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Abstract. In this paper the stability properties of fast numerical methods for Volterra integral equations of
Hammerstein type with respect to significant test equationsare investigated.
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1. Introduction. Nonlinear Volterra Integral Equations (VIEs) of Hammerstein type,

(1.1) y(t) = f(t) +

∫ t

0

k(t − τ)g(τ, y(τ))dτ, t ∈ I := [0, T ], y, f, k ∈ R,

where functionsf andk are continuous onI andg satisfies the Lipschitz condition with re-
spect toy, are the mathematical model of many problems of applied sciences. In physics,
chemistry, engineering, biology, and medicine there are several problems that describe evo-
lutionary phenomena incorporating memory ([7] and [9] and the related bibliography) whose
mathematical models lead to (1.1).

It is known that the numerical treatment of VIEs has a very high computational cost: the
implementation overN time steps of a classical numerical method to solve (1.1) requires a
computational cost ofO(N2) in time andO(N) in space.

In [6] we constructed a class of Fast Collocation methods (FCOLL methods) and in [4]
two classes of Fast Runge Kutta methods (FVRK methods), explicit methods of Pouzet type
(FPVRK methods) and implicit methods of De Hoog and Weiss type (FHVRK methods), with
the aim of using the Laplace transform of the kernel in order to reduce the computational cost
of classical methods for VIEs. Among the existing inverse Laplace transform approximation
techniques [12, 10, 9, 8, 13, 14, 15], FCOLL and FVRK methods are based on the idea
introduced by Lubich and Schädle in [9], which is an improvement of Talbot’s approximation
[10, 12]. The use of this formula, permits us to reduce the computational cost toO(N log N)
in time andO(log N) in space and have an high order of accuracy.

In this work we analyze the stability properties of these classes of fast methods. In
Section2 we describe briefly the Fast Collocation and the Fast Runge Kutta methods. In
Sections3 and4, we report the stability analysis of both classes of fast methods. We study the
stability properties of the fast methods with respect to test equations usually employed in the
literature for stability analysis (see, for example, [1, 5] and their references), namely, the basic
test equation (Section3) and the convolution test equation (Section4). In particular, we prove
that the FCOLL and FVRK methods, when applied to both classesof test equations are stable,
if they satisfy a condition which involves the coefficients of the methods and the number
M = 2Np + 1 of points chosen on the Talbot contour. For fixedM , we find the stability
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matrix for both classes of methods and we determine a condition that provides methods with
unbounded stability regions. In Section5, we trace the stability plots for some fast methods
and compare their stability regions with those of the respective classical methods. Moreover,
we also report some experimental tests on a class of nonlinear problems, and we show, in our
figures and tables, that they confirm the theoretical results.

2. Fast numerical methods for VIEs. Since we are interested in the linear stability
analysis of fast methods, we recall the formulation of the methods when applied to the linear
VIE,

(2.1) y(t) = f(t) +

∫ t

0

k(t − τ)y(τ)dτ, t ∈ I := [0, T ].

Let us discretize the intervalI by introducing a uniform mesh,

Ih = {tn := nh, n = 0, ..., N, h ≥ 0, Nh = T } .

The equation (2.1) can be rewritten, by relating it to this mesh, as

y(t) = Fn(t) + Φn(t), t ∈ [tn, T ],

where

(2.2) Fn(t) := f(t) +

∫ tn

0

k(t − τ)y(τ)dτ

and

Φn(t) :=

∫ t

tn

k(t − τ)y(τ)dτ

represent respectively thelag termand theincrement function. The basic idea of FCOLL and
FVRK methods is to express the kernel by means of the inverse Laplace transform approxi-
mation formula introduced in [9] in order to improve Talbot’s approximation [10, 12] on large
intervals. The idea proposed in [9] is to split a large interval into a sequence of subintervals
and in each subinterval to suitably use Talbot’s approximation formula. More precisely, the
intervalI = [0, T ] is split into a sequence of fast growing intervals,

I0 = [0, h], Il = [Bl−1h, (2Bl − 1)h], l = 1, ..., L,

whereB > 1 is a fixed integer and(2BL−1)h ≥ T . The chosen Talbot contourΓl associated
to each subintervalIl is parametrized by

(−π, π) → Γl

ϑ → γl(ϑ) = σ + µl(ϑ cot(ϑ) + iνϑ).(2.3)

Such a contour is determined by opportunely choosing the geometrical parametersσ, µl and
ν, which are such that all the singularities of the Laplace transformK(s) of the kernelk(t)
lie to the left of the contour. The approximation of the kernel k(t) on the intervalIl results
from applying the trapezoidal rule on the Talbot’s contourΓl,

(2.4) k(t) = 1
2πi

∫

Γl

K(λ)etλdλ ≈

Np
∑

j=−Np

ω
(l)
j K(λ

(l)
j )etλ

(l)
j , t ∈ Il,
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where

ω
(l)
j = −

i

2(N + 1)
γ′

l(ϑj), λ
(l)
j = γl(ϑj), ϑj =

jπ

N + 1
.

