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Abstract. With �	��
����� ��� ������ � ������� denoting the � -th partial sum of �� , let its zeros be denoted by! � ��" �$# ����&% for any positive integer � . If ' % and '�( are any angles with )+*,' % *-'.(/*10�2 , let 35476 " 498 be the
associated sector, in the z-plane, defined by354:6 " 498;� � ! �=<?>@�A' %CBED�FHG � B '.( #JI
If K,L ! � ��" �5# ����&%NM 3�4:6 " 498�O represents the number of zeros of � � 
P��� in the sector 354:6 " 498 , then Szegő showed in
1924 that QSRST�VUXW K1LZY.� ��" �\[ ����&% M 3�4:6 " 498�O� �^] (`_ ] %0�2 a
where ] % and ] ( are defined in the text. The associated discrepancy function is defined bybVRScHd �e
' % a '�(f�&� �gK-h�Y.� ��" �\[ ����&%Ni 3�4:6 " 498�j _ �lkm] (`_ ] %0�2 n I
One of our new results shows, for any ' % with )=*E' % *E2 , thatbVRScod � 
P' % a 0�2 _ ' % �5prq QSs G � a D c �?tvu a
where q is a positive constant, depending only on ' % . Also new in this paper is a study of the cyclical nature ofbVRScHd � 
' % a ' ( � , as a function of � , when )=*E' % *E2 and ' ( �w0�2 _ ' % . An upper bound for the approximate cycle
length, in this case, is determined in terms of ] % . All this can be viewed in our Interactive Supplement, which shows
the dynamical motion of the (normalized) zeros of the partial sums of �f and their associated discrepancies.
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1. Introduction. Let xzy|{H}\~������ y�f�|� } �����|� denote the � -th partial sum of ��� for each
positive integer � , and denote the zeros of x�y|{H}\~ by �V} �z� y$� y�f�`� . Let ��� 6 � � 8 be the sector in
the complex plane > , defined by� � 6 � � 8 �����V}��w>���� ���^���.� } � �������(1.1)

for angles � � and ��� such that �E� � � � ���¡�£¢�¤ . Let ¥¦{:�z} �z� y � y �f�`�J§ � � 6 � � 8 ~ represent the
number of zeros of x y {¨}N~ that lie in the sector � � 6 � � 8 . A beautiful result of Szegő [7] states
that ©«ª¬y®¡¯ ¥£{7�V} �z� y � y �f�`�`§ � � 6 � � 8 ~� �±° �X² ° �¢�¤ �(1.2)

where if ³´¯ is the closed curve (called the Szegő curve) in the unit disk which is given by³�¯µ�����V}l�r>��$¶ } � �f· � ¶��v¸�¹»º � ¶ }&¶ � ¸®���(1.3)¼
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then there are unique positive values ½�¯r{»� � ~ and ½V¯g{»� � ~ , in {¨�5��¸V~ , such that ½V¯g{¨� � ~ �z¾ � 6 and½z¯r{¨� � ~ �V¾ � 8 are points of ³E¯ of (1.3). The angles °�¿ in (1.2) are then defined by° ¿ �S�¦� ¿ ²1½ ¯ {¨� ¿ ~eÀ ªÁ � ¿ � Âl�Ã¸®��¢eÄ(1.4)

The discrepancy function Å ª À.Æ y {»� � �:����~ , for the zeros in � � 6 � � 8 , is defined asÅ ª À.Æ y {¨� � �:����~Ç�S��¥ÉÈ®�V} �V� y � y �f�`�JÊ � � 6 � � 8�Ë ²1�-Ì�° �X² ° �¢�¤ Í Ä(1.5)

It follows from (1.2) that the function Å ª À	Æ�y|{¨� � �	� � ~ would behave, at worst, like Îe{»�J~ , as�rÏÑÐ . Our first aim in this paper is to show in Theorem 2.5 the sharper result thatÅ ª À.Æ y {»� � �:����~�Ò£Ó © º � �C�Ô¹»º �Õ� ©© �EÀ:Ö�×´Æ ª«Ø�Á\Ù	©Ú¡© �®�	� Ø �(1.6)

where Ó is a positive constant depending on � � and ��� . It is of interest to note that Szegő [7]
showed that the associated discrepancy function, but now in the Û -plane under the mappingÛ£�£} � �f· � �
is bounded as a function of � .

Our second aim is to closely study the cyclical nature of the sequence �zÅ ª À.Æ y {»� � �:����~f� ¯y �`� .
Specifically, for �r��� � ��¤ and �����É¢�¤Ü²Ý� � , the approximate cyclic length, of what we
call the short-term pattern, is determined as a function of ° � . (Long-term patterns are also
described in Section 3.)

Our third aim in this paper is to illustrate the dynamical motion of the zeros of x y {»�m}N~ , as� varies, with our Interactive Supplement accompanying this paper. This allows the reader to
input � � , in the range ¤ ��Þ � � �?� ß ¤ �VÞ , where ���¡�S�à¢�¤g²,� � , and to input � , the degree ofxzy|{»�m}N~ , in the range ¸ � � � ¢���� . The reader’s computer then graphs the � zeros of x�y|{¨�m}\~
in the } -plane. On increasing � , one sees the actual “fanning out” of the zeros of x�y|{¨�m}\~ ,
into the upper and lower half-planes of the } -plane. In addition, the discrepancy function,Å ª À	Æ�y|{»� � �	� � ~ , is then displayed to four decimal digits, at each � -th step. This calculation is
based on the stored zeros of all polynomials �zx y {»�m}N~�� � �.�y �`� , whose zeros were all determined
to ¢���� decimal digits.

