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A CONVERGENT ADAPTIVE FINITE ELEMENT METHOD
WITH OPTIMAL COMPLEXITY *

ROLAND BECKER!, SHIPENG MAC, AND ZHONG-CI SHE

Abstract. In this paper, we introduce and analyze a simple adaptivee felement method for second order
elliptic partial differential equations. The marking s&gy depends on whether the data oscillation is sufficiently
small compared to the error estimator in the current mesthelbscillation is small compared to the error estimator,
we mark as many edges such that their contributions to tha lestimator are at least a fixed proportion of the
global error estimator (bulk criterion for the estimatadtherwise, we reduce the oscillation by marking sufficientl
many elements, such that the oscillations of the marked eed at least a fixed proportion of the global oscillation
(bulk criterion for the oscillation). This marking strateguarantees a strict reduction of the error augmented by
the oscillation term. Both convergence rates and optimatpexity of the adaptive finite element method are
established, with an explicit expression of the constanthe estimates.

Key words. adaptive finite element method, a posteriori error estimatonvergence rate, optimal computa-
tional complexity
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1. Introduction. The analysis of adaptive finite element methods has madertenpio
progress in recent years. Up to now, a large amount of worlbkas performed concerning
AFEMs based on a posteriori error estimation for finite elathmaethods, which typically
consists of successive loops of the sequence

SOLVE — ESTIMATE — MARK — REFINE

We refer to the review articles of Eriksson et all6] and the books of Ainsworthl],
Babuwska 2], Verfurth [24] and the references therein.

On the other hand, while these adaptive finite element msthade been shown to be
very successful computationally, the theory describirggalvantages of such methods over
their nonadaptive counterparts is still not complete. Apfiemm the well-known results in
the one dimensional case by B&ka and Vogeliusd], the convergence of AFEMs in the
multidimensional case was an open issue before the workdsfldd [15], which was later
extended by Morin, Nochetto and Siebet®] 20], and more recently by Carstensen and
Hoppe for mixed FEM 7] and for nonconforming FEM{], by Mekchay and Nochetto for
general second order linear elliptic PDE/]. Especially, the importance and necessity of
controlling data oscillations and inner nodes are pointgdro[19] and [20].

Another important breakthrough in the theoretical underding of AFEMs is the es-
timation of the dimension of the adaptively constructectidite spaces, first achieved by
Binev, Dahmen and DeVoré&] who showed the optimal computational complexity. The
key to prove the optimality was the introduction of an additl so-called coarsening step.
A further significant improvement has been achieved by $itewe P2 who shows that the
additional coarsening step is not necessary in order togpoptimal complexity. The im-
portance of the above mentioned results lays in the factthiegt show optimal complexity
of adaptive algorithms in the following sense: if the examtison can be approximated by
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a given adaptive method at a certain rate (quotient of acgumnumber of unknowns), the
iteratively constructed sequence of meshes will realiertite up to a constant factor.

In this paper, we present a simple adaptive finite elemertioadior second order elliptic
partial differential equations, which is a modification b&tMNS algorithm of 19] and [20]
by Morin, Nochetto and Siebert. Our modification is motiht®y the idea that if the data
oscillation term is small compared to the error estimatas, sufficient to mark elements such
that the sum of the local error indicators amounts to a fixegprtion of the global error esti-
mator, otherwise we only need to perform a similar markimgtegy for the oscillation term.
The adaptive algorithm considered here simplifies the MNf@r@thm, but its convergence
proof is not obvious. Since in one refinement step we mark ehgsneither according to the
error estimator or according to the oscillation term, onerzd expect the oscillation term
to be reduced in every iteration as is the case in the MNS igthgor Therefore, in order to
prove convergence of our algorithm, we need to couple ther amd oscillation term by an
argument similar to]9]. As a novel theoretical result, we prove a contraction gropof the
error augmented by the data oscillation term. In additiathlzonvergence rates and optimal
complexity of the adaptive finite element method are esthbti by a detailed analysis in the
spirit of [19] and [22].

