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Abstract. This manuscript focuses on the development of a parallel QR-factorization of structured rank ma-
trices, which can then be used for solving systems of equations. First, we will prove the existence of two types of
Givens transformations, named rank decreasing and rank expanding Givens transformations. Combining these two
types of Givens transformations leads to different patterns for annihilating the lower triangular part of structured
rank matrices. How to obtain different annihilation patterns, for computing the upper triangular factor R, such as
the � and � pattern will be investigated. Another pattern, namely the � -pattern, will be used for computing the
QR-factorization in a parallel way.

As an example of such a parallel QR-factorization, we will implement it for a quasiseparable matrix. This
factorization can be run on 2 processors, with one step of intermediate communication in which one row needs to be
sent from one processor to the other and back. Another example, showing how to deduce a parallel QR-factorization
for a more general rank structure will also be discussed.

Numerical experiments are included for demonstrating the accuracy and speed of this parallel algorithm w.r.t. the
existing factorization of quasiseparable matrices. Also some numerical experiments on solving systems of equations
using this approach will be given.
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1. Introduction. Due to the interest nowadays in structured rank matrices, the knowl-
edge on this class of matrices is growing rapidly. A structured rank matrix is characterized
by the fact that specific parts taken out of the matrix satisfy low rank properties, such as for
example quasiseparable, semiseparable, unitary Hessenberg matrices and so forth. Various
accurate and fast algorithms are already known for computing for example the QR- and URV -
factorization [3, 4, 6, 11, 17], the eigenvalue decomposition [2, 5, 12, 19], the singular value
decomposition of certain types of structured rank matrices [18].

In this manuscript we will focus on the QR-factorization of structured rank matrices.
Currently, all the QR-factorizations of structured rank matrices consist of two main steps. A
first step consists of removing the low rank part in the lower triangular part of the matrix.
This results in a generalized Hessenberg matrix, having several subdiagonals different from
zero. The second part consists of removing the remaining subdiagonals in order to obtain
an upper triangular matrix in this fashion. In the terminology of this paper this means that
first a sequence of rank decreasing Givens transformations is performed, namely the low
rank part is removed, and this is done by reducing consecutively the rank of this part to
zero. The second part consists of a sequence of rank expanding Givens transformations. The�
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generalized Hessenberg matrix has a zero block in the lower left corner and by performing
these rank expanding Givens transformations this block of zero rank expands until it reaches
the diagonal and the matrix becomes upper triangular.

In this paper we will focus on two specific issues. First we will prove the existence of
rank expanding Givens transformations in a general context and secondly we will investigate
the possibility of interchanging the mutual position of rank expanding and rank decreasing
Givens transformations, by means of a shift through lemma.

Interchanging the position of Givens transformations will lead to different patterns, to
annihilate the lower triangular structure of matrices. For example one can now first perform
a sequence of rank expanding Givens transformations, followed by a sequence of rank de-
creasing Givens transformations. This order is different than the traditional one, but leads to
a similar factorization.

In this manuscript we will first focus attention to the most simple case, namely the case
of quasiseparable matrices. Further on in the text also indications and examples are given
to show the applicability of these techniques to higher order quasiseparable matrices. For
the class of quasiseparable matrices one sequence of rank decreasing Givens transforma-
tions and one sequence of rank expanding Givens transformations is needed to compute the
QR-factorization. Due to our knowledge on the different patterns, we know that we can in-
terchange the order of these sequences. Moreover, we can construct a special pattern (called
an � -pattern), such that we start on top of the matrix with a descending sequence of rank
expanding Givens transformations, and on the bottom with an upgoing rank decreasing se-
quence Givens transformations. When these two sequences of Givens transformations meet
each other in the middle of the matrix, we have to perform a specific Givens transforma-
tion, after which we have again two sequences of independent Givens transformations. One
sequence goes back to the top and the other one goes back to the bottom. After these trans-
formations, we have computed the QR-factorization.

This � -pattern was firstly discussed in [7], by Delvaux and Van Barel. Also the graphical
representation, leading to the interpretation in terms of � and � -shaped patterns of annihila-
tion can be found in their manuscript.

This � -pattern for quasiseparable matrices is suitable for implementation on a parallel
computer. Divide the matrix into two parts. The first n1 rows are sent to a first processor
and the last n2 	 n 
 n1 rows are sent to another processor. Both processors perform their
type of Givens transformation, either a descending or an upgoing sequence of Givens trans-
formations. Then one step of communication is necessary and both processors can finalize
the process. Finally the first processor has the top n1 rows of the factor R and the second
processor has the last n2 rows of the factor R of the QR-factorization.

The manuscript is organized as follows. In the second section we will briefly recapitulate
some results on structured rank matrices and on the computation of the QR-factorization for
quasiseparable matrices. In Section 3 we introduce the two types of Givens transformations
we will be working with. Namely the rank expanding Givens and the rank decreasing Givens
transformations. These two types of transformations form the basis for the development of
the parallel algorithm. Section 4 discusses some lemmas which give us some flexibility for
working with Givens transformations. Based on these possibilities we will be able to change
the order of consecutive Givens transformations leading to different patterns for annihilating
when computing the QR-factorization. In Section 5 we will discuss the possibilities for par-
allelizing the previously discussed schemes. In Section 6 possibilities for developing parallel
algorithms for higher order quasiseparable matrices matrices will be presented. The final sec-
tion of this manuscript contains numerical results related to the QR-factorization and also to
solving systems of equations involving a parallel QR-algorithm. Timings as well as results
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on the accuracy will be presented.

2. Definitions and preliminary results. The main focus of this paper is the develop-
ment of a parallel QR-factorization for quasiseparable matrices. Let us briefly introduce what
is meant with a quasiseparable matrix, and how we can compute the QR-factorization of this
quasiseparable matrix. A first definition of quasiseparable matrices, as well as an inversion
method for them, can be found in [10]; see also [9].

DEFINITION 2.1. A matrix A �
� n � n is named a (lower) quasiseparable matrix (of
quasiseparability rank 1) if any submatrix taken out of the strictly lower triangular part has
rank at most 1. More precisely this means that for every i 	 2 ��������� n1

rankA � i : n � 1 : i 
 1 ��� 1 �
The matrices considered in this manuscript only have structural constraints posed on the

lower triangular part of the matrix. Quite often these matrices are also referred to as lower
quasiseparable matrices.