The number of quadrature pointsM = 2Np + 1 chosen onΓl is independent ofl and it is
much smaller than would be required for a uniform approximation on the whole intervalI
[9].

The resulting error satisfies [9, 10]

(2.5) ‖E(t)‖t∈I = O(e−c
√

M ),

for M → ∞, uniformly on I, where the positive constantc depends on the distance of
the singularities of the Laplace transformK(s) of the kernelk(t) with respect to the Talbot
contour. The optimal choice of the parametersσ, µl andν in (2.3) is discussed in [9, 10] and
is made in order to minimize the error (2.5) of the inverse Laplace approximation formula
(2.4).

It follows that the coefficients of the fast methods involve the evaluations of the Laplace
transform of the kernel at some suitable points of the complex plane. In the following sub-
section, we briefly recall the FCOLL and FVRK methods.

2.1. Fast collocation methods.The idea of a collocation method [2] is to approximate
the exact solution of (2.1) by a piecewise polynomial functionu(t) of the form

u(tn + θh) =

m
∑

i=1

Li(θ)Yn,i θ ∈ (0, 1] n = 0, ..., N − 1,

whereLi(θ) is theith Lagrange fundamental polynomial with respect tom fixed collocation
parametersci ∈ [0, 1]. The unknownsYn,i are determined by requiring thatu(t) exactly
satisfies the integral equation in the collocation pointstn,i := tn +cih. In the case of FCOLL
methods [6] such conditions lead to the following linear system

(I− hD)Yn = Fn,

whereYn = (Yn,1, ..., Yn,m)
T, Fn = (Fn,1, ..., Fn,m)

T is a numerical approximation of
(2.2), I denotes the identity matrix of orderm, andD is a square matrix of dimensionm
whose elements are

(2.6) dis = Bs

m−1
∑

r=0

(−1)m−1−rσs,m−1−r

hr+1
Ψir

and

(2.7)











































Bs =
m
∏

r=1
r 6=s

1
cs−cr

σs,0 = 1, σs,i =
m
∑

n1<...<ni=1
nk 6=s

cn1cn2 ...cni

Ψil =
Np
∑

j=−Np

ωj
l!

λj
l+1 K(λj)e

cihλj .
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Each component of the lag terms approximation vectorFn is computed in the following
way. Let us fix an integerB > 1 and letL be the smallest integer for whichtn+1 < 2BLh.
The interval[0, tn] is split into

[0, tn] =

L
⋃

l=1

[τl, τl−1],

where the mesh pointsτl are of the formτl = qlB
Lh with ql ≥ 1 determined by requiring

thatτ0 = tn, τL = 0 and forl = 1, ..., L − 1, tn+1 − τl ∈ [Blh, (2Bl − 1)h]. We choose

a different Talbot contour for each interval and we denote byω
(l)
j andλ

(l)
j the corresponding

weights and nodes in the formula (2.4).
Then we have

Fn,i = f(tn,i) +
L
∑

l=1

Np
∑

j=−Np

ω
(l)
j K(λ

(l)
j )e(tn,i−τl−1)λj

(l)

z(τl−1, τl, λ
(l)
j ), i = 1, ..., m,

where

z(τl−1, τl, λ
(l)
j ) =

∫ τl−1

τl

e(τl−1−τ)λ
(l)
j u(τ)dτ.

In [6] the following convergence theorem has been proved.

THEOREM 2.1. Lete(t) = y(t) − u(t) be the error of the FCOLL methods. Then

‖e‖∞ = O(hm) + O(e−c
√

M )

for every choice of the collocation parameters0 ≤ c1 < ... < cm ≤ 1.
REMARK 2.2. It is possible to achieve local superconvergence at themesh points by

opportunely choosing the collocation parametersci, and sufficiently largeM :
(a) If the collocation parameters are the Radau II points for(0, 1], then we have

max
tn∈Ih

|en| = O(h2m−1).

(b) If the collocation parameters are the Lobatto points for[0, 1], then we obtain

max
tn∈Ih

|en| = O(h2m−2).

(c) If the firstm− 1 collocation parameters are the Gauss points for(0, 1) andcm = 1,
then we obtain

max
tn∈Ih

|en| = O(h2m−2).

2.2. Fast Runge–Kutta methods.Runge–Kutta methods for VIEs (VRK methods) [3]
are determined by the “Butcher array” for ODEs

(2.8)
c A

bT

where the vectorsb = (bi)
m
i=1, c = (ci)

m
i=1 and the matrixA = (ais)

m
i,s=1 are fixed. Ex-

plicit VRK methods of Pouzet type (PVRK methods) are characterized by a strictly lower
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triangular matrixA while implicit VRK methods of de Hoog and Weiss (HVRK methods)
are characterized by

(2.9) bk =

∫ 1

0

Lk(θ)dθ, k = 1, ..., m, ais :=

∫ ci

0

Ls(θ)dθ = ci

m
∑

j=1

bjLs(cicj), cm = 1.