An outline of the remaining parts of the paper is as followsSéctior?, we introduce the
set-up and discretization of the model problem, an a pasteriror estimate for the finite ele-
ment method and the adaptive algorithm AFEM along with soptations and preliminaries
for subsequent use. In SectiBnve present some useful lemmata concerning the a posteriori
error estimator and prove the convergence rates and optionaplexity of the adaptive finite
element method by a detailed analysis. Finally, some consyard extensions of the results
conclude the paper in Sectidn

2. A simple adaptive finite element method.We start this section with some useful
notation. Throughout this paper, we adopt the standarderttions for Sobolev spaces (see,
e.g., [L1]), the norms and seminorms of a functionlefined on an open sét:

2 2

e = [ 32 10%R ) folne= | [ 32 1D%F
& laj<m & laj=m

Let) C R™ be a bounded polygonal (polyhedral) domain. We considefdl@wing

second order elliptic equations : Fimde H{ (2) such that
—Au = f, in Q

(2.1) { u =0, on o9,
wheref € L?(Q).

We denote by(-, -)¢ the L?(G) inner product, and itz = €2, we drop the index for
simplicity. For anyf € L%(), the weak formulation of the problera.() reads as follows:

Findu € H}(Q), such that
a(u,v) = (f,v), VYwveHIQ)
with a(u,v) = [, Vu - Vo dz.
Let 7y be a conforming regular triangulation 6f and letVy denote the finite element
space of piecewise linear functions ovB;. We denote by ¥ the space of continuous

piecewise linear functions ovéf;, and letV be the subspace of functions B that
vanish at the bounda(). Letuy denote the solution of the discrete problem

{ Finduy € Vi, such that
a(upg,vg) = (f,vm), Vo € V.

(2.2)

(2.3)
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We shall not discuss the step SOLVE which deserves a sepavagtigation. We assume
that the solutions of the finite-dimensional problems cagémerated to any accuracy to ac-
complish this in optimal space and time complexity. Multiglike methods are well-known
to achieve this goal, cf4] 26].

We denote byy the set of edges (or faces in 3D) of the triangulatignthat do not
belong to the boundar§() of the domain). For E € £y, Hg denotes the diameter &f
and the domaiw g is the union of the two elementsify; sharingE. ForanyK € Ty, Hy
stands for its diameter and the domaip is the union of the adjacent elements7in.

Subtracting 2.2) from (2.3) and integrating by parts yields

a(u — ug,v) = Z (f,v—Tgv)+ Z /EJE(U—IH’U)dS,V’UEHé(Q).

KeTy EcEn

Here and below,Jr = [[Vug]]g - v represents the jump of flux across siflewhich is
independent of the orientation of the unit normalandZy denotes the @ment interpola-
tion operator L2]. It plays an important role in the analysis of the relidyilwhich is well
established in the literature; see, for exampdg, [

Letng be the local error indicator associated with edge £y which is defined as

1/2
1
ne(un) = ( > IHKfII?),KJrlHéJEI%,E) -

Kewg

For any given subsety C £y andSy C Ty, we define

1/2
n(uw, Fr) = ( > 77?5(”H)>

FEeFu

and
1/2
Osc(fasH) = ( Z |HK(f_fH)|3K> 3
KeSu

where f; denotes a piecewise constant approximatiori oh 7. If f € L%(Q), its value
on K is the mean value of overK.

The following upper and lower bounds are well known; see, §lyand [24].

LEmMA 2.1 (Upper bound).There exists a constaidf; > 0 depending only on the
minimum angle ofy such that

(2.4) |u—uH|iQ <O (uy, Ty).

LEMMA 2.2 (Lower bound).There exist two constants,, Cs > 0 depending only on
the minimum angle dfy such that, for anyw € £y,

(2.5) Mp(un) <Co Y |lu—unli x + C308C(f,wp).
Kewg

Summing up allE € £ in (2.5 we have

(2.6) n*(ui, Em) < (n+ 1)Calu — un|f g + (n+1)C508C(f, Tn ).
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We note that we can assume without loss of generélity> Cs.

In practice, both the local error estimatg(u ;;, Fr) and the oscillation term os¢, Syr)
should be used in the MARK step of the algorithm. The preciag they are used in the
MARK step influences the convergence of the AFEM; sE& &nd [20]. What is more, it
also influences the optimality of the AFEM. Therefore, the R step plays a key role in
AFEMs and should be designed properly.

