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THE AUTOMATIC COMPUTATION OF SECOND-ORDER SLOPE TUPLES
FOR SOME NONSMOOTH FUNCTIONS*

MARCO SCHNURRT

Abstract. In this paper, we show how the automatic computation of second-order slope tuples can be performed.
The algorithm allows for nonsmooth functions, such as ¢ (z) = |u (z)| and ¢ () = max {u (z),v (z)}, to occur
in the function expression of the underlying function. Furthermore, we allow the function expression to contain
functions given by two or more branches. By using interval arithmetic, second-order slope tuples provide verified
enclosures of the range of the underlying function. We give some examples comparing range enclosures given by a
second-order slope tuple with enclosures from previous papers.
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1. Introduction. Automatic differentiation [13] is a tool for evaluating functions and
derivatives simultaneously without using an explicit formula for the derivative. Combining
this technique with interval analysis [1], enclosures of the function range and the derivative
range on an interval [z] may be computed simultaneously.

By using an arithmetic analogous to automatic differentiation, the automatic computation
of first-order slope tuples is possible. For this purpose, the operations +, —, -, / and the eval-
uation of elementary functions need to be defined for first-order slope tuples. This approach
goes back to Krawczyk and Neumaier [10] and was extended by Rump [16] and Ratz [14].
First-order slope tuples provide enclosures of the function range that may be sharper than
enclosures obtained by the well-known mean value form. Moreover, slope tuples can be used
in existence tests [4, 5, 11, 17, 19] or for verified global optimization [7, 8, 14, 15, 21].

In this paper, we extend this technique by defining a second-order slope tuple and by
describing how the automatic computation of such tuples can be carried out. Shen and
Wolfe [24] introduced an arithmetic for the automatic computation of second-order slope
enclosures, and Kolev [9] improved this by providing optimal enclosures for convex and con-
cave elementary functions. However, both papers require the underlying function f : D C
R — R to be twice continuously differentiable. In this paper, we present similar results that
allow for nonsmooth functions ¢ : D C R — R occuring in the function expression of
f,suchas ¢ (z) = |u(z)| and ¢ (z) = max {u (z),v (z)}. Furthermore, the function ex-
pression of f may contain functions given by two or more branches. Moreover, intermediate
results are enclosed by intervals. Hence, these algorithms can be used for verified computa-
tions on a floating-point computer.

The paper is organized as follows. Section 2 recalls slope functions and slope enclosures.
In Section 3, we define second-order slope tuples for univariate functions and explain how
the automatic computation can be performed. In Section 4, we compare range enclosures ob-
tained by second-order slope tuples with range enclosures given by other methods. Section 5
extends the technique from Section 3 to multivariate functions. Furthermore, we explain an
alternative approach called componentwise computation of slope tuples and give examples
for both methods.

The numerical results were computed using Pascal-XSC programs on a floating-point
computer under the operating system Suse Linux 9.3. The source code of the programs

*Received December 12, 2007. Accepted for publication April 21, 2008. Published online on August 4, 2008.
Recommended by A. Frommer. This paper contains some results from the author’s dissertation [22].

Tnstitute for Applied and Numerical Mathematics, University of Karlsruhe, D-76128 Karlsruhe, Germany
(marco.schnurr@math.uni-karlsruhe.de).

203



ETNA

Kent State University
http://etna.math.kent.edu

204 M. SCHNURR

is freely available [18]. A current Pascal-XSC compiler is provided by the working group
”Scientific Computing / Software Engineering” of the University of Wuppertal [25].

Throughout this paper, we let [z] = [2,Z] = {z = (z;) € R", z; < z; <T;} with
z,T € R™ denote an interval vector. The set of all interval vectors [z] C R™ is denoted by
IR™. For two interval vectors [z] , [y] € IR", the interval hull [x] U [y] is the smallest interval
vector in IR™ containing [] and [y], i.e.

([£]Uy); == [min {zi,y:} , max {7, 7:}] -
Furthermore, by

T+z
2

mid [z] :=

we define the midpoint of [z]. Analogously, IR"*™ denotes the set of interval matrices
[A] = ([a]ij) = {A € R™", ay; < Ay < W}

In the following sections, we assume that a function f is given by a function expres-
sion consisting of a finite number of operations +, —, -, /, and elementary functions; cf. [1].

Furthermore, we suppose that an interval arithmetic evaluation f ([x]) on a given interval [z]
exists.

2. Slope Tuples. In this section, we consider functions f : D C R — R
DEFINITION 2.1. (cf. [3]) Let f € C™ (D). Furthermore, let p(x) = Zaixi be the
0

Hermitian interpolation polynomial for f with respect to the nodes xg, . . . ,mzn € D. Here,
exactly k + 1 elements of o, . .. , T, are equal to z;, if f(x;),..., f*) (z;) are given for
some node x;. The leading coefficient a,, of p is called the slope of n—th order of f with
respect to xg, . . . , . Notation:

6nf ($07"'7mn) = An-

In the following theorem, we give some basic properties of slopes. The statements d)
and e) in Theorem 2.2 are easy consequences of the Hermite-Genocchi Theorem; see [3].

THEOREM 2.2. Let f € C™ (D) and let 6, f (xo, - - - ,%n) be the slope of n—th order of
f with respect to xg, - . . , Tn. Then, the following statements hold:

a) Onf (%o, ... ,x,) is symmetric with respect to its arguments ;.

b) For x; # xj we have the recursion formula

50 f (20, o) = On—1f (T0, ey Tiz1, Tit1, ,a:,;) —_(;n._lf (Z0y ey Tj—1, Tjt1, ,a:n)
7 i

k—1
¢) Setting wy, () = H (x — x;), we have
=0

n—1
Q. f(z) = Z&if(mo,...,xi)-wi(:z:)+5nf(:v0,...,mn_1,:v)-wn(x), n > 1.
=0

d) The function g : D C R*"*! — R defined by

g(mOJ“'Jmﬂ) = énf(mOa"'axn)
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is continuous.
e) For the nodes xo < 1 < ... < &y, there exists a § € [Tg, ] such that

_ e

Onf (o, Zn) = .

