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ASYMPTOTIC BEHAVIOR FOR NUMERICAL SOLUTIONS OF A SEMILINEAR
PARABOLIC EQUATION WITH A NONLINEAR BOUNDARY CONDITION*

NABONGO DIABATE! AND THEODORE K. BONI#

Abstract. This paper concerns the study of the numerical approximation for the following initial-boundary
value problem,

Ut = Ugz —auP, 0<z <1, t>0,
ug(0,t) =0, wug(l,t)+bu(l,t)=0, t>0,
u(z,0) =up(z) >0, 0<z<1,

where @ > 0,b > 0 and p > g > 1. We show that the solution of a semidiscrete form of the initial value problem
above goes to zero as t approaches infinity and give its asymptotic behavior. We provide some numerical experiments
that illustrate our analysis.
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1. Introduction. Consider the following initial-boundary value problem,

(1.1) Up = Ugy —auPl, 0<z <1, t>0,
(1.2) ug(0,8) =0, wuy(1,t)+bul(l,t)=0, t>0,
(13) U(.Z’,O) = UO('T) > 07 0 <z < 17

wherea > 0,b> 0,p > ¢ > 1, up € C([0,1]), ug(0) = 0, and uy(1) + bud(1) = 0.

The theoretical study of asymptotic behavior of solutions for semilinear parabolic equa-
tions has been the subject of investigations of many authors; see [2, 4] and the references
cited therein. In particular in [4], when b = 0, the authors have shown that the solution u of
(1.1)—(1.3) decays to zero as t goes to infinity and satisfies

. 1
Jim 77 [lu(z, )| = C.

where C, = (1)(1)1—71)) #~1. Similar results have been obtained in [2] in the case where b > 0

and p > g > 1. Indeed, in this case, it is shown that the solution u decays to zero as ¢
approaches infinity and lim;_, ta=T llw(z,t)||co = Co where Co = (m)q—;1

In this paper we are interesting in the numerical study of (1.1)—(1.3). First, using a
semidiscrete form of (1.1)—(1.3), we prove similar results for the semidiscrete solution. Pre-
viously, authors have used numerical methods to study the phenomenon of blow-up and the
one of extinction; see [1, 3]. This paper is organized as follows. In the Section 2, we give
a semidiscrete form of (1.1)—(1.3) and we prove some results about the discrete maximum
principle. In Section 3, we show that the semidiscrete solution goes to zeros as t goes to
infinity and give its asymptotic behavior. In Section 4, we prove that the semidiscrete scheme
converges. Finally, in Section 5, we give some numerical results.
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2. The semidiscrete scheme. In this section, we give some lemmas which will be
used later. Let I be a positive integer, and define the grid z; = ih, 0 < @ < I, where
h = 1/I. We approximate the solution u of the problem (1.1)—(1.3) by the solution
Un(t) = (Uo(t),Ur(t), ..., Ur(t))T of the semidiscrete equations,

.1 dUd’ft) = 8Ui(t) —a(Ui(t))?, 0<i<I-1, t>0,
22) d(gt(t) = PULE) — U — 27, >0,
(2.3) U;(0)=U2>0, 0<i<I,
where

PUL(H) = Uiy (t) — 2[;:-2(15) +U,-,1(t)7 l<i<I—1,

S Uo(t) = 2U1(t)h—22U0(t), PUL 1) = 2UI,1(t2l - 2U(t)

The following lemma is a semidiscrete form of the maximum principle.
LEMMA 2.1. Let ap(t) € C°([0, T],RITY) and let Vi, (t) € C1([0, T], RI*Y) such that

dvi(t)

D PV + Vi) 20, 0<i<T, te(0,T),
. |

Then we have Vi(t) > 0for0 <i < I, t€ (0,T).

Proof. Let Ty < T and let m = ming<i<r,0<t<t, Vi(t). Since, Vj(t) is a continuous
function on the compact [0, Tp], there exists tg € [0, Tp] such that m = V;, (to) for a certain
io € {0,...,I}. Itis not hard to see that

(2.4) dVi, (to) — lim Vi (to) — Viy(to — k) <0
' dt k—0 k -7
. 2Vi(to) — 2V (t P
25 Vi (tg) = 2l0) = o) 50 it ip=0,
2.6) 62V, (to) = Vig+1(to) — 2Vz';;§to) + Vig—1(to) >0 if 1<ig<I—1,
2Vi_1(to) — 2V (¢ e -
Q.7) 8V, (t) = 2L 1 022 1(to) >0 if ip=1.