An m-stage FVRK method [4] applied to the equation (2.1) reads

yn+1 =











Fn,m+1 + h

m
∑

i=1

biΦiYn,i FPVRK methods

Yn,m FHVRK methods,

n = 0, ..., N − 1,

whereΦi =

Np
∑

j=−Np

ωjK(λj)e
(1−ci)hλj and the stagesYn,i are computed by solving the linear

system

(I− hD)Yn = Fn.

HereYn = (Yn,1, ..., Yn,m)
T , Fn = (Fn,1, ..., Fn,m)

T is a numerical approximation of (2.2),
I denotes the identity matrix of orderm, D = (dis) is a square matrix of dimensionm whose
elements are

(2.10) dis =







aisΨis FPVRK methods

ci

m
∑

l=1

blΨilLs(cicl) FHVRK methods,

and

(2.11) Ψil =



















Np
∑

j=−Np

ωjK(λj)e
(ci−cl)hλj FPVRK methods

Np
∑

j=−Np

ωjK(λj)e
ci(1−cl)hλj FHVRK methods.

The lag term approximationFn is the same for FPVRK and FHVRK methods and it is
computed through

Fn,i = f(tn,i) +
L
∑

l=1

Np
∑

j=−Np

ω
(l)
j K(λ

(l)
j )e(tn,i−τl−1)λj

(l)

z(τl−1, τl, λ
(l)
j ), i = 1, ..., m,

where

z(τl−1, τl, λ
(l)
j ) := h

τl−1
h

−1
∑

r=
τl
h

m
∑

s=1

bse
(τl−1−tr,s)λ

(l)
j g(tr,s, Yr,s),

and the pointsτl are the same of those determined for FCOLL methods.
In [4] the following convergence theorem has been proved.
THEOREM 2.3. Let ēn = y(tn) − ȳn be the error of the FVRK method. Letp be the

order of the corresponding classical VRK method (i.e., having the same Butcher array). Then

max
1≤n≤N

|ēn| = O(hp) + O(e−c
√

M ).

REMARK 2.4. By choosing implicit FHVRK methods with nodes{ci} as in Remark2.2,
we obtain superconvergent FVRK methods, i.e.,p = 2m − 1 with m RadauII points,
p = 2m − 2 with m Lobatto points andp = 2m − 2 with m − 1 Gauss points andcm = 1.
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3. Stability analysis for the basic test equation.In this section we will analyze the
stability properties of the fast methods with respect to thebasic test equation,

(3.1) y(t) = 1 + µ

∫ t

0

y(τ)dτ, t ∈ [0, T ], Re(µ) < 0.

Since the exact solutiony(t) of (3.1) tends to zero whent goes to+∞, it is natural
to require that the numerical solutionyn produced by a numerical method when applied to
the equation (3.1) with stepsizeh, has the same behaviour. Thus we recall the following
definition of numerical stability.

DEFINITION 3.1. A numerical method is said to be stable for givenz := hµ ∈ C if the
numerical solutionyn, resulting from applying the method to (3.1) with fixed stepsizeh, tends
to zero whenn → +∞.

DEFINITION 3.2. The region of absolute stability of the method is the set of all values
z ∈ C for which the method is stable.

DEFINITION 3.3. The method is saidA-stable if its region of absolute stability includes
the negative complex half planeC−.

The application of either a FVRK method (FPVRK and FHVRK method) or a FCOLL
method to the equation (3.1), leads to the following linear system,

(3.2) (I − zD)Yn = Fn,

where the matrixD is obtained from (2.10) for FVRK methods and from (2.6) for FCOLL
methods withK(s) = 1

s
, and

(3.3) Fn = u + z

n−1
∑

k=0

Q
(l)
n,kYk.

Hereu = (1, ..., 1)T andQ
(l)
n,k is a square matrix of dimensionm whose elements are

(3.4)

(

Q
(l)
n,k

)

i,s=1,...,m
=



















bs

Np
∑

j=−Np

ω
(l)
j

λ
(l)
j

e(tn,i−tk,s)λ
(l)
j FVRK methods

Np
∑

j=−Np

ω
(l)
j

λ
(l)
j

e(tn,i−tk)λ
(l)
j

1
∫

0

e−θhλ
(l)
j Ls(θ)dθ FCOLL methods.