A structured rank matrix in general is a matrix for which certain blocks in the matrix
satisfy specific rank constraints. Examples of structured rank matrices are semiseparable
matrices, band matrices, Hessenberg matrices, unitary Hessenberg matrices, semiseparable
plus band matrices, etc. In this manuscript we will mainly focus on the development of
a parallel QR-algorithm for quasiseparable matrices of quasiseparability rank one. In the
section before the numerical experiments we will briefly indicate how the presented results
are also applicable onto higher order quasiseparable matrices.

Let us briefly repeat the traditional QR-factorization of a quasiseparable matrix. Let us
depict our quasiseparable matrix as follows:

A 	 ������
� � � � �� � � � �� � � � �� � � � �� � � � �

������ �
The arbitrary elements in the matrix are denoted by � . The elements satisfying a spe-

cific structure are denoted by
�

. Performing now on this matrix a first sequence of Givens
transformations from bottom to top, one can annihilate the complete part of quasiseparability
rank 1, denoted by the elements

�
. Combining all these Givens transformations into one

orthogonal matrix QT
1 this gives us the following result:

QT
1 A 	 ������

� � � � �� � � � �
0 � � � �
0 0 � � �
0 0 0 � �

� ���� �
Hence we obtain a Hessenberg matrix, which can be transformed into an upper triangular
matrix, by performing a sequence of descending Givens transformations, removing thereby
the subdiagonal. Combining these Givens transformations into the orthogonal matrix QT

2

1We use MATLAB-style notation.
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gives us

QT
2 QT

1 A 	 ������
� � � � �
0 � � � �
0 0 � � �
0 0 0 � �
0 0 0 0 �

������ �
This leads in a simple manner to the QR-decomposition of the matrix Q in which we first
perform an upgoing sequence of Givens transformations (removing the low rank part), fol-
lowed by a descending sequence of Givens transformations (expanding the part of rank zero).
All the Givens transformations used in this factorization are zero creating Givens transforma-
tions. There exist however also other types of Givens transformations, which we will need
for the parallel QR-factorization.

3. Types of Givens transformations. Givens transformations are common tools for
creating zeros in matrices [1, 13]. But Givens transformations can also be used for creating
rank 1 blocks in matrices. In this section we will prove the existence of a rank expanding
Givens transformation, creating rank 1 blocks in matrices.

3.1. The Givens transformation. In this subsection, we will propose an analytic way
of computing a Givens transformation for expanding the rank structure. We will prove the
existence of a Givens transformation, which will be used afterwards in the next subsection for
developing a sequence of descending rank expanding Givens transformations. In the example
following the theorem, we will use the reduction of a Hessenberg matrix to upper triangular
form as an example of a descending rank expanding sequence of Givens transformations.

THEOREM 3.1 (Descending rank expanding Givens transformation). Suppose the fol-
lowing 2 � 2 matrix is given

A 	"! a b
c d # �

Then there exists a Givens transformation such that the second row of the matrix GT A and
the given row $ e � f % are linearly dependent. The value t in the Givens transformation G as
in (3.1), is defined as

t 	 a f 
 be
c f 
 de

�
under the assumption that c f 
 de &	 0, otherwise one can simple take G 	 I2.

Proof. Suppose we have the matrix A and the Givens transformation G as follows:

(3.1) A 	 ! a b
c d # and G 	 1'

1 ( t2 ! t 
 1
1 t # �

Assume $ c � d % and $ e � f % to be linearly independent, otherwise we could have taken the
Givens transformation equal to the identity matrix.

Let us compute the product GT A:

1'
1 ( t2 ! t 1
 1 t # ! a b

c d # 	 1'
1 ( t2 ! at ( c bt ( d
 a ( ct 
 b ( dt # �

The second row being dependent of $ e � f % leads to the following relation:

f �)
 a ( ct �*
 e ��
 b ( dt � 	 0 �
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Rewriting this equation towards t gives us the following well-defined equation:

t 	 a f 
 be
c f 
 de

�
This equation is well defined, as we assumed $ c � d % to be independent of $ e � f % .

This type of Givens transformation was already used before in [16, 19]. Let us show that
the rank expanding Givens transformations as we computed them here are a generalization
of the transformations used for bringing an upper Hessenberg matrix back to upper triangular
form.

EXAMPLE 3.2. Suppose we have a Hessenberg matrix H and we want to reduce it
to upper triangular form. Instead of using the standard Givens transformations, eliminating
the subdiagonal elements, we will use here the Givens transformations from Theorem 3.1 to
expand the zero rank below the subdiagonal. This is done by a sequence of Givens transfor-
mations going from top to bottom. Suppose we have, for example, the following Hessenberg
matrix:

H 	 ���� 1 + 1,
6

3,
3

1 3,
6

+ 1,
3

0 2
,

2,
3

5,
3

���� �
Computing, the first Givens transformation applied on row 1 and 2 in order to make part of
the transformed second row dependent of$ e � f % 	.- 0 � 2 ' 2'

3 / �
gives us the following transformation (use the same notation as in Theorem 3.1):

t 	 a f 
 be
c f 
 de 	 a

c 	 1 �
Hence our Givens transformation, will be of the following form:

ĞT
1 	 1'

2
! 1 1
 1 1 # �

Applying the transformation GT
1 (the 2 � 2 Givens transformation ĞT

1 is embedded into a
3 � 3 Givens transformation GT

1 ) onto the matrix H annihilates the first subdiagonal element,
thereby expanding the zero rank structure below the subdiagonal. One can easily continue
this procedure and conclude that the rank expanding Givens transformations lift up the zero
structure and hence create an upper triangular matrix. In this example, we can clearly see that
a zero creating Givens transformation, can also be at the same time a rank expanding Givens
transformation.