Define the vector Zp,(t) = eV (t), where X is large enough that a;, (to) — A > 0. A
straightforward computation reveals that

(2.8) dZi;it(tO) - (52Z,'0 (to) + (aio (to) - )\)Zio (to) > 0.

We observe from (2.4)—(2.7) that dZ"g—t(tO) < 0and 6%2Z;,(tg) > 0. Using (2.8), we arrive at
(@i, (t) = X)Z;, (to) > 0, which implies that Z;, (o) > 0. Therefore V;,(to) = m > 0 and
we have the desired result. [

Another form of the maximum principle for semidiscrete equations is the following com-
parison lemma.
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LEMMA 2.2. Let Vi,(t), Up(t) € C1([0,00),RIt1) and f € CO(R x R, R) such that
fort e (0,00)

09 M0 vy + i, 0 < T - pUiw + 0,0, 0<is<T
2.10) Vi(0) <U;(0), 0<i<I.

Then we have V;(t) < U;(t), 0 <i < I, t € (0,00).
Proof. Define the vector Z(t) = Up(t) — Vi (t). Let to be the first ¢ > 0 such that
Zp(t) > 0fort € [0,t9), but Z;, (tg) = 0 for a certain ig € {0, ...,I}. We observe that

dZi, (to) _ iy Zio (to) — Ziy(to — k)
k

<0.
dt k—0 <0

827, (to) = Zot1lto) = 2Zio(to) + Zipa(to)
20

o >0 if 1<ipg<TI-1,
271 (to) — 220t

8 Zig (o) = 1(°)h2 olo) >0 it ig=0,
27 -27

52 iy (to) = - 1(%22 1(to) >0 if ig=1,

which implies that 200} _ 527, (10} 4 f (Ui (to), t0) — f(Viy (to),to) < 0. But this
inequality contradicts (2.9). 0

3. Asymptotic behavior. In this section, we show that the solution U of (2.1)—(2.3)
goes to zero as t approaches infinity and give its asymptotic behavior. To start, let us show
that the solution Uy, () decays uniformly to zero by the following

THEOREM 3.1. The solution Uy (t) of (2.1)—(2.3) goes to zero as t — oo and we have
the following estimates,

1
0 < |Ur(®)]]os <
< N0l < S O + o= D) =

for t€[0,+00).

Proof. Introduce the function a.(t) defined as follows,
1
a(t) = >
(1UR(0) 5™ + b(p — 1)t) 71
and let W}, the vector such that W;(t) = a(t). It is not hard to see that

de—;(t) —FWi(t)+ (Wi(t))» =0, 0<i<I-—1, te(0,7T),
dW;It(t) — BWi(t) + (Wi (1)P + %b(W,(t))q S0, te(.7)

Wi(0) > Ui(0), 0<i<I,

where (0,7T) is the maximal time interval on which [|Up(t)|lec < o00.  Setting
Zp(t) = Wh(t) — Up(t) and using the mean value theorem, we find that
dZ;(t
0 20 + 000 1) =0, 0<i<I=1, e ()
dZ(t) 2b

d 8 Z1(t) + (p(6r(t))P~" + E(9I(t))q‘1)Z1(t) >0, te(0,7),
Z;i(0)>0, 0<i<I,
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where 6; is an intermediate value between U;(t) and W;(¢). Apply Lemma 2.1, to obtain
0 < Up(t) < Wi(t) fort € (0,T). If T < oo we have
1
U (T)lloo < - o,
(TR Ol + b(p — 1)T) 7=

which leads to a contradiction. Hence T' = oo and we have the desired result. 0

The statement of the main result of this section is the following

THEOREM 3.2. Let Uy, be the solution of (2.1)—(2.3). Then we have

. 1
Jim ¢35 U4 (1) oo = C,

1
where Cy = (b(q ) )a—
The proof of Theorem 3.2 is based on the following lemmas. The function

p(x) = —/\(Co +2) +5(Co + 2)4,

where Cy = (b(q 7 )a—1 T and \ = q , is crucial in the proofs of the lemmas below. The

following result show that the solutlon Un(t) of (2.1)~(2.3) is bounded from above by a
function which decays to zero.

