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CALCULATION OF MINIMUM CRITICAL REYNOLDS NUMBER FOR
LAMINAR-TURBULENT TRANSITION IN PIPE FLOWS

�
HIDESADA KANDA

�
Abstract. This article describes the calculation of the minimum critical Reynolds number for laminar-turbulent

transition in pipe flows. From the conclusions of our previous experimental study, it is clear that a transition occurs
near the pipe inlet and the critical Reynolds number ��� takes the minimum value of about 2000 in the case of a
straight pipe. Moreover, in our previous calculations of laminar entrance pipe flow, it was found that near the pipe
inlet a large pressure gradient in the radial direction exists, which decreases as the Reynolds number Re increases.
Thus, we have built a new transition macromodel to determine ��� using the effect of the radial pressure gradient.
The calculated results were �����	��

��� = 3750 when the number of radial grid points ��� = 51 and 2200 when��� = 101.
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1. Introduction and summary. Osborne Reynolds found two critical Reynolds num-
bers ( ��� ) in pipe flows: ����� of 12,830 from laminar to turbulent flow and ����� of 2030 from
turbulent to laminar flow [16]. Ever since the pioneering experimental work of Reynolds
(1883), the issue of how and why the fluid flow along a circular pipe changes from being
laminar to turbulent as the flow rate increases has intrigued physicists, mathematicians, and
engineers alike [11].

The objectives of this investigation are to derive a macromodel of laminar-turbulent tran-
sition for Hagen-Poiseuille flow or pipe flow and to calculate the minimum value of the criti-
cal Reynolds number �������! �"$# , which is in the neighborhood of 2000.

To date, attempts to theoretically obtain values of ��� have been undertaken using stability
theory with the Orr-Sommerfeld equation and disturbances. However, �%�&���! �"$# of approxi-
mately 2000 has not yet been calculated. For flow in the entrance region, Tatsumi obtained��� = 19,400 [21], and Huang and Chen obtained ��� = 39,800 and 39,560 with axisymmetric
and non-axisymmetric disturbances, respectively [5, 6]. In the fully developed region, the
flow is stable with respect to both axisymmetric and non-axisymmetric disturbances [2]. In
this study, we do not further consider such stability theory.

The line of thought on calculating ��� for laminar-turbulent transition is formulated on
the basis of our experiments [10] and calculated results [8, 9].

(1) The Reynolds number (Re) primarily and generally affects � � , since transition occurs
as Re increases. Therefore, we must further study what factor, besides Re, mainly affects �'� .

(2) The laminar-turbulent transition occurs near the pipe inlet in the entrance region. It is
important to note that the flow may become turbulent long before it becomes fully developed
[4, 20].

(3) We must numerically find a new unknown variable which varies near the inlet. It is
the normal wall strength (NWS); see Subsection 3.1.

(4) We must numerically evaluate the effects of NWS on � � in this study.
First, from the viewpoint of our experiments, let us consider the problem in more detail.
(5) � � is apparently determined by the entrance shape or the contraction ratio(*)

(= + )-, + ) of the bellmouth diameter + ) to pipe diameter + . In most previous experi-.
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FIG. 1.1. Velocity development in entrance region of a straight circular pipe.

ments, pipes were fitted with trumpet mouthpieces or bellmouths at the inlet, so that water
might enter without disturbances. ���/�0�1 2"$# of approximately 2000 is obtained in the case
of a straight circular pipe. The sharp edge of the straight pipe is not a singular point in the
transition, since ��� is a smooth function of

( )
at 3 2000.

(6) The transition occurs near the pipe inlet. For example, in the case of a straight pipe,
the transition occurs approximately 6–13 diameters downstream at Re 3 2000. Consider a di-
mensionless axial coordinate ( 4 ); let 576 be the actual axial coordinate, then 498:576 , �;+ Re # .
For the above example, the transition occurs at the pipe inlet of 4=<?>�@ ,BABCDCEC 8 CGF CECDHDI .

(7) For Reynolds’ color-band experiments, ��� varies when
( )

= 1–2.3, particularly when(*)
= 1–1.4. If the radial distance of

(J)
= 1.4 is transformed to the axial distance to check the

order of length, then for Re 3 2000, 4K< 1.4/2000 = 0.0007.
Second, let us consider the viewpoint of previous experimental and numerical results. In

the entrance region, the velocity profile changes from a uniform distribution at the pipe inlet
to a parabolic one at the entrance length, as shown in Fig. 1.1. Generally, thus far, three major
variables have been studied [3]: (i) the velocity distribution in all sections, (ii) the entrance
length LNM , which is defined as the distance from the inlet to the point where the centerline
velocity reaches 99 O of the fully developed value, and (iii) the pressure drop P'Q . The region
from the inlet to L M is called the entrance region and the downstream region from L M is called
the fully developed region.L M [1] is expressed asLSRT8 5 6+ Re

8 CUF HDC
Re � CGF C @ I Re VW>X# V CGF CDIEHGF

(1.1)

From (1.1), LYR = 0.0562 at Re = 300, and LYR takes a constant value of 0.056 at Re Z 500.
The total pressure drop P'Q���4[# from the pipe inlet is expressed as the sum of the pressure
drop 64 4 that would occur if the flow were fully developed, plus the excess pressure drop\ ��4[# to account for the developing region.P'Q���4[#]89Q�� C #]^_Q��04[#[8 ^1Q��04`#a8 HEb 4cV \ �04`#\ ��4[# is assumed to be

\ ��de# in (1.2) for the fully developed region [1]. From (1.2),
\ ��de#

is 1.276 at Re = 500 and 1.219 at Re = 2000.
\ ��de# is approximately the same at Re Z 500.\ �2df#g8h> FiABC V @Ej

Re
(1.2)
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(8) We discuss properties (a) and (b) of two parameters, which will enable us to determine
accurate values of ��� : parameter (a) is a constant regardless of Re for Re Z 500 while
parameter (b) varies inversely as Re increases. The intersection of the lines of the parameters
should indicate a critical value; see Fig. 4.3.