For the implementation of this specific Givens transformation, we adapted the standard
implementation of a zero creating Givens transformation. We obtained the following code in
MATLAB style notation by changing the one from [13]. The matrix A corresponds to the two
by two matrix the Givens transformation is acting on and the vector V contains the elements$ e � f % . The output consists of the cosine c and the sine s of the transformation, as well as the
transformed matrix A.
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function [c,s,A] = Givensexp(A,V);

x=-(A(1,1)*V(2)-A(1,2)*V(1));
y=V(1)*A(2,2)-A(2,1)*V(2);

if (x == 0)
% In case this is zero, we obtain immediately G=I
c = 1; s = 0;

else
if (abs(x) >= abs(y))

t = y/x; r = sqrt(1 + t*t);
c = 1/r; s = t*c; r = x*r;

else
t = x/y; r = sqrt(1 + t*t);
s = 1/r; c = t*s;

end
A(1:2,:)=[c,s;-conj(s),c]*A(1:2,:);

end
We remark that in the presented code the criterion x==0, can be made relatively depending
on the machine precision.

3.2. A sequence of these transformations. In the previous subsection already an ex-
ample of a sequence of descending rank expanding transformations was presented.

In general, when having a rank 1 part in a matrix one is always able to lift up this part,
such that it includes at most the main diagonal. For example, start from the following matrix.
The elements

�
denote the elements belonging to the rank one part. After performing a

sequence of descending rank expanding Givens transformations, one obtains the matrix on
the right (see the next paragraph for more details),

(3.2)

������
� � � � �� � � � �� � � � �� � � � �� � � � �

������ resulting in

������
� � � � �� � � � �� � � � �� � � � �� � � � �

������ �
REMARK 3.3. The expansion of a rank 1 structure never includes any of the superdiago-

nals, unless the matrix is singular. This remark can be verified easily as otherwise the global
matrix rank otherwise changes. We will come back to this remark later on in the section on
more general structures.

Let us present in more detail how to lift up the rank structure in the strictly lower tri-
angular part. The representation used for the quasiseparable matrix does not play any role,
only few elements of the structured rank part need to be computed. The expanding Givens
transformation can easily be performed for either the Givens-weight, the quasiseparable or
the generator representation.

Starting with the left matrix in (3.2), the upper left 3 � 2 submatrix is marked,������
� � � � �� � � � �� � � � �� � � � �� � � � �

������ �



ETNA
Kent State University 

http://etna.math.kent.edu

150 R. VANDEBRIL, M. VAN BAREL, AND N. MASTRONARDI

Within the marked 3 � 2 matrix, the upper 2 � 2 matrix of coincides with the matrix A from
Theorem 3.1 and the bottom row coincides with $ e � f % . The idea is now to perform the Givens
transformation computed via Theorem 3.1 onto row 1 and 2 of the matrix such that the fol-
lowing result is obtained (without loss of structure one can include the upper left element in
the low rank structure),������

� � � � �� � � � �� � � � �� � � � �� � � � �
������ 	

������
� � � � �� � � � �� � � � �� � � � �� � � � �

������ �
In the next figure (left) again a 3 � 2 submatrix is marked. (Note also that without loss of
generality one can include the element in the lower right corner into the low rank structure.)
Again one can perform a rank expanding Givens transformation, acting on rows 2 and 3. As
a result we obtain the right matrix structure,������

� � � � �� � � � �� � � � �� � � � �� � � � �
������ transforms into

������
� � � � �� � � � �� � � � �� � � � �� � � � �

������ �
A final transformation acting on rows 4 and 5 is needed to obtain the desired structure.

REMARK 3.4. The graphical representation describes which elements of the matrix is
necessary in order to compute the rank expanding Givens transformation. When performing
the transformation onto the quasiseparable matrix, one needs to update the representation.
In Section 7 more details on the actual implementation, using a specific representation are
given.

For the development of the parallel QR-algorithm for quasiseparable matrices, which
is the main focus of this manuscript, the expansion of the rank 1 part as shown in the figure
above is sufficient. For the development of a parallel QR-algorithm for higher order structured
rank matrices (such as quasiseparable matrices) one also needs to be able to lift up for example
parts of matrices of rank 2. This will be discussed briefly in a forthcoming section.

3.3. Rank decreasing sequence of transformations. A sequence of Givens transfor-
mations, removing a rank 1 structure in a matrix is called a sequence of rank decreasing
Givens transformations, simply because it reduces the rank from 1 to 0.

We will include one step of the process for completeness. Assume the matrix we are
working with to be of the form, ������

� � � � �� � � � �� � � � �� � � � �� � � � �
������ �

Applying a first Givens transformation on the bottom two rows, will completely annihilate
the bottom row, due to the connection in rank structure. We obtain������

� � � � �� � � � �� � � � �� � � � �� �
������ �
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An extra subdiagonal element is created in the process. After performing all Givens transfor-
mations the following Hessenberg structure is created:

resulting in

������
� � � � �� � � � �
0 � � � �
0 0 � � �
0 0 0 � �

������ �
Similarly as in the previous case we remark that the existence of such a sequence as

discussed here is sufficient for the development of the parallel QR-factorization for quasisep-
arable matrices. Further on in the text we will briefly reconsider other cases.

Let us now first discuss the traditional QR-factorization of a quasiseparable matrix, and
then we will discuss how we can change the considered annihilation pattern to obtain a dif-
ferent order in the Givens transformations.

4. Different annihilation patterns. To be able to design different patterns of annihila-
tion, and to characterize them, we introduce a new kind of notation. For example, to bring
a semiseparable matrix to upper triangular form, we use one sequence of Givens transfor-
mations from bottom to top. This means that for a 5 � 5 matrix the first applied Givens
transformation works on the last two rows, followed by a Givens transformation working on
row 3 and 4 and so on.

To depict graphically these Givens transformations, w.r.t. their order and the rows they
are acting on, we use the following figure:

Ê 0
Ë 120
Ì 130
Í 1 0
Î 1

4 3 2 1

The numbered circles on the vertical axis depict the rows of the matrix, to indicate on which
rows the Givens transformations will act. The bottom numbers represent in some sense a
time line to indicate in which order the Givens transformations are performed. The brackets
in the table represent graphically a Givens transformation acting on the rows in which the
arrows of the brackets are lying. Let us explain more in detail this scheme. First, a Givens
transformation is performed, acting on row 5 and row 4. Second, a Givens transformation is
performed acting on row 3 and row 4 and this process continues. So the scheme given above
just represents in a graphical way the orthogonal factor QT and a factorization of this matrix
in terms of Givens transformations.