LEMMA 3.3. Let Uy, be the solution of (2.1)—(2.3). For any € > 0, there exist positive
times T and T such that

U(t+7) < (Co+e)t+T)  + it +T) 21, 0<i<I,

where ; = —5(Co + €)%%h>.
Proof. Introduce the vector W}, defined as follows,

Wi(t) = (Co+e)t™ +it™™71, 0<i<I.
A straightforward computation reveals that

aw;

pral Wi +aWP = -XCo+e)t M1 — (A + 1)t 2y,

+at™((Co +€) + pit )P —t7 " 15%;,
d?:l Wi+ aW? + hbW" = -MCo+e)t™ 1 +at™*P((Co +¢) + prt™1)?

— A+ D)t 2 — 7182

+ %bt_)‘_l((co +e) + it

because Ag = A + 1. From the mean value theorem, we get

(Co+e+@rt™)1 =(Co+e)? + xr(t)t™,

where 1 (t) is a bounded function. We deduce that

dw;
dt

Wi+aW?P =t"2(u) - A+ 1)t
+ at= AP (Cy + e + t7 1)),

d 2b
% — 0°Wr +aW? + FW}’ =t 2 (=)
2b
+at PML(Cy + e+t o) + 5 (Co+e)

L2
hXIt )-
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We observe that 1(0) = 0 and g (0) = 1. This implies that for & > 0, u(g) > 0. We also see

that —Ap+ A+ 1= %1 < 0. We deduce that there exists a positive time 7" such that
dw;
d—tz _62Wl + U/sz > 0,
dWr 2b
7 — 52WI + U/W}) + FWIq > 0,
T-*C
Wi(T) > TO

Since from Theorem 3.1 Up (t) goes to zero as ¢ tends to infinity, there exists 7 > T such that

Ui(r) < T_;CO < W;(T). Introduce the vector Zp(t) such that Zp, (t) = Up(t+7—-T). A
routine computation yields

dj" Zi+aZP >0, 0<i<I—-1, t>T,
daz 2b
dt’ (52Z1+aZ”+th(t)>0, t>T,

Zi(T) = Us(r) < Wi(T).
We deduce from Lemma 2.2 that Zp, (t) < Wp(t). That s,
Ut+7-T) <Wi(t) for t>T,

which leads us to the result. [
LEMMA 3.4. Let Uy, be the solution of (2.1)—(2.3). For any € > 0, there exists a positive
time T such that

Uit+1)> (Co—e)(t+7) *+ @it +7) >, 0<i<I

Proof. Introduce the vector V}, such that
Vi(t) = (Co — )t + st 1.
A direct calculation yields

% — Vi +aVP = —MCp — )t — (A + 1)t
+a((Co — )t + st 2 1)P
=t H(=XNCy—e) = (A+ 1)t !

+ a(Co — & + it ™)P),

dV; 2b .
dt’ Vi +aVf + 5V = =A(Co ~ A — A+ D)t 2y
+ at P (Co — e + ot~ HP —t7 A 1620
b
+ ZEt”\’l(Co —e+ ot 1),
because g\ = A + From the mean value theorem, we have (Co — ¢ + cpjtfl)q =

(Co —e)P + x1(t)t~ where x1(t) is a bounded function. Using this equality, we deduce
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that
av; 2 y4 —A-1 -1 -1
5 O VitaV? =t (u(=e) = A+ Dgit " +xit ),
2
% —*Vi +aV} + ﬁbvq =t 2 u(—e) - A+ 1)t !

2b
+&t + TF‘“““(CO —e+tH)9).

Obviously, —gA + A + 1 < 0. Also, since x(0) = 0 and g (0) = 1, it is easy to see that
u(—¢) < 0. Hence there exists a positive time 7" such that

d$_62m+a‘/zp<0, OSlSI—l, tE[T7+OO)3
2
% —&8Vi +aV} + ﬁbVIq <0, te[T,+o0).

