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A CONVERGENT ADAPTIVE FINITE ELEMENT METHOD
WITH OPTIMAL COMPLEXITY ∗

ROLAND BECKER†, SHIPENG MAO‡, AND ZHONG-CI SHI‡.

Abstract. In this paper, we introduce and analyze a simple adaptive finite element method for second order
elliptic partial differential equations. The marking strategy depends on whether the data oscillation is sufficiently
small compared to the error estimator in the current mesh. Ifthe oscillation is small compared to the error estimator,
we mark as many edges such that their contributions to the local estimator are at least a fixed proportion of the
global error estimator (bulk criterion for the estimator).Otherwise, we reduce the oscillation by marking sufficiently
many elements, such that the oscillations of the marked cells are at least a fixed proportion of the global oscillation
(bulk criterion for the oscillation). This marking strategy guarantees a strict reduction of the error augmented by
the oscillation term. Both convergence rates and optimal complexity of the adaptive finite element method are
established, with an explicit expression of the constants in the estimates.

Key words. adaptive finite element method, a posteriori error estimator, convergence rate, optimal computa-
tional complexity
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1. Introduction. The analysis of adaptive finite element methods has made important
progress in recent years. Up to now, a large amount of work hasbeen performed concerning
AFEMs based on a posteriori error estimation for finite element methods, which typically
consists of successive loops of the sequence

SOLVE→ ESTIMATE → MARK → REFINE.

We refer to the review articles of Eriksson et al. [16] and the books of Ainsworth [1],
Babŭska [2], Verfürth [24] and the references therein.

On the other hand, while these adaptive finite element methods have been shown to be
very successful computationally, the theory describing the advantages of such methods over
their nonadaptive counterparts is still not complete. Apart from the well-known results in
the one dimensional case by Babus̆ka and Vogelius [3], the convergence of AFEMs in the
multidimensional case was an open issue before the work by Dörfler [15], which was later
extended by Morin, Nochetto and Siebert [19, 20], and more recently by Carstensen and
Hoppe for mixed FEM [7] and for nonconforming FEM [8], by Mekchay and Nochetto for
general second order linear elliptic PDE [17]. Especially, the importance and necessity of
controlling data oscillations and inner nodes are pointed out in [19] and [20].

Another important breakthrough in the theoretical understanding of AFEMs is the es-
timation of the dimension of the adaptively constructed discrete spaces, first achieved by
Binev, Dahmen and DeVore [5] who showed the optimal computational complexity. The
key to prove the optimality was the introduction of an additional so-called coarsening step.
A further significant improvement has been achieved by Stevenson [22] who shows that the
additional coarsening step is not necessary in order to prove optimal complexity. The im-
portance of the above mentioned results lays in the fact thatthey show optimal complexity
of adaptive algorithms in the following sense: if the exact solution can be approximated by
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a given adaptive method at a certain rate (quotient of accuracy to number of unknowns), the
iteratively constructed sequence of meshes will realize this rate up to a constant factor.

In this paper, we present a simple adaptive finite element method for second order elliptic
partial differential equations, which is a modification of the MNS algorithm of [19] and [20]
by Morin, Nochetto and Siebert. Our modification is motivated by the idea that if the data
oscillation term is small compared to the error estimator, it is sufficient to mark elements such
that the sum of the local error indicators amounts to a fixed proportion of the global error esti-
mator, otherwise we only need to perform a similar marking strategy for the oscillation term.
The adaptive algorithm considered here simplifies the MNS algorithm, but its convergence
proof is not obvious. Since in one refinement step we mark elements either according to the
error estimator or according to the oscillation term, one cannot expect the oscillation term
to be reduced in every iteration as is the case in the MNS algorithm. Therefore, in order to
prove convergence of our algorithm, we need to couple the error and oscillation term by an
argument similar to [19]. As a novel theoretical result, we prove a contraction property of the
error augmented by the data oscillation term. In addition, both convergence rates and optimal
complexity of the adaptive finite element method are established by a detailed analysis in the
spirit of [19] and [22].

An outline of the remaining parts of the paper is as follows. In Section2, we introduce the
set-up and discretization of the model problem, an a posteriori error estimate for the finite ele-
ment method and the adaptive algorithm AFEM along with some notations and preliminaries
for subsequent use. In Section3 we present some useful lemmata concerning the a posteriori
error estimator and prove the convergence rates and optimalcomplexity of the adaptive finite
element method by a detailed analysis. Finally, some comments and extensions of the results
conclude the paper in Section4.