Let us illustrate this graphical representation with a second example. Suppose we have a
quasiseparable matrix. To make this matrix upper triangular, we first perform a sequence of
Givens transformations from bottom to top to remove the low rank part of the quasiseparable
matrix. Second, we perform a sequence of Givens transformations from top to bottom to
remove the subdiagonal elements of the remaining Hessenberg matrix. This process was
already discussed before in the introduction. Graphically this is depicted as follows (involving



ETNA
Kent State University 

http://etna.math.kent.edu

152 R. VANDEBRIL, M. VAN BAREL, AND N. MASTRONARDI

seven Givens transformations acting on a 5 � 5 quasiseparable matrix):

Ê 0
Ë 0 1 0
Ì 0 1 1 0
Í 0 1 1 0
Î 1 1

7 6 5 4 3 2 1

The first four transformations clearly go from bottom to top, whereas the last four transfor-
mations go from top to bottom.

Using this notation, we will construct some types of different annihilation patterns.
Based on the sequences of Givens transformations as initially designed for bringing the ma-
trix to upper triangular form, it is interesting to remark that we can derive other patterns of
Givens transformations leading to the same QR-factorization. For some of the newly de-
signed patterns we will illustrate the effect of these new annihilation sequences on the matrix
on which they act.

4.1. Theorems connected to Givens transformations. In the next subsections, we
need to have more flexibility for working with Givens transformations. In order to do so,
we need two lemmas. The first lemma shows us that we can concatenate two Givens trans-
formations acting on the same rows. The second lemma shows us that, under some mild
conditions, we can rearrange the order of some Givens transformations.

LEMMA 4.1. Suppose two Givens transformations G1 and G2 are given by

G1 	 ! c1 
 s1
s1 c1 # and G2 	 ! c2 
 s2

s2 c2 # �
Then we have that G1G2 	 G3 is again a Givens transformation. We will call this the fusion
of Givens transformations in the remainder of the text.

The proof is trivial. In our graphical schemes, we will depict this as follows:

Ê 04 5 0
Ë 1 1

2 1
resulting in

Ê 0
Ë 1

1
�

The next lemma is slightly more complicated and changes the order of three Givens
transformations.

LEMMA 4.2 (Shift through lemma). Suppose three 3 � 3 Givens transformations G1 � G2
and G3 are given, such that the Givens transformations G1 and G3 act on the first two rows
of a matrix, and G2 acts on the second and third row (when applied on the left to a matrix).

Then we have that

G1G2G3 	 Ĝ1Ĝ2Ĝ3 �
where Ĝ1 and Ĝ3 work on the second and third row and Ĝ2, works on the first two rows.

Proof. The proof is straightforward, based on the factorization of a 3 � 3 orthogonal
matrix. Suppose we have an orthogonal matrix U . We will now depict a factorization of this
matrix U into two sequences of Givens transformations as described in the lemma.

The first factorization of this orthogonal matrix makes the matrix upper triangular in the
traditional way. The first Givens transformation ĜT

1 acts on row 2 and 3 of the matrix U ,
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creating thereby a zero in the lower-left position,

ĜT
1 U 	 �� � � �� � �

0 � � � �
The second Givens transformation acts on the first and second row to create a zero in the
second position of the first column,

ĜT
2 ĜT

1 U 	 �� � � �
0 � �
0 � � � �

Finally, the last transformation ĜT
3 creates the last zero to make the matrix of upper triangular

form,

ĜT
3 ĜT

2 ĜT
1 U 	 �� � � �

0 � �
0 0 � � �

Suppose we have chosen all Givens transformations in such a manner that the upper triangular
matrix has positive diagonal elements. Due to the fact that the resulting upper triangular ma-
trix is orthogonal it has to be the identity matrix. Hence, we have the following factorization
of the orthogonal matrix U ,

(4.1) U 	 Ĝ1Ĝ2Ĝ3 �
Let us consider now a different factorization of the orthogonal matrix U . Perform a first

Givens transformation to annihilate the upper-right element of the matrix U , where the Givens
transformation acts on the first and second row,

GT
1 U 	 �� � � 0� � �� � � � �

Similarly as above, one can continue to reduce the orthogonal matrix to lower triangular form
with positive diagonal elements. Hence one obtains a factorization of the following form:

(4.2) U 	 G1G2G3 �
Combining (4.1) and (4.2), leads to the desired result.
REMARK 4.3. Two remarks have to be made.6 We remark that in fact there is more to the proof than we mention here. The first

Givens transformation acting on the orthogonal matrix, reducing it to upper triangu-
lar form has also a specific effect on the upper triangular part. Looking in more detail
at the structure one can see that the first Givens transformation, creates a 2 � 2 rank
1 block in the upper right corner of the orthogonal matrix. We obtain the following
result after performing the first Givens transformation:

ĜT
1 U 	 �� � � �� � �

0 � � � �
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in which the
�

denote a rank 1 part in the matrix. Continuing now by performing
the second Givens transformation, we obtain

ĜT
2 ĜT

1 U 	 �� � 0 0
0 � �
0 � � � �

We clearly see that this transformation creates a lot of zeros, due to the original
rank 1 structure.6 In some sense one can consider the fusion of two Givens transformations as a special
case of the shift through lemma. Instead of directly applying the fusion, the reader
can put the identity Givens transformation in between these two transformations.
Then he can apply the shift through lemma. The final outcome will be identical to
applying directly the fusion of these two Givens transformations.

When the shift through lemma will be applied, thereby interchanging the order of Givens
transformations, we will indicate this changing by putting the 7 or 8 arrow in the scheme.
In a certain sense the arrow 8 indicates that the Givens transformation which can be found
on the left of this arrow can be dragged through the other two Givens transformations and
pops up in the first position acting on the top two rows. Graphically we denote this as

Ê 0
Ë 0 1 0
Ì 128 1

3 2 1

resulting in

Ê 0 0
Ë 1 0 1
Ì 1

3 2 1

�
and in the other direction this becomes

Ê 0 7 0
Ë 1 0 1
Ì 1

3 2 1

resulting in

Ê 0
Ë 0 1 0
Ì 1 1

3 2 1

�
We remark that, if we cannot place the 7 or 8 arrow at that specific position, then we

cannot apply the shift through lemma. The reader can verify that, for example in the following
graphical scheme, we cannot use the lemma.

Ê 0
Ë 0 1 0
Ì 13021
Í 1

3 2 1

To apply the shift through lemma, in some sense, we need to have some extra place to per-
form the action. Based on these operations we can interchange the order of the upgoing
and descending sequences of Givens transformations. Let us mention some of the different
patterns.

