Electronic Transactions on Numerical Analysis. ETNA
Volume 30, pp. 187-202, 2008. Kent State University
Copyright © 2008, Kent State University. http://etna.math.kent.edu
ISSN 1068-9613.

LOW-RANK ITERATIVE METHODS FOR PROJECTED GENERALIZED
LYAPUNOV EQUATIONS*

TATJANA STYKEL'

Abstract. We generalize an alternating direction implicit method and the Smith method for large-scale projected
generalized Lyapunov equations. Such equations arise in model reduction of descriptor systems. Low-rank versions
of these methods are also presented, which can be used to compute low-rank approximations to the solution of pro-
jected generalized Lyapunov equations with low-rank symmetric, positive semidefinite right-hand side. Numerical
examples are presented.
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1. Introduction. Consider a linear time-invariant descriptor system

Ei(t) = Az(t) + Bu(t),
(4.1 y() = Cat),

where E, A € R™", B € R»™, C € R»", z(t) € R" is the state vector, u(t) € R™ is
the control input and y(t) € R? is the output. The matrix E may be singular, but the pencil
AE — A is assumed to be regular, i.e., det(A\E — A) # 0. Descriptor systems arise in many
different applications including electrical circuit simulation, multibody dynamics and spatial
discretization of partial differential equations, e.g., [6, 7, 8, 40]. Stability analysis and some
control problems for (1.1) are strongly related to the projected generalized continuous-time
algebraic Lyapunov equations (GCALEs)

(1.2) EXAT + AXET = -PBB'P}, X =P XPT,
(1.3) E"XA+ A"™XE=-PTC"CP,, X =P'XP

and the projected generalized discrete-time algebraic Lyapunov equations (GDALEs)

(1.4) AXAT - EXET = Q,BB*Q], X =Q,XQF,
(1.5) ATXA-ETXE =QTccq,, X =Qfxq,

where P, and P, are the spectral projectors onto the left and right deflating subspaces of
AE — A corresponding to the finite eigenvalues, Q; = I — P, and @, = I — P, are the
spectral projectors onto the left and right deflating subspaces corresponding to the eigenvalue
at infinity. Let AE — A be in Weierstrass canonical form

I, 0

(1.6) E:W[ON

J 0
]T and A=W [0 Inq]T,

where the matrices W and T are nonsingular, J corresponds to the finite eigenvalues of
AE — A and N being nilpotent corresponds to the eigenvalue at infinity. The index v of
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nilpotency of N is the index of the pencil AE — A. Using (1.6) the projectors P; and P, can
be represented as

[ A ) 1,0
(1.7) P,_W[0 O]W and P =T [OOT.

It has been shown in [34] that if the pencil AE — A is stable, i.e., all its finite eigenvalues
have negative real part, then the projected GCALEs (1.2) and (1.3) have the unique symmet-
ric, positive semidefinite solutions which define the proper controllability and observability
Gramians of the descriptor system (1.1). Furthermore, the projected GDALESs (1.4) and (1.5)
have the unique symmetric, positive semidefinite solutions which are the improper control-
lability and observability Gramians of (1.1). The Gramians play a central role in analysis
and control design problems for descriptor systems, such as the characterization of control-
lability and observability properties, computing Ho or Hankel norm, minimal and balanced
realizations as well as balanced truncation model order reduction [4, 34, 35, 36].

The numerical solution of standard Lyapunov equations with E = I has been the topic
of numerous publications [2, 3, 12, 13, 14, 17, 18, 22, 24, 29]. A variety of direct and iter-
ative methods has been proposed there for computing the solutions of such equations, their
Cholesky factors or low-rank approximations. The case of nonsingular E has been consid-
ered in [5, 9, 15, 16, 21]. Until now, only direct methods have been extended to projected
Lyapunov equations [33]. The solutions of (1.2) — (1.5) can be computed by the generalized
Schur-Bartels-Stewart or the generalized Schur-Hammarling methods that are based on the
preliminary reduction of the pencil AE — A to the generalized Schur form, solution of the
generalized Sylvester and Lyapunov equations and back transformation. Since these meth-
ods cost O(n?) operations and require O(n?) memory location, they can be used only for
problems of small or medium size.