The indexl in the formula (3.3) is determined byn andk in such a way thattk ∈ [τl, τl−1].
In the following theorem we provide the expression for the stability matrix of fast meth-

ods.
THEOREM 3.4. A fast method applied to the test equation (3.1) leads to the two term

relation,

(3.5) Yn = R(z)Yn−1,

where

(3.6) R(z) = (I + z(I− zD)
−1

Q
(1)
1 )

is a square matrix of dimensionm, with Q
(1)
1 = Q

(1)
n,n−1 given by (3.4) andD defined by

(2.6) or (2.10).
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Proof. Assuming thatdet(I − zD) 6= 0, the formula (3.2) can be rewritten as

(3.7) Yn = (I − zD)−1

(

u + z
n−1
∑

k=0

Q
(l)
n,kYk

)

.

By subtracting the expressions ofYn andYn−1 given by (3.7) and by opportune manipula-
tions, we obtain, forn ≥ 1,

(3.8) Yn = (I + z(I− zD)
−1

Q
(1)
1 )Yn−1 +

n−2
∑

k=0

z(I− zD)
−1
[

Q
(l)
n,k − Q

(l)
n−1,k

]

Yk,

with

Y0 = (I − zD)
−1

u.

Let us denote withf̌(t) the inverse Laplace transform approximation of1
s

obtained
through the formula (2.4). Then the formula (3.4) can be rewritten as

(

Q
(l)
n,k

)

i,j
=







bj f̌(tn,i − tk,j) FVRK methods
1
∫

0

f̌(tn,i − tk − θh)Lj(θ)dθ FCOLL methods.

We can freeze the relative error of the inverse Laplace transform approximationf̌(t)
obtained through the formula (2.4) in the approximation interval, as this error is of order
O(e−c

√
M ), independently oft. Since the exact inverse Laplace transform of1

s
is a con-

stant function, this implies thaťf(t) is a constant function, too. It follows that in (3.8)

Q
(l)
n,k = Q

(l)
n−1,k and thus the theorem is proved.

The next result is an immediate consequence of Theorem3.4and of the Definition3.
COROLLARY 3.5. If the eigenvalues ofR(z) are within the unit circle, then the fast

method is stable. The region of absolute stability of the method is thus the set

S = {z ∈ C : |eig(R(z))| < 1}.

Note that the stability regions of the fast methods depend onthe number of points
M = 2Np + 1 chosen for the approximation (2.4). If M → +∞, since the fast methods
tend to the classical ones, we expect that the same happens for the corresponding stability
regions.

THEOREM 3.6. The stability regions of the fast methods tend, asM → ∞, to the
stability regions of the corresponding classical methods.

Proof. Let us consider the stability matrix (3.6). If M → ∞ we have

Q
(1)
1 → ubT

D → A

wherebT andA are given by (2.8) for FPVRK methods and by (2.9) for FHVRK methods.
Since we are considering a linear constant kernel, it is easyto check that the vectorbT and
the matrixA for FCOLL methods are the same as those of FHVRK methods. It immediately
follows that

R(z) → r(z) := I + z(I − zA)−1ubT .
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This is anm × m matrix whose eigenvalues areλ1 = 1 + zbT (I − zA)−1u = r(z) with
multiplicity 1 andλ2 = 1 with multiplicity m−1. SiinceY0 = (I−zD)−1

u is an eigenvector
associated with the eigenvaluer(z), it follows that the two-term recursion (3.5) of the fast
methods tends to

Yn = r(z)Yn−1.

We observe that the previous formula is the two-term recursion of the classical methods (see
[1]), and so the theorem is proved.

The following corollary, with fixed numberM = 2Np+1 of points on the Talbot contour,
provides a condition on the parameterscj sufficient for unbounded stability regions.

COROLLARY 3.7. If the parameterscj satisfy,

(3.9) |eig(I − D−1Q
(1)
1 )| < 1,

then the stability region of the fast method with respect to equation (3.1) is unbounded.
Proof. From the expression (3.6) for the stability matrixR(z), we obtain

lim
|z|→−∞

R(z) = I − D−1Q
(1)
1 ,

and thus the theorem follows.
We now provide some examples of fast methods which satisfy this condition.
EXAMPLE 3.8. The implicit Euler FHVRK method is characterized bym = 1, c1 = 1,

b1 = 1, a11 = 1. The stability matrix isR(z) = 1 + z(1 − zd11)
−1Q

(1)
1 , where

Q
(1)
1 =

Np
∑

j=−Np

ω
(1)
j

λ
(1)
j

ehλ
(1)
j =: β andd11 = c1b1Ψ11L1(c1c1) = Ψ11 =

Np
∑

j=−Np

ωj

λj
=: α.