DEFINITION 2.3. Let f be continuous and o € D be fixed. A function §f : D — R
satisfying

2.2) f(z) = [ (wo) + &f (z;20) - (x —m0), €D,

is called a first-order slope function of f with respect to zg.
An interval §f ([z] ; zo) € IR that encloses the range of 8f (x; xo) on the interval [x] C D,
ie.

of ([x] ;w0) 2 {0f (25 20) | € [2]},

is called a (first-order) slope enclosure of f on [z] with respect to zo.

In & = xo, (2.2) is fulfilled for an arbitrary &f (xo;x9) € R. If f is differentiable at zo,
then we always set df (zo; %0) := f (20). Often, the midpoint mid [z] of the interval [z] is
used for xg.

REMARK 2.4. a) Let §f ([z] ;z0) = [ﬂ,ﬁ] be a first-order slope enclosure of f on
[x]. Then, by (2.2), we have

(2.3) f(x) € [(x0) + 6f ([]; 20) - ([£] — o)

forall z € [z].
b) Let f be differentiable on [z] and z¢ € [z]. Then, we have

{0 (w50) v € [a], 2 # 20} € {f (@) |2 € [s]}.

Therefore, (2.3) may provide sharper enclosures of the range of f on [z] than the well-known
mean value form.

For some continuous functions f and some zg € [¢] C D, a slope enclosure
0f ([x] s zo) € IR does not exist, e.g.,

[ z forxz >0,
f(x)_{O forz < 0,

with 29 = 0, [2] = [-1,1]. If f is continuous on [z] and differentiable at zy € [z], then a
slope enclosure df ([] ; zo) € IR exists. For a sufficient, more general existence criterion, we
define the limiting slope interval [12].

DEFINITION 2.5. Let f be continuous on [x] and z¢ € [x]. Suppose that both

1)~ f (o)
) x — T
and
i eup £ @) = 1 @)
T—T0 T — T

exist. Then, the limiting slope interval 8fiim, ([To]) € IR is
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6flim ([-750]) := |lim inf M7 lim sup M
o T —Zo T—To T — Xo

REMARK 2.6. If f is Lipschitz continuous in some neighbourhood of z¢, then the limit-
ing slope interval &fjim, ([o]) exists.

EXAMPLE 2.7. For f (z) = |z|, zo = 0 we have dfim ([z0]) = [-1,1].

LEMMA 2.8. Let f be continuous on [z] and g € [z]. If §fiim ([To]) € IR exists, then

(sf([w] ;IL'()) = | inf M) sup M
g Tm e

is a slope enclosure of f on [z] with respect to xg.

Proof. g : [z] \ {zo} = R, g (z) := f@) = f (=)

,is bounded. O
r — X9

REMARK 2.9. Let f be Lipschitz continuous in some neighbourhood of zo. Then,
Muiioz und Kearfott [12] show the inclusion

2.4 Ofiim ([20]) C Of (20) ,

where O f () is the generalized gradient (see [2]). Furthermore, they give an example where

Sfiim ([w0]) C Of (20)

holds and also a sufficient condition for equality in (2.4).
DEFINITION 2.10. Let f be continuous, [x] C D and zo € [x]. Assume that f (x¢)
exists. A function §af : D — R satisfying

f (@) = f(zo) + f (x0) - (x — wo) + daf (w; 0, 20) - (x — 0)”, € D,

is called a second-order slope function of f with respect to zg.
An interval 85 f ([2] ; o, To) € IR with

2.5  f(z) € f(zo) + f (w0) - (x — @0) + 2 £ ([z] ; B0, T0) - (z — 0)”, « € [a],

is called a second-order slope enclosure of f on [z] with respect to zg.
As an abbreviation we set

O2 f (5 w0) := O f (25 20, T0)
and
02 f([z]; o) == 02 f([x] ; B0, T0) -

Furthermore, if f is twice differentiable at T, then we set 8, f (z; zo) := % f " (o).
REMARK 2.11. Assume that (2.5) holds. Then, we have the enclosure

f (@) € f(@o) + f (@o) - ([&] = 20) + 62 (] ;20) - ([a] - 20)”

for all z € [z].
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3. The automatic computation of second-order slope tuples for univariate func-
tions. In this section, we consider univariate functions u,v,w,z : D CR =+ R

First, we recall the definition of a first-order slope tuple [14, 16]. Afterwards, we give a
definition of second-order slope tuples that also permits nonsmooth functions.

DEFINITION 3.1. Let u be continuous, [x] C D and zy € [z]. A tripleld = (Uy, Uy, , 0U)
with Uy, Uy, , 06U € IR satisfying

u(xr) € Uy,
u(zg) € Uy,
(

w(z) —u(xg) € O6U-(z— o),

forall x € [z] is called a first-order slope tuple for u on [x] with respect to .

DEFINITION 3.2. Let u be continuous, [¢] C D and 9 € [z]. A second-order
slope tuple for u on [z] with respect to zq is a S-tuple U = (Uy,Ugy, 0Us,, 0U, 52U with
Uz, Uz, 80Uy, , 60U, 8:U € IR U,, C U, satisfying

(3.1 u(z) € Uy,

(3.2) u (29) € Uy,

(3.3) Suim ([z0]) C Uy,

(3.4) u(z) —u(xo) € U - (xz — x0) ,

(3.5) u(x) — u(xo) € 6U,, - (z — 20) + 62U - (z — 20)°,

Sforall x € [z].

REMARK 3.3. Property (3.5) does not imply that 62U is a second-order slope enclosure
in the sense of (2.5) because Uy, is a superset of du1im ([%o]). However, Remark 3.12 will
explain why the term slope tuple is justified.