2. Background and statement of results. To study the behavior of the zeros of the par-
tial sums x y {¨}N~ of �V� , it is convenient to study instead the normalized partial sums x y {¨�m}\~á���� y �A�`� {¨�m}\~ �®���&� , whose zeros, henceforth denoted by �z} �V� y � y �f�`� , have the same arguments
as the zeros of x y {H}\~ . This leaves Å ª À.Æ y {»� � �	����~ in (1.5) unchanged. An application of the
Eneström-Kakeya Theorem (see [4, p. 137, Exercise 2], or [6, p.88, Problem 22]) shows
that all zeros �V} �z� y � y �f�`� of x y {»�m}N~ lie in the unit disk âã���ä�V}å�v>æ�?¶ }&¶ � ¸�� for any�èç�¸ . From compactness considerations, there are necessarily accumulation points in â foré ¯y �`� �z} �z� y � y �A�`� , and Szegő [7] established that each such accumulation point must lie on the
curve ³ ¯ of (1.3), and, conversely, that each point of ³ ¯ is an accumulation point of these
zeros of xVy|{»�m}N~ . Buckholtz [1] later proved that all zeros of all xVy|{¨�m}\~ lie outside of ³´¯ for
any �1çà¸ , and that Å ª À ÙVê �V} �z� yë� y�f�ì�Ví ³´¯lî � ¢ �ï � �Ô¹»º �Õ� ÁNÚ �èçà¸®�(2.1)

where Å ª À Ùzê �z} �z� yë� y�f�`� í ³´¯lîJ��� ¬ ��ð�fñ&�zñ y {HÅ ª À Ùzê } �z� y í ³´¯lî»~f�
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and where Å ª À Ùzê } �z� y í ³�¯lîá�S� ¬òªÁ ��ó®ô�õ ¶ } �z� y�²Ý}&¶�Ä It was shown in [2] that the exponent of¸ � ¢ for � in (2.1) is the best possible, and that the constant ¢ � can be reduced in (2.1) to��Ä ö ß öXö�÷\ø .1
In [2], the following curve was defined for each positive integer � :³ y ���úùû ü ¶ } � �f· � ¶ y � ý�y ï ¢�¤|�gþþ �f· �� þþ �}��w>à�ÿ¶ }ë¶ � ¸®� and¶ ���.� }ë¶\çåÆAº\À ·|��� y · �y�� � �� �(2.2)

where ý y , defined by ý y ��� � �� y � · y ï ¢�¤|� �
is the exact error in Stirling’s formula. For calculations of ýVy when � is very large, the
following asymptotic series (cf. Henrici [3]) for ý�y can be useful:ý�y Ò� ¸�� � ·m�¸z¢ � � · �¢
	�	 ² ¸ ß� � ·��÷�¸�	 Þ � ��������� � À`�rÏ Ð¦�
and © º � ý y Ò� � ·|�¸V¢ ² � ·��ß ö�� � � ·��¸z¢�ö�� ² � ·��¸zö	®� � � ·��¸®¸�	�	 ²������A� � ÀJ�rÏÑÐ¦Ä

For any fixed � with � ��� � ¸ , each ³´y curve gives a much better approximation to
where the zeros of xzy|{¨�m}\~ lie, in that from [2, Theorem 4],Å ª À ÙVê �V} �V� yë� y�f�`���
����í ³�y\î&��� Ì ¸� � Í � � ÀJ�ÜÏ Ð¦�(2.3)

where
� � �S�v�z}��r>à�$¶ }/² ¸N¶N�!�\� . The exponent of ¢ for � in (2.3) was shown in [2] to be

best possible.
As defined in (2.2), the curve ³�y is not a closed curve, so we make the following mod-

ifications of (2.2). First, as will be explained in the proof of Proposition 2.1 in Section 5,
the curve ³ y of (2.2) can be extended, for each �äçú¸ , to the boundary of â in two
unique points, ��¾#"�$ and � · ¾%"�$ , where ���'& y �æ¤ for each �±ç ¸ . Then, the circular
arc ( �z¾#) ��²*& y �!+è� �,& y.- is annexed to the extended ³ y curve, thereby producing the
following closed curve /³ y in â :/³ y �S�10 }��w>��ë¶ } � �f· � ¶ y �¦ý�y ï ¢�¤|� þþ �f· �� þþ �¶ }&¶ � ¸®� � Á Å2& y �^�®�	� } � ¢�¤w²3& y5476 ( � ¾#) ��²*& y �8+è� �,& y.- Ä(2.4)

The curves /³�y , for �r�Ã¸®��÷ , and Ð , are given below in Figure 2.1.
We remark that it can be shown that & y can be expressed as the convergent series& y � ¸®Ä�ø�� Þ � � ø� �:9 � � �5Ä ¢	®� ø�ø;	� �<9 � �=�ÔÌ ¸� �<9 � Í � � À`�rÏÑÐ Ä(2.5)

With the above definitions, we state the following proposition, whose proof is sketched
in Section 5.

PROPOSITION 2.1. For each positive integer � , the following are valid:

1Except for discrepancy numbers
bzRScod ��
' % a ' ( � , which are given to four decimal digits in the Interactive Sup-

plement, we truncate, in the text, the displayed fractional part of noninteger numbers to six decimal digits.
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FIG. 2.1. The curve >? � , for �/�A@ aCB , and u .

i) The curve /³�y is a simple closed curve in â which is star-shaped with respect to }+�¦� ;
ii) For each � with &$y � � � ¢�¤´²D&$y , there is a unique number ½Vym{¨��~ , with ���@½zym{»�\~ � ¸ ,

such that }+�å½zym{¨��~ �V¾ � is a point of /³òy , and satisfies}${H} � �f· � ~ yý�y ï ¢�¤|�Õ{:¸Ç²1}N~ � � ¾#E.$GF �IH �(2.6)

where J y {»��~ is defined, on the interval

ê & y �.¢�¤ ²K& y î , byJ y {»�\~;�S� � ê �/²1½ y {¨��~eÀ ª«Á ��îL�Ý�M� Ù � Á ·|� Ì ½ y {»��~eÀ ªÁ �¸Ç²è½zym{»�\~eÆAº\À��mÍ í(2.7)

iii) ���NJ y {O& y ~=� ¢�¤ for each � çà¸ ;
iv) For each fixed �@çÃ¸ , J y {»��~ is a strictly increasing function of � on