(9) It is clear from (1.1) that the velocity distribution and L M in the 4 coordinate are
approximately the same at Re Z 500. Thus, parameter (a) of a constant magnitude is set to be
the increase in kinetic energy KE on the basis of the velocity development from a uniform to
a parabolic profile; see Subsection 3.3. Concerning moving fluid particles, the physical unit
of KE is power, i.e., energy per second.

(10) We found numerically that at Re 3k� � , a large pressure gradient exists in the normal
direction near the inlet and disappears as Re increases. This normal pressure gradient is
caused by NWS.

(11) We must evaluate the relationship between ��� and the normal pressure gradient or
NWS. The first law of thermodynamics (conservation of energy) states that the increase in
the energy of a material region is the result of work and heat transfers to the region [12]. If
there is no heat transfer, then some work is done on the fluid particles for KE. The physical
units of energy and work are the same. Thus, parameter (b) is set to be the power RW done
by NWS.

Therefore, the main research subject is to numerically investigate the relationship among
KE, RW, and � � .

2. Calculation of radial pressure gradient.

2.1. Governing equations. First, we consider dimensionless variables. All lengths and
velocities are normalized by the pipe diameter + and the mean velocity lSm , respectively. The
pressure is normalized by �n> ,BA #poGl �m . Re is based on lqm and + . Note that the dimensionless
axial coordinate 5 (= 5r6 , + ) is used for calculation and 4e�28W5r6 , ��+ Re #s# is used in our figures
and tables, where 5 6 is the actual axial coordinate.

We consider unsteady flow of an incompressible Newtonian fluid with a constant viscos-
ity and density, and we disregard gravity and external forces. We introduce the streamfunction
and vorticity formulas in the two-dimensional cylindrical coordinates for the governing equa-
tions in order to avoid the explicit appearance of the pressure term. Accordingly, the velocity
fields are determined without any assumptions concerning the pressure. Subsequently, the
pressure distribution is calculated using the values of the velocity fields.

The dimensionless transport equation for the vorticity is expressed astvutrw ^ >x tryt 5 tvut x V >x tryt x tvut 5 V ux � tryt 5 8 >
Re

z tt xe{ >x t � x u #t x}| V t � ut 5 �*~ F(2.1)

The Poisson equation for
u

is derived from the definition of
u

, i.e.,^ u 8�� � y 8 tt x � >x tryt x #1V t �t 5 � � y x # F(2.2)

The axial velocity � and radial velocity � are defined as the derivatives of the streamfunction,
i.e., �_8 >x tryt x�� ��8 ^ >x tryt 5 F(2.3)

Only the angular ( � ) component of a two-dimensional flow field
u

is non-negligible; thus, we
shall replace

u��
with

u
, u 8 u�� 8�� ���]��� � 8 t �t 5 ^ t �t x F(2.4)
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FIG. 2.1. Grid system in a circular straight pipe.

The pressure can be calculated using the steady-state form of the Navier-Stokes (N-S)
equations. The pressure distribution for the 5 derivative ist Qt 5 8 ^ A�� � t �t 5 V�� t �t x�� V A

Re
� t � �t 5 � V >x t �t x V t � �t x � � �(2.5)

and that for the x derivative ist Qt x 8 ^ A�� � t �t 5 V�� t �t x � V A
Re

� t � �t 5 � V >x t �t x ^ �x � V t � �t x � � F(2.6)

Since � and � are known at every point, from (2.3), a smooth pressure distribution that satis-
fies both (2.5) and (2.6) is calculated using Poisson’s equation (2.7) [15],� � Q�8 t � Qt 5 � V t � Qt x � V >x t Qt x 8 ^ A���� t �t x � � V A t �t x t �t 5 V � t �t 5 � � V � �x �'� F(2.7)

In this study, initial values are obtained using (2.5), and then (2.7) is used to obtain better
solutions.

2.2. Numerical method for vorticity transport equation. The rectangular grid system
used here is schematically illustrated in Fig. 2.1, where � C and � C are the maximum numbers
for axial and radial grid points, respectively, and �U>'8�� C ^W> � � A 8�� C ^ A � ��>%8_� C ^W> �
and � A 8�� C ^ A .

To obtain precise results in this study, we used a refined axial grid of P!4�8 CGF CECDCEC > .
For calculations, the dimensionless axial grid P!5��28�P!4:� Re) is used. The grid spaceP!5 6 �28�P!4���+�� Re) in actual length is considered. For a pipe of + = 2.6 cm and
Re = 2000, the dimensionless grid space P!4 = 0.00001 corresponds to P!5 6 = 0.052 cm
in actual length: P!5 6 = 0.00001 � 2.6 � 2000 = 0.052; for Re = 10,000, P!4 = 0.00001
corresponds to P!5 6 = 0.26 cm in actual length. Two grid systems are used: (i) � C = 1001,� C = 51, and P!4 = 0.00001, and (ii) � C = 101. The maximum 4 is 0.01.

For unsteady problems, generally, an explicit method is faster than an implicit method
in CPU time, but lacks calculation stability. The finite difference equation for (2.1) was first
solved by the Gauss-Seidel explicit iterative method [7, 8, 9], where calculation stability was
achieved by adding steps 4–5 in Fig. A.1; see Appendix. This explicit scheme, however,
required long CPU times to maintain computational stability. Next, it was improved by the
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FIG. 2.2. Flowchart for implicit iteration method.

implicit method shown in Fig. 2.2, where �u and �y are provisional values, n is the time step,
and m is the index of iteration [18, 19]. In this study, we use the implicit method.