2. A simple adaptive finite element method.We start this section with some useful
notation. Throughout this paper, we adopt the standard conventions for Sobolev spaces (see,
e.g., [11]), the norms and seminorms of a functionv defined on an open setG:

‖v‖m,G =




∫

G

∑

|α|≤m

|Dαv|2





1

2

, |v|m,G =




∫

G

∑

|α|=m

|Dαv|2





1

2

.

Let Ω ⊂ Rn be a bounded polygonal (polyhedral) domain. We consider thefollowing
second order elliptic equations : Findu ∈ H1

0 (Ω) such that

(2.1)

{
−∆u = f, in Ω
u = 0, on∂Ω,

wheref ∈ L2(Ω).
We denote by(·, ·)G theL2(G) inner product, and ifG = Ω, we drop the indexΩ for

simplicity. For anyf ∈ L2(Ω), the weak formulation of the problem (2.1) reads as follows:

(2.2)

{
Findu ∈ H1

0 (Ω), such that
a(u, v) = (f, v), ∀ v ∈ H1

0 (Ω)

with a(u, v) =
∫
Ω ∇u · ∇v dx.

Let TH be a conforming regular triangulation ofΩ and letVH denote the finite element
space of piecewise linear functions overTH . We denote byV H the space of continuous
piecewise linear functions overTH , and letV H

0 be the subspace of functions ofV H that
vanish at the boundary∂Ω. Let uH denote the solution of the discrete problem

(2.3)

{
FinduH ∈ V H

0 , such that
a(uH , vH) = (f, vH), ∀ vH ∈ V H

0 .
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We shall not discuss the step SOLVE which deserves a separateinvestigation. We assume
that the solutions of the finite-dimensional problems can begenerated to any accuracy to ac-
complish this in optimal space and time complexity. Multigrid-like methods are well-known
to achieve this goal, cf. [4, 26].

We denote byEH the set of edges (or faces in 3D) of the triangulationTH that do not
belong to the boundary∂Ω of the domainΩ. For E ∈ EH , HE denotes the diameter ofE
and the domainωE is the union of the two elements inTH sharingE. For anyK ∈ TH , HK

stands for its diameter and the domainωK is the union of the adjacent elements inTH .
Subtracting (2.2) from (2.3) and integrating by parts yields

a(u − uH , v) =
∑

K∈TH

(f, v − IHv) +
∑

E∈EH

∫

E

JE(v − IHv)ds, ∀v ∈ H1
0 (Ω).

Here and below,JE = [[∇uH ]]E · ν represents the jump of flux across sideE which is
independent of the orientation of the unit normalν, andIH denotes the Clément interpola-
tion operator [12]. It plays an important role in the analysis of the reliability, which is well
established in the literature; see, for example, [9].

Let ηE be the local error indicator associated with edgeE ∈ EH which is defined as

ηE(uH) :=

(
∑

K∈ωE

‖HKf‖2
0,K + ‖H

1

2

EJE‖2
0,E

)1/2

.

For any given subsetFH ⊆ EH andSH ⊆ TH , we define

η(uH ,FH) :=

(
∑

E∈FH

η2
E(uH)

)1/2

and

osc(f,SH) :=

(
∑

K∈SH

‖HK(f − fH)‖2
0,K

)1/2

,

wherefH denotes a piecewise constant approximation off on TH . If f ∈ L2(Ω), its value
onK is the mean value off overK.

The following upper and lower bounds are well known; see, e.g., [1] and [24].
LEMMA 2.1 (Upper bound).There exists a constantC1 > 0 depending only on the

minimum angle ofTH such that

(2.4) |u − uH |21,Ω ≤ C1η
2(uH , TH).

LEMMA 2.2 (Lower bound).There exist two constantsC2, C3 > 0 depending only on
the minimum angle ofTH such that, for anyE ∈ EH ,

(2.5) η2
E(uH) ≤ C2

∑

K∈ωE

|u − uH |21,K + C3osc2(f, ωE).