As for the REFINE step, we need to carefully choose the rulaliading the marked
triangles such that the family of meshes obtained by thiseafient rule is conforming and
shape regular. In addition, we need to control the numbeideshents added in order to
ensure the overall optimality of the refinement procedurethis article, we shall use the
newest vertex bisecticechnique. We refer tog] 18, 22] for details of this algorithm and
restrict ourselves to list the following properties usetan.

LEMMA 2.3.Let7;, .k =0,...n be asequence of locally refined triangulations created
by the newest vertex algorithm, starting from the initialsm&,,. Let M,k =0,...n —1
be the collection of all marked triangles in stépLet N (7') denote the number of elements
of a triangulation7. Then7},, is uniformly shape regular and the shape regularityZgf
only depends on that @f,, and furthermore,

n—1

(2.7) N(Th,) < N(Tig) + Co Y N(Mp).

k=0

REMARK 2.4. The resultZ.7) was first proved by Binev, Dahmen and DeVosgih the
2D triangular case and generalized by Stenveng8ftp the case of general n-simplices.

Another important rule which appears in the REFINE stefnésinterior node property
Let 7, be a refinement of the triangulatich;. We say that the refinement satisfies the
interior node property if each element of the marked.s¢t to be refined, as well as each
of its edges, contains a node®f in its interior. In fact, the interior node property is also a
necessary condition for the error reduction of adaptivedirfinite element methods; s€&]
for an example which shows that if the refinement does notypredhterior nodes, the error
may not change.

We are now in the position to present our adaptive algorithREERI. Similar adaptive
mesh adaptation algorithms have been presented in thatliterfL9, 22]. The new ingredient
in Algorithm 1 is the introduction of an adaptive markingag&gy, which compares the os-
cillation term with the estimator in each step of the itevatiDepending on this comparison,
only the dominant term is used for local refinement. The malkesmportance difference
with the algorithms known before. Since for many practicaplecations, the oscillation
term can be expected to be significantly smaller, the algwriwvill practically be driven by
the estimator. In the recent technical repofi8, [14, 21], published after submission of the
present article, the authors also try to overcome the dralwbthe original MNS algorithm.
However, they do not consider an adaptive marking strateich allows us here to prove
guasi-optimal convergence behavior.

Finally, we comment on the choice of the constants in Algponitl. According to our
analysis, the constant has to be chosen small enough. A theoretical value ensugng g
metrical convergence is given in Theorén®; see 8.5 below. An additional condition for
the choice ofa is necessary in order to guarantee optimal complexity inoféim 3.7, see
(3.27 below. It is clear that such a condition has to be imposettesthe choice oft = 1
corresponds to global refinement in each step of the algorith

3. Convergence and optimality of AFEM. In this section we shall prove the conver-
gence and optimality of the algorithm developed in SecfioiThe techniques are adapted
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Algorithm 1 (AFEM)

(0) Select parameters 0 < «, 0, < 1 and an initial mesh 7;, and set k£ = 0.
(1) Solve the discrete system (2.3) on 7}, for the finite element solution .
(2) Compute the a posteriori error estimator n(ux,7;) and oscillation term
osd f, 7x). If n(uk, 71.) < ¢, then stop.
(3) i) IfosA(f,Tx) < vn?*(ux,T;) mark the minimal edge set F; of & such
that

(2.8) nz(uk,fk) > anz(uk,é’k).

Define the marked elements M, = UEefk WE.
ii) Otherwise choose the marked elements/stt of 7, to be set of elements with
the minimal cardinality such that

(2.9) 0sé(f, My) > 00sC(f, 7).

(4) Let7,1 be the refinement of 7, (in the case i), the refinement should satisfy
the interior node property).
(5) Set k:=k+ 1 and go to step (1).

from [5, 17, 19, 22]. For completeness we include some results establishdaimentioned
references without proofs.

The convergence analysis starts from the orthogonalitgticel between: — uy and
up, — uy, the so-called Pythagoras equality, which follows immealjafrom the Galerkin
orthogonality.