The implicit form for (2.1) is written asuY�B� � ^ uY�P w ^ >x tvyN�t 5 tvuY�B� �t x V >x tryS�t x tvuY�B� �t 5 V uY�E� �x � tryS�t 5
(2.8) 8 >

Re

z tt xf{ >x t � x uY�B� � #t x | V t � uY�B� �t 5 �«~ F
This computational scheme involves the Forward-Time, Centered-Space (FTCS) method.

At the wall, a three-point, one-sided approximation for derivatives is used to maintain second-
order accuracy. The scheme thus has second-order accuracy in space variables and first-order
accuracy in time.

Consider the initial streamfunction. From (2.3), the initial condition for the streamfunc-
tion is given by y �0 ��¬ #[8 >A �	� ¬ ^T>/#¨P x � � � >�<f Y<�� C � >�< ¬ <k� CUF
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Within the boundaries, the initial vorticity is obtained by solving (2.2). The velocities � and� are set using (2.3) whenever the streamfunction is newly calculated.
The following are the boundary conditions.
(i) At the centerline:

yq­0® � 8 C � u�­�® � 8 C � >�<f S<f�v> .
(ii) At the inlet:

y � ® ¯ 8 CUF I �	� ¬ ^T>/#sP x � � � u � ® ¯ 8 C � A < ¬ <k��> .
(iii) At the wall:

y�­�® ° m 8 CGFiI �±�p� C ^f>X#sP x � � � >�<f S<f�v> .
The vorticity boundary condition at the no-slip walls is derived from (2.4) asu 8 ^ t �t x F(2.9)

A three-point, one-sided approximation for (2.9) is used to maintain second-order accuracy,u�­�® ° m 3 ^ @B� ­0® ° mJ^ b � ­�® ° ��V¥� ­�® ° �A P x 8 b � ­�® ° �S^`� ­0® ° �A P x F
(2.10)

(iv) At the outlet, the linear extrapolation method is used:
yS² m ® ¯ 8 A y�² � ® ¯ ^ y�² � ® ¯ �u�² m ® ¯ 8 A u�² � ® ¯ ^ u�² � ® ¯ � >�< ¬ <³� CGF

The following are the boundary conditions for pressure.
(v) For the pressure at the centerline, we use the three-point finite difference form. Sincet Q , t x 8 C at x 8 C , Q ­0® � 8 b Q ­0® �*^1Q ­�® ¦@ � >�<T q<�� CUF
(vi) The pressure at the inlet is given as zero without the leading edge: Q�� ® ¯ 8 C �>�< ¬ <k��> F
(vii) The pressure at the wall is derived from (3.2); see Subsection 3.1. For the leading

edge with  ´8µ> and ¬ 8K� C , the three-point approximation is used for Q and
u

, and the
pressure gradient is expressed ast Qt xJ¶¶¶¶ ­	· � ® ¯s·$° m 3 @�Q � ® ° m ^ b Q � ® ° � V]Q � ® ° �A P x 8 A

Re
� ^ u ¦ ® ° m V b u � ® ° m ^¸@ u � ® ° mA P!5 � F

For the wall with
A <e S<T�v> and �a8?� C �t Qt x ¶¶¶¶ ­�¹ � ® ¯s·$° m 3 @&Q ­�® ° mº^ b Q ­0® ° ��V]Q ­0® ° �A P x 8 A

Re
� u ­ � � ® ° mº^ u ­0» � ® ° mA P!5 � F

(viii) For the outflow boundary conditions, the linear extrapolation method is used:Q ² m ® ¯ 8 A Q ² � ® ¯ ^!Q ² � ® ¯ � >�< ¬ <k� CGF
2.3. Calculated results of radial pressure gradient. The numerical calculations were

carried out for Re = 500, 1000, 2000, 3000, 5000, and 10,000 in 2006 on an NEC SX-7
supercomputer with a peak performance of 8.83G-FLOPS/processor. Table 2.1 lists Re, grid
systems, time step ( P w ), number of time steps until steady state (T-steps), and CPU times. P w
was 0.0001 from T-step = 0 to 100,000, and was increased to 0.0002 or gradually to 0.0002,
0.0003, and 0.0005.

Figures 2.3 through 2.7 show the calculated results of (a) axial pressure drop and (b)
pressure distribution in the radial direction. The relationship between the pressure (Q ) and
pressure drop ( P'Q ) is P'Q = 0 - Q = - Q , where Q is zero at the inlet.

To verify the accuracy of calculations, the results of calculations are compared with the
smooth curves drawn using Shapiro et al.’s experimental results [17], as shown in Fig. 2.3(a)



ETNA
Kent State University 

http://etna.math.kent.edu

174 H. KANDA

TABLE 2.1
Grid system, time step ¼¾½ , T-steps, and CPU times.