Summing up allE ∈ EH in (2.5) we have

(2.6) η2(uH , EH) ≤ (n + 1)C2|u − uH |21,Ω + (n + 1)C3osc2(f, TH).
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We note that we can assume without loss of generalityC2 ≥ C3.
In practice, both the local error estimatorη(uH ,FH) and the oscillation term osc(f,SH)

should be used in the MARK step of the algorithm. The precise way they are used in the
MARK step influences the convergence of the AFEM; see [19] and [20]. What is more, it
also influences the optimality of the AFEM. Therefore, the MARK step plays a key role in
AFEMs and should be designed properly.

As for the REFINE step, we need to carefully choose the rule for dividing the marked
triangles such that the family of meshes obtained by this refinement rule is conforming and
shape regular. In addition, we need to control the number of elements added in order to
ensure the overall optimality of the refinement procedure. In this article, we shall use the
newest vertex bisectiontechnique. We refer to [5, 18, 22] for details of this algorithm and
restrict ourselves to list the following properties used later on.

LEMMA 2.3.LetThk
, k = 0, . . . n be a sequence of locally refined triangulations created

by the newest vertex algorithm, starting from the initial meshTh0
. LetMk, k = 0, . . . n − 1

be the collection of all marked triangles in stepk. LetN (T ) denote the number of elements
of a triangulationT . ThenThn is uniformly shape regular and the shape regularity ofThn

only depends on that ofTh0
and furthermore,

(2.7) N (Thn) ≤ N (Th0
) + C0

n−1∑

k=0

N (Mk).

REMARK 2.4. The result (2.7) was first proved by Binev, Dahmen and DeVore [5] in the
2D triangular case and generalized by Stenvenson [23] to the case of general n-simplices.

Another important rule which appears in the REFINE step isthe interior node property.
Let Th be a refinement of the triangulationTH . We say that the refinement satisfies the
interior node property if each element of the marked setMh to be refined, as well as each
of its edges, contains a node ofTh in its interior. In fact, the interior node property is also a
necessary condition for the error reduction of adaptive linear finite element methods; see [19]
for an example which shows that if the refinement does not produce interior nodes, the error
may not change.

We are now in the position to present our adaptive algorithm AFEM. Similar adaptive
mesh adaptation algorithms have been presented in the literature [19, 22]. The new ingredient
in Algorithm 1 is the introduction of an adaptive marking strategy, which compares the os-
cillation term with the estimator in each step of the iteration. Depending on this comparison,
only the dominant term is used for local refinement. The makesan importance difference
with the algorithms known before. Since for many practical applications, the oscillation
term can be expected to be significantly smaller, the algorithm will practically be driven by
the estimator. In the recent technical reports [10, 14, 21], published after submission of the
present article, the authors also try to overcome the drawback of the original MNS algorithm.
However, they do not consider an adaptive marking strategy,which allows us here to prove
quasi-optimal convergence behavior.

Finally, we comment on the choice of the constants in Algorithm 1. According to our
analysis, the constantγ has to be chosen small enough. A theoretical value ensuring geo-
metrical convergence is given in Theorem3.5; see (3.5) below. An additional condition for
the choice ofα is necessary in order to guarantee optimal complexity in Theorem3.7; see
(3.27) below. It is clear that such a condition has to be imposed, since the choice ofα = 1
corresponds to global refinement in each step of the algorithm.

3. Convergence and optimality of AFEM. In this section we shall prove the conver-
gence and optimality of the algorithm developed in Section2. The techniques are adapted
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Algorithm 1 (AFEM)
(0) Select parameters 0 < α, θ, γ < 1 and an initial mesh T0, and set k = 0.
(1) Solve the discrete system (2.3) on Tk for the finite element solution uk.
(2) Compute the a posteriori error estimator η(uk, Tk) and oscillation term

osc(f, Tk). If η(uk, Tk) ≤ ǫ, then stop.
(3) i) If osc2(f, Tk) < γ η2(uk, Tk) mark the minimal edge set Fk of Ek such

that

(2.8) η2(uk,Fk) ≥ α η2(uk, Ek).

Define the marked elements Mk =
⋃

E∈Fk
ωE .

ii) Otherwise choose the marked elements setMk of Tk to be set of elements with
the minimal cardinality such that

(2.9) osc2(f,Mk) ≥ θ osc2(f, Tk).

(4) LetTk+1 be the refinement of Tk (in the case i), the refinement should satisfy
the interior node property ).