Due to the practical importance of the numerical solution of large-scale projected gene-
ralized Lyapunov equations that occur in balanced truncation model reduction of descriptor
systems [35], the development of iterative methods for such equations is a challenging prob-
lem. In this paper we generalize the alternating direction implicit (ADI) method [17, 18, 22]
and the Smith method [22, 29] to the projected generalized Lyapunov equations (1.2) and
(1.4) with large sparse matrix coefficients. The dual equations (1.3) and (1.5) can be solved
in a similar way. Low-rank versions of the ADI and Smith methods are also presented, which
can be used to compute low-rank approximations to the solutions of (1.2) and (1.4) with
a low-rank right-hand side. Such a problem arises, for example, in model reduction. Note
that the number m of columns of the matrix B in (1.2) and (1.4) relates to the number of
inputs of the underlying descriptor system (1.1) and it is usually small compared to the state
space dimension n of the problem.

A major difficulty in the numerical solution of projected Lyapunov equations is that we
need to compute the spectral projectors Pj, P, or @;, Q.. Fortunately, in many applications
such as computational fluid dynamics and constrained structural mechanics, the matrices £
and A have some special block structure. As the following examples show, this structure can
be used to construct the projectors P; and P, in explicit form.

EXAMPLE 1.1. Consider the descriptor system (1.1) with

_ | Eu Ens | A1 Are
.5 eo[A A s

where E7; is nonsingular. Such a system arises, for example, after linearization and spatial
discretization of the Euler equation that describes the flow of a fluid through a supersonic
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diffuser [40]. If the matrix A, Ej;' E;o — A, is nonsingular, then the pencil \E — A in (1.8)
is of index 1, and the projectors P; and P, are given by

P = I (Ay = A B Bp) (Ap B By — Agy) ™!
0 0 ’
P. = [I_El_llElz(AlmEﬁlEu —Ayy) 1Ay _E1_11E12(A211E1_11E12_Azz)_lAzz
(A Eyy Bry—Agy) ™ As I+(Ay By By —Ay) ™' Ay

EXAMPLE 1.2. Consider the descriptor system (1.1), where E and A have the form

_ E11 0 _ A11A12
=[50 A=)

Such systems arise in spatial discretization of the instationary incompressible Stokes equation
[6, 7] and the convection equation [19]. If Ey; and A21E1_11A12 are nonsingular, then the
pencil AE — A in (1.9) is of index 2. In this case the spectral projectors P; and P, have the
following form

P = [Hl —H1A11E1_11A12(A21E1_11A12)_1]
I — 0 O ?

P _[ II, 0]
" —(Ay Ey'Ap) YAy EF AL T, 0]

where IT; = I — Ay (Ay Bt A1)~ Ay Eff" is a projector onto the kernel of Ay, Ep;'
along the image of A2 and IT, = I — Ej;'A 5 (Ay EftA,) " *Ay, = E'ILE, .

EXAMPLE 1.3. The motion of multibody systems with holonomic constraints can be
described by nonlinear differential-algebraic equations of the first order [8, 28]. Linearization
of these equations around an equilibrium state leads to the descriptor system (1.1) with

I 00 0 I 0
(1.10) E=|0 M 0], A=|K D -GT|,
0 00 G 0 0

where M is a nonsingular mass matrix, K is a stiffness matrix, D is a damping matrix and G
is a matrix of constraints. If G has full row rank, then the pencil AE' — A is of index 3, and
the spectral projectors P and P, can be computed as

I m 0 —_IIM~'DG,
P=|-NTDI-1) 0T -IO7(K+DIM-'D)G, |,
I 0 0 0
I big 0 0
P, = —IIM~'D(I — I) I 0
\GI(KIT-DOM~'D(I-M) GfDIO 0

Here Gy = M 'GT(GM'GT) 'and IT =T - M 'GT(GM'GT)"'G =T - GG is
a projector onto the kernel of G along the image of M ~1G7, see [28] for details.

In the following we will assume that the projectors Pj, Py, ); and @, are given. Clearly,
we do not compute these projectors explicitly. Instead, we use matrix-vector multiplication
and linear system solvers if an inverse is required. In Section 2, we present a generalization
of the ADI method and its low-rank version for the projected GCALE (1.2). In Section 3,
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we discuss the numerical solution of the projected Lyapunov equations (1.2) and (1.4) via the
(cyclic) Smith method. Section 4 contains some results of numerical experiments.

Throughout the paper the open left half-plane is denoted by C~. We will denote by
R™™ and C™™ the spaces of n x m real and complex matrices, respectively. The real
part of a complex number z is denoted by Re(z). The matrix A7 stands for the transpose of
A € R™™, A* denotes the complex conjugate and transpose of A € C™™, and
A~T = (A~YHT. An identity matrix of order n is denoted by I, or simply I. We will denote
by [|A]|2 the spectral matrix norm and by || A|| ¢ the Frobenius matrix norm of A € C™™.