Re I0/J0 ¼º½ T-steps CPU
500 1000/51 0.0001–0.0005 6,000,000 10h 42m

1000 1000/51 0.0001–0.0002 9,000,000 20h 26m
2000 1000/51 0.0001–0.0002 9,000,000 22h 34m
3000 1000/51 0.0001–0.0002 9,000,000 27h 13m
5000 1000/51 0.0001–0.0005 6,000,000 10h 17m

10,000 1000/51 0.0001–0.0005 6,000,000 11h 24m
500 1000/101 0.0001–0.0005 6,000,000 24h 54m

1000 1000/101 0.0001–0.0002 8,000,000 26h 27m
2000 1000/101 0.0001–0.0002 9,000,000 31h 06m
3000 1000/101 0.0001–0.0002 10,000,000 30h 30m
5000 1000/101 0.0001–0.0002 10,000,000 49h 39m

10,000 1000/101 0.0001–0.0002 10,000,000 30h 59m
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FIG. 2.3. (a) Axial pressure drop and (b) pressure distribution in r-direction, Re = 1000.

through 2.7(a), where the diamond and dot symbols denote the calculated results for pressure
at the centerline (Q � ) and for pressure at the wall (Q7¿ ), respectively. Near the pipe inlet,
the experimental results fall between Q � and Qr¿ and agree well with the computed results
downstream.

The major conclusions concerning the radial pressure distribution are as follows. Here,
( P'Q ¿ ^¥P'Qr� ) = (Q7��^�Q ¿ ).

(1) It is clear, from Fig. 2.3(a), that at Re = 1000, there is a large difference between P'Q ¿
and P'Qr� across the radius of the pipe at 4=¢ CGF CECDC @ , and that this difference decreases as 4
increases.

(2) It is seen, from Figs. 2.3(a) through 2.7(a), that the difference ( P'Q ¿ - P'Q7� ) decreases
as Re increases. At Re = 10,000, the difference exists at 4K¢ 0.00005 and disappears down-
stream.

(3) Note that P'Q ¿ is larger than P'Q7� . This indicates that Q ¿ is lower than Q7� , as verified
in Figs. 2.3(b) through 2.7(b). This difference contradicts the results obtained by others using
the boundary-layer theory, and it also contradicts Bernoulli’s law, although Bernoulli’s law
does not apply to viscous flow. The radial pressure gradient

t Q , t x near the wall and inlet is
seen to be large, but it decreases near the centerline and downstream.

2.4. Radial pressure distribution. Let us consider the question theoretically: “Which
is higher, Qr¿ or Q � in the radial direction?” Since the axial velocity � ­�® ° m is zero at the wall,
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FIG. 2.4. (a) Axial pressure drop and (b) pressure distribution in r-direction, Re = 2000.
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FIG. 2.5. (a) Axial pressure drop and (b) pressure distribution in r-direction, Re = 3000.

the 5 component of velocity, � , can be linearly approximated as� ­0® ° � 3 ��� ­�® ° m V¥� ­0® ° � #A 8 >A � ­�® ° � F(2.11)

From (2.9), (2.10), and (2.11), the vorticity at the wall is simply approximated asu�­0® ° m 8À^ t �t x�¶¶¶¶ Á ·ÃÂ 3 � ­0® ° �P xÅÄ CUF(2.12)

Substituting (2.12) into (3.2) (see Subsection 3.1) givest Qt x ¶¶¶¶ Á ·$Â 8 A
Re

tvu��t 5 ¶¶¶¶ Á ·ÃÂ 3 A
Re

tt 5 � � ­�® ° �P x #
(2.13) 3 A

Re
� � ­ � � ® ° � ^`� ­�» � ® ° �A P!57P x � < CGF

Thus, since � ­ � � ® ° � ¢Æ� ­�» � ® ° � in the entrance region, the normal pressure gradient at the
wall becomes negative. Therefore, it is verified from (2.13) that the pressure gradient in the
radial direction is negative at the wall of the entrance region.

On the other hand, in the fully developed region, since � ­ � � ® ° � 8?� ­�» � ® ° � in (2.13), the
normal pressure gradient at the wall becomes 0, thus making the pressure distribution uniform
in the radial direction.
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FIG. 2.6. (a) Axial pressure drop and (b) pressure distribution in r-direction, Re = 5000.
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FIG. 2.7. (a) Axial pressure drop and (b) pressure distribution in r-direction, Re = 10,000.

The velocity distribution in the fully developed region is given by��� x #`8 A l�m { >*^W� x� # � |Ç�(2.14)

where l�m�8�> in dimensionless form. Differentiating (2.14) with respect to x givesu ¡ Á ·$Â 8h^ t �t x ¶¶¶¶ Á ·ÃÂ 8h^ AY� ^ A �� � � 8 b >� 8Èj �
where the dimensionless value of � is 0.5. Thus, the value of

u
monotonically decreases

from a large positive value at the leading edge to 8 in the fully developed region.

3. Evaluation of radial pressure gradient.

3.1. Normal pressure gradient at wall. Here, we consider the radial pressure gradientt Q , t x . The dimensionless N-S equation in vector form [3] is written ast �trw ^��_� u 8�^ >A�ÉEÊ-ËEÌ �ÍQ'Vf� � #�^ >
Re
��� u F(3.1)

Since the velocity vector ��8 C at the wall, the normal component of (3.1) at the wall reduces
to t Qt x ¶¶¶¶ Á ·ÃÂ 8 ^ A

Re
�Î� u ¡ Á ·ÃÂ 8 A

Re

tUu��t 5 ¶¶¶¶ Á ·$Â F(3.2)
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A
Re
� ��� u �ÜÛ ¶¶¶¶ Á ·ÃÂ 8 ^ t Qt 5 ¶¶¶¶ Á ·$ÂA

Re
� �Ý� u � Á ¶¶¶¶ Á ·$Â 8 ^ t Qt x ¶¶¶¶ Á ·ÃÂ

Centerline

Wall

Flow

Fluid particle
with vorticity

FIG. 3.1. Directions of curl of vorticity at wall.

