leads us to the

Proof of Proposition 2.3. From (2.12) and (1.5), we have that

. v, (0 —

57 discn (61, 27 — 61) =n—2((%)) —n<¢2277f’1>.
Since 85 = 27 — 6, it follows from (1.3) and (1.4) that 7o, (62) = 70 (61) and @2 = 27 — ¢4 .
2 — 1

Thus, =1- ﬁ Substituting this in (5.7) gives
T T
v, (0
(5.8) disc,, (01,27 — 61) = %51 - 2((M))
T 27
Next, we can rewrite (2.7) as
r,,(01) sin 6y

T, (01) =n[f1 — roo(61)sinb;]+6; +tan ! ( >+n sinf; (reo(61) — r1(61)),

1—7r,(01)cosbtq
which from (1.4) gives

T, (01) sin 61

L = N ANV Akt
n(61) = ngy + 61 + tan (l—rn(01)cost91

) +nsinb; (reo(61) —rn(61)),

or equivalently,

7, (01) sin 6y

p— — _— _1 5 AN n
(5.9) ng1 = ¥,(6;) — 61 —tan (1_Tn(01)cos01

) —nsind; (reo(61) — rn(61)) -

Substituting the above expression for neg; /7 in (5.8) then gives

disca (0,20~ 0,) = { T —2<<q”;f1)>>}

(5.10) - {0—1 + L tan1 (7%(91)—5“191>}

T T 1 —rp(61)cosby

+ {”Si:al [ra(61) — roo(t%)]} ,

which gives the desired result of (2.16) of Proposition 2.3. O

As previously remarked, the terms in the three braces of (5.10) are all positive. Moreover,
the first term in brackets satisfies, from the definition in (2.10), the inequalities of (2.17), for
anyn > 1.

We next turn to the

Proof of Proposition 2.4. Given any fixed 61 with 0 < 61 < 7, the quantity in the braces
of (2.18) satisfies

5.11) n sin 6y

[rn(01) — reo(61)] > 0, foranyn >1,

since 7, (01) > roo (1) for any n > 1. Next, set

(5.12) My, (61) :== "Si;gl [rn(61) — roo (61)]-
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It follows from (5.6) that

o0 (@) 0D et} =, BT {1 = 2na(60) cost + 7600},
o with 7o (fy)e!~Tee(01)cost — 1,

Setting

G49 ra(81) 5= oo (61) + 62 61)

so that 6,,(61) > 0 for all n > 1, then the first equation of (5.13) can be expressed as

(1 2 Gn) { (e g ) e} =

(5.15) rN2n {1 = 2rn (61

)cosfy + 7‘;"1(01)}1/2
7'00(01) )

On taking logarithms and dividing by n, we have

on (01)
To (61)

Hence, for n large, we see that d,,(6; ) is small and positive, so that

6n(61) ) 6n(61)

= + lower order terms.
Too(01) Too(61)

+ lower order terms in n.

log(2mn)
2

(5.16) log (1 + ) — 6p(01) cosby =

log (1 +

This gives from (5.16) that

1 log(2
0n(61) {r—(Gl) — cos 01} = %sz) + lower order terms in 7,

which we can write as

log(27n) Too(61)
(5.17) 0,,(601) 5 (I—TOO(Gl)cosé?l , asmn — oo.

Thus, from (5.12) and (5.14),

log(27n) Too(01) sin 0y
2 1 —reo(61) cosby

(5.18) M, (6,) ~ ) , asn — oo,

so that M, (#) is unbounded asn — co. O

We remark that for n very large, the accuracy of the approximation of (5.18) is also very
large. We estimate that the result of (2.21), forn = 109, is accurate to over 80 decimal
digits!

Proof of Theorem 2.5. This is an easy consequence of Propositions 2.3 and 2.4. The
first term in braces of (5.10) always lies in the interval (0, 2], from (2.17). Next, the negative
second term in (5.10), for 0 < 0y < r, clearly always lies in the interval [—%, 0], since 6, /,
by hypothesis, lies in (0,1), and, because the argument of the next term in turn is always
positive, then this term can be no more than % Hence, as the third term in braces of (2.16)
tends to +00, as n — oo, then (2.19) of Theorem 2.5 follows. O
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Proof of Theorem 3.1. Given any §; with 0 < 6; < m, assume that 8 = 27 — 64,
so that the sector Zy, 9, of (1.1) is symmetric about the real axis. To estimate the number
of zeros of s,(nz) in Zy, 9,, we use the fact that the numbers {2; ,}}_, \ Cs, are, from
(2.9), close to the actual zeros {zk,n }}_; of $n(nz). In particular, consider the unique points

A n ~
{2k,n = Fp peilin }k _ of Dy, for which (cf. (2.8))

(5.19) U, (0r.0) :=2mk, forall 1<k <n,
so that, from (2.6),

ék,n(ék,neliék’")n

5.20
( ) TV 2mn(l — 25,p)

=1.

A n
Then, in place of the n points {fk,n = g peifhn } , we consider the following n uniformly
k=1

spaced (in angle) points, defined as
27k
(5.21) g, | = 1, with arg g, = HLH for all1< k < n.

We remark that asking if the approximate zero 2y, ,, of s,(nz) is in the sector Zy, g, is equiv-
alent to asking if Wy, , of (5.20) satisfies

¥, (61) < arg i, < 27 — ¥, (61)

5.22 .
( ) n+1 - n+1

We further remark that, as @0, , can be expressed as

N 1/(n+1)
Whp = Bgpet 2on e
T s A~ )
V21 (1 — Zgpn)

we directly see, on letting n — oo, how the Szegd curve D, of (1.3) plays a major role in
the result of (1.2). We also show, in Figure 5.1, the numbers {u}k,w},lf:l from (5.21).