It can immediately be proved that the condition (3.9) is satisfied, since

|I − D−1Q
(1)
1 | = |1 −

β

α
| < 1,

so the implicit Euler FHVRK method has an unbounded stability region for all values ofM .
In fact the stability function is

R(z) = 1 +
zβ

1 − zα
,

and an easy computation shows that|R(z)| < 1 if and only if z is outside the circleCα,β

centered atC =
(

1
2α−β

, 0
)

with radiusr = 1
|2α−β| . Then the implicit Euler FVRK method

is A-stable for all values ofM , the circleCα,β being entirely contained in the right half of the
complex plane. We observe that whenM → ∞, thenα, β → 1 and the stability region tends
to that of the classical Euler method, that is, the region outside the circle centered in(1, 0)
and with radius equal to1.

EXAMPLE 3.9. We checked that, if we fixNp ≥ 21, then the fast midpoint rule (i.e.,
the 1–point Gauss FHVRK method characterized byc1 = 1

2 ) satisfies the condition (3.9) and
thus the stability region is unbounded; see Figure5.2in the section of stability plots.

EXAMPLE 3.10. Analogously, we checked that the stability region of the 3–point Radau II
FHVRK method (c1 = 4−

√
6

10 , c2 = 4+
√

6
10 , c3 = 1) is unbounded for any fixed value ofNp.
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Re(z)

Im(z)

2

1

1

FIG. 3.1.Stability regions of the classical implicit Euler VRK method vs Fast implicit Euler VRK method

4. Stability analysis for the convolution test equation.Now we will study the stability
properties of the fast methods with respect to the convolution test equation,

(4.1) y(t) = 1 +

∫ t

0

[µ + σ(t − τ)]y(τ)dτ , t ∈ [0, T ], µ < 0, σ ≤ 0.

Since the exact solutiony(t) of (4.1) goes to zero whent → +∞, it is natural to require that
the numerical solutionyn, produced by the fast methods when applied to (4.1) with stepsize
h, has the same behaviour.

Thus we recall the following definition of numerical stability [3].
DEFINITION 4.1. A numerical method is said to be stable for givenz := hµ, w := h2σ

if it yields an approximate solutionyn which satisfiesyn → 0 as n → ∞ whenever it is
applied with a fixed stepsizeh > 0 to the test equation (4.1).

DEFINITION 4.2. The region of stability of the method is the set of all values(z, w) for
which the method is stable.

Let D andD̃ be obtained by substitutingK(s) = 1/s andK(s) = 1/s2 in (2.6)-(2.7)
(FCOLL methods) and in (2.10)-(2.11) (FVRK methods), respectively, and let̄D = D̃/h.
Then the application of a fast method to the test equation (4.1) leads to

Yn = N−1Fn,(4.2)

Fn = u +

n−1
∑

r=0

[

zQ(l)
n,r +

(

w (n − r) I+wθ̄
)

Q̄(l)
n,r − wP(l)

n,r

]

Yr,(4.3)

where the matricesQ(l)
n,r are given by (3.4) and

N = I− zD− wD̄,(4.4)

(

Q̄(l)
n,r

)

i,s
=



















bs

∑Np

j=−Np

ω
(l)
j

“

λ
(l)
j

”2
e
(tn,i−tr,s)λ

(l)
j

tn,i−tr,s
FVRK methods

Np
∑

j=−Np

ω
(l)
j

“

λ
(l)
j

”2
e
(tn,i−tr)λ

(l)
j

tn,i−tr,s

1
∫

0

e−θhλ
(l)
j Ls(θ)dθ FCOLL methods,

(4.5)

(P(l)
n,r)i,s = cs(Q̄

(l)
n,r)i,s,(4.6)

θ̄ = diag(c1, ..., cs),
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are square matrices of dimensionm. The indexl in the formula (4.3) is determined byn and
k in such a way thattk ∈ [τl, τl−1] and the matrixN is supposed to be nonsingular.

THEOREM 4.3. A fast method applied to the test equation (4.1) leads to the following
recurrence relation

(4.7) Yn+2 = EYn+1 − FYn,

where

E = N−1
(

N + wQ̄
(1)
1 + S

)

,

F = −N−1S,

S = N + zQ
(1)
1 + wθ̄Q̄

(1)
1 − wP

(1)
1 ,

N is given by (4.4), andQ
(1)
1 = Q

(1)
n+2,n+1, Q̄(1)

1 = Q̄
(1)
n+2,n+1, P(1)

1 = P
(1)
n+2,n+1 are given

by (3.4), (4.5), (4.6)
Proof. From (4.2) and (4.3) it is possible to obtain the relation

NYn+2 =
(

N + wQ̄
(1)
1 + S

)

Yn+1 −
(

S−T
(l)
n+2,n

)

Yn(4.8)

+

n−1
∑

r=0

(

T
(l)
n+2,r − T

(l)
n+1,r + w∆Q

(l)
n+1,r

)

Yr,

where

∆Q(l)
n,r = Q(l)

n,r − Q
(l)
n−1,r, ∆Q̄(l)

n,r = Q̄(l)
n,r − Q̄

(l)
n−1,r,

∆P(l)
n,r = P(l)

n,r − P
(l)
n−1,r,

T(l)
n,r = z∆Q(l)

n,r +
[

w (n − r) I+wθ̄
]

∆Q̄(l)
n,r − w∆P(l)

n,r,

andQ
(l)
n,r, Q̄(l)

n,r, P(l)
n,r are given by (3.4), (4.5), (4.6).