Since V},(t) goes to zero as ¢ approaches infinity, there exists 7 > max(7,1) such that
Vi(1) < Up(1). Setting Xp(t) = Vi (t + 7 — 1), we observe that

X; .

ddt’—ézX,-+aXf’>0, 0<i<I-1, t>T,
dX 2b
d—;—52X1+aXf+ﬁX}1>0, tZT,

Xi(1) = Vi(r) < Ui(1), 0<i<I.
We deduce from Lemma 2.2 that
Ui(t) > Vi(t+7—1) for t>1,

which leads us to the result. [0
Now, we are in a position to prove the main result.
Proof of Theorem 3.2. From Lemma 3.3 and Lemma 3.4, we deduce

(€ ~e) < Jim inf(A) < tim sup(P0) < (04 + ),

t—o0 A
for any € > 0 and the proof is complete. O

4. Convergence. In this section, we will show that for each fixed time interval [0, 7]
where u is defined, the solution Up,(t) of (2.1)—(2.3) approximates u, when the mesh param-
eter h goes to zero.

THEOREM 4.1. Assume that (1.1)~(1.3) has a solution u € C*1([0,1] x [0, T]) and the
initial condition at (2.3) satisfies

(4.1) IUR = un(0)]lo = 0(1) as h—0,

where up(t) = (u(xo,t),...,u(xr,t))L. Then, for h sufficiently small, the problem (2.1)-
(2.3) has a unique solution Uy, € C1([0,T], RI*1) such that

_ — 0 _ 2
max [U4(t) = un(®lloo = OUUR = un (@)l + 1) a5 h—0.
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Proof. Since u € C**, there exist two positive constants K and L be such that

2| uzzzllo K [vzzzelloo K Y
ermle <, EREe0 o w <K K+1)P <L
3 <3 TEREEL lullo <K, ap(K+1)P"" <L,
4.2) 2q(K + 1)1 < L.

The problem (2.1)~(2.3) has for each h, a unique solution U, € C*([0,T}), R™*!). Let t(h)
the greatest value of ¢ > 0 such that

4.3) IUn(t) = un(®)lleo <1 for ¢ € (0,t(h)).

The relation (4.1) implies that ¢(h) > 0 for h sufficiently small. Let t*(h) = min{¢(h),T'}.
By the triangle inequality, we obtain

IU(#)lloo < [lu(@, D)lloo + IUA(E) —un(t)lloc  for &€ (0,2°(h)),
which implies that
4.4 U)o <1+ K for te (0,t"(h)).

Let ep(t) = Up(t) — up(z,t) be the error of discretization. Using Taylor’s expansion, we
have for ¢t € (0,t*(h)),

dez(t) 2 _ h2 ~ p—1
7 -0 ez(t) = Euzzzz(mz;t) - apfi ez(t)a
der(t 2 2h2 - h? - _
% — 6% (t) = 5401 Yer + 3 Uaas (T1,) + 15 Uewsa(T1,1) — apl] Ler(t),
where 07 € (Ur(t),u(xr,t) and & € (U;(t), u(x;,t). Using (4.2) and (4.4), we arrive at
decléit) —0%;(t) < Llei(t)| + Kh?, 0<i<T-1,

der(t)  (2er-1(t) —2er(t)) _ Ller(?)]

2
gt 2 < 5 + Ller(t)| + Kh*.

Consider the function z(z,t) = e((M+D1+C2) (|70 _ 4, (0)||oo + Qh2), where M, C, Q
are constants which will be determined later. We get

2(2,t) — 2ge (2, 1) = (M + 1 = 2C — 4C%2%)2(x, t),
2:(0,1) =0, 2,(1,t) = 2Cz(1,t),
2(2,0) = % (|UR = un(0) e + Qh).