4.2. The 9 -pattern. The 9 -pattern for computing the QR-factorization of a structured
rank matrix is in fact the standard pattern as described in the introduction and used throughout
most of the papers; see, e.g., [11, 17]. First, we remove the rank structure by performing
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sequences of Givens transformations from bottom to top. This gives us in fact the following
sequences of Givens transformations (e.g. two in this case) : . Depending on the number of
subdiagonals in the resulting matrix, we need to perform some rank expanding sequences of
Givens transformations, from top to bottom ; (two in this case). Combining these Givens
transformations from both sequences gives us the following pattern ;<: , which we briefly call
the 9 -pattern.

Suppose, e.g., that we have a quasiseparable matrix of rank 1. Performing the Givens
transformations as described before, we get the following graphical representation of the
reduction:

Ê 0
Ë 03120
Ì 0 1 1 0
Í 0 1 1 0
Î 1 1

7 6 5 4 3 2 1

This is called a 9 -pattern.
The reader can observe that the top three Givens transformations admit the shift through

lemma. In this way we can drag the Givens transformation in position 5 through the Givens
transformations in position 4 and 3. Let us observe what kind of patterns we get in this case.

4.3. The � -pattern. We will graphically illustrate what happens if we apply the shift
through lemma as indicated in the previous section. Suppose we have the following graphical
reduction scheme for reducing our matrix to upper triangular form. For esthetical reasons in
the figures, we assume here, our matrix to be of size 6 � 6. First we apply the shift through
lemma at positions 6, 5, and 4.

Ê 0
Ë 0 1 0
Ì 031 8 120
Í 021 130
Î 0 1 1 0
Ï 1 1

9 8 7 6 5 4 3 2 1

= Ê 0 0
Ë 1 021
Ì 0 1 0
Í 0 1 1 0
Î 0 1 1 0
Ï 1 1

9 8 7 6 5 4 3 2 1

Rearranging slightly the Givens transformations from positions, we can again re-apply the
shift through lemma. We can change the order of some of the Givens transformations, in the
scheme above 7 and 6 (and 4 and 3), as they act on different rows and hence do not interfere
with each other.

Ê 0 0
Ë 1 0 1
Ì 0 1 0
Í 0 1 8 1 0
Î 031 120
Ï 1 1

9 8 7 6 5 4 3 2 1

= Ê 0 0
Ë 1 0 0 1
Ì 1 021
Í 0 1 0
Î 0 1 1 0
Ï 1 1

9 8 7 6 5 4 3 2 1
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Let us compress the above representation.

Ê 0 0
Ë 1 0 0 1
Ì 1 0 1
Í 0 1 0
Î 0 1 1 0
Ï 1 1

5 4 3 2 1

This shows us another pattern of performing the Givens transformations, namely the � -
pattern. Continuing to apply the shift through lemma gives us another pattern.

4.4. The � -pattern. Continuing this procedure now, by applying the shift through lemma
two more times, gives us the following graphical representation of a possible reduction of the
matrix to upper triangular form.

Ê 0 0
Ë 1 0 0 1
Ì 1 0 0 1
Í 1 0 0 1
Î 13021
Ï 1

9 8 7 6 5 4 3 2 1

This presents to us clearly the � -pattern for computing the QR-factorization. In case
there are more upgoing and descending sequences of Givens transformations, one can also
shift through all of the descending sequences. In fact this creates an incredible number of
possibilities, as shown in the next example.

EXAMPLE 4.4. Suppose we have a matrix brought to upper triangular form by per-
forming two upgoing sequences of Givens transformations and two descending sequences of
transformations (e.g., a quasiseparable matrix of quasiseparability rank 2). The following
incomplete list shows some possibilities of combinations of these sequences for making the
matrix upper triangular. We start with the 9 -pattern, and change continuously the order of the
involved transformations, to arrive at the � -pattern.6 The standard 9 -pattern giving us briefly the following sequences: ;<: .6 In the middle we can create one � -pattern: > .6 In the middle we can have one � -pattern: 9?9 .6 Combinations with � -patterns: �@9 or 9<� or ��� .6 Combinations following from the previous patterns: AB;CA and DB:CD .6 In the middle one can have one 9 -pattern: �<� .6 In the middle we can create another � -pattern: E .6 The � -pattern: :<; .
Clearly there are already numerous possibilities for 2 upgoing and 2 descending sequences.

In the following section we will take a look at the effect of the first sequence of Givens
transformations on the matrix in case we apply a � -pattern for computing the QR-factorization
of a structured rank matrix.

4.5. More on the Givens transformations in the � -pattern. We investigate this� -pattern via reverse engineering. Suppose we have a � -pattern for making a 5 � 5 lower
quasiseparable matrix upper triangular, assuming the matrix to be of quasiseparability rank
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1. We will now investigate what the effect of the first sequence of descending Givens trans-
formations on this matrix A needs to be. We have the following equation,

(4.3) ĜT
1 ĜT

2 ĜT
3 ĜT

4 GT
3 GT

2 GT
1 A 	 R �

where R is a 5 � 5 upper triangular matrix. Moreover, the first applied sequence of Givens
transformations GT

3 GT
2 GT

1 , works on the matrix A from top to bottom. More precisely GT
1

acts on row 1 and row 2, GT
2 acts on row 2 and 3 and so on. The sequence of transformations

ĜT
1 ĜT

2 ĜT
3 ĜT

4 works from bottom to top, where ĜT
4 acts on row 4 and 5, ĜT

3 acts on row 3
and 4, and so on. Rewriting (4.3) by bringing the upgoing sequence of transformations to the
right gives us

GT
3 GT

2 GT
1 A 	 Ĝ4Ĝ3Ĝ2Ĝ1R	 S �

Because the sequence of transformations applied on the matrix R goes from top to bottom,
we know that these transformations transform the matrix R into a matrix having a lower
triangular part of semiseparable form. Hence we have that the transformations from top to
bottom, namely GT

3 GT
2 GT

1 , lift up in some sense the strictly lower triangular semiseparable
structure to a lower triangular semiseparable structure. The following figures denote more
precisely what is happening. We start on the left with the matrix A, and we depict what the
impact of the transformations GT