As in Section3, by freezing the relative error of the inverse Laplace transform approx-
imation, it follows thatQ(l)

n,r = Q
(l)
n−1,r. Similarly we obtain thatQ̄(l)

n,r = Q̄
(l)
n−1,r and

P
(l)
n,r = P

(l)
n−1,r. Thus the relation (4.8) becomes a difference equation of fixed order and

the theorem is proved.
The relation (4.7) can be written in the form

(4.9)

[

Yn+1

Yn

]

= R(z, w)

[

Yn

Yn−1

]

,

for n = 1, 2, . . . , where

(4.10) R(z, w) =

[

E F

I 0

]

.

The next result immediately follows from relations (4.9)-(4.10) and from the Defini-
tion 4.2.

COROLLARY 4.4. If the eigenvalues ofR(z, w) are within the unit circle, then the fast
method is stable. The stability region of the method is thus the set

S = {(z, w) ∈ R− × R− : |eig(R(z, w))| < 1}.
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As was proven in Theorem3.6for the basic test equation, in the case of the convolution
test equation we are also able to prove that

THEOREM4.5.The stability regions of the fast methods tend, asM → ∞, to the stability
regions of the corresponding classical ones.

Proof. The proof is analogous to that of Theorem3.6and it is obtained by proving that
the three term recursion (4.7) tends to the three term recursion of classical methods [1].

REMARK 4.6. In the caseσ = 0 the region of absolute stability of a fast method with
respect to the test equation (4.1), given by Corollary4.4, reduces to the interval of absolute
stability of the fast method with respect to equation (3.1).

REMARK 4.7. As a consequence of Corollary3.7, it follows that, for any fixedNp, if
the parameterscj satisfy the condition (3.9), then the corresponding fast methods are charac-
terized by unbounded stability regions with respect to equation (4.1) along thez-axis.

z

w

w =4α−2β

β̄−2ᾱ
z− 4

β̄−2ᾱ

− 4

β̄−2ᾱ

2

2α−β

FIG. 4.1.Stability region of the implicit Euler FVRK method

2-2-4

-4

-8

z

w

w = 2z −4

FIG. 4.2.Stability region of the classical implicit Euler VRK method

EXAMPLE 4.8. Let us consider the implicit Euler FVRK method characterized by
m = 1, c1 = 1, b1 = 1, a11 = 1. As we proved in Example3.8, the condition (3.9) is
satisfied for any fixed value ofNp, then it follows from Remark4.7 that the stability region
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of implicit Euler FVRK method with respect to equation (4.1) is unbounded along thez-axis.
In this case we have

d11 = c1b1Ψ11L1(c1c1) = Ψ11 =

Np
∑

j=−Np

ωj

λj

=: α

d̄11 = c1b1Ψ̄11L1(c1c1) = Ψ̄11 =

Np
∑

j=−Np

ωj

h(λj)2
=: ᾱ

Q
(1)
1 =

Np
∑

j=−Np

ω
(1)
j

λ
(1)
j

ehλ
(1)
j =: β

Q̄
(1)
1 =

Np
∑

j=−Np

ω
(1)
j

(

λ
(1)
j

)2

ehλ
(1)
j

h
=: β̄

P
(1)
1 = Q̄

(1)
1 = β̄

N = 1 − αz − ᾱw,

from which it follows that

S =

[

(β−2α)z+(β̄−2ᾱ)w+2
1−αz−ᾱw

− (β−α)z+ᾱw+1
1−αz−ᾱw

1 0

]

.

An easy computation shows that|eig(S)| < 1 if and only if

w >
4α − 2β

β̄ − 2ᾱ
z −

4

β̄ − 2ᾱ

and the stability region is shown in Figure4.1. We can observe that whenM → ∞ then
α, β, β̄ → 1, ᾱ → 0, and the stability region tends to that of classical Euler method, that is,
the region characterized by

w > 2z − 4

and represented in Figure4.2.
EXAMPLE 4.9. As we observed in Example3.9, if we fix Np ≥ 21, then the fast

midpoint rule satisfies the condition (3.9) and thus the stability region with respect to equation
(4.1) is unbounded along thez-axis.

EXAMPLE 4.10. We checked that the stability region of the 3–point Radau II FHVRK
method is unbounded along thez-axis for any fixed value ofNp; see Figure5.4in the section
of stability plots.

5. Stability plots. In this section, we report the stability regions of two methods (one
explicit and one implicit) with respect to the basic test equation (3.1) and two methods with
respect to the convolution test equation (4.1).