LEMMA 3.1 (Galerkin orthogonality)Let 7;, be a refinement of the triangulaticfy
such thatV'# c V", suppose:,u;, are then the discrete finite element solutions a¥gr
and7},, respectively. Then the following relation holds:

(3.1) |u — Uhﬁ,sz = |u— UHE,Q — |up — UHE,Q'

The following local bound for the estimator in terms of thedbdifference between two
Galerkin solutions up to a local oscillation term plays a kel in the convergence analysis
of AFEM.

LEMMA 3.2.LetT;, be a refinement of the triangulatiaf; such thatV? c V", if for
anyFE € &g, both F and K € wg satisfy the interior node property, then we have

(3.2) Mp(um) < Cy Y |un —unl? g + C508C(f,wp).
Kewr

As mentioned in the previous section, a successful conmeyEEM should include
the so-called oscillation reduction. This idea was devetblpy Morin, Nochetto and Siebert
[19, 2Q], and is stated as follows.

LEMMA 3.3 (Oscillation reduction)Let0 < o < 1 be the reduction factor of element
size associated with one refinement step. Givend < 1, leta := 1 — (1 — 0?)0. Let My
be a subset df'y such that

0sC(f, My) > 00sC(f, Ta).

If T}, is a triangulation obtained frorfi’y by refining at least every elementM g, then the
following data oscillation reduction occurs:

0sC(f, Tp) < aosC(f, Tu).
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The following lemma deals with a localized version of the eipipound for the difference
between two Galerkin solutions with respect to two difféngartitions, which was proved by
Stevensoni?].

LEMMA 3.4.LetC be the constantin Lemn#al Then there exists a subsgt; C £y,
such that

(3.3) lun —unli o < C10(um, Far)
and
(3.4) N(Fu) < Ce(N(Tn) — N(Tw)).

Based on Lemma3.1, 2.2 and Lemmas.1,3.2, 3.3 we are now in a position to prove
the convergence of Algorithrhdeveloped in the last section. Since they are of importamce i
the choice of the parameters employed in Algorithm 1 andesthe Lemmata are given with-
out proofs, we add some comments on the involved constartepEC), they all depend on
the minimal angle condition. To be more precise, constagtandCs depend on Verfirth’s
inverse estimate and could be determined by an eigenvatidgmn. The constants; and
Cs depend on the Clément operator; seeZb]. The constant; depends on the details of
the refinement algorithm; seg, [23].

THEOREM 3.5 (Convergence of AFEM)et{V*},>, be a sequence of nested finite el-
ement spaces generated by algoritAFEM and let{uy } >0 be the corresponding sequence
of finite element solutions. Assume that

(n+ 1)Cs[(n + 1)C1Cs + aC3]’

(3.5) 0<y <y =

Then there exist constants> 0 and0 < p < 1, depending only on the shape regularity of
meshes, the data, the dimensigrthe parametersy, 0, v used byAFEM, such that for any
two consecutive iteratdsandk + 1 we have

(3.6) |u — Uk+1|%,sz + BoSC(f, Tt1) < P(|U - Ukﬁ,sz + BosC (f, 7}))
Therefore, algorithrAFEM converges with a linear ratg, namely

(3.7) u—ug[f o + BOSC(f, Tr) < C*p,

whereC* := |u — uo|? o, + 0s€(f, To). The reduction rate is:

_(A-pla
(n+1)C1Cy’

with 1 defined through3.16), (3.18, and 3.20 below. The value of is defined by3 =
max (01, f2) with 8; and 3, deined below in.15 and (.17, respectively.

Proof. We treat the two possible cases of the algorithm separatebt consider the case
0sC(f,7) < vn*(uk,EL). By Lemma2.1, Lemma3s.2and the marking strategy (8), we
have

(3.8) p=1-—

C
[ = unff o < O (uk, Ex) < =0 (ux, Fi)

< (n+1)Cy

a (C4|Uk+1 - ukﬁ,(l + 0508(‘2(f7 776))7
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which implies that
a Cs
3.9 —upll o> ——————u—ul? o — —0sC(f, Tr).
(3.9) [ug 11 Uk|1,sz = (n+1)0104|u Uk|1,sz Ca (f, Tn)

Let 8 > 0 be a constant to be chosen in the subsequent analysis. TioathiesGalerkin
orthogonality 8.1), one can prove

|u — uk+1|igz + BoSC (f, Trt1)
<|u-— ukﬁg — ug — Uk+1|i9 + Bosc(f,Tx)

o 2 05
< <1 - m) lu — ugl7 g+ (»34' C_4> osC (f, Ti).