(5) Set k := k + 1 and go to step (1).

from [5, 17, 19, 22]. For completeness we include some results established in the mentioned
references without proofs.

The convergence analysis starts from the orthogonality relation betweenu − uH and
uh − uH , the so-called Pythagoras equality, which follows immediately from the Galerkin
orthogonality.

LEMMA 3.1 (Galerkin orthogonality).Let Th be a refinement of the triangulationTH

such thatV H ⊂ V h, supposeuH , uh are then the discrete finite element solutions overTH

andTh, respectively. Then the following relation holds:

(3.1) |u − uh|
2
1,Ω = |u − uH |21,Ω − |uh − uH |21,Ω.

The following local bound for the estimator in terms of the local difference between two
Galerkin solutions up to a local oscillation term plays a keyrole in the convergence analysis
of AFEM.

LEMMA 3.2. LetTh be a refinement of the triangulationTH such thatV H ⊂ V h, if for
anyE ∈ EH , bothE andK ∈ ωE satisfy the interior node property, then we have

(3.2) η2
E(uH) ≤ C4

∑

K∈ωE

|uh − uH |21,K + C5osc2(f, ωE).

As mentioned in the previous section, a successful convergent AFEM should include
the so-called oscillation reduction. This idea was developed by Morin, Nochetto and Siebert
[19, 20], and is stated as follows.

LEMMA 3.3 (Oscillation reduction).Let 0 < σ < 1 be the reduction factor of element
size associated with one refinement step. Given0 < θ < 1, let α̂ := 1 − (1 − σ2)θ. LetMH

be a subset ofTH such that

osc2(f,MH) ≥ θosc2(f, TH).

If Th is a triangulation obtained fromTH by refining at least every element inMH , then the
following data oscillation reduction occurs:

osc2(f, Th) ≤ α̂osc2(f, TH).
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The following lemma deals with a localized version of the upper bound for the difference
between two Galerkin solutions with respect to two different partitions, which was proved by
Stevenson [22].

LEMMA 3.4. LetC1 be the constant in Lemma2.1. Then there exists a subsetFH ⊂ EH ,
such that

(3.3) |uh − uH |21,Ω ≤ C1η
2(uH ,FH)

and

(3.4) N (FH) ≤ C6(N (Th) −N (TH)).

Based on Lemmas2.1, 2.2 and Lemmas3.1,3.2, 3.3, we are now in a position to prove
the convergence of Algorithm1 developed in the last section. Since they are of importance in
the choice of the parameters employed in Algorithm 1 and since the Lemmata are given with-
out proofs, we add some comments on the involved constants. ExceptC0, they all depend on
the minimal angle condition. To be more precise, constantsC4 andC5 depend on Verfürth’s
inverse estimate and could be determined by an eigenvalue problem. The constantsC1 and
C6 depend on the Clément operator; see [9, 25]. The constantC0 depends on the details of
the refinement algorithm; see [5, 23].

THEOREM 3.5 (Convergence of AFEM).Let{Vk}k≥0 be a sequence of nested finite el-
ement spaces generated by algorithmAFEM and let{uk}k≥0 be the corresponding sequence
of finite element solutions. Assume that

(3.5) 0 < γ < γ∗ :=
α

(n + 1)C2[(n + 1)C1C5 + αC3]
.

Then there exist constantsβ > 0 and0 < ρ < 1, depending only on the shape regularity of
meshes, the data, the dimensionn, the parametersα, θ, γ used byAFEM, such that for any
two consecutive iteratesk andk + 1 we have

(3.6) |u − uk+1|
2
1,Ω + βosc2(f, Tk+1) ≤ ρ

(
|u − uk|

2
1,Ω + βosc2(f, Tk)

)
.

Therefore, algorithmAFEM converges with a linear rateρ, namely

(3.7) |u − uk|
2
1,Ω + βosc2(f, Tk) ≤ C∗ρk,

whereC∗ := |u − u0|21,Ω + βosc2(f, T0). The reduction rate is:

(3.8) ρ = 1 −
(1 − µ)α

(n + 1)C1C4
,

with µ defined through (3.16), (3.18), and (3.20) below. The value ofβ is defined byβ =
max(β1, β2) with β1 andβ2 deined below in (3.15) and (3.17), respectively.