In Figures5.1and5.2we report the stability regions, with respect to the basic test equa-
tion, respectively of the 3-points III order Heun FPVRK method whose Butcher array is

0 0 0 0
1/3 1/3 0 0
2/3 0 2/3 0

1/4 0 3/4
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FIG. 5.1. Stability regions of the 3–points Heun method (Fast withNp = 2, 8 and Classic) with respect to
equation (3.1).

FIG. 5.2. Stability regions of the midpoint rule (Fast withNp = 14, 18, 20, 21 = Classic) with respect to
equation (3.1).

and of the fast midpoint rule, characterized byc1 = 1
2 .

In Figures5.3 and5.4, we report the plots of the stability regions, with respect to the
convolution test equation, of an explicit and an implicit method, respectively. Namely, we
consider the 4-points IV order FPVRK method whose Butcher array is

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

and the the 3–points Radau II FHVRK method characterized byc1 = 4−
√

6
10 , c2 = 4+

√
6

10 ,
c3 = 1.

For all plots we report the stability regions of the fast methods at different values ofNp
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FIG. 5.3.Stability regions of the 4–points IV order FPVRK method (Fast with Np = 12, 20 and Classic) with
respect to equation (4.1).

FIG. 5.4. Stability regions of the 3–points Radau II method (Fast withNp = 6, 16, 30 and Classic) with
respect to equation (4.1).

and of the classical methods.
The plots show as for the explicit methods the regions of the classical methods are

straightway reached for very small values ofNp. The same occurs for all other explicit
methods we have tested. As regards the implicit methods, we can observe that this value of
Np is generally larger than for explicit methods, however it remains not very large.

Numerical experiments have been carried out in order to testthe reliability of the stabil-
ity conditions in nonlinear problems. We report the resultsobtained on the following two-
parameters class of VIEs,

(5.1) y(t) = 1 − a + ae−t − bt +

∫ t

0

(

b + ae−(t−τ)
)

y2(τ)dτ, t ∈ [0, 30],

whose exact solution isy(t) ≡ 1. By following a customary approach, we compare the results
obtained by our methods on the nonlinear equation (5.1) with the theoretical stability regions
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found by a linearized version of the equation. To this end we integrate the equation (5.1) with
the following parameters.

(5.2)

Problem a b
A 75 -82.5
B 37.5 -45
C 100 -102.5
D 0.16 -2.66

Then, (see [3, p. 457]), we consider the linear expansion in Taylor seriesof the partial deriva-
tive of the kernelk (t − τ, y(τ)) :=

(

b + ae−(t−τ)
)

y2(τ) with respect toy, obtaining

(5.3)
∂k (t − τ, y(τ))

∂y
≃ [2(a + b) − 2a(t − τ)]y(τ).

This means we integrate the convolution test equation (4.1) with the following parameters.

Problem µ = 2(a + b) σ = −2a
A -15 -150
B -15 -75
C -5 -200
D -5 -0.32

In this way, beginning with a stepsizeh = 0.1 and doubling it from time to time, we move
into the(hµ, h2σ) plane, along the parabolas having curvaturesσ

µ2 , from the inside to the
outside of the theoretical stability regions.

We report in Table5.1 and in Figures5.5–5.6 some results obtained by applying, with
the different stepsizeh, the 4-points IV order FPVRK method (which we call E4) and the
implicit Euler FVRK method to the problems (5.2).

FIG. 5.5.Plots with differenth in the plane(hµ, h2σ) of stable and instable results for the 4-points IV order
FPVRK method withNp = 10 andNp = 15 on the problems (5.2).

In the figures we emphasize with ‘∗’ or ‘×’ the points(hµ, h2σ) for theh listed in the
second column of the Table5.1.

The table and the figures confirm how the stability of the methods depends on the choice
of the parametersa andb, on the stepsizeh, and on the numberM = 2Np + 1 of points on
the Talbot contour. In fact, we can observe, by varyinga andb, how the points(hµ, h2σ) fall
or not into the theoretical stability regions (gray coloured in the figures) and how the methods
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FIG. 5.6. Plots with differenth in the plane(hµ, h2σ) of stable and instable results for the implicit Euler
FVRK method withNp = 10 andNp = 15 on the problems (5.2).

on the nonlinear problem (5.1) are stable if we increaseNp. In particular, for the Implicit
Euler method the problemsA, B andD are well solved (∗ in Figure5.6) when(hµ, h2σ) are
inside the stability regions already withNp = 10; the equationC shows stability problems
(× in the left Figure5.6) with h = 0.1 when the fast method is run withNp = 10, but it is
well solved onceNp increases to15. For the IV order FPVRK method, the dependence from
Np is more pronounced. In fact, the problemsA, B andC show instability for(hµ, h2σ)
with h = 0.1 inside the theoretical stability regions whenNp = 10 (× in the Figure to left
in 5.5), but it’s sufficient to increaseNp to 15 and the stability is reached (∗ in the Figure to
right in 5.5).