ê & y �.¢�¤w²K& y î , and
for each integer

�
with ¸ � � � � , there is a unique point P} �z� y �QP½ �z� y �V¾<R�TS<U $ on the

curve /³�y , with &$yw� P� �V� y � ¢�¤w²3&$y , such thatJ y { P� �V� y ~��£¢�¤ � í(2.8)

v) If �z} �z� y � y �f�`� denotes the (exact) zeros of x y {»�m}N~ , then, for any } �z� y not in
� � ���v�z}ò�r>£�¶ }¡² ¸N¶\�8�\� , where � is fixed with �l�!� � ¸ ,¶ } �V� y ²VP} �z� y ¶®�W� Ì ¸� � Í �YXex1�rÏÑÐ �(2.9)

where the constant, implicit in ��{ �y 8 ~ , depends only on � .
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Next, it would appear that to precisely determine ¥ � �V} �z� yë� y�f�`� § ��� 6 � � 8 � , one would
need to know many very precise zeros �z} �z� yë� y�A�`� of xzy|{¨�m}\~ . This, for � large, would be a
daunting task! However, we give a very accurate estimate of ¥ � �z} �z� y � y �f�`� § � � 6 � � 8 � , which
avoids finding any zeros of x y {»�m}N~ . This estimate is stated below in Proposition 2.2, after
some preliminary definitions are introduced.

Fixing any � � with �^�±� � � ¤ , consider any positive integer � such that & y � � � ,
where we see from (2.5) that this inequality holds for all � sufficiently large. Then, from
part ii) of Proposition 2.1, there is a unique number ½ y {¨� � ~ , with �´� ½ y {¨� � ~X�à¸ , such that}è�S�Ô½ y {»� � ~ �z¾ � 6 is a point of /³ y which satisfies (2.6). With J y {»� � ~ defined in (2.7), and,
with the following notation2:ZTZ\[�]T] �S� �®� Ø � Ù	Ø À ÙJªÁ\Ù	Ø � Ø � � [ �`¹»º �Õ� ÁNÚ � Ø � © [ �
it follows, from the strictly increasing nature of J/y from part iv) of Proposition 2.1, thatZTZ J�y?{»� � ~ � ¢�¤ ]:] ç^�5Ä(2.10)

This brings us to the statement of
PROPOSITION 2.2. Given any � � with ��� � � � ¤ , the number of zeros of x y {¨�m}\~ in the

sector ²Ç� � � ���.� } � � � � is approximately¢ ZTZ J y {»� � ~ � ¢�¤ ]:] �(2.11)

so that, by symmetry,¥ÔÈ®�z} �z� y � y �A�`� Ê � � 6 � �:^ · � 6�Ë Ä� �w²-¢ ZTZ J y {»� � ~ � ¢�¤ ]:] Ä(2.12)

The proof of Proposition 2.2 is given in Section 5.
To illustrate now the result of (2.12) of Proposition 2.2, suppose that � � ��¤ � ¢ , and we

choose �-� � 	 , and �,� ��
. Then, from part ii) of Proposition 2.1, ½ y {»¤ � ¢®~ and J y {¨¤ � ¢�~

are numerically determined to be0 ½ �I_ {¨¤ � ¢®~��£��Ä ß 	 Þ ¸ ß ö�� and J �:_ {»¤ � ¢�~ � ¢�¤g�v¸�	5Ä 	5¸�ö � ¸ � � and½ �I� {¨¤ � ¢®~��£��Ä ß 	 ßM� 	 � � and J �:� {»¤ � ¢�~ � ¢�¤g�v¸ � Ä ���	X�Nø Þ Ä(2.13)

From (2.12), this gives

ùû ü ¥ {9�z} �z� �I_ � �:_�f�`� § � ^ 9 � � � ^ 9 � ~ Ä� � 	�²,¢ ZTZ J �:_ {»¤ � ¢�~ � ¢�¤ ]T] � � 	�²-¢�{:¸�	�~C�£ö�¢�� and¥ {9�z} �z� �I� � �:��f�`� § � ^ 9 � � � ^ 9 � ~ Ä� �� ²,¢ ZTZ J �:� {»¤ � ¢�~ � ¢�¤ ]T] � �� ²-¢�{:¸ � ~C�£ö�¸�Ä
(2.14)
Because we have all the zeros of �Vx y {¨�m}\~f� � �	�y �`� to an accuracy of ¢®�®� decimal digits, it turns
out that the final numbers of (2.14), i.e., ö�¢ and ö5¸ , are exactly the number of the zeros ofx �:_ { � 	®}N~ and x �:� { �� }\~ , respectively, in the sector ¤ � ¢ � � � �åß ¤ � ¢ , without having directly
determined any zeros of x y {¨�m}\~ . In addition, in the symmetric sector case of � � � ¤ ¢ and��� � ß ¤¢ , it follows from (1.4) that ° � � ¤ ¢ ² ¸� and ° � � ß ¤¢ � ¸� , so that° �Ç² ° �¢�¤ � ¸¢ � ¸� ¤ �£��Ä ö�¸VøÇ� �� �

2Note that this is not the floor function `badc , which is defined as the greatest integer
B a .
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which gives us from (1.5) and (2.14) thatÅ ª À	Æ �:_ Ì ¤ ¢ � ß ¤¢ Í �e�l¸®ÄS÷®¢ Þ ¢ ß®ß � � Á Å�Å ª À.Æ �I� Ì ¤ ¢ � ß ¤¢ Í ��²X�5Ä � � ¢�	�ö®ö�Ä(2.15)

The two numerical discrepancies of (2.15) agree with the rounded numbers, in these cases,
of the Interactive Supplement of this paper.

We remark that using the expression in (2.11) to estimate the number of zeros of x y {¨�m}\~ ,
in the sector ²Ç� �X�å���.� } � � � � , is generally very accurate, but it is evident that this estimate
can be faulty when J y {»� � ~ � ¢�¤ is exceedingly close to an integer, and this can change the
estimate in (2.12) by f?¢ . This will be considered in more detail in Section 5.

Our next result gives an equivalent representation for Å ª À.Æ y {»� � �.¢�¤l² � � ~ , where its proof
is given in Section 5.