By a semidiscretization of the above problem, we may choose M, C, () large enough that

dZ(;;at) > 622(xi,t) +L|z(x“t)| +Kh2, 0<i< I— 1’
L
% > 82(w1,1) + Slz(@n )] + Liz(zr,1)| + KB,

z2(z;,0>¢€;(0), 0<i<I.
It follows from Lemma 2.2 that

z(z;,t) > e;(t) for te (0,t%(h)), 0<i<I.
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In the same way, we also prove that
z2(ziyt) > —ei(t) for te (0,t*(h), 0<i<I,
which implies that
U () = un(®)lloo < eMFO(IUR —un(0)lloo + Q%) ¢ € (0,8%(h)).
Let us show that t*(h) = T'. Suppose that T' > ¢(h). From (4.3), we obtain
1= [|Un(#(h)) = un(t(W)lloo < eMTHO(|UR = up(0)lloo + QR).

Since the right hand side of the above inequality goes to zero as h goes to zero, we deduce
that 1 < 0, which is impossible. Consequently t*(h) = T', and we obtain the desired result. 0

5. Numerical results. In this section, we give some numerical results. First, we ap-
proximate the solution u(z,t) of (1.1)—(1.3) by the solution U,(L") = (ug,up,...,UMT
the following explicit scheme,

(n+1) (n)
u — 52U (") a(Ui(”))p—ll']i("'f‘l)7 0<i<I-1,

At
U(n+1) U(n) n n)\p— n+1 2b n)\g— n+1
1 = 52U( ) _ (UI( ))p IUI( +1) _ F(UI( ))q IUI( + )’
U§°)=¢z~>0, 0<i<I,
where n > 0, At < 2. Let us remark that the restriction on the time step guarantees the

positivity of the dlscrete solution U ,5 ).
Now, approximate the solution u(z,t) of (1.1)-(1.3) by the solution U, ,S") of the follow-
ing implicit scheme,

(n+1) (n)
u = 62U("+1) (Ui("))P—lUi(n“‘l)’ 1<i<I-1,

At
(n+1) (n)
% 52U(n+1) (UI(n));Dfl UI(n-i-l) _ %b(UI(n))pfl UI(n+1),

U9 =¢;>0, 0<i<I,

where n > 0.
The above equations may be rewritten in the following form,

n At__(n At n n At (n
v = ~ =y + (L4255 + aAtU M-yt = Uy,
0” = -5 Ui +1’+(1+2h— + aAt(UM YUY

w20t At gt | 2 S
U = - 220y +1)+(1+2—h +aAy UMy +EbAt|U§ N hyy ),

which gives the following linear system,
A U;(Ln+1) _ Uf(Ln),

where A is a tridiagonal matrix defined as follows,
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0
0

0

0 0
—At
- 0
h2
do _h—%t
—A
h2
0o .-
0

with d; = 1+ 22L + aAt(U™M)P=1 for0 < i < T — 1 and

b
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0 0
0 0
0
_h%t 0
dr1 5
=28t dp |

dr=1+255 + aAtU™ Pt 4 HAt(U} )ya—t,

Let us remark that the matrix A(™) satisfies the following properties

AP >0, A <0 for i) [AP|> D147

i#]

These properties imply that U}} exists for any n and U, ,Sn) > 0; see, for instance, [3].
Weletp=3,¢g=2,a=1,b=1,U? = 0.8+ 0.8 cos(mhi) and At = h; In Tables 5.1
and 5.2, in the rows, we give the first n for which

InAU™ =10 < e =102,

the corresponding time t,, = nAt, the CPU time, and the order(s) of method computed from

s — 108((Tun = Ton)/(T2n = Th))

log(2)

TABLE 5.1

Numerical time, number of iterations, CPU time (seconds), and order of the approximations obtained with the

implicit Euler method

1 | tn n CPU time s
16 301.1953 154211 43 -
32 303.1289 620807 319 -
64 303.1140 2483229 1017 2.16
128 | 303.1177 9932910 9237 2.02
256 | 303.1186 39731654 13515 2.04
TABLE 5.2

Numerical time, number of iterations, CPU time (seconds), and order of the approximations obtained with the

explicit Euler method

I | tn n CPU time s
16 301.1953 154211 43 -
32 303.1289 620807 319 -
64 303.1140 2483229 1017 2.16
128 | 303.1177 9932910 9237 2.02
256 | 303.1186 39731654 13515 2.04
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