Note that the normal pressure gradient is derived from the negative normal component of
the curl of vorticity at the wall, which is hereafter called the normal wall strength NWS.
From (3.2), NWS is expressed as

NWS Þ A
Re
�Î� u ¡ Á ·ÃÂ 8 ^ A

Re

tvu �t 5 ¶¶¶¶ Á ·$Â 8 ^ t Qt xJ¶¶¶¶ Á ·ÃÂ F(3.3)

The following characteristics of NWS are considered.
(i) NWS is effective near the pipe inlet, where the vorticity gradient in the 5 -direction is

large and decreases inversely with Re. In the fully developed region, NWS vanishes since the
vorticity at the wall is constant and then the curl of vorticity disappears.

(ii) It is clear from (3.3) that NWS causes a pressure gradient in the radial direction, that
is, the pressure gradient at the wall results from the curl of vorticity. NWS and the radial
pressure gradient

t Q , t x have the same magnitude at the wall, but are opposite in direction.
When

t Q , t x ¢ C , NWS is directed from the wall to the centerline, as shown in Fig. 3.1.
Note that NWS causes the fluid particles near the wall to move towards the centerline in the
normal direction, i.e., it accelerates the fluid particles in the central core.

(iii) When adopting the boundary-layer assumption, NWS vanishes since
t Q , t x is al-

ways neglected in the assumption.

3.2. Tangential-vorticity source strength. We consider other forces at the wall in ac-
cordance with Lighthill [13]. Vorticity is produced on a solid body or solid wall surface and
spreads from there into the fluid. At almost all points on the boundary, the vorticity has a
nonzero gradient along the normal. This gradient, multiplied by (2/Re), represents the flow
of total vorticity out of the surface per unit area per unit time, so that it is the local strength of
the surface distribution of vorticity sources.

(1) Tangential-vorticity source strength.
The tangential-vorticity source strength has a simple relationship with pressure gradient.

If the surface is taken as x 8k� , the flow of � -vorticity out of it is expressed as^ A
Re ß >x t � x u #t x}à 8 A

Re ß >x tt x�á x t �t x�ârà 8 A
Re
� � �_8 ^ A

Re
� �Ý� u �ÜÛk8 t Qt 5 F

Hence the tangential-vorticity source strength at the wall is identical to the axial component
of the curl of vorticity multiplied by (2/Re) in magnitude, but opposite in direction, as shown
in Fig. 3.1. Note that this strength affects the pressure gradient in the 5 -direction, but does
not affect the pressure gradient in the normal or radial direction.
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(2) Normal-vorticity source strength.
The normal-vorticity source strength is directly derived under the continuity condition on

u
.

The continuity equation for
u

in cylindrical coordinates isÌäã±å u Þ >x t � x u Á #t x V >x tvu �t � V tvu�æt7ç 8 CUF
From the above equation, the normal-vorticity source strength is expressed asA

Re

tt x � x u Á #`8 ^ A
Re ß >x tvu��t � V tvu Ût 5 à F

In two dimensions,
u Á � u Û � and their derivative with respect to � are all zero. Accordingly,

this normal-vorticity source strength vanishes in the two-dimensional coordinates and affects
nothing.

3.3. Increase in kinetic energy. In the entrance region, the velocity distribution changes
from uniform at the inlet to parabolic in the fully developed region. The magnitude of the
increase in kinetic energy is considered below.

(i) At the inlet, the velocity profile is uniform: ��� C � x #º8èl m F The kinetic energy across
the inlet is given by multiplying the flux by its kinetic energy,é Âm Aëê xëìDx�í l m í � >A oGl �m #[8 >j ê o�+ � l ¦m F(3.4)

(ii) In the fully developed region, the velocity has a parabolic distribution (2.14). Ac-
cordingly, the kinetic energy is calculated asé Âm ABê x � >A oä#$î A l m ß >J^�� x� # � àrï ¦ ìEx 8 >b ê o�+ � l ¦m F(3.5)

(iii) The increase in kinetic energy (KE 6 ) in the entrance region is obtained by subtract-
ing (3.4) from (3.5), which gives

KE 6 8 >b ê o�+ � l ¦m ^ >j ê o�+ � l ¦m 8 >j ê o�+ � l ¦m F
The dimension of this increase in kinetic energy is{ñð�ò� ¦ � � � � ó # ¦ 8 ð�ò � �ó ¦ 8 ð�ò �ó � � ó | F
This unit corresponds to physical power, i.e., energy per second. We define a dimensionless
increase in kinetic energy per second, KE, as

KE Þ >j ê o�+ � l ¦m>A o�+ � l ¦m 8 ê b 8 CGFÍô j IGF(3.6)

This value of KE = 0.785 is a constant and is independent of Re; thus, KE satisfies the
necessary condition of parameter (a). RW is similarly normalized by (1/2) o�+ � l ¦m ; see Sub-
section 4.2.
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4. Power done by NWS.

4.1. Variation of enthalpy with pressure. Using the pressure drop (Q � ^`Qr¿ ) in the
radial direction, the amount of work WK done by NWS is considered. Here, on the basis of
thermodynamics [12], the variation of enthalpy õ with pressure Q , at a fixed temperature, can
be obtained from the definition õ�8�lkV�Qr� , where l is the internal energy and � is the
volume. For changes in õ , we haveP1õö8�P]lµVKP`�ÍQr�%# F
For most solids and liquids, at a constant temperature, the internal energy l´�0÷ � �%# does not
change as ì lø8 � t lt ÷ � V

ì ÷eV � t lt � � T

ì ��8 C �
where ÷ is the temperature. Since the change in volume is rather small, unless the changes in
pressure are very large, the change in enthalpy P1õ resulting from a change in pressure P'Q
can be approximated by

WK 8kP1õö3È�ñP'Q F(4.1)

Equation (4.1) can be applied to incompressible flow as well. The unit of �%P'Q is expressed
as { � ¦ í ð�ò � ó � >� � 8 ð�ò � �ó � 8 ð�ò � ó � í � | F
This unit, however, is equal to work in physics, and not to power such as KE.