PROPOSITION 2.3. Given any � � with �^� � � �µ¤ , assume that ���Ü� ¢�¤1²^� � , the
symmetric case. Then, for any positive integer � ,Å ª À.ÆAym{¨� � �:� � ~á� 0 J y {¨� � ~¤ ²-¢ Z:Z J y {»� � ~¢�¤ ]:] 4² 0 � �¤ � ¸¤ Ù � Á ·m� Ì ½ y {»� � ~eÀ ª«Á � �¸Ç²1½�ym{¨� � ~eÆ�º�Àe� � Í 4��0 �/À ª«Á � �¤ ê ½ y {¨� � ~Õ²1½ ¯ {¨� � ~ î 4 Ä(2.16)

We remark that each of the three quantities in braces, in (2.16), can be seen to be positive.
For example, the first term in braces in (2.16) can be seen, using (2.10), to satisfy��� 0 J�y|{»� � ~¤ ²-¢ Z:Z J�y|{¨� � ~¢�¤ ]:] 4 � ¢e� � ÁNÚ � �hg ª ÙIi �ò� � � �^¤C� � ÁNÚ � çà¸®Ä(2.17)

Next, we have the result of Proposition 2.4, whose proof is again given in Section 5.
PROPOSITION 2.4. Given any fixed � � with �ò�^� � � ¤ ,�?À ªÁ � �¤ ê ½�yJ{»� � ~Õ²1½z¯Ü{»� � ~9î|Ò © º � {H¢�¤|�J~¢�¤ Ì ½ ¯ {»� � ~eÀ ªÁ � �¸Ç²1½ ¯ {¨� � ~eÆ�º�Àe� � Í � � À`�ÜÏ Ð Ä(2.18)

Then, because of the properties of the terms in braces in (2.16), we have
THEOREM 2.5. Given any � � with �ò�^� � � ¤ , assume � � ��¢�¤w²1� � . Then,Å ª À.Æ y {»� � �:����~�Ò¦Ó © º � �C�jXex1�rÏ Ð¦�(2.19)

where Ólkå� is dependent only on � � .
To numerically illustrate here the result of (2.19) we have, in the case � � � ¤ ¢ , that, as

shown in Section 5,�/À ªÁ � �¤ m ½�y È ¤ ¢ Ë ²è½V¯ È ¤ ¢ Ëon � � ¤�p ½�y È ¤ ¢ Ë ² ¸��q Ò © º � {H¢�¤|�J~¢ � ¤ �(2.20)

as �ÜÏÿÐ . This means that the last term in braces in (2.16) tends slowly to �/Ð as �ÜÏÑÐ ,
while the other two terms in braces in (2.16) can be seen to be bounded. More concretely, we
have that for � � � ¤ ¢ , �¤�p ½ y È ¤ ¢ Ë ² ¸��q �v¸V¢eÄ ß ÷�öX÷\ø�÷��E¹»º � �Ü�v¸z� �	� Ä(2.21)
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3. The interesting oscillations of r�s7x�t�y|{»� � �:� � ~ in the symmetric case. One of the
most intriging results, from this research, is that actual calculations of �zÅ ª À.ÆVy?{»� � �:� � ~f� ¯y �`� ,
in the symmetric case, produce patterns of two distinct types, which likely could not have
been conjectured purely from theoretical results. For the symmetric case, these patterns can
be classified as0 short-term patterns of increases of the Å ª À.Æ y {¨� � �:���z~f� and

long-term patterns of increases or decreases of the Å ª À.Æ y {»� � �	����~fÄ(3.1)

Both of these patterns can be immediately seen from our Interactive Supplement, which was
written in Java by our third author. On setting � � �¦¤ � ¢ , one sees, at the bottom of the screen,
a short-term pattern of a sequence of four or five successive increases in Å ª À	ÆVym{»¤ � ¢e� ß ¤ � ¢�~ ,
where the increases at each step are approximately ��Ä ß 	\¢ � , followed by a long-term pattern,
in which the short-term patterns are successively slightly increasing or slightly decreasing
from step to step. This can also be seen to be the case in other choices of � � , as well. We
remark that these short-term and long-term patterns are valid only for symmetric sectors.

Our next theoretical result here has to do with the short-term patterns.
THEOREM 3.1. Given any � � with ���^� � � ¤ , assume that ��� �¦¢�¤ ²ò� � , the symmetric

sector case, and let ° � be determined from (1.4). Then, the length Pu of each short-term pattern
is at most Pu ���v¸v�xw ¢�¤° �oy �(3.2)

for all � sufficiently large, where the floor function z [|{ is defined as the greatest integer
� [

.
As an example of the result of (3.2), consider the case of � � � ^ } and � � � � ^} . It follows

from (1.4) that ½V¯r{»¤ ��Þ ~;�à��ÄS÷ ß 	�¢\ø;	 , and ° � ����Ä Þ � Þ ø®ø
	 . In this case, �I^~ 6 �Ô¸V÷eÄS÷®¢�¢ ÷ Þ�Þ ,
so that from (3.2), Pu �v¸��xw ¢�¤° �oy �v¸�ö�Ä
In this case, the short term pattern consists of at most ¸zö steps. This can be seen, from our
Interactive Supplement, with � � � ^ } , to be correct. Similarly, for � � � ^ � and � � � � ^� ,½ ¯ {»¤ � ¢�~�� � � �£��Ä ß öNø 	\ø � , and ° � �Ã¸®ÄS¢��\¢ � ¸zö , so that �I^~ 6 �£÷eÄS¢®¢ ß ¢ � ¸ , so thatPu �v¸��xw ¢�¤° �oy �£ö�Ä
In this case, the short term pattern consists of at most 6 steps. Again, this can be verified from
our Interactive Supplement.