Proof. We treat the two possible cases of the algorithm separately. First consider the case
osc2(f, Tk) < γ η2(uk, Ek). By Lemma2.1, Lemma3.2and the marking strategy (2.8), we
have

|u − uk|
2
1,Ω ≤ C1η

2(uk, Ek) ≤
C1

α
η2(uk,Fk)

≤
(n + 1)C1

α

(
C4|uk+1 − uk|

2
1,Ω + C5osc2(f, Tk)

)
,
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which implies that

(3.9) |uk+1 − uk|
2
1,Ω ≥

α

(n + 1)C1C4
|u − uk|

2
1,Ω −

C5

C4
osc2(f, Tk).

Let β > 0 be a constant to be chosen in the subsequent analysis. Thanksto the Galerkin
orthogonality (3.1), one can prove

|u − uk+1|
2
1,Ω + βosc2(f, Tk+1)

≤ |u − uk|
2
1,Ω − |uk − uk+1|

2
1,Ω + βosc2(f, Tk)

≤

(
1 −

α

(n + 1)C1C4

)
|u − uk|

2
1,Ω +

(
β +

C5

C4

)
osc2(f, Tk).

Introducing another constant0 < b < 1 and using the lower bound (2.6), we get

(3.10)

|u − uk+1|
2
1,Ω + βosc2(f, Tk+1)

≤

(
1 −

α

(n + 1)C1C4

)
|u − uk|

2
1,Ω

+ γb

(
β +

C5

C4

)
η2(uk, Ek) + (1 − b)

(
β +

C5

C4

)
osc2(f, Tk)

≤

(
1 −

α

(n + 1)C1C4
+ (n + 1)bC2γ

(
β +

C5

C4

))
|u − uk|

2
1,Ω

+

(
(1 − b)

(
β +

C5

C4

)
+ (n + 1)bC3γ

(
β +

C5

C4

))
osc2(f, Tk).

In view of (3.10), in order to prove (3.6), we select the two constantsβ andb such that

(3.11)

(1 − b)

(
β +

C5

C4

)
+ (n + 1)bC3γ

(
β +

C5

C4

)

≤

(
1 −

α

(n + 1)C1C4
+ (n + 1)bC2γ

(
β +

C5

C4

))
β

and

(3.12)

(
1 −

α

(n + 1)C1C4
+ (n + 1)bC2γ

(
β +

C5

C4

))
< 1.

For the sake of our analysis, we can select another parameterµ ∈ (0, 1), andb is chosen such
that

(3.13) b =
µα

(n + 1)2C1C2C4γ
(
β + C5

C4

) ,

which implies that the error reduction rate is

(3.14) ρ := 1 −
(1 − µ)α

(n + 1)C1C4
.

Substituting (3.13) into (3.11) and rearranging, we obtain

−
α

(n + 1)C1C4
(1 − µ)β ≥

C5

C4
−

µα

(n + 1)C1C4

(
1

(n + 1)C2γ
− C3

)
,
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which implies

(3.15) β ≤ β1(µ) :=
−(n + 1)C1C5 + µα

(
1

(n+1)C2γ − C3

)

(1 − µ)α

if we chooseµ such that

(3.16) µ > µ∗
1 :=

(n + 1)C1C5

α
(

1
(n+1)C2γ − C3

) .

Note thatµ∗
1 < 1 under the assumption that0 < γ < γ∗.

Now, let us consider the case osc2(f, Tk) ≥ γη2(uk, Ek), then the marking strategy (2.9)
will be adopted. Let0 < a < 1 be a constant to be chosen suitably. By Lemmas3.3and2.1,
we have

|u − uk+1|
2
1,Ω + βosc2(f, Tk+1)

= (1 − a)|u − uk+1|
2
1,Ω + a|u − uk+1|

2
1,Ω + βosc2(f, Tk+1)

≤ (1 − a)|u − uk+1|
2
1,Ω + aC1η

2(uk, Ek) + βα̂osc2(f, Tk)

≤ (1 − a)|u − uk|
2
1,Ω +

(
aC1

γ
+ βα̂

)
osc2(f, Tk).

We will choose the constanta such that the error contraction in the second case is alsoρ, that
is to say,

a =
(1 − µ)α

(n + 1)C1C4
.