Next, we order the approximate zeros {Zx n}}_; of sp(nz) by their increasing argu-
ments, i.e.,

(5.23) 0O<argin,<argly, <---<argn, <2m.

The “fanning out” of the exact zeros of s,,(nz), above and below the real axis as n increases,
as can be seen in more detail in the Interactive Supplement, implies that, in the closed upper
half-plane,

1
(5.24) arg Zp,n > arg Zp pi1, foralll <k < n;— ,
and that, in the open lower half-plane, we have the reverse:
1
(5.25) arg Zpn < arg 2 py1, forall % <k<n.

As the nonreal zeros of the real polynomial s, (nz) occur in conjugate complex pairs, it is
sufficient to consider the motion (with respect to n) of the zeros, only in the upper half-plane
of (5.24). Now, as the approximate zeros {Zy }p_; of s,(nz), were derived (cf. (5.24))
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/A

\ \ \ \ \
-1 -0.5 0 0.5 1

FIG.5.1. {wk,lﬁ}}le as X’s and the zeros of s16(162) as ®’s.

as specific points 2y, = fk,neiék’" of the curve ﬁn, then the following analog of (5.24)
necessarily holds, i.e., from (5.21),

2k 27k . n+1
n—+1>n+2:argwk7n+1,foralllgkg B) .

(5.26) arg Wy, p, =

In addition, we see from (2.1) that

‘I’n(92)
n+1

v, (0
(5.27) Zkn € Zy, 9, if and only if % <argwg,, < ,

or, equivalently from (5.21),

lI’n(ol) < 2k < \I’n(02)

(5.28) Zkn € Zy, 9, if and only if ]l ShrlS el

We note, for n an odd positive integer, say n = 2m + 1, that from (5.21) we have

. 2n(m + 1
(5.29) arg Wpm41,2m+41 = 2n(m +1) =7

2m + 2
This means that S2,,+1((2m + 1)z), which has exactly one (negative) real zero, corresponds
to the point Wy,y1,2m+1, Which is also real and negative, from (5.21).
Next, suppose that 2y, ,, is exactly on the boundary of the symmetric sector Zg, g, in the
upper half-plane, i.e.,

2 T 1
Tk _ "(01), where 1 < k < nt
n+1 n+1

(5.30) arg Wy, n, =



ETNA

Kent State University
http://etna.math.kent.edu

142 R. S. VARGA, A. J. CARPENTER, AND B. W. LEWIS
If k satisfies 1 < k < ”T’l, then

2r(k+ 1) <
n+1l —

(5.31) arg Wy, < argWet1,n = ;
which implies that 21 5, is also in the upper half-plane of Zp, g,. It is then evident, from
(5.31), that the numbers {0 y1,m },,~,, are all in the upper half-plane, with strictly decreasing
arguments, as m increases. (This is the analog, in the w-plane, of the “fanning out” of the
zeros of s,,(nz), in the upper half-plane.)

Next, what we seek, from this fanning out of the numbers {wkﬂ,m }m>n, is the smallest
nonnegative integer £ so that 2x41,n, Zk+1,n+15 " - * » Zk+1,n+¢ are all in the upper half-plane
of Zg, 9., While £ 11 n4e41 is out of this sector. This implies from (5.30) that

2r(k+1) T, (61) 2k 2n(k+1)
. > =
(5:32) n+€+1—(n+1 n+1 >n+£+2’
so that
(5.33) <™ i

From (5.30), we can write these inequalities as

2
5.34 (< ———— </ +1.
(5.34) Sy <t

Next, it follows from (2.7) and (1.4) that

. U0 .
(5.35) nlggo ﬁ =01 — roo(f1)sinfy =: ¢y,

where 7, (61) lies on D,. Then, as (5.30) implies that

n+1l 2

(5.36) ko 0,01)/(n+1)

we see, assuming that n is large, from (5.35) and (2.7) that

lI’n(el)
n+1

~ ¢1 .
Moreover, (5.36), coupled with the last inequality of (5.33), gives approximately that

(5.37) 632—7T§€+1.

o1
Thus, (5.37) says that 27 /¢; is a good approximation of the positive £ in (5.33), when n
is large, but, as the Interactive Supplement shows, it can also be quite good for small n as
well. Furthermore, this implies that the maximum nonnegative integer £ such that 241 nt¢ &
Zy, 0, When Zi , = 01, is given approximately by

2w
. 1 e
(5.38) + \JﬁlJ ,

which is independent of n, and this is the desired result of (3.2) of Theorem 3.1. O
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We return to the assumption that 2 ,, is exactly on the boundary of Zj, g, in the upper
half-plane. Suppose now that £; , is outside the sector Zy, g,, while 21 isin Zy, g,. This
gives the inequalities

lI’n(al)

arg Wey1,n, > > arg Wk, n-
Then on seeking the smallest nonnegative integer h such that Z;41 45 is in Zp, g,, while
Zh+1,n+h+1 18 not, it similarly follows that h < £, where £ satisfies (5.33).

Proof of Theorem 4. 1. The results of (4.1) - (4.3) show in these cases how disc, (61, 62)
can be expressed in terms of discrepancies for symmetric sectors. In particular, for any 64
with 0 < 6; < 7, with 85 := 27 — 6, it follows from Propositions 2.3 and 2.4 that

log(2mn) [ 7roo(61)sinby

(5.39) disc,,(01,02) ~ o 1= oo (1) costy |

asn — 00.

But, it can be verified that the function

Too(0) sind

(5.40) 1 —7r00(0)cosb’

defined on (0, 27),

is strictly decreasing, from +1 to -1, in 8, so that, from (4.1) - (4.3), we see, in all cases, that
disc, (61, 62) ~ K logn, where K > 0 is dependent only on #; and §,. O
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