4. Extensions. With � � satisfying �£� � � � ¤ , and with � � ���ä¢�¤@² � � , we have
considered only symmetric sectors in the previous sections, and we now extend these results
to general sectors � � 6 � � 8 , of (1.1), where �1�Ã� � �����w�Ô¢�¤ . Note however that since the
zeros, of the real polynomial x y {¨�m}\~ , occur in conjugate complex pairs, we may assume,
without loss of generality, that �¦� � � � ¤ . Then, ��� either satisfies ¤ � ���Ý� ¢�¤ , or���@� � �^��� � ¤ .

With /� � �S�£¢�¤g²è� � and /���/�S�£¢�¤g²1�V� , we consider the following three cases.
Case 1. ���^� � � ¤ , ¤ � ���?� ¢�¤ , and ��� � � � /��� � ¤ , which is shown in Figure 4.1.

It is then geometrically evident, from Figure 4.1, that¥ È �V} �z� y � y �f�ì� Ê � � 6 � � 8 Ë � ¥ È �z} �V� y&� y�f�`� § � � 6 �%�� 6 Ë � ¥ È �z} �z� yë� y�A�`� § � �� 8 � � 8 Ë¢ �
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FIG. 4.1. Case 1: )=* ' % *�2 , 2 B ' ( * 0�2 , and )=* ' % *K>' ( B 2 .

and, on using the definition of (1.5), it can be verified thatÅ ª À	Æ y {»� � �	����~�� m Å ª À.Æ y {¨� � �G/� � ~.�ÝÅ ª À.Æ y {�/�����:����~ n � ¢eÄ(4.1)

Case 2. ��� � � �@¤ , ¤è�^���?�å¢�¤ , and ��� /���/� � � �@¤ , which is shown in Figure 4.2.
Similarly, we obtainÅ ª À.Æ�y|{¨� � �:� � ~�� m Å ª À	Æ�y|{�/� � �:� � ~��@Å ª À	Æ�ym{»� � ��/� � ~ n � ¢e�(4.2)

The final case to be considered is
Case 3. �ò�^� � �^� � � ¤ , which is shown in Figure 4.3, and it similarly follows thatÅ ª À.Æ y {¨� � �:���z~�� m Å ª À	Æ y {»� � ��/� � ~Õ²,Å ª À	Æ y {»������/����~ n � ¢e�(4.3)

Thus, we have shown how the general function Å ª À.Æ y {¨� � �	�V�z~ can be expressed in terms of
symmetric sectors. This will be used below to extend the result of Theorem 2.5, on symmetric
sectors, to general sectors. Its proof is given in Section 5.

THEOREM 4.1. Given any angles � � and ��� with �ò�^� � � ���?� ¢�¤ , then,Å ª À.ÆAym{»� � �:� � ~�Ò¦Ó © º � �C�jXex1�rÏ Ð¦�(4.4)

where Ólkå� is dependent only on � � and ��� .
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5. Proofs. Proof of Proposition 2.1. For each positive integer � , let &ëy be the largest
positive number such that ��¾%"�$ is a point of /³�y , i.e., from (2.4),� y F ��·����:� "�$ H �¦ý�y ï ¢�¤|�Õ{o¢�²,¢�ÆAº�À�&5y�~ �T9 � ��¢�ý�y ï ¤|��{:¸Ç²1Æ�º�Ào&$y5~ �:9 � Ä(5.1)

With ��yw���£¢���{7¸;²,ÆAº�À�&5y5~ , the squaring of the expression in (5.1) gives�d� $ �£¢�¤|ý �y ��y|Ä(5.2)

Then, the largest of the two positive solutions of (5.2), called ��y , can be expressed as the
convergent expression� y �£¢�Ä � � ß�� Þ 	M� �5Ä ¢�÷ Þ ¢®� Þ� ² �5Ä ����÷�	 Þ ß� � ��� Ì ¸� � Í � � À`�rÏ Ð¦Ä(5.3)

From (5.2) and � y �S�£¢���{:¸Ç²1Æ�º�Ào& y ~ , it can then be verified that& y � Æ�º�À ·|�h� ¸Ç² ��y¢��2� � ¸�ÄSø�� Þ � � øï � � ��ÄS¢
	®��ø®ø;	� �I9 � ���ÔÌ ¸� �I9 � Í � � ÀJ�ÜÏ Ð¦�(5.4)

which was stated in (2.5). Then, improving slightly on the discussion in [2, Section 3], it
follows that, for any � with &ëy-�Ã�è��¢�¤Ü²�&$y , there is a unique positive ½Vy|{»��~l� ¸ such
that ½�ym{¨��~ �V¾ � is a point on /³òy . Thus, having annexed the circular arc �V}+� ��¾ � ��²*&$y � � ��,&5yë� to form the curve /³�y , then /³�y is a simple closed curve in â which is star-shaped with
respect to }è�±� , giving part i) of Proposition 2.1. Part ii) of Proposition 2.1 then follows
from equations (3.12) and (3.13) of [2].

It can be verified from (5.4) and (2.7) that J � {O& � ~�� Þ Ä �\¢®¢ � ¢®¢ radians, and that J?y|{C&5y5~
is strictly decreasing in � to ¤ � ¢¡��¸�Ä ÷\ø�� ø � ö , as �ÜÏ Ð . Thus,J y {C& y ~=�å¢�¤r�£ö�ÄS¢
	 ß ¸�	�÷�� for each �èçà¸®�(5.5)

from which part iii) of Proposition 2.1 follows.
Next, for any fixed �Ýç�¸ , it was stated in [2, p. 118] that J y {»��~ is a strictly increasing

function of � on the interval ��Æ�º�À ·m� � y · �y�� ��¢�¤g²1Æ�º�À ·|� � y · �y1��� , where the end-points of this
interval come from the definition of the curve ³ y in (2.2). Recalling that the curve /³ y of (2.4)
is just an extension of the curve ³ y to the boundary of â , the proof from [2] similarly shows
that J y {»��~ is a strictly increasing function of � on the longer interval