3 GT
2 GT

1 needs to be on this matrix to satisfy the equation
above. Assume A0 	 A. To see more clearly what happens, we include already the upper left
and lower right element in the strictly lower triangular semiseparable structure,������

�� �� � �� � � �� � � � �
������ GT

1 A0
)
*
 5
������
�� �� � �� � � �� � � � �

������ F
A0

GT
1 A0
)
*
 5 A1 �

As the complete result needs to be of lower triangular semiseparable form, the transfor-
mation GT

1 needs to add one more element into the semiseparable structure. This results in an
inclusion of diagonal element 2 in the lower triangular rank structure. Givens transformation
GT

2 causes the expansion of the low rank structure towards diagonal element 3,������
�� �� � �� � � �� � � � �

� ���� GT
2 A1
)
*
 5

������
�� �� � �� � � �� � � � �

� ���� F
A1

GT
2 A1
)
*
 5 A2 �

Finally the last Givens transformation GT
3 creates the following structure,
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�� �� � �� � � �� � � � �

������ GT
3 A2
�
G
 5

������
�� �� � �� � � �� � � � �

������ F
A2

GT
3 A2
�
G
 5 A3 �

Hence the result of applying this sequence of Givens transformations from top to bottom
is a matrix which has the lower triangular structure shifted upwards one position. In fact we
have performed a rank expanding sequence of Givens transformations.

5. A parallel QR-factorization for quasiseparable matrices. In the previous subsec-
tion a specific � shaped pattern was shown. This pattern can perform two Givens transforma-
tions simultaneously in the first step, see the graph below.

Ê 0 0
Ë 1 0 0 1
Ì 1 0 1
Í 0 1 0
Î 0 1 1 0
Ï 1 1

5 4 3 2 1

The extra horizontal line shows the action radius of the two processors. The first processor
can only work on the top three rows and the second processor on the bottom three rows.
The algorithm starts by performing a rank expanding Givens transformation on the top two
rows and a rank decreasing Givens transformation on the bottom two rows. Then one can
again continue by performing simultaneously Givens transformations on the top part and on
the bottom part, until one reaches the shared Givens transformation in the middle, which is
intersected by the horizontal line (this is the transformation at position 3). This indicates that
information has to be exchanged from one processor to the other. After having performed this
intermediate Givens transformation, one can again perform several Givens transformations
simultaneously on both processors. For higher order quasiseparable matrices, we will present
another scheme in a forthcoming section.

Let us present some information on possible tunings of this algorithm.

5.1. Some parameters of the algorithm. When designing a parallel algorithm there
are several important concepts which have to be taken into consideration. First of all the
simultaneous work has to be balanced. One wants to load both of the active processors with
the same amount work, such that both processors do have to wait as little as possible for the
communication. Secondly we want submit as little information as possible. In this section
we provide some information on how to tune the load balance of both processors.

The � -pattern we showed divides the matrix A into two equally distributed parts, each
containing the same ( H 1) amount of rows. Due to the quasiseparable structure however, the
bottom n2 rows are much more structured than the upper n1 rows. The top matrix contains
n1n 
 n2

1 D 2 ( 5n1 D 2 
 1 elements to be stored2, whereas the bottom matrix contains only

2The number of elements stored, depends also on the representation of the quasiseparable part of the matrix. We
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n2
2 D 2 ( 5n2 D 2 elements. Considering now the performance of the Givens transformations on

both matrices we see that applying the two sequences of Givens transformations on the top
costs approximately 12n1n ( 6n2

1 operations, whereas this costs only 6n2
2 operations for the

bottom part. This means that when both processors obtain the same number of rows n1 I n2,
processor one has to do much more work than processor two.

Looking back, however, at the intermediate steps to reduce the 9 -pattern into the � -
pattern we see that it is possible to obtain vertically nonsymmetric � -patterns; see for example
some of the patterns in Section 4.3. This means that we can choose any matrix division, as
long as n1 ( n2 	 n. This leads to a flexible way for dividing the matrix, such that processing
the top matrix part takes as long as processing the bottom part. A natural choice of division
might be such that 12n1n ( 6n2

1 I 6n2
2. This is good choice in case both processors are of

the same type. If both processors do not have the same architecture, this division does not
necessarily lead to an equally distributed time for processing the matrices and hence needs to
be taken case dependent.

As the amount of data submitted through the network is only dependent on the position
of n1 and n2, we cannot change this. The amount of data submitted is of the order 2n2. In
the next subsection we will present a high level algorithm for computing QR-factorization in
parallel.

5.2. The implementation. Let us briefly describe a high-level implementation of a par-
allel QR-factorization/solver of a quasiseparable matrix. The actual algorithm was imple-
mented in MATLAB, using thereby the MatlabMPI package, for running the parallel algorithm
on different machines.

We assume that we divided initially the work load of both machines, and moreover we
assume that the local processor contains the top n1 rows and the remote processor contains
the bottom n2 rows. The items in italics only need to be performed in case one wants to solve
a system of equations by the implemented QR-factorization. In case one wants to solve a
system of equations, also the right-hand side needs to be divided into two parts, the top part
for the local and the bottom part for the remote processor. The main algorithm consists of the
following steps:6 Perform in parallel:

– Perform the rank expanding, descending Givens transformations on the local
processor.
Perform the Givens transformations simultaneously on the right-hand side.

– Perform the rank annihilating, upgoing Givens transformations on the remote
processor.
Perform the Givens transformations simultaneously on the right-hand side.6 Send the top row of the matrix from the remote to the local processor.

Send the top element from the right-hand side from the remote to the local processor.6 Perform the intersecting Givens transformation.
Perform this Givens transformations also on the right-hand side.6 Send the row back from the local to the remote machine.
Send the bottom element from the right-hand side back.6 Perform in parallel:

– Perform the rank annihilating upgoing Givens transformations on the local pro-
cessor.
Perform this Givens transformations simultaneously on the right-hand side.

silently assumed our quasiseparable matrix to be generator representable. This means that its strictly lower triangular
part can be written as the strictly lower triangular part of a rank 1 matrix.
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– Perform the rank expanding descending Givens transformations on the remote
processor.
Perform this Givens transformations simultaneously on the right-hand side.6 One has now computed the top part of the R factor on the local and the bottom part

of the R factor on the remote processor.6 Solve the bottom part of the system of equations on the remote processor6 Transmit this solution to the local machine.6 Solve the top part of the remaining upper triangular system on the local machine.6 The solution is now available at the local machine.
So one can clearly see that only the computation of the QR-factorization can be done in

parallel. Solving the system of equations via backward substitution needs to be done first at
the remote processor, and then this result needs to be sent to the local processor for computing
the complete solution.