Introducing another constaft< b < 1 and using the lower boun@ ), we get

|u — Uk+1|%,sz + BoSC(f, Trt1)

<(1- —2% lu — ug|T
“\U e+ )GG Ko

(3.10) +7b (ﬁ+ %) 7 (uk, Ex) + (1 =) (ﬁ+ %) 0sC(f, Tx)

oY Cs
< (1~ ey * o 00 (94 )l
(0 (5 2 s i (54 2 st )
4 4

In view of (3.10, in order to prove §.6), we select the two constanfsandb such that

(1-1b) (6+ %i) + (n + 1)bCsy (g+ %’;)

(3.11) N Cs
< (1— m—i—(n—i—l)b(}'ﬂ (64— a))ﬁ
and
« Cs
(3.12) (1 R P ToNeN + (n+ 1)bCoy (ﬁ + a)) <1

For the sake of our analysis, we can select another parametét, 1), andb is chosen such
that

e
(n+1201CoCy (B+ )

(3.13) b=

which implies that the error reduction rate is

(1 —pa
3.14 =1—-——
(3.14) P (n+ 1)C1Cy

Substituting 8.13 into (3.11) and rearranging, we obtain

« 5 7%’ 1
S § WY, B . —C
(n + 1)0104( ,Lt)ﬁ B C4 (TL + 1)0104 ((TL + 1)02’7 3> ’




ETNA

Kent State University
http://etna.math.kent.edu

298 R. BECKER, S. MAO, AND Z.-C. SHI
which implies

_(n + 1)0105 + po (—(""'11)027 — Cg)
(1 - pa

(3.15) B<Biln) =

if we chooseu such that
(n+1)C1C5
- .
@ ((n+1)0ﬂ - 03)

Note thatu] < 1 under the assumption th@t< v < ~*.

Now, let us consider the case 86f, 7i.) > vn?(ux, £), then the marking strateg® ©)
will be adopted. Let < a < 1 be a constant to be chosen suitably. By Lem@&and?2.1,
we have

(3.16) p> ol =

lu — uk+1|isz + BoSC(f, Trt1)

=1 -a)lu— Uk+1|%,9 + alu — Uk+1|i§z + osC(f, Tr41)

<(l-a)lu— Uk+1|isz + aCin? (ug, &) + BaosC (f, Tr)
C ~

<(1-a)|lu-— uk;|%’Q + (% + ﬁa) osC(f, 7).

We will choose the constantsuch that the error contraction in the second case isgl$at
is to say,

_ (A =po
C (n+1)CiCy

Then in order to prove3.6), it is sufficient that the constaptsatisfies

$%+6asu—@@

which implies

EH(1 — pa

(3.17) B2 00 = T D66 — 1 e

under the assumption that

(L-@)n+ 10

(3.18) >l =1—
«

Let us now discuss the selection of the value.oflf we select a fixed value for and set
B = max{3, =2}, (3.6) will be obtained. In view of§.15 and @.17), the proper value of
can be found if and only if

Ba(p) < Br(p),

which is equivalent to

f() = Ap® 4+ Aap+ Az > 0,
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where

1 Cla
M=o | ——— —C3 ) — —,
' ((n+1)0ﬂ ) ~

Ao = (ﬁ - 03) ((1 —a)(n+1)C1Cy — a)

n+1
2C
—(n+1)C1Csa + 710‘,

C
As = (n+ 1)C1Cs (a —(1-&)n+ 1)0104) - %a

It can be checked that

(3.19) f(l):(l—a)(n+1)0104<a( !

————C3 | —(n+1)CiC5 | > 0.
e ) - 0 06)

By the continuity of the functiorf we know that there exists a constant p4 < 1 such that
f(p%) > 0. Then the value of: can be selected such that

(3.20) max{ i}, 5, p5} < p < 1.