REMARK 3.4. By (3.1)-(3.5) we get the enclosures

u(z) € Uy,

u(z) € Uz + 06U - ([z] — 20),

u(z) € Ugy + 06U, - ([2] — m0) + 62U - ([z] — z0)”,
],

for the range of u on [z], where

([z] = 0)? = | min (z — o), max (z — z0)°
z€[x] z€[z]

REMARK 3.5. If x = xg, then (3.4) and (3.5) are fulfilled for arbitrary U, 06U, and
d2U. So in checking these relations, we can restrict ourselves to z # zg.

LEMMA 3.6. K = (k,%,0,0,0) is a second-order slope tuple for the constant function
u(z) =k € Rand X = ([z],20,1,1,0) is a second-order slope tuple for the identity
Sunction u (x) = x (both on [z] with respect to xy € [z]).

DEFINITION 3.7. Let U andV be second-order slope tuples for the continuous functions
w and v, respectively, on [x] C D with respect to xg € [z].

a) For the addition or subtraction of U and V we define the 5-tuple W :=U £V by

W = U, +V,,
Wao = Ugy £ Vy,
Wyo = Uz, £ 6Vy,,
oW = 60U £ 4V,

W = §U £6,V.
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b) The multiplication W := U -V is defined by

W, = U, -V,

Wao = Uz Vao,

Wy = 00Uz - Vgo +Usz,y - 0V,

SW = U Vi + U, -4V,

0o W = 52U'Vw0 + U, '52V+5U'6Vw0.

¢)If0 & V,, then the division W := UV is defined by

W, = Uz/ Ve,
W = Uzo/Vzoa
Wy, = (5Uw0 —Wao - 5Vw0) / Vaos

W = (6U =Wy, -0V) [ Va,
(52W = ((52U - Wmo . (52V - 6W . 6V) / Vwo'

d) If ¢ is twice continuously differentiable, we define W := ¢ (U) by

WIE = (10 (Uw) bl

WIEO = P (Uwo) s

Wao = 0y (Uz05 Uwo) 0Uy,,
ow = o) - U,

0 (Uyg; Uy
SsW = 8 (Un; Usy) - 65U + 690 (U; Usy ) - 6Us, - 6U.

Here, we require ¢ (U;) € IR and ¢ (Uy,) € IR to enclose the range of ¢ on Uy and Uy,
respectively, and §¢ (U, ; Uy,) € IR to enclose

(3.6) {0 (uzo; tiag) | Uzy € Usgstiag € Usg }
09 (Uyg; Uy,) € IR 10 enclose

(3.7 {6 (ug;Ugy) | Uy € Uz, ug, € Ugy }s
and 62 (Uy; Ug,) € IR o enclose

(3.8) {020 (Ug;Ugy) | Uz € Up, gy € Ugg }-

THEOREM 3.8. The 5-tuples W = (W, Wyo,0Way, W, 82W) in Definition 3.7 are
second-order slope tuples for the functions w = uov, o € {+,—,-, /} andw () = ¢ (u (z))
on [x] with respect to xy, i.e. they satisfy (3.1)-(3.5).

Proof. The proof of (3.1), (3.2), and (3.4) for W are analogous to those in [14, 16]. So,
we only need to prove (3.3) and (3.5). We will show this for W := U -V and W := ¢ (U).
The proofs for addition, subtraction, and division are similar. Details can be found in [22].

For w (z) = u (z) - v(x) and € [z] we have

w(z) —w(zo) = u(x)v(z) —u(x)v(zo) + u (x) v (T0) — v (x0) v (20)
= (u(@) - &(a3.20) + du(330) - v (20) ) - (= — 20)
and thus obtain

Swiim ([Zo]) C u (o) - 0V1im ([Zo]) + Stim ([T0]) - v (o)
C Uy - Vo + 06Uz - Vi,



ETNA

Kent State University
http://etna.math.kent.edu

AUTOMATIC COMPUTATION OF SECOND-ORDER SLOPE TUPLES 209

whichis (3.3) forW=U-V.
Furthermore, by using interval analysis and the slope tuple properties of &/ and V we
have

w (z) —w (z0) = u(z) (v(z) —v(z0)) + v (20) (u(x) —u(xo))
€ u(zx) (5Vm0 (x— ) + 02V - (z — 180)2)

+ v (z0) <5Uz0 (z—x0) + 62U - (z — 530)2)
(u () - 0V + v (o) -5U$0) - (z — z9)
+(u (z) - 62V + v (z0) '52U) (& = z0)”

C ((u (o) + 06U - (z — a:o)) -8V, + v (o) -6Uw0> (& — )
+(u () - 82V + v (z0) -62U) Az — 20)?
C oWy - (z — o) + W - (z — .Z‘o)2 ,

which proves (3.5).
Next, we consider w (z) = ¢ (u (z)) and z € [z]. By

w (@) —w(a0) = dp(u(@);u (@) - (u(@) - ulao))

we get
dwiim ([20]) C ¢ (u(20)) - 6Uzy C 80 (Uzo; Uso) - 6Uss,

which is (3.3) for W = ¢ (). Because of

¢ (u(x) = @ (u(20)) + ¢ (u(w0)) - (u(w) — u(x0))

+020(u () u (20) ) - (u (x) — u(z0) )
we obtain
Sp(u (@) ;u(20)) = ¢ (u(0)) + G2p(u (z) ;u (w0) ) - (u(x) — u (z0))-

Hence, we have

20)) - 0Uq, - (z — o)
+52cp(u (z) ;u (zo) ) - 6Uy, - (u (z) — u (x0) ) - (z — o)
+p(u(z);u (o)) - 62U - (& — o)’
c 690(U$o; Uﬂco) - 0Us, - (z — 20)
n (62<p(UZ; Uso) - 8Usq - 0U + 80 (Us; Usg) - 62U) Az — zo)?
C oWy - (x — 2) + 62W - (2 — 31:0)2 ,



ETNA

Kent State University
http://etna.math.kent.edu

210 M. SCHNURR

which is (3.5). O

REMARK 3.9. It is possible to define §W and ;W differently in Definition 3.7 b)-d),
such that they still satisfy (3.1)-(3.5). For example, an alternative definition of W for the
multiplication W = U -V would be W := §U -V + Uy, - 6V. Furthermore, the intersection
of this alternative §W with the 6W from Definition 3.7 b) may be used; cf. [16].