The backward substitution step is of the order O � n2 � , just like computing the QR-factoriz-
ation itself. Even though it is possible to parallellize the backward substitution, we do not do
so, because it becomes too fine grained. To parallelize it, one has to send immediately every
computed value xi from the remote processor to the local processor, who can then already us
this to compute the solution of the upper part, by making the appropriate subtraction. Being
able to halve the complexity of computing the QR-factorization has an important impact on
the complexity of the global solver, as the computation of the QR-factorization is the most
time consuming operation, as we will see in the numerical experiments.

6. Higher order quasiseparable matrices. In this section we will briefly illustrate what
happens with a quasiseparable matrix of rank 2 if we want to implement the QR-factorization
in a parallel way. The standard QR-factorization of a quasiseparable matrix of rank 2 is
computed via the 9 -pattern; see Example 4.4. Using the shift through lemma a few times,
one can obtain the following pattern.

(6.1)

Ê 0 020 0
Ë 1 0 0 1J1 0 0 1
Ì 1 0 1 1 0 1
Í 0 1 0 0 1 0
Î 0 1 1 020 1 1 0
Ï 1 1J1 1

10 9 8 7 6 5 4 3 2 1

It is clear that this scheme can also be parallellized, using thereby two processors, one
acting on the upper part, one acting on the lower part. Obviously more communication is
needed w.r.t. the rank 1 quasiseparable case.

Due to the rank 2 structure the computation of the rank expanding transformations (the
top Givens transformations in position 1 and 2) is not straightforward anymore. How to
compute the rank expanding transformations is discussed in detail in [21], but is beyond the
scope of this manuscript. In the remainder of this section we only briefly indicate what will
happen with the structure of the matrix.

When taking a closer look at the pattern above, one can see that applying the transforma-
tions in position 5 to 1 onto the quasiseparable matrix of rank 2, transforms this matrix into a
quasiseparable matrix of rank 1. Hence the final five transformations, found in positions 6 to
10 coincide with the ones from the rank 1 quasiseparable case.

More details on how to perform the rank expanding Givens transformation, and informa-
tion on different patterns can be found in [6, 8, 11, 21]. When designing such an algorithm for
higher order structured rank matrices, one also needs the following fact. Every rank r matrix
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can be written as the sum of r rank 1 matrices and similarly a matrix of semiseparability rank
r can be written as the sum of r matrices of semiseparability rank 1. More information on this
subject can be found, e.g., in [22].

In the upcoming section numerical experiments on the quasiseparable rank 1 case will
be presented.

7. Numerical examples. In the next subsections some results are presented concerning
the accuracy and speed of the QR-factorization and the solver based on this factorization for
the class of quasiseparable matrices of rank 1.

7.1. The implementation. The parallel QR-factorization as presented in this manuscript
can be implemented for all kinds of representations, including Givens-vector, and generator
representation [20] as well as the quasiseparable representation [10]. In the remainder we will
assume the matrix to be of generator representable form. (This is not the most general class,
but there is no loss of generality as the results presented can be adapted in a straightforward
way to the quasiseparable form.)

This means that the strictly lower triangular part of the matrix A is coming from the lower
triangular part of the matrix uvT , with u and v both of sizes n 
 1. The right-hand side is b.

Assume for simplicity that both processors have their part of the data and the actual
computation of the parallel QR-solver starts. The local processor deals with n1 rows, whereas
the remote processor deals with n2 rows. The variables available for the local processor are
u1 	 u � 1 : n1 
 1 � 3, v1 	 v � 1 : n1 � and R1 	 R � 1 : n1 � : � , the variables for the remote processor
are u2 	 u � n1 : n 
 1 � , v2 	 v � n1 : n1 
 1 � and R2 	 R � n1 ( 1 : n � n1 ( 1 : n � . Also the right-
hand side is divided into b1 	 b � 1 : n1 � and b2 	 b � n1 ( 1 : n � . A comment: The vector v1
also contains the element v � n1 � , this is essential for performing the � n 
 1 � th rank expanding
Givens transformation.

The code presented (MATLAB-like) below only depicts the computation of the QR-
factorization. Computing the final solution cannot be done in parallel and uses simply back-
ward substitution.

if (processor==local)
u1=[R1(1,1)./v1(1);u1];

% Perform the descending sequence of Givens transformations
for i=1:n1-1

M=[R1(i,i:n);u1(i+1)*v1(i),R1(i+1,i+1:n)];
[c,s,M] = Givensexp(M,v1(i:i+1));
b1(i:i+1)=[c,s;-conj(s),c]*b1(i:i+1);
% Update the representation of the matrices R and u
u1(i:i+1)=M(1:2,1)./v1(i);
R1(i,i)=M(1,1);
R1(i:i+1,i+1:n)=M(1:2,2:end);

end
end

if (processor==remote)
% Perform the ascending annihilating sequence of Givens
% transformations.
for i=n2:-1:2

[c,s,r]=Givens(u2(i-1),u2(i));

3We use the colon notation.
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u2(i-1)=r; G=[c,s;-conj(s),c];
b2(i-1:i)=G*b2(i-1:i);
R2(i-1:i,i-1:n2)=G*[R2(i-1,i-1:n2);u2(i)*v2(i),R2(i,i:n2)];

end

% Send the first row, r and b2(1) to the local processor
MPI_Send(Message1,R2(1,1:n2),r,b2(1));

end

if (processor==local)
% Now we have to receive data from processor 2
[R2(1,1:n2),r,b2(1)]= MPI_Recv(Message1);

% Perform annihilating transformation
[c,s,r]=Givens(u1(n1),r);
u1(n1)=r; G=[c,s;-conj(s),c];
[R1(n1,n1+1:n);R2(1,1:n2)]=G*[R1(n1,n1+1:n);R2(1,1:n2)];
[b1(n1);b2(1)]=G*[b1(n1);b2(1)];

% Send information back
MPI_Send(Message2,R2(1,1:n2),b2(1));

% Perform the ascending rank annihilating sequence of Givens
% transformations.
for i=n1:-1:2