2. Alternating direction implicit method. The ADI method was originally proposed
for linear systems [20] and then used in [17, 18, 22, 38] to solve standard continuous-time
Lyapunov equations. The case of nonsingular E has been considered in [16]. In this section,
we present a generalization of the ADI method for the projected GCALE (1.2).

Assume that the pencil AE — A is stable. Then the matrix A is nonsingular, and the
projected GCALE (1.2) is equivalent to the projected standard Lyapunov equation

Q2.1 A'E) X+ XA 'E)T=-PA'BBTA TP, X=P.XPL.

In this case an approximate solution of (1.2) can be computed by the ADI method applied to
(2.1). The ADI iteration is given by

X, = (A_IE + ‘TkI)_l(A_lE - TkI)Xk_l(A_lE - TkI)T(A_lE + FkI)_T

22
2) —9Re(ry)(A'E + 7,I) 'P.A 'BBTATPT(A'E +7,1)" T

with an initial matrix X¢ = 0 and the shift parameters 71, ..., 7, € C. It follows from

P.(A'E —7,I) = (A~'E — 7,I)P,,
P (A'E+7,I)"' = (A'E + n,])"'P,

that X, = PTXkPTT , 1.e., the second equation in (1.2) and (2.1) is satisfied exactly. The
iteration (2.2) can also be written as

X, = (E + TkA)_l (E — ?kA)Xk,I(E — TkA)T(E —|—?kA)_T

@) —2Re(73,)(E + 14 A) "' P,BBT P (E + 7 A)~ 7.
The following propositions give the convergence results for the ADI iteration.

PROPOSITION 2.1. If the pencil \E — A is stable and T, .. .,T; € C, then the ADI
iteration (2.3) converges to the solution X of the projected GCALE (1.2).

Proof. Let X be a solution of the projected GCALE (1.2). The error matrix X — X}, can
be computed from (2.3) recursively as

(2.4) X — Xp = A X AL
where
2:5) Ap = P(E+ 7, A)"HE = T4A) ... (E+ 7 A)"H(E -7 A).

Using the Weierstrass canonical form (1.6) and representation (1.7), we find that

o[k 0
2.6) A, =T [0 O]T
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with Jy = (I + 7 )" YT =7 J) ... - (L + )" — 71 J). If A\E — A is stable and
Ti,...,Tk € C™, then all the eigenvalues of (I + 7;J)~1(I —7;J), j =1,...,k, lie inside
the unit circle, and, hence, X}, converges toward the solution X . [0

PROPOSITION 2.2. Consider the projected GCALE (1.2). Assume that the pencil \E— A
is in Weierstrass canonical form (1.6), where J is diagonal. Then the k-th iterate X}, of the
ADI method satisfies the estimate

2.7 X = Xkl < &*(T)p* (Ar) I X |2,

where K(T) = ||T||2l|T 7|2 is the spectral condition number of the right transformation
matrix T in (1.6) and p(Ay) is the spectral radius of the matrix Ay, given in (2.5).
Proof. Estimate (2.7) immediately follows from (2.4) and (2.6). O

2.1. Computing the shift parameters. As Proposition 2.2 shows, the convergence rate
of the ADI iteration is determined by the spectral radius of the matrix Ay as in (2.5) and
depends strongly on the choice of shift parameters. The minimization of this spectral radius

with respect to the parameters 71, . .., 71, leads to the generalized ADI minimax problem
1—71t)-...- (1 =7yt
(2.8) {m,...,7,} = argmin max I T1t) ( Tk )|7
el €SP (E,A) [(1+7it) - ... (14 73t)|

where Sp; (E, A) denotes the set of finite eigenvalues of the pencil \E — A. The computation
of the optimal shift parameters is a difficult problem, since the finite eigenvalues of the pencil
AE — A are, in general, unknown and expensive to compute. This problem is solved for
standard Lyapunov equations with £ = I and symmetric A, e.g., [39], while the case of
complex eigenvalues of A is still not completely understood; see [18, 27, 32, 39] for some
contributions. To compute the suboptimal ADI shift parameters for the standard problem,
a heuristic algorithm has been proposed in [22]. This algorithm is based on Arnoldi iterations
[25] applied to the matrices A and A~!. It can also be extended to the generalized problem
(2.8). Due to the nonsingularity of A this problem is equivalent to