Thus we have proved3(6). Since B.7) is a direct consequence d3.¢), the proof of the
theorem is completél

For the proof of the optimal complexity of algorithm AFEM, wwdroduce some notation
from nonlinear approximation theory, developed ) 6, 13, 22]. Let H be the set of
all triangulations7 which are obtained by refinement of a regular initial trialagion 7,
and the cardinality of which satisf{%'(7) < N. For a given triangulation, the associated
finite element approximation of the problem (2.3) is dendigd:7. Next we define the
approximation class

W= {(u. f) € (H(9), L) : | (w, ))llws < +o0},
with

u, s:= sup N° inf (|u—wur|?q+0sC(f,T)).
I £ = sup N* it (fu = urfi +0sE(/.7))

We say that an adaptive finite element method realizes optiomaergence rates if whenever
(u, f) € W#, it produces the approximatian, with respect to the triangulatidh, such that

|u — Uk|17Q < CN(?;C)_S

First, we estimate the number of elements added in one siefifeement step.

LEMMA 3.6. Let {V*},>, be a sequence of nested finite element spaces produced by
algorithmAFEM and let{u } >0 be the corresponding sequence of finite element solutions.
Assume thath < v < ~*,

1
(321) Clcga + 03’7 < n——l-l’

and (u, f) € W#. Then there exists a constafif, depending only on the shape regularity
of the initial mesh, the data, the dimensionthe parametersy, 6,y used byAFEM, and
N(7y), such that

(3:22) N M) < G (Ju—usBg +0s2(7. 7))
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with
C1 = max{ (n+ DCAT* A3 I, D1

where)\; and )\, are defined by3.24) and (3.26), respectively.

Proof. We split the proof into two cases as in the proof of TheoBf Let us consider
the first case, i.e., 03¢f, 7p) < vn*(ux, ). Suppose\; € (0,1) is a fixed constant to be
chosen appropriately in the subsequent analysis.7[’ebe a triangulation refined frorf,
with minimal number of elements such that

o<\ (|U —uglf g + Osg(faTk))-

lu — ury

Then by the definition of the norih- ||y-,

—1/s ~1/s s
N <X (Ju = w0 +0sE (A7) [l Doy

Letus choos€, as the refinement af;, with minimal number of elements such tigt c V;/
and thus

(323)  Ju-urfe <lu—urfo < (lu-wlo+ose(f,T)).
Note that by the definition of,/ there holds
N(T) = N(Ti) < N(Ty)
< Af”s(lu —ugli o+ osé(f,m)_l/swu, D

In the following we shall boundV'(7;+1) — N (7x) by N(7,/) — N(7) to obtain the
desired results. In view of Lemnta4, there exists a subsé& C & such that

lur — uz|? o < C1® (u, Fy)
and
N(F;) < CsN(Ty) = N(Th))-
Then, if the value of\; is chosen as
#1 — Csy — C1Cha

a7 — Oy +Cay

(3.24) Ap =

we have by the Galerkin orthogonality.(), (3.23 and @.6)

lur —ur |l g  lu—urlfg—lu—urliq
2 * > k'L — s k>
n (ukvj:k) e Cl Cl
- (I —=X1)|u— Ukﬁjg - Aloscr’(f,ﬂ)
jtl Ol
1 [ (1=X) (1 —X1)C5
> g i en - (ho+ g Josc .70

C1Cs n+1

> nz(ukvgk) { 1
o +1

— Oy =\ (% +(Cy — cg)ﬂ .
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The denominator in3.24) is positive due to our former assumptioh > C5. Assump-
tion (3.27) leads to\; < 1.
With the choice of\; in (3.24) we get

0 (uk, F) > on?® (ug, E).