Next, we compute enclosures d¢ (Ugy; Uz, ), 09 (Ug; Uy, ), 620 (Uy; Uz, ) € IR of (3.6)-
(3.8), where ¢ is twice continuously differentiable. Note that such enclosures exist because
the sets (3.6)-(3.8) are bounded as a consequence of the assumptions on ¢ and i/.

By the Mean Value Theorem and Taylor’s Theorem we have the enclosures

!

3.9 86 (U3 Uzy) = 0 (Uso)
(3.10) 80 (Ug; Uzy) = ¢ (Uy),
and

1 "
(3.11) 02 (Uz; Uso) = 5 (Us)

of (3.6)-(3.8). However, for some functions, such as ¢ () = z2 and ¢ () = \/z, sharper
enclosures for (3.7) and (3.8) can be found. By explicit computation of §p (uy;us,) and
02 (ug; ug,) we get the following two lemmas.

LEMMA 3.10. Let U be a second-order slope tuple for u on [x] with respect to zg € [z],
andlet p : R — R, ¢ (x) = x2. Then, we have the enclosures

00 (Ug;Ug,) € Up + Uy,

3200 (Ug;ug,) € [1,1]

SJorallu, € Uy and all ug, € Uy,.

LEMMA 3.11. Let U be a second-order slope tuple for u on [z] with respect to z¢ € []
such that inf (U,) > 0 and inf (Ug,) > 0. Furthermore, let ¢ : Rsg = R ¢ (z) = /z.
Then, for all u, € U, and all ug, € Uy, we have

1
0 Ug; Ug € T
o o) Tt o

1
2/Tzo (VUz + /Tay)”

dap (um;umo) € -

Furthermore, by exploiting convexity or concavity of ¢ and ¢ " we can get sharper enclo-
sures for (3.7) and (3.8) than by (3.10) and (3.11). The formulas and the proofs can be found
in [9] and [16]. Moreover, exploiting a unique point of inflection of ¢ or <p' may also give
sharper enclosures for (3.7) or (3.8) than (3.10) or (3.11). This applies to functions such as
@ (z) = sinh z, ¢ () = cosh z, etc. We omit the details of these formulas and refer to [20].

REMARK 3.12. Let f be twice continuously differentiable and

F = (Fy, Fpy,0Fy,,0F, 0o F)
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be a second-order slope tuple for f on [z] obtained by using Lemma 3.6 and Definition 3.7.
Then, we get

f@) = f(zo0) € f (o) (& —w0) +6F - (z—120)°, z€la],

analogously to the proof of Theorem 3.8. This is stronger than (3.5). Hence, by (2.5), 02 F' is
a second-order slope enclosure of f on [x] with respect to z;g. This justifies the term second-
order slope tuple in Definition 3.2.

3.1. Nonsmooth elementary functions. Let &/ and V be second-order slope tuples for
wand v on [z] C D with respect to g € [z]. We compute a second-order slope tuple W
for w (z) = |u(z)]|, w(z) = max {u(z),v(z)} and w (z) = min {u (z),v (z)}, so that
the automatic computation of second-order slope tuples can be extended to some nonsmooth
functions.

Lw(@) = ¢ (u@) = u):

We define the evaluation of ¢ () = |2| on an interval [z] € IR by

ol = abs () o= {la| | € ]} = [ min b o

Furthermore, we compute W = ¢ (U) = abs (i) by

Wy = abs(U,),
Wy, = abs(Usg,),
6W$0 = 6@ (U$07Uwo) . 5Uw07
oW = b (Uy;Us,) - 60U,
(SQW = [T],
where
( [_]-a_]-] ifu; <0
[1,1] ifug >0
8¢ (Upy;Ugo) =X [-1,-1] if0€ Uz A Uz, <0
[1,1] if0 €Uy A Uge >0
[ [-1,1]  otherwise,
([-1,-1] ifuy; <0
[1,1] ifuy >0
el ] et nw A 2
e e
—1, uz—iumoo] ifOeUz/\u_z=uﬂ/\%7éu_zo
|1fm|_u1:°,1] if 0 € Uy A g # Ugg ANz = Usgg
[ [-1,1] otherwise,




212

and

((—1-6U

02U

8 (Uy; Usy) - 62U +

00 (Uyg; Ugy) - 02U +

0o (Uyg; Ugy) - 02U +

L [-1,1] - 8:U

2. w(z) = max{u(z),v(z)}:

0,
0

0,—

850 (U3 Uyy) - 02U + [o, —#] - 6U,, - 6U

(AE] Uy, - 6U
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ifa; <0
ifuy >0

if0 € U, Aigg < 0A —Tigg € U,

z0

if0 € Uy Aigg <ONA —Tig, ¢ U,

W_uzo)
,@]-(SUEO-(SU if0 € Uy Agy > 0N —ugy €U,
2 | OV 86U if0 € Uy Aoy > OA —tigy ¢ Us

7 2
(“J_“zo)

otherwise.

We define the evaluation of the max-function for two intervals [a] and [b] by

max {[a], [b]} :=

[max {a, b} ,max {@,b}].

Furthermore, we compute W = max {U, V} by

Wa

Wi,

W,

ow

oW

|

max {U,, V },

max {Uszq, Vo }

U, ifuy >0
Vo if vy > u,
0Uz, U0V, otherwise,
U if up, > 7,
1% if v, > Uy
dU UV otherwise,
8,U if up > 75
0U U 6,V otherwise.