) |t =71) ..o (t—Tk)|
2.9 Ti,..., Tk} = argmin i
(2.9) { 1 k} Tl,“%ﬂcec_ teSp(A-1E)\{0} |(t + Tl) e (t + Tk)l

where Sp(A~! E) denotes the spectrum of the matrix A~ E. Thus, the suboptimal ADI shift
parameters  Ti,...,7; ~can be determined by the heuristic  procedure
[22, Algorithm 5.1] from a set of largest and smallest (in modulus) non-zero approximate
eigenvalues of A~'E. A conventional approach for computing largest and smallest eigen-
values of a matrix is to apply an Arnoldi process to this matrix and its inverse, respectively.
However, if E is singular, then the inverse of A~1E does not exist. Observe that the recip-
rocals of the smallest non-zero eigenvalues of A~!E are the largest finite eigenvalues of the
pencil \E — A. The latter can be determined by an Arnoldi procedure applied to the matrix
PA, where

1, 0

P = P,(EP, — AQ,)™" = (RE — QA) "B, = T~ [ 0

Jv
and T', W are the transformation matrices as in (1.6), see [30] for details. Similarly to the

projectors P, and P}, the matrix P can be obtained in explicit form using the special block
structure of the matrices £ and A.
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2.2. Low-rank version of the generalized ADI method. Recently, an efficient mod-
ification of the ADI method has been proposed to compute low-rank approximations to the
solutions of standard Lyapunov equations with large-scale matrix coefficients [17, 22]. This
is the low-rank alternating direction implicit (LR-ADI) method. It was observed that the
eigenvalues of the symmetric solutions of Lyapunov equations with low-rank right-hand side
generally decay very rapidly, and such solutions may be well approximated by low-rank ma-
trices [1, 10, 23, 31]. A similar result holds for projected generalized Lyapunov equations. In
other words, it is possible to find a matrix Z with a small number of columns such that ZZ T
is an approximate solution of the projected GCALE (1.2). The matrix Z is referred to as the
low-rank Cholesky factor of the solution X of (1.2).

A low-rank version of the generalized ADI iteration (2.3) can be derived analogously to
the standard case [17, 22]. First of all note that the matrix Xy, in (2.3) is Hermitian, positive
semidefinite, and the Cholesky factor Zj, of X = Z, Z; has the form

Zr = [V/-2Re(r)(E + 1 A)"'PB, (E+1,A) " (E —TrA) Zp_1]
= [arSkP B, ap_1SkRxSk—1PB, ..., oSipRy---R2S1PB],

where a; = /—2Re(7;), S; = (E + 7;A)~! and R; = E — 7, A. Taking into account that
SkASj = SjASk, RkA_le = R]'A_le, SkRj = A_leSkA

fork, 7 =1,2,..., the matrix Zj can be rewritten as
(2.10) Zy = [Bo,Fx—1By, Fy_2Fy_ 1By, ..., F1F;---F,_1By],
where By = /—2Re(7)(E + 14 A)"'P,B = \/—2Re(74) P.(E + 7,A) "1 B and
Re(7; Re(T;
( J) SjRj.H = 7( ]) I— (Tj +?j+1)(E+TjA)71A) .

Re(7j41) Re(7j41)

If we reenumerate the shift parameters in reverse order, then we obtain the following algo-
rithm for computing the low-rank Cholesky factor of the solution of (1.2).

ALGORITHM 2.1. The generalized LR-ADI method for the projected GCALE.

INPUT: E, A, P, € R™"™, B € R™™, shift parameters T, . . ., Tk, € C.
OUTPUT: A low-rank Cholesky factor Zy, of the solution X ~ Z, Z} of (1.2).
1. ZM) = \/—2Re(ny) (E+ 1 A)"'PB, Z; =20,

2.FOR k=2,3,...

Re(7)
Re(7k—1)

Z = Zp_1, ZW].

LA A (I = (Fas + ) (B + 7 A) 1 A4) 200,

END FOR

The ADI iteration can be stopped as soon as a normalized residual norm given by

_ IBZ,Z; AT + AZ, Z; BT + BBBTP] ||

212 ) IPEEF] s
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satisfies the condition 7(Z},) < tol with a user-defined tolerance tol or a stagnation of nor-
malized residual norms is observed. If the number of shift parameters is smaller than the
number of iterations required to attain a prescribed tolerance, then we reuse these parameters
in a cyclic manner. Note that computing the normalized residuals 7( Z},) even via the efficient
methods proposed in [22, 27] can still be quite expensive for large-scale problems. It should
also be noted that for ill-conditioned problems, the small residual norm does not imply that
the error in the computed solution is also small; see [33].
If X}, = Z,, Z; converges to the solution of (1.2), then

lim Z®(ZM)" = lim (Xp — Xp_1) = 0.
k—o0 k—o0

Therefore, just as in the standard case [17], the stopping criterion in Algorithm 2.1 can also
be based on the condition || Z¥)|| < tol or [|Z(*)||/|| Zy|| < tol with some matrix norm || - [|.