4.2. Power done by NWS. The power RW done by NWS, or the rate of change of the
work WK, can be obtained by dividing the work given in (4.1) by period P w , but at this point,
the period is not yet known,

RW 8 WKP w 8 �%P'QP w F
Here, consider the dimensionless RW. RW is normalized by the same method as KE in (3.6).
Lengths, pressure, and time are normalized by + , (1/2) oGl �m , and ��+ , l m # , respectively. Ac-
cordingly, the dimensionless RW is expressed as

RW 8 �'P'QP w 8 ùÃú
ûqü&úûSý ú+ ¦ í ��> ,BA #poGl �m í �2l m , +þ# 8 ùÃúÜûqü&úûSý ú�n> ,EA #po�+ � l ¦m �
where ( 6 ) denotes dimensional quantities.

The power RW will be determined by the following steps.
(1) We begin by calculating the work from (4.1) for the shaded space between 5��0 �# and5��� �V?>/# in Fig. 2.1, where it is assumed that NWS is effective from the wall to x � ¬ # in the

radial direction, because there are few differences in pressure in the radial direction near the
centerline, as shown in Figs. 2.3(b) through 2.7(b). Hence, the volume �ÿ�� ��¬ # that NWS
affects is expressed as�ÿ�� �2¬ #g8 ê î ���:^¥P x # � ^ �±� ¬ ^f>X#sP x � � ï P!5 F(4.2)
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FIG. 4.1. Grid system, ¼ ��� ¼�� .

Next, the pressure difference in the radial direction is approximated by the difference
between Q��� �2¬ # and Qr¿N�0 �# :P'Q��0 �2¬ #]89Q��0 �2¬ #�^1Q ¿ �0 �#g8 >A �ÍQ ­�® ¯ VÝQ ­ � � ® ¯ #
(4.3) ^ >b � Q ­�® ° m V�Q ­0® ° � VÝQ ­ � � ® ° m V�Q ­ � � ® ° � # F

(2) The period during which NWS acts on the flow passing along vorticities at �� � � C #
and �0 ÇVk> � � C # is considered. The distance between 5��� �# and 5��0 ÃVW>X# is P!5 . The velocities
at two points �0 � ��>X# and �� qV�> � ��>/# respectively are � ­0® ° � and � ­ � � ® ° � . Accordingly, the
provisional period P w � �0 �# may be given by dividing the axial grid space P!5 by the mean
velocity at ¬ 8?��> , P w � �� p#[Þ P!5�� �0� ­0® ° �qV¥� ­ � � ® ° ��# 3 P!5� ­ � ���¨� ® ° � F
However, if this provisional P w � �� �# is the correct period, the following inconsistency will be
encountered. Two simple cases are taken as examples. First, if the grid aspect ratio is (a)P!5k8 A P x , as shown in Fig. 2.1, the work WK(a) and the power RW(a) for the shaded
space between 5��� p# and 5��� 7V:>/# are expressed as

WK �	�ä#g8��'P'Q �(4.4)

RW �	�ä#g8 �'P'QP!5� ­ � �
�¨� ® ° � 8 �;�'P'Q7#Ç� ­ � ���¨� ® ° �A P x F
(4.5)

Next, if the grid aspect ratio is (b) P!5]8 P x and �ÿ>*VT� A 8�� , as shown in Fig. 4.1,
the work WK(b) in � is calculated by adding the work in �ÿ> and in � A ,

WK ����#[8È�ÿ>XP'Q$>gV=� A P'Q A 3È�ñP'Q �(4.6)

where it is assumed that P'Q�>�3�P'Q A 3�P'Q . Similarly, the power RW(b) in � is calculated
by adding the power in ��> and in � A ,

RW ���&#g8 �ÿ>XP'Q�>P x� ­ ú � �
�¨� ® ° � V � A P'Q AP x� ­ ú � ¦ �¨� ® ° � 3 �;�ñP'Qr#Ã� ­ ú � � ® ° �P x 3 A
RW ���ä# �(4.7)
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FIG. 4.2. Balance of NWS and pressure at wall.

where � ­ ú � �
�¨� ® ° � 3h� ­ ú � � ® ° � 3À� ­ ú � ¦ �¨� ® ° � . As seen from (4.4) and (4.6), WK(a) and
WK(b) are the same. When comparing RW(a) and RW(b) respectively calculated using (4.5)
and (4.7), however, the power RW(b) is twice as high as RW(a), although the volume and
position are the same.

To avoid this inconsistency, the following period is required for a general grid system ofP!5þ8W"�P x �0"a8�> � A � @ � F&F�F # :P w �0 �#aÞ P x>A �0� ­0® ° � V¥� ­ � � ® ° � # 3 >>A � u�­�® ° m V u�­ � � ® ° m # �(4.8)

where, from (2.12),
u ­0® ° m�8�� ­�® ° � , P x .

This period is based on the following assumptions.
(i) The no-slip condition at the wall means that the fluid particles are not undergoing

translation; however, they are undergoing a rotation. It can be imagined that the wall consists
of an array of marbles that are rotating but remain at the same location at the wall ¬ 8 � C
[14].

(ii) The rotation of a fluid particle at the wall yields a vortex and vorticity. Then the curl
of vorticity yields NWS from (3.3). The diameter of the vortex of the fluid particle at the wall
is P x . Accordingly, NWS is produced per vortex, or per P x .