We compute W for w (z) = min {u (z) ,v (z)} analogously to W for

w (z) = max {u (z),v(z)}.

THEOREM 3.13. Let U and V be second-order slope tuples for u and v, respectively,

on [x] C D with respect to Ty € [z].
W = max {U,V} defined above are second-order slope tuples for the functions w (x)

Then, the tuples W = ¢ (U) abs (U) and

v (u(z)) = |u(x)| and w (z) = max{u (z) ,v (x)}, respectively.
Proof. The proof of (3.1), (3.2), and (3.4) for W can be found in [14]. Therefore, we
only need to check (3.3) and (3.5).
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Lw(z) =9 (u() = |u(@)

We prove (3.3). For each z € [z] with u (z) = u (z¢) we have
w (z) — w (w0) = [a] - (u(x) —u(zo))
with an arbitrary [a] € IR. If u (x) # u (z0), then

w(z) —w(zo) _ |u(@)| = |u(@o)| ulx)—u(@o)
T — Zo u (x) — u (wo) T — To

holds. By considering the various cases in the definition of 6W, we obtain
Swiim ([To]) C 0Wa,-

Next, we prove (3.5).
Case 1: uz <0.
We have

w(z) —w(zo) = =1 (u(z) —u(zo))
€ —1-0U,, - (x —x0) — 1-8U - (z — m0)°.

Case 2: uz > 0. This case is analogous to the previous case.
Case3:0€ Uy A Uz <0 A =g, € Us.
For all z € [z] with u (z) > 0 we get

|u ()| = |u (zo)|

w(z) —w(zy) € w (@) —u(zo) (6Uwo (x—x0) + 60U - (2 —.73(])2)
_ 2u(x)
= (—1+m)'(5UEO'({E—IL‘O)
|u ()] — |u (20)] 2
i@ U™
)

I
(=]
d
—~
8
|
8
(=}
~
+
/N

2u () u (z) — u (o) S
+(U(.’L’)—’LL(,’L‘0))2 T — g .1'0) (.'L' .730)

Because of u (z) > 0 we have
2u (x) < 2u (x) ‘
(u(@) —u(20))” ™ (u(2) ~ )’

By computing the maximum of the right expression in (3.12) and by using u (z) > 0 and
—Ug, € U,, we obtain

(3.12) 0 <L

2u) 2 (-T)

(u(@) —Tmg)” ~ (—Tmy —Uay)

3 -

Thus, we have

(3.13) 2u(z) _ € [0,— L ]
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Therefore, for all € [z] with u () > 0 we have shown that

w(z) = w(@0) € —8Us, - (z—m0) + (8¢ UasUso) - 6:U
(3.14) ) ,
+ [0, _ﬁ] - 8U,, -6U) Az — o)
holds. For all z € [z] with u (z) < 0 we get
w (z) —w (20) = (u(x) —u(zo))
€ —0Uy,, - (x —x0) — 02U - (z — :1:0)2 .

Because of —1 € d¢ (U,;Uy,) and 0 € [0, —;] we have

Tims
—1- 52U . (.’L' - .730)2
C (8¢ (Usi Uny) 81 + [0, -

To

] - 0Uy, -5U)-(:1:—:1:0)2.

Hence, (3.14) also holds for all z € [z] with u (z) < 0. Thus, we have

w (z) —w (x0) C Wy, - (& — z0) + & W - (2 — 20)”

forall z € [z].
Case4:0€ Uy AN Ty <0 AN —TUy, ¢ U,.
The proof is analogous to case 3. Instead of (3.13), we get

2-u(x) elo 2 Uy ]
(u (@) - u(20))* (T — i)

Case 5: 0 € Uy Nug, > 0 A —ug, € U,. This case is analogous to case 3.
Case 6: 0 € Uy Aug, > 0 A —uy, ¢ U,. This case is analogous to case 4.
Case 7: We have o

[u ()] = Ju @0)] € [=1,1]- (u (@) —u(20) )
C [~1,1]- 80, - (= — 7o) +[~1,1]- 62U - (& — 20)°,

which completes the proof.

2. w(z) = max{u(z),v ()}

Case 1: ug > 0.

We have max {u (z) ,v(z)} = u(z) and max {u (z¢) ,v (z9)} = u(zo). Therefore,
the proof of (3.3) and (3.5) is obvious.

Case 2: vy > . This case can be proven analogously to case 1.

Case 3: In the remaining case we have

OWlim ([.’L'()]) - 6U$0 Q(SV;CO.

Therefore, we get (3.3). Next, we prove (3.5).
If max {u (z) ,v (z)} = u (z) and max {u (z9) ,v (x0)} = v (20), then we have

v(z)—v(zo) < u(z)—v(z) < wulx)—u(zo),
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and therefore,
(3.15) w (z) —w (o) € (6Upy UdV,) - (& — o) + (02U U V) - (z — 20)”
holds. Clearly, (3.15) also holds, if

max{u (z),v(z)} =u(z) and max{u(zg),v(xo)} =u(zo).

Analogously, (3.15) is fulfilled, if u and v are interchanged. Therefore, we get (3.5). O

3.2. Continuous functions given by two or more branches. In order to automatically
compute second-order slope tuples for continuous functions given by two or more branches,
we first define the function ite : R3 — R (”if-then-else™).

DEFINITION 3.14. ite : R® — R is the function

u ifz<0
v otherwise.

(3.16) ite (z,u,v) := {

Letu,v,2z : D C R — R be continuous, [z] C D and definew : D C R — R by
3.17) w(z) = ite(z (z),u(z),v(z)).

w is now a function given by two branches u and v, with the function 2 determining which
branch is chosen. For details see [23].