Then in order to prove (3.6), it is sufficient that the constantβ satisfies

aC1

γ
+ βα̂ ≤ (1 − a)β,

which implies

(3.17) β ≥ β2(µ) :=

C1

γ (1 − µ)α

(1 − α̂)(n + 1)C1C4 − (1 − µ)α

under the assumption that

(3.18) µ > µ∗
2 := 1 −

(1 − α̂)(n + 1)C1C4

α
.

Let us now discuss the selection of the value ofµ. If we select a fixed value forµ and set
β = max{β1, β2}, (3.6) will be obtained. In view of (3.15) and (3.17), the proper value ofβ
can be found if and only if

β2(µ) ≤ β1(µ),

which is equivalent to

f(µ) := λ1µ
2 + λ2µ + λ3 ≥ 0,
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where





λ1 := α2

(
1

(n + 1)C2γ
− C3

)
−

C1α

γ
,

λ2 := α

(
1

(n + 1)C2γ
− C3

)(
(1 − α̂)(n + 1)C1C4 − α

)

−(n + 1)C1C5α +
2C1α

γ
,

λ3 := (n + 1)C1C5

(
α − (1 − α̂)(n + 1)C1C4

)
−

C1α

γ
.

It can be checked that

(3.19) f(1) = (1 − α̂)(n + 1)C1C4

(
α

(
1

(n + 1)C2γ
− C3

)
− (n + 1)C1C5

)
> 0.

By the continuity of the functionf we know that there exists a constant0 < µ∗
3 < 1 such that

f(µ∗
3) ≥ 0. Then the value ofµ can be selected such that

(3.20) max{µ∗
1, µ

∗
2, µ

∗
3} < µ < 1.

Thus we have proved (3.6). Since (3.7) is a direct consequence of (3.6), the proof of the
theorem is complete.

For the proof of the optimal complexity of algorithm AFEM, weintroduce some notation
from nonlinear approximation theory, developed in [5, 6, 13, 22]. Let HN be the set of
all triangulationsT which are obtained by refinement of a regular initial triangulation T0

and the cardinality of which satisfyN (T ) ≤ N . For a given triangulation, the associated
finite element approximation of the problem (2.3) is denotedby uT . Next we define the
approximation class

Ws :=
{
(u, f) ∈ (H1

0 (Ω), L2(Ω)) : ‖(u, f)‖Ws < +∞
}
,

with

‖(u, f)‖Ws := sup
N≥N (T0)

Ns inf
T ∈HN

(
|u − uT |

2
1,Ω + osc2(f, T )

)
.

We say that an adaptive finite element method realizes optimal convergence rates if whenever
(u, f) ∈ Ws, it produces the approximationuk with respect to the triangulationTk such that

|u − uk|1,Ω ≤ CN (Tk)−s.

First, we estimate the number of elements added in one singlerefinement step.

LEMMA 3.6. Let {Vk}k≥0 be a sequence of nested finite element spaces produced by
algorithmAFEM and let{uk}k≥0 be the corresponding sequence of finite element solutions.
Assume that0 < γ < γ∗,

(3.21) C1C2α + C3γ <
1

n + 1
,

and(u, f) ∈ Ws. Then there exists a constantC∗
1 , depending only on the shape regularity

of the initial mesh, the data, the dimensionn, the parametersα, θ, γ used byAFEM, and
N (T0), such that

(3.22) N (Mk) ≤ C∗
1

(
|u − uk|

2
1,Ω + osc2(f, Tk)

)−1/s
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with

C∗
1 := max

{
(n + 1)C6λ

−1/s
1 , λ

−1/s
2

}∥∥(u, f)
∥∥1/s

Ws ,

whereλ1 andλ2 are defined by (3.24) and (3.26), respectively.
Proof. We split the proof into two cases as in the proof of Theorem3.5. Let us consider

the first case, i.e., osc2(f, Tk) < γ η2(uk, Ek). Supposeλ1 ∈ (0, 1) is a fixed constant to be
chosen appropriately in the subsequent analysis. LetT ∗

k be a triangulation refined fromT0

with minimal number of elements such that

|u − uT ∗

k
|21,Ω ≤ λ1

(
|u − uk|

2
1,Ω + osc2(f, Tk)

)
.