6. Concluding remarks. In this paper we analyze the stability properties of two classes
of numerical methods for Volterra integral equations of Hammerstein type, namely, fast collo-
cation and fast Runge-Kutta methods. The detailed contruction of the methods and the results
on the computational cost and convergence are reported in [6] and [4]. These fast methods are
based on the inverse Laplace transform approximation formula introduced in [9] that allows
us to reduce drastically the computational cost of the methods preserving good convergence
properties. Here the stability analysis of the two classes of methods is carried out with respect
the basic test equation (3.1) and the convolution test equation (4.1). We proved that the sta-
bility properties depend on the numberM = 2Np +1 of points chosen on the Talbot contour.
In particular for fixedNp we found the stability matrix for both classes of methods andwe
determined a condition that provides methods with unbounded stability regions. Moreover
w,e showed that Euler method is A–stable for each value ofNp, while the midpoint rule is
A-stable forNp ≥ 21. We have done also some experimental tests on a class of nonlinear
problems and they confirm the theoretical results.

We recall that in the specialized literature there are some papers on other antitransfor-
mation techniques and improvements of Talbot’s approximation; see, for example, [8, 13, 14,
15]. In the paper [11], Lubich and his collaborators have already constructed numerical meth-
ods for VIEs based on the inverse Laplace Transform approximation introduced in the pa-
per [8]. It would be an interesting topic for future work to study the possibility of constructing
numerical methods for VIEs based on other fast antitransformation techniques [13, 14, 15],
in order to analyze how the reduction of the error of the inverse Laplace transform approxi-
mation formulas influences the performance of the methods.
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TABLE 5.1
Numerical results on problems (5.2).

Problem h 2(a + b)h −2ah2 Np Abs.Err. in/ Abs.Err. in/
Euler out E4 out

A 0.1 -1.5 -1.5
10
15

2.80E-04
5.11E-05

in
NaN

2.56E-02
in

0.2 -3 -6
10
15

3.43E-05
5.24E-05

in
NaN
NaN

out

0.4 -6 -24
10
15

1.17E+00
1.17E+00

out - out

B 0.1 -1.5 -0.75
10
15

7.46E-06
2.10E-05

in
NaN

1.96E-02
in

0.2 -3 -3
10
15

8.73E-05
1.90E-05

in
NaN
NaN

out

0.4 -6 -12
10
15

3.46E-04
2.51E-06

in - out

0.6 -9 -27
10
15

1.11E+00
1.11E+00

out - out

C 0.1 -0.5 -2
10
15

3.00E+00
2.80E-03

in
NaN

7.58E-04
in

0.2 -1 -8
10
15

2.00E+00
2.00E+00

out
NaN
NaN

out

D 0.1 -0.5 -0.003225
10
15

6.60E-06
4.76E-05

in
2.11E-05
2.73E-05

in

0.2 -1 -0.0129
10
15

1.75E-04
1.31E-05

in
1.42E-04
9.99E-05

in

0.4 -2 -0.0516
10
15

4.09E-04
6.57E-06

in
7.45E-03
5.15E-03

in

0.6 -3 -0.1161
10
15

7.90E-04
3.69E-05

in
9.36E-02
9.16E-02

in

0.8 -4 -0.2064
10
15

1.85E-08
1.03E-11

in
2.04E-01
1.89E-01

in

1.0 -5 -0.3225
10
15

2.84E-08
3.87E-12

in
NaN
NaN

out

1.2 -6 -0.4644
10
15

1.72E-08
4.03E-11

in - out

1.4 -7 -0.6321
10
15

2.51E-08
1.08E-11

in - out
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[11] A. SCHÄDLE , M. L ÓPEZ-FERNÁNDEZ, AND CH. LUBICH, Fast and oblivious convolution quadrature,
SIAM J. Sci. Comput., 28 (2006), pp. 421–438.

[12] A. TALBOT, The accurate numerical inversion of Laplace transforms, J. Inst. Math. Appl., 23 (1979), pp. 97–
120.

[13] L. N. TREFETHEN, J. A. C. WEIDEMAN , AND T. SCHMELZER, Talbot quadratures and rational approxi-
mations, BIT, 46 (2006), pp. 653–670.

[14] J. A. C. WEIDEMAN, Optimizing Talbot’s contours for the inversion of the Laplace transform, SIAM J.
Numer. Anal., 44 (2006), pp. 2342–2362.

[15] J. A. C. WEIDEMAN AND L. N. TREFETHEN, Parabolic and hyperbolic contours for computing the
Bromwich integral, Math. Comp., 76 (2007), pp. 1341–1356.