ê & y �.¢�¤ ²=& y î , where& y is the largest number such that � ¾#"�$ is a point of /³ y , and this gives iv) of Proposition 2.1.
Finally, the proof of v) of Proposition 2.1 again comes directly from [2, p. 118], com-

pleting the proof. �
Proof of Proposition 2.2. With Proposition 2.1, assume that &$y � � � � ¤ , and let}+� ½zy|{»� � ~ �V¾ � 6 be the associated unique point of /³òy , i.e.,þþþþþ } � } � ��· � � yý�y ï ¢�¤|��{7¸Ç²,}N~ þþþþþ �v¸®�

which means solving the following equation for ½�y|{¨� � ~ :½ y {»� � ~ � ½ y {»� � ~ � �f·�� $ F � 6 H ���:� � 6 � yý�y ï ¢�¤|�l��¸Ç²-¢�½zy|{»� � ~eÆ�º�Àe� � �Ý½ �y {»� � ~f� �:9 � �Ã¸®Ä(5.6)

Then from (2.7), compute J y {»� � ~ , as well as
ZTZ J y {¨� � ~ � ¢�¤ ]:] . This latter number then esti-

mates the number of zeros of x y {»�m}N~ in the sector � � �´�^� � , and, as x y {¨�m}\~ , with positive
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coefficients, has no zeros on the positive real axis, the even number ¢ ZTZ J¡y|{»� � ~ � ¢�¤ ]T] esti-
mates the total number of zeros of xVy|{»�m}N~ in the symmetric sector ²Ç� � � � � � � . Thus,�,²å¢ ZTZ J y {»� � ~ � ¢�¤ ]T] estimates the total number of zeros of x y {¨�m}\~ in the complementary
symmetric sector

ê � � �.¢�¤ ²1� � î , which is stated in (2.12). �
This leads us to the
Proof of Proposition 2.3. From (2.12) and (1.5), we have thatÅ ª À	Æ y {»� � ��¢�¤w²è� � ~�� �w²-¢ ZTZ J y {»� � ~¢�¤ ]T] ²1�¡Ì�° �X² ° �¢�¤ Í Ä(5.7)

Since ��� ��¢�¤/²´� � , it follows from (1.3) and (1.4) that ½ ¯ {¨����~�� ½ ¯ {¨� � ~ and ° � �£¢�¤/² ° � .
Thus, ° �X² ° �¢�¤ �Ã¸Ç²�° �¤ . Substituting this in (5.7) givesÅ ª À	Æ y {»� � �.¢�¤w²1� � ~�� � ° �¤ ²-¢ Z:Z J y {¨� � ~¢�¤ ]:] Ä(5.8)

Next, we can rewrite (2.7) asJ y {»� � ~��å� ê � � ²è½ ¯ {»� � ~�À ªÁ � � î\� � � � Ù � Á ·|� Ì ½�y|{¨� � ~eÀ ª«Á � �¸Ç²1½ y {»� � ~�ÆAº�À�� � Í � �/À ªÁ � � {»½ ¯ {»� � ~ì²è½ y {»� � ~:~&�
which from (1.4) givesJ�y|{»� � ~��¦� ° � �-� � � Ù � Á ·|� Ì ½�y|{¨� � ~eÀ ªÁ � �¸Ç²è½ y {»� � ~eÆAº\Àe� � Í �Ý�?À ªÁ � � {H½z¯g{¨� � ~Õ²1½�y|{¨� � ~	~&�
or equivalently,� ° � �WJ�y|{»� � ~C²è� � ² Ù � Á ·|� Ì ½ y {¨� � ~eÀ ª«Á � �¸Ç²è½ y {»� � ~�ÆAº�À�� � Í ²è�/À ª«Á � � {H½z¯g{¨� � ~Õ²1½�y|{¨� � ~:~|Ä(5.9)

Substituting the above expression for � ° � � ¤ in (5.8) then givesÅ ª À.Æ y {»� � �.¢�¤ ²1� � ~�� 0 J�y|{»� � ~¤ ²,¢ ZTZ J�y|{»� � ~¢�¤ ]T] 4² 0 � �¤ � ¸¤ Ù � Á ·|� Ì ½�yJ{»� � ~eÀ ªÁ � �¸Ç²è½ y {»� � ~eÆAº\Àe� � Í 4� 0 �/À ªÁ � �¤ ê ½zym{»� � ~C²è½V¯r{»� � ~9î 4 �(5.10)

which gives the desired result of (2.16) of Proposition 2.3. �
As previously remarked, the terms in the three braces of (5.10) are all positive. Moreover,

the first term in brackets satisfies, from the definition in (2.10), the inequalities of (2.17), for
any �èçà¸ .

We next turn to the
Proof of Proposition 2.4. Given any fixed � � with ���@� � � ¤ , the quantity in the braces

of (2.18) satisfies �/À ªÁ � �¤ ê ½ y {»� � ~C²è½ ¯ {»� � ~9î�k^��� ¹»º �ì� Á\Ú �1çà¸®�(5.11)

since ½ y {»� � ~�k@½ ¯ {»� � ~ for any �1ç£¸ . Next, set� y {¨� � ~=��� �/À ª«Á � �¤ ê ½ y {¨� � ~Õ²1½ ¯ {¨� � ~ î9Ä(5.12)
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It follows from (5.6) that½�ym{¨� � ~ ( ½�ym{¨� � ~ � �f·�� $GF � 6 H ���I� � 6 - y � ý�y ï ¢�¤|� ( ¸Ç²-¢�½zy|{»� � ~eÆAº\Àe� � �-½ �y {»� � ~ - �T9 � �g ª ÙIi ½ ¯ {»� � ~ � �f·�� õ F � 6 H ���:� � 6 � ¸�Ä(5.13)

Setting ½ y {¨� � ~=�S�¦½ ¯ {»� � ~��=� y {¨� � ~A�(5.14)

so that ��y|{¨� � ~ k � for all �1ç£¸ , then the first equation of (5.13) can be expressed asÌ|¸�� � y {¨� � ~½V¯r{»� � ~�Í 0òÌm¸�� � y {¨� � ~½V¯r{»� � ~�Í � · � $GF � 6 H ���:� � 6 4 y �ý�y ï ¢�¤|� ( ¸Ç²-¢�½ y {»� � ~eÆ�º�Àe� � �Ý½ �y {»� � ~ - �:9 �½ ¯ {»� � ~ Ä(5.15)