Then by the definition of the norm‖ · ‖Ws ,

N (T ∗
k ) ≤ λ

−1/s
1

(
|u − uk|

2
1,Ω + osc2(f, Tk)

)−1/s∥∥(u, f)
∥∥1/s

Ws .

Let us chooseT ′
k as the refinement ofTk with minimal number of elements such thatV ∗

k ⊂ V ′
k

and thus

(3.23) |u − uT ′

k
|21,Ω ≤ |u − uT ∗

k
|21,Ω ≤ λ1

(
|u − uk|

2
1,Ω + osc2(f, Tk)

)
.

Note that by the definition ofT ′
k there holds

N (T ′
k ) −N (Tk) ≤ N (T ∗

k )

≤ λ
−1/s
1

(
|u − uk|

2
1,Ω + osc2(f, Tk)

)−1/s∥∥(u, f)
∥∥1/s

Ws .

In the following we shall boundN (Tk+1) − N (Tk) by N (T ′
k ) − N (Tk) to obtain the

desired results. In view of Lemma3.4, there exists a subsetF∗
k ⊂ Ek such that

|uk − uT ′

k
|21,Ω ≤ C1η

2(uk,F∗
k )

and

N (F∗
k ) ≤ C6(N (T ′

k ) −N (Tk)).

Then, if the value ofλ1 is chosen as

(3.24) λ1 :=
1

n+1 − C3γ − C1C2α
1

n+1 − C3γ + C2γ
,

we have by the Galerkin orthogonality (3.1), (3.23) and (2.6)

η2(uk,F∗
k ) ≥

|uk − uT ′

k
|21,Ω

C1
=

|u − uk|21,Ω − |u − uT ′

k
|21,Ω

C1

≥
(1 − λ1)|u − uk|21,Ω − λ1osc2(f, Tk)

C1

≥
1

C1

[
(1 − λ1)

(n + 1)C2
η2(uk, Ek) −

(
λ1 +

(1 − λ1)C3

C2

)
osc2(f, Tk)

]

≥
η2(uk, Ek)

C1C2

[
1

n + 1
− C3γ − λ1

(
1

n + 1
+ γ(C2 − C3)

)]
.
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The denominator in (3.24) is positive due to our former assumptionC2 ≥ C3. Assump-
tion (3.21) leads toλ1 < 1.

With the choice ofλ1 in (3.24) we get

η2(uk,F∗
k ) ≥ αη2(uk, Ek).

Since in the marking strategy we choose the minimal edge setFk ⊂ Ek such that (2.8) holds,
and we conclude that

(3.25)

N (Mk) ≤ (n + 1)N (Fk) ≤ (n + 1)N (F∗
k )

≤ (n + 1)C6(N (T ′
k ) −N (Tk))

≤ (n + 1)2C6λ
−1/s
1

∥∥(u, f)
∥∥1/s

Ws

(
|u − uk|

2
1,Ω + osc2(f, Tk)

)−1/s

.

Next we turn to the case osc2(f, Tk) ≥ γη2(uk, Ek). Similar to the first case, suppose
thatλ2 ∈ (0, 1) is a fixed constant andT ∗

k be a triangulation refined fromT0 with minimal
number of elements such that

osc2(f, T ∗
k ) ≤ λ2

(
|u − uk|

2
1,Ω + osc2(f, Tk)

)

and

N (T ∗
k ) ≤ λ

−1/s
2

(
|u − uk|

2
1,Ω + osc2(f, Tk)

)−1/s∥∥(u, f)
∥∥1/s

Ws .

LetT ′
k be the refinement ofTk with minimal number of elements such thatV ∗

k ⊂ V ′
k and then

osc2(f, T ′
k ) ≤ osc2(f, T ∗

k ) ≤ λ2

(
|u − uk|

2
1,Ω + osc2(f, Tk)

)

and

N (T ′
k ) −N (Tk) ≤ λ

−1/s
2

(
|u − uk|

2
1,Ω + osc2(f, Tk)

)−1/s∥∥(u, f)
∥∥1/s

Ws .