DEFINITION 3.15. We define the evaluation of the ite-function for intervals [z] = [ z,Z],
[u] = [u, %] and [v] = [v, D] by

[u] ifz<0
(3.18) ite([2],[u],[v]) == { [] ifz>0

[u] U [v] otherwise.

THEOREM 3.16. Let U, V and Z be second-order slope tuples for the continuous func-
tions u, v and z on some interval [x] C D with respect to ©qg € [x]. Furthermore, let
w (z) = ite(z () ,u (z),v (z) ) be continuous on [x). We define the 5-tuple W = ite (Z,U, V)
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by
W, = ite(Zy,Us,Va),
Wao = ite(Zay,UsyVao),
¢ 5U,, if 75 <0
6% if 2 >0
Uso U (0Vao + (0Uzo — 0Vi) - 0,1]) ifO€ Zy N7y <0
W, = { Q(Uw0+ (6Vyo — 0U,) - [0,1]) if0 € Zy A zgy >0
(60 U (6V2o + (Vg — 8Va) - [0,1]))
U (5 U (8Usq + (6Vag — 6Us,) - [0, 1])) otherwise,
(oU ifzz <0
5V ifzeg >0
SUU (6V + (68U — 6V) - [0,1]) if0€ Zy NZgy <0
oW = < §VU(8U + (8V —4U)-[0,1]) if0€ Zy Nzay >0

(U U (8V + (8U = 6V) - [0, ]))
kQ( U (6U + (6V = 6U) - [0, ])) otherwise,

( 0U ifzy <0

oV ifze >0

82U U (62V + (62U — 62V) - [0,1]) if0 € Zy NZgg <0
BEW = { &V U (8U + 82V = 6:U) - [0,1]) if0 € Zy A2y >0

(U U B2V + (6T - 5:7) - [0,1]))
U ((52‘/ U ((52U + (62V = 82U) - [0,1] )) otherwise.

Then, W = ite(Z,U,V) is a second-order slope tuple for w on [x] with respect to x.
Proof. See [22] and [23]. O
REMARK 3.17. In some papers, the formula

oU ifz<0
sW =14 &V ifz>0
6U U8V  otherwise

is used for computation of a first-order slope tuple for w (z) = ite(z (z),u (z),v (z)) on
[z]. However, this formula is not correct because it does not provide a slope enclosure of w
on [z] for all possible choices of z,u,v. For details see [22] and [23].

4. Numerical results. We use the technique from the previous section to automatically
compute a second-order slope tuple

F = (Fy, Fyy,6F,,, 0F, 55 F)
for f on [z] with respect to zg € [z]. In this way, we obtain the range enclosures

4.1) S1:=F,, +F - ([:L'] — .’L'o)
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and
(4.2) Sy := Fy, + 6Fy,, - ([2] — x0) + 02F - ([z] — 20)”

of f on [z]; see Remark 3.4. S; was already considered in [14]. If f is twice continuously
differentiable, we can also compare these results with the centered forms

43) Dy = f (w) + £ ([a]) - (f«] o)
and
@H  Dyi=f (o) + S (@) (@] = a0) + 5 £ ([a]) - (] - 70)*

Here, f'([z]) and f " ([z]) are enclosures of the range of f and f " on [z]. They are computed
via automatic differentiation.

REMARK 4.1. By using machine interval arithmetic on a floating-point computer for
the operations from Section 3, the slope tuple properties (3.1)-(3.5) are preserved. Hence, by
applying machine interval arithmetic, we obtain verified range enclosures.

We consider the following examples:

(z)
2. f (z) = z* — 102® + 352 — 50z + 24
3.f(x)=(In(z+1.25) - 0.84;15)2
, 3
4. f (z) = %‘03:2 — Jo5 oxP (—(20 (z — 0.875) )2)
5. f (z) = exp (2°)
6. f (z) = z* — 122° + 472% — 60z — 20 exp (—x)
7. f () = 2% — 152% + 2722 + 250
8. f (z) = (arctan (|z — 1]) )/ (2 — 2z* + 20)
9. f () =max{exp(—x), sin(|w—1|)}
10. f (z) = ite (a:—l, zt —1+sin(z—1), |x2—gw—|—g|>

1L f(z) = |(x — 1) (2 + 2+ 5)| - exp <(x—2)2)
12. f (z) = max {2° —2” + 2, exp(z) - (z — 1) + 1}
13. f (z) = ite(w —1, (z—1)-arctanz - exp (z + sinz),

9 O 3, .
|(w 2:U+2)-sma:|)
In each case, we consider [z] = [0.75,1.75] and set ¢ := mid [z]. Examples 1-7 have also
been considered in [14].

We obtained the results in Table 4.1. For the examples 1-7, S1 and Sy provide sharper
enclosures than D; and Ds, respectively. Furthermore, S5 is a subset of Sy for the examples
1-7 except for example 4. For nonsmooth functions ¢, it is possible that a very large interval
02 W is computed for W = ¢ (U). Hence, S is not always contained in S in our examples.
However, except for example 9, one or both bounds of Sy provide sharper bounds for the
range of f than .S;.
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TABLE 4.1
Range enclosure for examples 1-13
No. D1 D2 Sl 52
1 [-2.262,3.184] [-0.910,2.889] | [-0.939,1.861] [-0.247,1.476]
2 [-44.75,42.95] [-5.215,7.598] | [-22.84,21.04] [-1.778,3.536]
3 [-0.376,0.412] [-0.042,0.190] | [-0.199,0.235] [-0.041,0.151]
4 [-10.51,10.57] [-1835,3.062] | [-0.133,0.195] [-0.345,0.115]
5 [-32.65,42.19] [-1.193,48.82] | [-11.84,21.39] [-1.193,21.39]
6 [ -85.86,29.28 ] [-40.03,-11.73] | [-61.07,4.492] [-35.76,-16.47]
7 [ 119.5,399.3] [ 182.7,304.4] [ 185.9,332.9] [210.4,275.1]
8 - - [-0.333,0.339] [-0.386,0.233 ]
9 - - [-0.214,0.787] [-0.284,1.271]
10 - - [-7.375,7.500] [-5.945,7.516]
11 - - [-19.85,26.70] [-8.953,34.22]
12 - - [-10.13,15.61] [-2.615,15.11]
13 . - [-15.00,15.12] [-12.64,13.27]

5. The automatic computation of second-order slope tuples for multivariate func-
tions. In this section, let f : D C R® — R. We define slope enclosures and the limiting
slope interval analogously to Section 2.