REMARK 2.3. The matrices (E + 74, A) ! in Algorithm 2.1 do not have to be com-
puted explicitly. Instead, we solve linear systems of the form (E + 74 A)x = Pb either by
computing (sparse) LU factorizations and forward/backward substitutions or by using itera-
tive Krylov subspace methods [26]. In the latter case the generalized LR-ADI method has the
memory complexity O(kaprmn) and costs O (kiskaprmn) flops, where k 4 py is the number
of outer ADI iterations and ks is the number of inner linear solver iterations. This method be-
comes efficient for large-scale sparse Lyapunov equations only if kisk4pym is much smaller
than n.

REMARK 2.4. In exact arithmetic the matrices Zj, satisfy Z = P.Z and, hence, the
second equation in (1.2) is fulfilled for the low-rank approximation Z, ZkT. However, in finite
precision arithmetic a drift-off effect may occur. In this case we need to project Z (k) onto the
image of P, by pre-multiplication with P,. In order to limit the additional computation cost
we can do this, for example, at every second or third iteration step.

REMARK 2.5. If E is nonsingular, but ill-conditioned with respect to inversion, then
Algorithm 2.1 may provide a better result than the classical LR-ADI method [16, 17, 22]
applied to the matrices E~'A and E~'B.

Note that if at least one of the shift parameters is complex, then the low-rank Cholesky
factor Z} may be complex although the solution X of (1.2) is real. As in the standard case
[17,22], in order to keep the real factors, we can take the complex shift parameters in complex
conjugate pairs {7y, Tg+1 } With 7,41 = T} and compute the iterates Z, as follows

(2.13) Zy=[Zra, ZW]  if 7 isreal
and
Zy = [ Zr—1 Z(k)] T is complex
(2.14) o if { m .
Zyyr = [Zg, Zy '] Tk+1 = Tk

Here Z® = V2|14 |(E + 1341 4) "L AZ® | 2B = \/3 (B + 14,1 A)"EZ® and Z(F) is
as in (2.11). One can show that (2.13) and the double step (2.14) provide the real Cholesky
factors of the solution of the projected GCALE (1.2).

PROPOSITION 2.6. Let E, A € R™™ and B € R™™. Assume that \E — A is stable
and that the complex shift parameters appear in complex conjugate pairs {Tg, Tk+1 = Tk}
Then the sequence of the matrices Zy, in (2.13), (2.14) is real. Furthermore, for complex Ty,
we have

Zyp Zi = Zka, 20, 20Dz, , 28, Z040 77,
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Proof. We prove the first part of this proposition by induction on k. If 7y is real, then
7z =29 = /=21 (E+nA)'PB
is real. If 7y is complex and 75 = 71, then we have
Zy = 2 = 2,/=Re(n) |n|[(E + 71 A) " A(E + 1 A)~'P,B,
Zy = [Z1, 24/—Re(n)(E +T1A)'E(E + nA)~'PB].

(2.15)

Next we show that the matrices (E + 7A) 'A(E +7A4) ! and (E + TA) 'E(E + 7A)!
are real for any complex 7. Since the pencil AE — A is stable, the matrix A is nonsingular.
Therefore,

(E+7TA)TAE+7A4)~t = ((E+TA)A"Y(E +74)) ™
= (EA'E + 2Re(7)E + |7|2A4) L.

Clearly, the inverse of a real matrix is also real. Furthermore, we have that
(E+TA) 'E(E+7A) ' = A 'E(E+7A) A(E+7A)1

is real. Thus, Z; and Z5 in (2.15) are both real.
Assume now that the matrix Z, is real, where k is the index of a real parameter or of the
second element in a complex conjugate pair {7j—1, 7 = Tk—1}. Then the matrix

Z*5) = (B —7,A)Z®
= /—2Re(1})(E — ThA)(E + 1, A)~ - ... - (E—T1A)(E+ 11 A)~'PB
is real. For real 73,41, we obtain that

Re A
2000 = [ gy )20

is real, and, hence, Zy41 = [ Z, Z/(k+1) ] is also real. If 74,41 is complex, then

ZRC(Tk+1 )

Z(k+1) _
! Re(7y)