Figure 4.2 shows the balance between NWS and pressure at the contact surface of¬ 8 CUF I �p� C V ��>/# . For simplicity, the above statement is clarified using (3.2) and (4.9)
in discrete form. Setting P!5 to be "�P x ,P'QP x 8 A

Re
P uP!5 8 A

Re

u�­ � � ^ u�­P!5 8 A
Re

u�­ ú �Ã� ^ u�­ ú"�P x8 A
Re

>"�P x ß � u ­ ú �Ã� ^ u ­ ú �Ã� » ��#$Vk� u ­ ú �Ã� » �S^ u ­ ú �Ã� » ��#$V í&í�í(4.9) Vñ� u�­ ú � � ^ u�­ ú # à 3 A
Re
"q� u�­ ú � � ^ u�­ ú #"�P x 8 A

Re

u�­ ú � � ^ u�­ úP x �
where it is assumed that the vorticity gradient is linear in a small space between 5��0 �# and5��� ÇV:>/# , i.e.,

u�­ ú �Ã� ^ u�­ ú �Ã� » � 3 u�­ ú �Ã� » � ^ u�­ ú �Ã� » � 3 í�í&í 3 u�­ ú � � ^ u�­ ú .
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TABLE 4.1
Power (RW) and evaluation criteria at Re = 2000, ��� = 51.

c1 c2 c3 c4
�� � �B�������Ç� � �������ë�s�	���B� � �ä� �/�������Ã����� �ë�������Ç� � �%�±
Ü� �/�±
�� ��� RW
1 0.01 – 1.00 – 0.00029 0.00 1.278
2 0.01 – 0.95 – 0.00029 0.09 1.067
3 0.01 – 0.90 – 0.00029 0.13 0.898
4 0.05 – 1.00 – 0.00016 0.00 1.085
5 0.05 – 0.95 – 0.00016 0.10 0.895
6 0.05 – 0.90 – 0.00016 0.14 0.744
7 – 0.01 1.00 – 0.00041 0.06 1.302
8 – 0.01 0.95 – 0.00041 0.16 1.089
9 – 0.01 0.90 – 0.00041 0.20 0.917

10 – 0.03 1.00 – 0.00032 0.00 1.287
11 – 0.03 0.95 – 0.00032 0.10 1.076
12 – 0.03 0.90 – 0.00032 0.13 0.906
13 – 0.05 1.00 – 0.00028 0.00 1.274
14 – 0.05 0.95 – 0.00028 0.09 1.064
15 – 0.05 0.90 – 0.00028 0.13 0.894
16 – 0.03 – !n�#"�$ 0.00032 0.28 0.194

TABLE 4.2
Power (RW) and evaluation criteria at Re = 2000, ��� = 101.

c1 c2 c3 c4
�� � � � ��� � � � � � ��� � �	��� � � �ä� �/����� � ����� � � ��� � � � �%�±
Ü� �/�±
�� ��� RW
17 0.01 – 1.00 – 0.00024 0.04 1.029
18 0.01 – 0.95 – 0.00024 0.13 0.814
19 0.01 – 0.90 – 0.00024 0.17 0.674
20 0.05 – 1.00 – 0.00013 0.00 0.912
21 0.05 – 0.95 – 0.00013 0.12 0.708
22 0.05 – 0.90 – 0.00013 0.17 0.579
23 – 0.01 1.00 – 0.00029 0.30 1.039
24 – 0.01 0.95 – 0.00029 0.31 0.822
25 – 0.01 0.90 – 0.00029 0.32 0.682
26 – 0.03 1.00 – 0.00026 0.08 1.035
27 – 0.03 0.95 – 0.00026 0.17 0.819
28 – 0.03 0.90 – 0.00026 0.21 0.679
29 – 0.05 1.00 – 0.00024 0.02 1.029
30 – 0.05 0.95 – 0.00024 0.13 0.814
31 – 0.05 0.90 – 0.00024 0.17 0.674
32 – 0.03 – !n�#"�$ 0.00026 0.33 0.087

(3) The power RW(i) for the volume �þ�0 �2¬ # is derived from (4.2), (4.3), and (4.8). Thus
the total power RW is

RW 8&% ­ �ÿ�� �2¬ #�P'Q��0 �2¬ #P w �� �# F
(4.10)

4.3. Effective region of NWS. In order to calculate the power RW in (4.10), we must
determine the effective axial and radial regions of NWS. The effective region is determined
by the following criteria c1–c4. Here,

C Z[Q � �0 �#NZ`Q��0 ��¬ #SZ`Qv¿*�0 �# in the radial direction.
Axially: (i) c1 = (Q � ^1Qv¿ ), (ii) c2 = (Qv¿g^!Q � )/Q � .
Radially: (iii) c3 = (Q��0 �2¬ #�^1Qr¿ )/(Q � ^1Qv¿�# , (iv) c4 =

u
.

The calculated results of RW are listed in Tables 4.1 for � C = 51 and 4.2 for � C = 101.
The effective regions of NWS are derived using Tables 4.1 and 4.2, and Fig. 2.4 at Re = 2000.
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TABLE 4.3
Power RW and Re.