On taking logarithms and dividing by � , we have© º � Ì|¸�� � y {»� � ~½z¯g{¨� � ~�Í ²3� y {¨� � ~eÆ�º�Àe� � �
© º � {o¢�¤|�J~¢�� � © º g Ø � º � Å Ø � Ù.Ø � ¬ À ªÁ �CÄ(5.16)

Hence, for � large, we see that �zy|{»� � ~ is small and positive, so that© º � Ì ¸�� � y {»� � ~½ ¯ {¨� � ~®Í � � y {»� � ~½ ¯ {¨� � ~ � © º g Ø � º � Å Ø � Ù.Ø � ¬ À�Ä
This gives from (5.16) that� y {»� � ~ 0 ¸½V¯r{»� � ~ ²1Æ�º�Àe� � 4 �

© º � {H¢�¤|�J~¢�� � © º g Ø � º � Å Ø � Ù	Ø � ¬ À ªÁ �C�
which we can write as��y|{¨� � ~�Ò © º � {o¢�¤|�J~¢�� Ì ½ ¯ {»� � ~¸Ç²1½ ¯ {»� � ~eÆ�º�Àe� � Í � � À`�rÏ Ð¦Ä(5.17)

Thus, from (5.12) and (5.14),� y|{¨� � ~�Ò © º � {o¢�¤|�J~¢�¤ Ì ½z¯r{¨� � ~eÀ ª«Á � �¸Ç²1½ ¯ {»� � ~eÆ�º�Àe� � Í � � À`�gÏÑÐ¦�(5.18)

so that
� y {»� � ~ is unbounded as �ÜÏ Ð . �

We remark that for � very large, the accuracy of the approximation of (5.18) is also very
large. We estimate that the result of (2.21), for ���ä¸�� �:� , is accurate to over 	®� decimal
digits!

Proof of Theorem 2.5. This is an easy consequence of Propositions 2.3 and 2.4. The
first term in braces of (5.10) always lies in the interval {¨����¢Vî , from (2.17). Next, the negative
second term in (5.10), for �ò�^� � � ¤ , clearly always lies in the interval

ê ² �� �.��î , since � � � ¤ ,
by hypothesis, lies in {¨�5��¸V~ , and, because the argument of the next term in turn is always
positive, then this term can be no more than

�� . Hence, as the third term in braces of (2.16)
tends to �/Ð , as �ÜÏ Ð , then (2.19) of Theorem 2.5 follows. �



ETNA
Kent State University 

http://etna.math.kent.edu

140 R. S. VARGA, A. J. CARPENTER, AND B. W. LEWIS

Proof of Theorem 3.1. Given any � � with � � � � � ¤ , assume that � � � ¢�¤-²å� � ,
so that the sector ��� 6 � � 8 of (1.1) is symmetric about the real axis. To estimate the number
of zeros of x y {»�m}N~ in � � 6 � � 8 , we use the fact that the numbers ��P} �z� y � y �A�`� ��� � , are, from
(2.9), close to the actual zeros �V} �z� y � y �f�ì� of x y {»�m}N~ . In particular, consider the unique points� P} �z� yE�1P½ �z� y �V¾ R�:S<U $ � y �f�`� of /³�y , for which (cf. (2.8))J y { P� �z� y ~;���¦¢�¤ � � ¹»º �C� ©© ¸ � � � �C�(5.19)

so that, from (2.6), P} �z� y|{�P} �z� y � �f· R� S<U $ ~ yý y ï ¢�¤|��{:¸Ç²�P} �z� y ~ ��¸�Ä(5.20)

Then, in place of the � points
� P} �z� y ��P½ �V� y �V¾ R�:S<U $ � y �f�`� , we consider the following � uniformly

spaced (in angle) points, defined as¶;PÛ �V� y ¶®�Ã¸®� with
���.� PÛ �z� y � ¢�¤ ���� ¸ � for all ¸ � � � �CÄ(5.21)

We remark that asking if the approximate zero P} �z� y of xzy|{»�m}N~ is in the sector ��� 6 � � 8 is equiv-
alent to asking if PÛ �z� y of (5.20) satisfiesJ�y|{¨� � ~���£¸ �å���.� PÛ �z� y � ¢�¤ ² J�y|{»� � ~���¦¸ Ä(5.22)

We further remark that, as PÛ �V� y can be expressed asPÛ �z� yE��P} �z� y � �f· R� S<U $Y� � R� S<U $ ·|�ý y ï ¢�¤|��{:¸Ç²�P} �z� y ~� �T9 F y� � H �
we directly see, on letting � Ï Ð , how the Szegő curve ³ ¯ of (1.3) plays a major role in
the result of (1.2). We also show, in Figure 5.1, the numbers �*PÛ �z� �T� � �T��A�`� from (5.21).

Next, we order the approximate zeros ��P} �z� y � y �f�ì� of x y {»�m}N~ by their increasing argu-
ments, i.e., ��� �®�	� P} �f� y � ���.� P}V� � y ��������� ���.� P} y � y �å¢�¤CÄ(5.23)

The “fanning out” of the exact zeros of x y {¨�m}\~ , above and below the real axis as � increases,
as can be seen in more detail in the Interactive Supplement, implies that, in the closed upper
half-plane, ���.� P} �V� y k ���.� P} �z� y
� � � for all ¸ � � � ���¦¸¢ �(5.24)

and that, in the open lower half-plane, we have the reverse:���.� P} �z� y � �®�	� P} �z� y� � � for all
��� ¸¢ � � � �CÄ(5.25)

As the nonreal zeros of the real polynomial x y {»�m}N~ occur in conjugate complex pairs, it is
sufficient to consider the motion (with respect to � ) of the zeros, only in the upper half-plane
of (5.24). Now, as the approximate zeros ��P} �V� y � y �f�`� of x y {¨�m}\~ , were derived (cf. (5.24))
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FIG. 5.1.
!¡ ¢ ��" %\£ # %\£���|% as ¤ ’s and the zeros of � %\£ 
\@T¥f��� as ¦ ’s.