= [Tt (B+Tr1A) "AB + 711 4) 1 2,

Zékﬂ) = 2Re(Ti41) (E + Tr14) 'E(E + 11 A) 71 20
Re(Ty)

are real. Therefore, Zy 41 = [ Zy, Z1(k+1)] and Zg12 = [ Zk+1, Z2(k+1)] are also real.
Further, for complex 74, we have Z-+1) = (I — 273,41 (E + 7441 4) "1 A) Z® and
Zk+1Zl?+1 = Zk—IZIZ—l + Zl(k) (Z{k))T + Z2(k) (Z2(k))T
= 2, 2L, +220(Z®)’
—274 1 (B+1pg1 A)TAZ®) (2 — 97, Z0) (ZR)) AT(B 474 A)~T
+4 | Tpp1 |2 (B+Tpgp1 A) LAZ® (ZON) AT (B4 740 A) T
=ZraZF  + 20 (ZW)* 4 Zk+1) (Z(kHD)Y*
=[Zp_y, 20, Zz=tD [ 7,4, ZK) ZzGk+D 1" O
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Observe that (2.13) and (2.14) involve, in general, complex matrix operations. Complex
arithmetic can be avoided if we rewrite (2.13) and (2.14) as

Re(7y)
Re(kal)
Zr=[Zk 1, Z®W], ZW =(E—-7,A)Z®

AQES (E + 1 A)~t 21,

for real 7, and

2R .
2 = prel [ 2R (B A1 | 9Re(r)E + g2 )~ 20D,
Re(7x—1)
2R A 1
70 = [ 2R 41 ga-1g | 9Re(r)B + [rPA) 20D = L a-mZ®),
Re(Tk_l) |Tk|

Zk+l = [Zk—la Zl(k)a Zz(k)]a

Re(y)

7 (k+1) —
Re(Tk_l)

(EAT'E—2Re(13) E+ |4 |?A) (EA™'E+2Re (14 ) E+ |3, |?4) 12+~ 1)

for a complex conjugate pair {7, 7r+1 = Tr}. A drawback of this procedure is that the
inverse of EA™'E + 2Re(73,) E + |71|? A is required. Solving linear systems with this matrix
is usually more expensive than with E + 74 A.

3. Smith method. For any parameter 7 € C—, the projected GCALE (1.2) is equivalent
to the projected discrete-time Lyapunov equation

(3.1) AXA*—-X=-P.BBP', X=PXPT,
where
A=(E+7A)"YE -7A) =1—-2Re(7)(E +7A)71A4,

B=+/—2Re(1) (E+7A)"'B.

Note that if the pencil AE — A is stable, then P, is the spectral projector onto the invariant
subspace of the matrix .4 corresponding to the eigenvalues inside the unit circle. In this case
the Smith iteration

(3.2) Xo=PE.BB*PY, X =P BBPT + AX;_ 1 A*

can be used to compute an approximate solution of (3.1); see [29]. The number of iter-
ations required for a desired accuracy in X}, depends on the parameter 7. Note that the
Smith method (3.2) is, in fact, the generalized ADI iteration (2.3) with a single parameter
T=T = ... = Tg-.

A modification of the Smith method has been proposed in [22] for computing a low-rank
Cholesky factor of the solution of standard Lyapunov equations with a low-rank right-hand
side. This version of the Smith method is based on the LR-ADI iteration with £ shift para-
meters applied in a cyclic manner and referred to as the low-rank cyclic Smith (LR-Smith(£))
method. It can be generalized for the projected GCALE (1.2) as follows: first one determines
Z, using the generalized LR-ADI method with the shift parameters 71, . . ., 7¢ and then solve
the discrete-time Lyapunov equation

AXA - X =-2,7F,
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where Ay is as in (2.5) with £ = £. In summary, we have the following algorithm to compute
the low-rank Cholesky factor of the solution of the projected GCALE (1.2).

ALGORITHM 3.1.The generalized LR-Smith(£) method for the projected GCALE.

INPUT: E, A, P, P, € R™", B € R™™, shift parameters 11, . ..,7 € C.
OUTPUT: A low rank Cholesky factor Zy, of the solution X ~ Z,,Z}, of (1.2).
1. Compute Zy using Algorithm 2.1 and set Z(+0) = Z,.
2.FORk=2,3,...

Z(k,O) — Z(kfl,l)’

FORj=1,...,¢

(3.3) Z®3) = (I — 2Re(r;)(E + 7;A) ' A) Z*R3 =1
END FOR
Zre = [ Z(k-1)e; ) VACORN
END FOR

Note that if Z, is real and the complex shift parameters appear in complex conjugate
pairs, then the matrices Zy, are also real.

REMARK 3.1. The generalized LR-Smith(£) method is equivalent to the generalized LR-
ADI method with cyclically repeated shift parameters. However, comparing (2.11) and (3.3),
where Z(k—1) ¢ C™ and Z(*1—1) € C™™ | respectively, one can see that Algorithm 2.1 is
more efficient than Algorithm 3.1.