Re 500 1000 2000 3000 5000 10,000��� RW
51 1.562 1.327 1.076 0.910 0.692 0.420
101 1.500 1.139 0.819 0.656 0.473 0.244

(1) The axial effective length of NWS is considered. For Cases No. 4 (c1 = 0.05) and
13 (c2 = 0.05), the effective axial lengths are 0.00016 and 0.00028. From Fig. 2.4(a), at
X = 0.0002, we can see a small pressure difference (Q � ^1Qr¿ ), so criterion c2 is judged to be
better than c1. At 4 = 0.0002, Q � = - 0.192 and Qr¿ = - 0.225, c1 = (Q � ^aQr¿ ) = 0.033 and
c2 = (Q ¿ ^�Qr� )/Qr� = 0.147. At 4 = 0.0003, we can see a very small pressure difference
(Q7�S^]Q ¿ ). Then, Q7� = - 0.241 and Q ¿ = - 0.251; c1 = 0.01 and c2 = 0.040. At 4 = 0.0004,
there is no pressure difference (QÇ�r^�Q ¿ ). Then, Q7� = - 0.277 and Q ¿ = - 0.281; c1 = 0.004 and
c2 = 0.014. Accordingly, the threshold of c2 might be set at 0.030.

I0=1001,  J0=101
I0=1001,  J0=51
KE=0.785

P
o
w
e
r
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W
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10.0
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FIG. 4.3. Power (RW) vs Re.

(2) The radial effective length is considered. For Cases No. 23 and 26 (c3 = 1.00) in
Table 4.2, the pressure is constant from x = 0 (centerline) to x = 0.30 and from x = 0 tox = 0.08, respectively. For Cases No. 23 through 25, c3 = 1.00 at x = 0.30, 0.95 at x = 0.31,
and 0.90 at x = 0.32, respectively. Accordingly, the threshold of c3 might be set at 0.95.

(3) The vorticity is transfered from near the wall into the central core by NWS. For Cases
No. 16 and 32, the penetrated radial length of

u 89> C »('
is x = 0.28 for � C = 51 and 0.33

for � C = 101. Since the value of RW is very small, such as 0.194 and 0.087, respectively, we
cannot use c4 as a criterion for determining the effective region of NWS.

4.4. Calculation of minimum ��� . The calculated RW values are listed in Table 4.3 and
plotted against Re in Fig. 4.3, where the asterisks and dots denote the calculated results for� C = 51 and � C = 101, respectively.

The minimum critical Reynolds number � � �0�1 2"$# is calculated via linear interpolation
employing the values of RW for Re = 2000 and 3000,� � �0�1 2"$#�^`@ CECECABCDCEC ^`@ CECDC RW ¶¶¶ Â M · �smsm¨m V � � �0�1 2"$#�^ ABCDCEC@ CDCEC ^ AECECDC RW ¶¶¶ Â M · ¦ msm¨m 8 CGFÍô j IäF
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We thus obtained �������! �"$# of 3750 when � C = 51 and 2200 when � C = 101.

Conclusions. A conceptual macromodel was built to determine ���/�0�1 �"$# for pipe flows,
on the basis of the results of our experiments and previous calculations. The calculated results
were ���/�0�1 �"$# = 3750 when � C = 51 and 2200 when � C = 101.

The model is based on NWS. NWS causes the difference (Q � ^�Qv¿ ) in the radial direction
and accelerates fluid particles in the central core. In the entrance region, the velocity profile
changes from a uniform distribution at the pipe inlet to a parabolic one in the fully developed
region. The fluid particles in the central core are accelerated. The magnitude of the required
nondimensional acceleration power is KE = 0.785, which is derived from the difference in
kinetic energy between the flow at the inlet and that in the fully developed region.

The occurrence of the transition depends on the acceleration power RW given by NWS:
(a) when RW ¢ 0.785, transition takes place;
(b) when RW Z 0.785, transition never takes place.

A detailed study of the physical mechanism behind NWS and the occurrence of transition
will be a future work.
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Appendix A.

A.1. Nomenclature.(*)
= contraction ratio = + )¤, ++ = pipe diameter = 2 �+ ) = bellmouth diameterõ = enthalpy = l + Q7� , where � is volume = axial point of grid system� C = number of axial grid points¬ = radial point of grid system� C = number of radial grid points

KE = increase in kinetic energy (unit is power); see (3.6)
NWS = normal wall strength; see (3.3)Q = pressure = Q 6 , �n�n> ,BA #poGl �m #x = radial coordinate = x 6 , +� = pipe radius = � 6 , + = 0.5
Re = Reynolds number = l m + ,*)
RW = power done by NWS or rate of change of work; see (4.10)w

= time = ��l m , +þ# w 6÷ = temperature� = axial velocityl m = mean axial velocity at pipe inletl = internal energy� = radial velocity� = velocity vector or volume
WK = work done by NWS5 = axial coordinate = 5 6 , +5 6 = actual axial coordinate4 = axial coordinate = 5 , R R = 5r6 , ��+ R RX#o = fluid densityy

= streamfunction =
y 6 , �2l m + � #u

= vorticity = ��+ , l m # u 6� = angle in cylindrical coordinates)
= kinematic viscosityP'Q = pressure dropP x = radial grid sizeP!5 = axial grid size

Superscript: � 6 # = dimensional quantity
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A.2. Flowchart for explicit iteration method.

Start

1) Set initial and boundary conditions

2) Calculate
uS�B� � from

uY�
, Eq. (2.1), explicit

3) Calculate �y �B� �  � � from
u �B� � and �y �B� �  , Eq. (2.2), Gauss-Seidel

4) Calculate �u �B� �  � � from �y �E� �  � � , Eq. (2.2)

5) Check ¡Ç�u �B� �  � � -
uY�B� � ¡D¢¥£ �

6) Check ¡ yN�B� � -
yS� ¡D¢¥£-�

7) Set initial values for pressure, Eq. (2.5)

8) Calculate better pressure, Eq. (2.7)

Check ¡,+   � � - +   ¡E¢¥£-¦ , Gauss-Seidel

End

©©

ª

FIG. A.1. Flowchart for explicit iteration method.