[c,s,r]=Givens(u1(i-1),u1(i));
u1(i-1)=r; G=[c,s;-conj(s),c];
b1(i-1:i)=G*b1(i-1:i);
R1(i-1:i,i:n)=G*[R1(i-1,i:n);u1(i)*v1(i),R1(i,i+1:n)];

end

% Assign the top left element
R1(1,1)=u1(1)*v1(1);

end

if (processor==remote)
% Receive the changed first row back
[R2(1,1:n2),b2(1)]=MPI_Recv(Message2);

% Perform the descending sequence of Givens transformations.
for i=1:n2-1
[c,s,r]=Givens(R2(i,i),R2(i+1,i)); G=[c,s;-conj(s),c];
b2(i:i+1)=G*b2(i:i+1);
R2(i:i+1,i:n2)=G*R2(i:i+1,i:n2);

end
end

The result of this part of the code is an upper triangular matrix R, whose first n1 rows can be
found on the local processor, whereas the last n2 rows can be found on the remote processor.
Also the vector b is updated, and hence one can solve the remaining system via backward
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substitution. Adjusting the above code to make the solver applicable for the quasiseparable
representation as presented in [10] is straightforward.

7.2. Accuracy of the QR-factorization. Before showing the parallel timings, we will
first present some results concerning the accuracy of this new � -pattern for computing the
resulting QR-factorization. We ran examples on arbitrary random quasiseparable matrices
for which the sizes range from 1000 until 9000. The case of n 	 9000 reached the memory
limit of our machine, taking into consideration that also the original matrix had to be stored
to compare the backward error. We will see in upcoming numerical examples, that we can go
beyond n 	 9000 when computing in parallel. The vectors and the upper triangular part was
generated using TRIU(RAND()).

For every problem dimension five examples were considered. The backward relative
error measure considered was the following one,K

A 
 QR
K

1 D K A K 1 �
in which the QR factorization was computed based on the � -pattern. In Figure 7.1 (left), the
line represents the average error, whereas the separate stars represent the independent errors
of each experiment separately.

Figure 7.1 clearly illustrates the numerical backward stability of computing the QR-
factorization. The full line in the graph depicts the average among all the experiments.
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FIGURE 7.1. Backward error of the QR-factorization and forward error of the solver.

7.3. Accuracy of the solver. Upper triangular random matrices are known to be ex-
tremely ill conditioned [14, 15], as the upper triangular part of the quasiseparable matrix is
random in our examples, this also has a large influence on the conditioning of the quasisepa-
rable matrix.

To reduce the ill-conditioning of these matrices we included a kind of smoothing factor,
such that the elements further away from the diagonal gradually become smaller. We used
the following factor alpha 	 exp ��
 1 DL� n 
 1 � log � n ��� and we adapted our random vectors u
and v as follows:

for i=1:n-1
u(i)=alphaˆi*u(i);
v(i)=alphaˆ(-i)*v(i);

end;
A better way of computing less ill-conditioned upper triangular matrices is computing the
QR-factorization of a random matrix, and using then the R-factor. Unfortunately this is too
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time consuming for our purposes, since the generation of the quasiseparable matrix would
take more time than solving the actual problem.

This procedure bounds the condition number between 105 and 108. In the upcoming
experiments we needed to take the condition number into consideration and we computed the
forward error, K

x 
 x̃
K

2K
x
K

2
�

which should be bounded by the machine precision multiplied with the condition number.
Due to the computational overhead, caused by generating the test matrices and computing

the condition number, the problem sizes of the problems involved are limited. Figure 7.1
(right) shows the average condition number of the examples ran, the individual forward error
of each experiment and an average forward error.

7.4. Timings. In this section, results concerning the speed, memory division between
the processors and the total number of data to be transmitted are shown.

We know that the overal complexity of the solver is of the order O � n2 � . In Figure 7.2 we
compare the cost of computing the QR-factorization w.r.t. the time needed to solve the system
via backward substitution. The figure clearly shows that the time needed for computing the
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FIGURE 7.2. Speed comparions between the QR-factorization and backward substitution.

QR-factorization dominates the overall computational cost. Being able to halve the time
needed for computing the QR-factorization, will reduce the overall computing time with more
than 25%.

In Figure 7.3 we present timings, related to the cputime needed by one processor, in case
of the standard QR-factorization and by two processors in case the algorithm is run in parallel.
The presented global timings do not include timings related to the message passing. Because
MATLAB MPI uses file I/O for communication. This creates false timings for message pass-
ing depending on the mounting type of the file system, the current read/write speed, and so
on.

The timings presented here are the actual cputime needed by each of the processors for
computing their part of the QR-factorization. In Figure 7.3 three lines are shown, representing
the cputime needed by 1 processor in case the QR-factorization is computed in the traditional
way on one processor. The two other lines indicates the cputime of the processors in case
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the method is run in parallel. One can clearly see that the non-parallel version needs much
more computing time. Also important to remark is that we can solve much larger systems
of equations, when considering a work load division over two processors. In this left figure
(Figure 7.3) we chose a fixed work load division namely n1 	 n D 2 � 9 rounded to the closest,
larger integer and n2 	 n 
 n1, we can clearly see in the following graph that the workload is
not equally distributed. In the right we chose n1 	 n D 4 � 5, and see a more equally distributed
workload.
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FIGURE 7.3. Cputime comparions n1 M n N 2 O 9 (left) and n1 M n N 4 O 5 (right).

Table 7.1 presents some results concerning global problem size (n), memory division
(Mem PI and Mem PII), size of the problems (n1 and n2), and the number of double precision
numbers to be transmitted (transfer) over the network for computing the QR-factorization.
These numbers are related to the timings with the left figure of Figure 7.3.

8. Concluding remarks. In this manuscript we showed the existence of another type
of Givens transformation, which creates rank 1 blocks instead of zeros. Based on the shift-
through lemma we showed that it is possible to change the order of Givens transformations.
This resulted in the change of Givens transformations from zero creating to rank expanding.
Based on several elimination patterns, involving both zero creating and rank expanding trans-
formations, we were able to develop a parallel QR-factorization for quasiseparable matrices.
Also some indications were given on how to use these results for higher order quasisepara-
ble matrices. Numerical experiments were presented showing the speed and accuracy of the
presented method.
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