DEFINITION 5.1. Let f be continuous and xo € D be fixed. A function §f : D — R1X"

satisfying
[ (@) = f (o) + &f (z;20) - (2 — o) ,

is called a first-order slope function of f with respect to zg.
An interval matrix 6f ([z] ; zo) € IR"*™ with

of ([z] ;z0) 2 {8f (z;70) |z € [7] }

is called a (first-order) slope enclosure of f on [z] with respect to zo.

A slope function of f : R® — R is not unique, and there are various ways for computing
one; see, for example, [6, 7].

DEFINITION 5.2. Let f be continuous on [z] € IR", [z] C D. Furthermore, let xy € [z]
and f; (t) == f( (o)1 -+ -5 (T0);_y 1, (xO)i+1 yeees (T0)y ) If
fi (8) = fi((%0);)

t — (o),

z €D,

lim inf
t—(zo);

and

fi () = fi((w0),)
t— ($0)i

exist for all i € {1,...,n}, then we define the limiting slope interval dfiim ([zo]) € IR"™ by

fi () = fi((z0);) fi @) = fi((z0);)
t = (20); t — (o),

lim sup
t—(zo);

, limsup
t_>(w0)i

(6f1im ([0]) ) = llim inf

t—)(wo)i

DEFINITION 5.3. Let f be continuous, [x] C D, zo € [z], and assume that [ (zo)
exists. A function 6o f : D — R™*™ satisfying

f(z) = f(l"o)+fl(ﬂfo)'(x—l"o)+($—$0)T'52f($;$0,$0)'(m—mo), z €D,
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is called a second-order slope function of f with respect to xg.
An interval matrix 85 f([x]; Zo, o) € IR™*" with

f (@) € f(@o)+ f (w0) - (x = 30) + (z — 20)" - 82/ (] ;20,30) - (z — 70) , @ € [a],

is called a second-order slope enclosure of f on [z] with respect to z.

DEFINITION 5.4. Letu : D C R" — R be continuous, [x] € IR" with [x] C D,
and Ty € [z]. A second-order slope tuple for u on [z] with respect to o is a 5-tuple
U = (Ug,Usy, 80Uy, 08U, 82U) with Uy, Uy, € IR, 6U,,,8U € IR", 6U € IR™",
Uz, C Uy, satisfying

(5.1 u(z) €U,

(5.2) ( 0) € Uy,

5.3) 0utim ([To]) C Uz,

(5.4) u(z) —u(zo) € SUT - (x — x0),

(5.5) u (@) —u(z9) € SUL - (z — z0) + (& — 20)" - 82U - (x — 20)

forall x € [z].

LEMMA 5.5. Let [z] € IR", g € [z], i € {1,...,n}, and let &' € R™ be the i-th unit
vector.

a)K = (k, k,0,0,0) is a second-order slope tuple for the constant functionu : R — R,
u(z) = k € R on [z] with respect to xo. Here, the first and the second 0 symbolize the zero
vector, and the last 0 stands for the zero matrix.

b) X = ([z];,(20); , €, €%,0) is a second-order slope tuple foru : R* — R u (z) = z;,
on [x] with respect to xo. Here, 0 stands for the zero matrix.

REMARK 5.6. For the automatic computation of second-order slope tuples, the defini-
tions and theorems are completely analogous to Section 3. We only have to take into account
that §U,,, 0U, 6V, 0V € IR™ and 65U, 6,V € IR™ ™. Therefore, we get 6U,,-dU T instead
of 6Uy,- 60U and (z — xo)T- 02U - (x — mo) instead of §U - (x — xo)z. For details, see [22].

5.1. The componentwise computation of second-order slope tuples. The automatic
computation of slope tuples for multivariate functions can be reduced to the one-dimensional
case by the componentwise computation of slope tuples. For first-order slope tuples, Ratz [ 14]
uses this technique for verified global optimization. Hence, we also consider the component-
wise computation of second-order slope tuples in this paper.

DEFINITION 5.7. Let u : R” — R be continuous on [x] and leti € {1,...,n} be fixed.
We define the family of functions

g:[z], CR=R, g(t):=u(z1,...,%i—1,t,Tiy1,-..,Tn) }

(5.6) Gi:=
with zj € [z]; fixed for j € {1,...,n}, j #i.

Each g € G; is a continuous function of one variable ¢t. Hence, for each ¢ € G;
the automatic computation of a second-order slope tuple on [z], with respect to a fixed
(wo); € [z];, (x0); € R, is defined as in Section 3.