LetM∗
K := {K|K ∈ Tk; K ∈ T ′

k}. Then by Lemma2.1, we have

osc2(f, Tk) ≥
1

λ2

(
osc2(f, T ′

k) − λ2|u − uk|
2
1,Ω

)

≥
1

λ2

(
osc2(f, T ′

k) − λ2C1η
2(uk, Ek)

)

≥

(
1

λ2
−

C1

γ

)
osc2(f, T ′

k )

≥

(
1

λ2
−

C1

γ

)
osc2(f,M∗

K)

=

(
1

λ2
−

C1

γ

)(
osc2(f, TK) − osc2(f, TK \M∗

K)
)
.

then if the value ofλ2 is chosen as

(3.26) λ2 :=
1 − θ

1 + C1(1−θ)
γ

,
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we get

osc2(f, TK \M∗
K) ≥ θosc2(f, Tk).

Since in the marking strategy we choose the minimal edge setMk ⊂ Tk such that (2.9) holds,
and we conclude that

N (Mk) ≤ N (TK \M∗
K)

≤ (N (T ′
k ) −N (Tk))

≤ λ
−1/s
2

∥∥(u, f)
∥∥1/s

Ws

(
|u − uk|1,Ωa2 + osc2(f, Tk)

)−1/s

,

which, together with (3.25) implies the desired result.

Now, we can prove the optimality of the algorithm AFEM.

THEOREM 3.7 (Optimal complexity of AFEM).Let {Vk}k≥0 be a sequence of nested
finite element spaces produced by algorithmAFEM and let{uk}k≥0 be the corresponding
sequence of finite element solutions. Assume that(u, f) ∈ Ws, γ satisfies0 < γ < γ∗

(defined in (3.5)), and further thatα satisfies

(3.27) C1C2α + C3γ <
1

n + 1
.

Then there exists a constantC∗
2 , such that

(3.28) |u − uk|
2
1,Ω + osc2(f, Tk) ≤ C∗

2

(
N (Tk) −N (T0)

)−s

with C∗
2 := max{1, β}




C0C∗

1

„

1−ρ
k
s

«

ρ−1/s−1




s

.

In addition there exists another constantC∗
3 such that for anyǫ > 0 the following holds.

LetN be the first index such thatη(uN , EN ) ≤ ǫ. Then we have

(3.29) N (TN ) −N (T0) ≤ C∗
3 ǫ−2/s

with C∗
3 := C0C

∗
1 min

{
1, 1

β

}−1/s
1−ρN/s

ρ−1/s−1

(
min

n

1,
C2β
C3

o

(n+1)C2

)−1/s

.

Proof. In view of (3.22) in Lemma3.6, for any0 ≤ i ≤ k, there holds

N (Mi) ≤ C∗
1 min

{
1,

1

β

}−1/s (
|u − ui|

2
1,Ω + βosc2(f, Ti)

)−1/s

,

together with

(
|u − ui|

2
1,Ω + βosc2(f, Ti)

)−1/s

≤ ρ
k−i

s

(
|u − uk|

2
1,Ω + βosc2(f, Tk)

)−1/s
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obtained from (3.6) in Theorem3.5, we have

(3.30)

N (Tk) −N (T0) ≤ C0

k−1∑

i=0

N (Mi)

≤ C0C
∗
1 min

{
1,

1

β

}−1/s k−1∑

i=0

(
|u − ui|

2
1,Ω + βosc2(f, Ti)

)−1/s

≤ C0C
∗
1 min

{
1,

1

β

}−1/s
(

k−1∑

i=0

ρ
k−i

s

)(
|u − uk|

2
1,Ω + βosc2(f, Tk)

)−1/s

≤ C0C
∗
1 min

{
1,

1

β

}−1/s
1 − ρ

k
s

ρ−1/s − 1

(
|u − uk|

2
1,Ω + βosc2(f, Tk)

)−1/s

,

which implies (3.28).
The proof of (3.29) is obvious. In fact, the lower bound (2.6) gives

(3.31)
(
|u − uk|

2
1,Ω + βosc2(f, Tk)

)−1/s

≤




min

{
1, C2β

C3

}

(n + 1)C2





−1/s

η− 2

s (uk, Ek),

then the desired result can be obtained by (3.31) and (3.30).

4. Conclusion. We have presented a new adaptive finite element method, whichis a
variant of the algorithm of Morin/Nochetto/Siebert. The novelty lies in the treatment of the
data oscillation term, which is only used for refinement if itis big compared to the error
estimator. We have proved geometrical convergence of the error augmented by the data os-
cillation term and optimal complexity in the sense of nonlinear approximation theory. The
dependence of our results on all involved constants is described.
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