Since in the marking strategy we choose the minimal edgé&set &, such that2.8) holds,
and we conclude that

NMi) < (n+ DN (Fx) < (n+ DN(F)

(n+1)Ce(N(T})) — N(Ty))
(3.25) <(n+ 1)206)\;1/S"(u7f)"11/(;i

—1/s
(ju— sl o +0sC(£ 7))

<
<

Next we turn to the case o4¢f, 7x) > vn*(ux, ). Similar to the first case, suppose
that A, € (0,1) is a fixed constant an@,* be a triangulation refined frorf; with minimal
number of elements such that

0se(f, T7") < )\2(|u —uglg+ osc?(f,m)

and

y /s —1/s 1/s
N <33 (lu—wilf g+ 058 (1, 70)) )]
Let 7, be the refinement dfj, with minimal number of elements such tigt C v}/ and then

0SC(f, 7)) < 0SC(f, T;7) < Xo (|u —upliq+ OS(?(f,Tk))

and
_1/s —1/s s
N(T) = N(T) <25 (lu—uilt g + 05 (£, 7)) Il )14
Let M3, .= {K|K € Tj;; K € 7/}. Then by Lemm&.1, we have
1 ! 2
0s¢(f, 1) > 1= (0sC (£, 7)) = Aalu — unf} o)
2
1
e (osé’(f,Tk’) — X C1n? (ug, 5k))
2
1 Cl) !
— — — | osé(/, T,
(5 - &) osetrm)
1 Cl)
> — — =) 0sC(f, M
(55 - &) osetr i)
(L & (058(f Tr) — 0SC(f, Tre \ M;; )).
)\2 v ) ) K
then if the value of\, is chosen as
1-4
(3.26) A2 1= ——Fgy

1+ 5
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we get
0sC(f, Tx \ M) > 0sC(f, T).

Since in the marking strategy we choose the minimal edgétet- 7, such that2.9) holds,
and we conclude that

N(Tk \ M)
WN(Ty) = N(Ti))

—1/s s —1/s
<2 [l D)l (Ju = wiliaa® + 0sE(£ 7))

which, together with .25 implies the desired resulil
Now, we can prove the optimality of the algorithm AFEM.

THEOREM 3.7 (Optimal complexity of AFEM)Let {V*} .-, be a sequence of nested
finite element spaces produced by algoritAFfEM and let{u;} >0 be the corresponding
sequence of finite element solutions. Assume (thaf) € W?, v satisfies) < v < ~*
(defined in 8.5), and further thatx satisfies

1
(3.27) C1Ca+ Cyy < ——.
n+1

Then there exists a consta@f, such that

(3.28) o=l o +05E(,2) < C5 (N(T) - N(T))

CoC; (17,)?’3) °
with Cék = max{l,ﬁ} ﬁ .

In addition there exists another constari such that for any > 0 the following holds.
Let N be the firstindex such tha{u, En) < €. Then we have

(3.29) N(Tn) = N(To) < Cye2/*

—1/s

; —1/s s min{ 1,522
s et ) s (4050

Proof. In view of (3.22 in Lemmag3.6, for any0 < i < k, there holds

1 ~1/s
N(M;) <C} min{l,ﬁ} (|u—ui|ig+ﬁosé(f,7})) ,

together with

k—i
s

—1/s —1/s
(ju—wlto+dose(£. 7)) < p* (ju— w2 + B0sC(1. 7))
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obtained from 8.6) in Theorem3.5, we have

k—1
N(Te) = N(To) < Co Y N (M;)
=0

1 —1/s k—1 —1/s
<acimin{i i 3 (ju-wl o+ sosc (. 1)
(3.30) =0
1 —1/s [k—1 ) ~1/s
. . k—i 9
< CyCj mm{l,B} p = (|u—uk|1,9+ﬁosc?(f,7k))
i=0

. 1 —1/s
< CoCy mln{l,g} m(lu—ukﬁ,sﬁﬁos@(ﬁ%)) )

which implies 3.29.
The proof of 3.29 is obvious. In fact, the lower bound.g) gives

—1/s
. 3
mln{l, 023 }

(n + 1)02

7/5 2
@31 (-l +0s¢(£ 7)) < 0 (s ),

then the desired result can be obtained®B() and 3.30. O

4. Conclusion. We have presented a new adaptive finite element method, vidigh
variant of the algorithm of Morin/Nochetto/Siebert. Thevediy lies in the treatment of the
data oscillation term, which is only used for refinement ifsitbig compared to the error
estimator. We have proved geometrical convergence of ttoe augmented by the data os-
cillation term and optimal complexity in the sense of noaéin approximation theory. The
dependence of our results on all involved constants is detr
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