as specific points P} �z� y �§P½ �z� y �z¾ R�TS¨U $ of the curve /³ y , then the following analog of (5.24)
necessarily holds, i.e., from (5.21),���.� PÛ �z� yE� ¢�¤ ��©�¦¸ k ¢�¤ ����@¢ � ���.� PÛ �z� y
� � � for all ¸ � � � ���¦¸¢ Ä(5.26)

In addition, we see from (2.1) thatP} �V� y � ��� 6 � � 8 if and only if
J y {»� � ~���¦¸ � ���.� PÛ �z� y � J y {¨���z~�©�¦¸ �(5.27)

or, equivalently from (5.21),P} �z� y �r� � 6 � � 8 if and only if
J y {»� � ~���¦¸ � ¢�¤ ��©�¦¸ � J y {»���z~���¦¸ Ä(5.28)

We note, for � an odd positive integer, say �g��¢;ª�� ¸ , that from (5.21) we have���.� PÛ�« � ��� �I« � � � ¢�¤�{¬ª��¦¸z~¢;ª�� ¢ �¦¤CÄ(5.29)

This means that xz�I« � � {:{o¢;ª��¦¸z~:}\~ , which has exactly one (negative) real zero, corresponds
to the point PÛ�« � �f� �I« � � , which is also real and negative, from (5.21).

Next, suppose that P} �V� y is exactly on the boundary of the symmetric sector � � 6 � � 8 in the
upper half-plane, i.e.,�®�	� PÛ �V� y´� ¢�¤ ���� ¸ � J y {»� � ~���¦¸ � where ¸ � � � ���¦¸¢ Ä(5.30)
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If
�

satisfies ¸ � � � y ·m�� , then���.� PÛ �z� y � �®�	� PÛ � � �f� y � ¢�¤�{ � �¦¸z~���¦¸ � ¤C�(5.31)

which implies that P} � � �f� y is also in the upper half-plane of � � 6 � � 8 . It is then evident, from
(5.31), that the numbers �MPÛ � � �f� «l� «® y are all in the upper half-plane, with strictly decreasing
arguments, as ª increases. (This is the analog, in the Û -plane, of the “fanning out” of the
zeros of x y {»�m}N~ , in the upper half-plane.)

Next, what we seek, from this fanning out of the numbers �MPÛ � � ��� « � «® y , is the smallest
nonnegative integer

u
so that P} � � �f� y&�GP} � � �f� y
� � ����������P} � � �f� y
��¯ are all in the upper half-plane

of ��� 6 � � 8 , while P} � � �f� y
��¯�� � is out of this sector. This implies from (5.30) that¢�¤�{ � � ¸V~��� u � ¸ ç Ì J y {¨� � ~��� ¸ � ¢�¤ ����¦¸ Í k ¢�¤�{ � �¦¸z~��� u � ¢ �(5.32)

so that u � ���¦¸� � u �¦¸®Ä(5.33)

From (5.30), we can write these inequalities asu � ¢�¤J y {»� � ~ � {¨���¦¸z~ � u � ¸�Ä(5.34)

Next, it follows from (2.7) and (1.4) that©ª«¬y®¡¯ J�yë{¨� � ~���¦¸ �¦� � ²è½V¯g{»� � ~eÀ ªÁ � � �l� ° � �(5.35)

where ½ ¯ {¨� � ~ lies on ³ ¯ . Then, as (5.30) implies that���¦¸� � ¢�¤J y {¨� � ~ � {»�©� ¸V~ �(5.36)

we see, assuming that � is large, from (5.35) and (2.7) thatJ�y|{¨� � ~��� ¸±° ° � Ä
Moreover, (5.36), coupled with the last inequality of (5.33), gives approximately thatu � ¢�¤° � � u � ¸�Ä(5.37)

Thus, (5.37) says that ¢�¤ � ° � is a good approximation of the positive
u

in (5.33), when �
is large, but, as the Interactive Supplement shows, it can also be quite good for small � as
well. Furthermore, this implies that the maximum nonnegative integer

u
such that P} � � �f� y
��¯�²�� � 6 � � 8 when P} �z� y � � � , is given approximately by¸�� w ¢�¤° �|y �(5.38)

which is independent of � , and this is the desired result of (3.2) of Theorem 3.1. �
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We return to the assumption that P} �z� y is exactly on the boundary of �á� 6 � � 8 in the upper
half-plane. Suppose now that P} �z� y is outside the sector ��� 6 � � 8 , while P} � � �f� y is in ��� 6 � � 8 . This
gives the inequalities ���.� PÛ � � �f� y k J�y&{¨� � ~�©� ¸ k ���.� PÛ �V� y Ä
Then on seeking the smallest nonnegative integer ³ such that P} � � ��� y��´ is in ��� 6 � � 8 , whileP} � � �f� y
��´�� � is not, it similarly follows that ³ � u , where

u
satisfies (5.33).

Proof of Theorem 4.1. The results of (4.1) - (4.3) show in these cases how Å ª À	Æ y {»� � �:���z~
can be expressed in terms of discrepancies for symmetric sectors. In particular, for any � �
with ��� � � �@¤ , with ���?���£¢�¤ ²1� � , it follows from Propositions 2.3 and 2.4 thatÅ ª À	Æ y {»� � �	����~�Ò © º � {o¢�¤|�J~¢�¤ p ½ ¯ {»� � ~�À ªÁ � �¸Ç²è½V¯r{»� � ~eÆAº\Àe� � q � � À`�rÏ Ð¦Ä(5.39)

But, it can be verified that the function½z¯Ü{»��~eÀ ªÁ �¸Ç²è½ ¯ {»�\~eÆAº\À�� �gÅ Ø�µ$Á�Ø Å+º Á {H����¢�¤J~f�(5.40)

is strictly decreasing, from +1 to -1, in � , so that, from (4.1) - (4.3), we see, in all cases, thatÅ ª À	Æ y {»� � �	�V�V~�Ò£Ó © º � � , where Ó¶kå� is dependent only on � � and ��� . �
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