REMARK 3.2. At every iteration step in the generalized LR-ADI and LR-Smith(/) meth-
ods the number of columns of the approximate solution factors Zj and Zj, grows by m and
£m, respectively. To keep the low-rank structure in the Cholesky factors in case of large m
and/or slow convergence, we can replace the iterate by its low-rank approximation computed
via the updated singular value decomposition; see [11] for details.

Consider now the projected GDALE (1.4). If the matrix A is nonsingular, then equation
(1.4) is equivalent to the projected discrete-time Lyapunov equation
(B34) X—-(A'EYXXA'E)T =Q,A'BBTATTQT X =Q,XQT.

T

Note that Q). is the spectral projector onto the invariant subspace of the matrix A~'E cor-
responding to the zero eigenvalues. In this case Q,A"'E = A~1E(Q, is nilpotent with the
index of nilpotency v that is equal to the index of the pencil AE — A. The unique solution of
the projected Lyapunov equation (3.4) is given by

v—1
X =Y (A"E)*Q,A7'BBTATTQT (A E)")*.
k=0
Thus, the Cholesky factor Y of the solution X = YY7 of (3.4) and also of the projected
GDALE (1.4) has the form

Y =[Q,A7'B, A"EQ,A7'B, ..., (A"'E)""'Q,A"'B].

It can be computed by the following algorithm that is a generalization of the Smith method
for the projected GDALE (1.4).
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ALGORITHM 3.2. The generalized Smith method for the projected GDALE.

INPUT: E, A, @Q, € R*" and B € R™»™,
OUTPUT: A Cholesky factorY,, of the solution X =Y, Y,T of (1.4).
1.Y®D =Q,A7'B, V=YW,
2.FORk=2,3,...,v
Y#) = AT EY -1 Y, = [Viq, YR
END FOR

Note that if the index v of the pencil AE — A is unknown, then the iteration in Algo-
rithm 3.2 can be stopped as soon as ||V ®)|| < tol or |[Y(#)||/||Y3]| < tol with some matrix
norm || - || and a tolerance tol. If we want to compute the solution of (1.4) as accurate as
possible, we should set tol to the machine precision. To avoid the drift-off of the columns
of Y;, from the image of Q,, the matrices ¥ (¥) should be pre-multiplied with Q,. after some
iteration steps.

In the case of singular A, we can consider the Lyapunov equation

(3.5) X —QEXEQT = QBBTQT

with Q = Q,(EP, + AQ,) ! = (RE + Q;A)~'Q,. This equation has the same solution
as the projected GDALE (1.4), see [41]. Therefore, the Cholesky factor Y,, of the solution
X =Y, YT of (1.4) can also be computed by applying the Smith method to equation (3.5).
Similarly to the projectors @),- and @);, the matrix ) can be constructed in explicit form using
the special block structure of E and A.

4. Numerical examples. In this section we present some results of numerical experi-
ments. Computations were done on IBM RS 6000 44P Modell 270 with machine precision
€ ~ 2.22 x 1076 using MATLAB 7. In all examples the suboptimal ADI shift parameters
were computed as described in Section 2.1.

EXAMPLE 4.1. Consider the 2D instationary Stokes equation that describes the flow of
an incompressible fluid in a domain. The spatial discretization of this equation by the finite
difference method on a uniform staggered grid leads to the descriptor system (1.1) with the
matrices F and A as in (1.9), where Eyq = I, A;; = A}, and A,; = A],. In our experiments
the state space dimension of the problem is n = 11040, and the matrix B € R™! is chosen
at random. Note that E and A are symmetric and F is positive semidefinite. In this case the
finite eigenvalues of AE — A are real.

In Figure 4.1 we present the normalized residual norm 7(Zy) as in (2.12) and the ratio
C(Zx) = [|Z®||g /|| Zk || for the generalized LR-ADI method with £ = 10 real shift param-
eters. The spectral radius of the matrix Ajq as in (2.5) is p(A19) = 0.01. One can see that
the generalized LR-ADI method converges fast, and the solution of the projected GCALE
(1.2) can be approximated quite accurately by a matrix of rank 30. The normalized residual
norm 7)(Zy) stagnates on a relatively small level, which is caused by round-off errors. Note
that {(Z},) does not decrease monotonically and more iteration steps are required to achieve
C(Z) < tol thann(Zy,) < tol.