For the componentwise computation we have to modify the definition of a second-order
slope tuple as follows:

DEFINITION 5.8. Letu : D C R®™ — R be continuous and [z] € IR", [z] C D.
Furthermore, leti € {1,...,n} and (:co) € [z]; C R be fixed. A second-order slope tuple
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for w on [z] with respect to the i-th component is a 5-tuple U = (Uy, Uy, Uy, U, 62U)
with Uy, Ugy, 60Uy, , 0U, 62U € IR Uy, C Uy, satisfying

g(wz) € U$7
g((mo)i) € Ul'oa
5glim( [370],, ) c 5U$oa
g(z:) —g((z0);) € 6U- (i — (20);),
) €

8Usy - (i — (z0); ) + 02U - (s — (0);)?

forall x; € [x]; and all g € G;, where G; is defined by (5.6).
REMARK 5.9. Let U be a second-order slope tuple for u on [z] with respect to the i-th
component. Then, for all z € [z] we have

(5.7) u(z) € Uy, + 60U - ([w]i—(wo)i)
and
(5.8) w (@) € Upy + 06Uy, - ([m]i - (a:o)i) +6U - ([w]i - (xo)i)z-

Hence, we have reduced the automatic computation of second-order slope tuples to the
one-dimensional case from Section 3. Therefore, the same formulas can be used except for
Lemma 3.6. We need to modify Lemma 3.6 as follows:

LEMMA 5.10. Let [z] € IR", zg € [z], andi € {1,...,n}.

a) Foreachi € {1,...,n}, the tuple K = (k, k,0,0,0) is a second-order slope tuple for
the constant functionu : R* — R w(z) = k € R on [z] with respect to the i-th component.

b) Foru : R® —» R wu(x) = x, a second-order slope tuple on [x] with respect to the
i-th component is given by

_ ([Jv]k,[w]k,OOO), ifk # 14,
X_{([w] 0);,1,1,0), ifk=i.

REMARK 5.11. Using a technique similar to [6, 7], we obtain range enclosures that are
sharper than (5.7) and (5.8). For a fixed zg € [z] C D we have

5.9 f(21,..-,2zn) — F((@0)y,---»(20),,)
= f(ml,...,mn) —f((mo)l,mz...,:c")
+ f((@0);,22,---,2n) — f((@0);, (Ta)s, 3, .-, Tn)
+f((ZL'0)1,($0)2,$3,...,$n) —+---
+ (@)1 -1 (0)_1>%n) — f((20)y5---,(m0),)-
forall z € [z]. Foreach i € {1,...,n}, we now compute a second-order slope tuple
Fi = (Fu;i, Frg;ir 0Fgyiy 0 Fy 02 F;)

for the function

fi:((mo)l,...,(mo)i_l,[m]i,[m]i+1,...,[m]n) SR
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f’i (x) = U( (.’170)1 ] (mo)i—l 7xi7$i+17 s 73;71,)
forz € ( (1'0)1 R ('Z'O)z’_l ) [Z‘L ) [’T]H-l R ['Z']n )7
n ((2o),,---,(0);_1.[2];" ] PR [z],,) with respect to the 4-th component.
Then, by (5.9) we have
f ('7:) € Fz;la
f(@) € Fin +E?:1 OF} - ([x]J - (xO)j) =: Se1,
2
f@) € Foynt E?:l 0F ;5 - ([5’3]] - (-770)]') + E?:l 02 Fj - ([37]] - (mO)j)
=: Sc;2
forall z € [z].

5.2. Examples . We consider the following examples f : R® — R. Most of them have
been considered in [14]:

1. f(z)= ((%m 45 LBt m—6)7+10(1 - %) coszy +10) - 73
— ar? + mg%ma —exp (x3) - 5
2. f(z) =4z - 2.1zt + 3m1+m1x2 —4x? + 4z}
/(@) = ( 2= })" + (21— 1)°
fx)= —6.3z7 + 28 + 632 (z2 — 1)
5. f(z) =sinz; + sin (%ml) +Inz; — 0.8421 + 10002123 exp (—z3)

2
6. f(z)=(x1+sinzi)exp (—x%) +In (23) i_j

In each example, we take
[z] = ([x]l,,[m]n) = ([4,4.25],...,[4,4.25])

and z¢ = mid [z].
Using the technique from Remark 5.6, we compute a second-order slope tuple

F = (Fy, Fyy,0F,,,0F, 02 F)
for f on [z], as introduced in Definition 5.4. Then, by (5.1)-(5.5) we have
f(@) € Fpo+3FT - ([g] —20) =: Sy
and
flx) € Fpy + ‘5qu; ([z] = mo) + ([2] = 20)" - 82F - ([z] — mo) =: Smi2
with F,, € IR, §F,,,0F € IR" and 6, F € IR™*".
In Table 5.1, we compare the range enclosures Sy,;1 and Sp,;2 with S¢;; and S¢;» obtained

via Remark 5.11. Except for the first example, we have Sc;; C Spp;1 and Seo C Spppo.
Furthermore, for each of the examples S¢;» C Sc;; holds.
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TABLE 5.1
Comparison of range enclosures Sm;1 and Sp,;2 with Sc;1 and Se;a.

No. Sm;l Sm;Q
1 [-1497.1,-973.01 ] [-1494.0,-976.12]
2 [ 1809.5,2609.1 ] [ 1816.2,2602.5 ]
3 [13467,19786] [ 13467,19786 ]
4 [ 2538.7,4074.7 ] [ 2558.4,4055.0]
5 | [-2.1275,-1.7755] [-2.0521,-1.8508 ]
6 [ 5.1531,6.5377] [ 5.1529,6.5379 ]

Sc;l 50;2
[-1497.9,-972.20] [-1495.2,-986.94 ]
[ 1809.5,2609.1 ] [ 1843.0,2602.5 ]
[13467,19786] [13619,19786]
[ 2538.7,4074.7 ] [2619.5,4055.0]
[-2.1275,-1.7755] [-2.0499,-1.9322]
[5.1532,6.5376 ] [5.1647,6.5357 ]

AN AW

6. Conclusion. In this paper, we have shown how the automatic computation of second-
order slope tuples can be performed. Here, the function expression of the underlying function
may contain nonsmooth functions such as ¢ () = |u (z)| and ¢ (z) = max{u (z),v (z)}.
Furthermore, we allow for functions given by two or more branches. Some examples illus-
trated that second-order slope tuples may provide sharper enclosures of the function range
than first-order slope enclosures. Machine interval arithmetic yields verified range enclosures
on a floating-point computer. Hence, the automatic computation of second-order slope tuples
can also be applied to verified global optimization [21, 22].
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