Figure 4.2 shows the convergence history of the normalized residual norm for the gener-
alized LR-ADI method and the generalized LR-Smith(10) method versus the iteration num-
ber. As expected, both methods give similar results.

Furthermore, we computed the full rank Cholesky factor Y5 € R™2 of the solution
X =Y,Y,l of the projected GDALE (1.4) using Algorithm 3.2. The Frobenius norms of the
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Generalized LR-ADI iterations, I=10
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FIG. 4.1. Example 4.1: convergence history for the generalized LR-ADI method.
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F1G. 4.2. Example 4.1: normalized residuals for the generalized LR-ADI and LR-Smith(10) methods.

update matrices are ||[Y(1)||r = 3.874 x 10, ||[Y®)||p = 1.295 x 10? and ||V ®) || <e. This
is not surprising because the pencil A\E — A is of index 2.

EXAMPLE 4.2. Consider the descriptor system (1.1) with non-symmetric matrices E and
A as in (1.9) that has been obtained by the finite element discretization of a convection prob-
lem with a boundary control, see [19] for details. The problem has the state space dimension
n = 2909, and the matrix B = [0, B |7 € R™! results from the boundary control.

In Figure 4.3 we present the convergence history in terms of the normalized residual
norms for the generalized LR-ADI method and the generalized LR-Smith(11) method. One
can see that the solution of the projected GCALE (1.2) can be approximated by a matrix of
rank 35. The spectral radius of A;; is p(A11) = 0.018.

The solution of the projected GDALE (1.4) has been computed in factored form X =
Y,Y,l with the full rank Cholesky factor Y5 € R™2. The Frobenius norms of the update
matrices are ||[Y (V|| = 2.397, |[Y?)||r = 1.357 x 103 and [|[Y®)||r < &.
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Generalized LR-ADI and LR-Smith(11) iterations
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FI1G. 4.3. Example 4.2: normalized residuals for the generalized LR-ADI and LR-Smith(11) methods.

EXAMPLE 4.3. Consider a damped mass-spring system with g masses, see
[37, Section 3.9]. The i-th mass of weight m; is connected to the (¢ + 1)-st mass by a spring
and a damper with constants k; and d;, respectively, and also to the ground by another spring
and damper with constants d; and k;, respectively. Additionally, we assume that the first mass
is connected to the last one by a rigid bar and it can be influenced by a control. The vibration
of this system is described by the descriptor system (1.1) with the matrices E and A as in
(1.10). For g = 5000, we obtain a problem of the state space dimension n = 10001 with

B € R™!. The system parameters are m; = ... = m, = 100 and
ki=...=kj1=k=2, Ki=...=Kg=K=4,
di=...=dj1=d=3, 6 =...=0=6=T.

Figure 4.4 shows the normalized residual norms 7(Zy) and the relative updates ((Zy,)
for the generalized LR-ADI method with £ = 12 complex ADI shift parameters. We see that
the low-rank Cholesky factor Zj, of the solution of the projected GCALE (1.2) computed with
the stopping criterion {(Z;) < tol has about twice more columns than those computed with
the stopping criterion 1(Z) < tol. Since the spectral radius p(A;2) = 0.003 is very small,
the generalized LR-ADI iteration converges very fast.

Furthermore, we change the damping constants to d = 0.3 and § = 0.7 that results
in p(A12) = 0.718. Figure 4.5 shows that in this case the normalized residual norms 7(Zy)
decay quite slowly compared to the previous experiment with p(A12) = 0.003. This example
demonstrates that the convergence rate of the generalized LR-ADI method strongly depends
on the spectral radius of the iteration matrix in (2.5).

Finally, we investigate the impact of the growing number of columns in B € R™™ on
the convergence of the LR-ADI method. Assuming that the first m masses are influenced
by controls, we obtain B = [€g41,- -, €g4m |, Where e; denotes the j-th column of oy 1.
Figure 4.6 shows the normalized residual norms for the generalized LR-ADI method applied
to the problems with m = 1, 5 and 10 inputs. One can see that for different m the convergence
is about the same.

5. Conclusion. In this paper we have discussed the numerical solution of large-scale
projected generalized Lyapunov equations that arise, for example, in model reduction of de-
scriptor systems. We have presented the generalized low-rank alternating direction implicit
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FIG. 4.4. Example 4.3: convergence history for the generalized LR-ADI method.
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FI1G. 4.5. Example 4.3: convergence history for the generalized LR-ADI method for different sets of damping
parameters.

method and the generalized low-rank cyclic Smith method for computing low-rank approxi-

mations to the solutions of these equations. The efficiency of these methods has been demon-
strated by numerical experiments.
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