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STABILITY ANALYSIS OF FAST NUMERICAL METHODS FOR
VOLTERRA INTEGRAL EQUATIONS *
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Abstract. In this paper the stability properties of fast numerical inoels for \Volterra integral equations of
Hammerstein type with respect to significant test equatimasnvestigated.
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1. Introduction. Nonlinear Volterra Integral Equations (VIES) of Hammenstgpe,

1.1) y(t) = f(t) —i—/o k(t —1)g(r,y(r))dr, tel:=[0,T), vy, f,keR,

where functionsf andk are continuous ot andg satisfies the Lipschitz condition with re-
spect toy, are the mathematical model of many problems of appliechsei® In physics,
chemistry, engineering, biology, and medicine there aversg problems that describe evo-
lutionary phenomena incorporating memory](@nd [9] and the related bibliography) whose
mathematical models lead td. ().

It is known that the numerical treatment of VIEs has a venhligmputational cost: the
implementation ovelV time steps of a classical numerical method to solvé)(requires a
computational cost ab(/N?) in time andO(N) in space.

In [6] we constructed a class of Fast Collocation methods (FCOEthods) and in4]
two classes of Fast Runge Kutta methods (FVRK methods)icéxplethods of Pouzet type
(FPVRK methods) and implicit methods of De Hoog and Weiss (ffHVRK methods), with
the aim of using the Laplace transform of the kernel in ordeetiuce the computational cost
of classical methods for VIEs. Among the existing inversplaae transform approximation
techniques 12, 10, 9, 8, 13, 14, 15], FCOLL and FVRK methods are based on the idea
introduced by Lubich and Schadle i#]]which is an improvement of Talbot’s approximation
[10, 12]. The use of this formula, permits us to reduce the compartaticost taO (N log N')
in time andO(log N) in space and have an high order of accuracy.

In this work we analyze the stability properties of thesessés of fast methods. In
Section2 we describe briefly the Fast Collocation and the Fast Rungéakunethods. In
Sections3 and4, we report the stability analysis of both classes of fastioés$. We study the
stability properties of the fast methods with respect tb éggiations usually employed in the
literature for stability analysis (see, for examplg,§] and their references), namely, the basic
test equation (Sectiod) and the convolution test equation (Sectinin particular, we prove
that the FCOLL and FVRK methods, when applied to both claskest equations are stable,
if they satisfy a condition which involves the coefficienfistbe methods and the number
M = 2N, + 1 of points chosen on the Talbot contour. For fixetl we find the stability
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matrix for both classes of methods and we determine a camditiat provides methods with
unbounded stability regions. In Sectiénwe trace the stability plots for some fast methods
and compare their stability regions with those of the respeclassical methods. Moreover,
we also report some experimental tests on a class of nonlmeblems, and we show, in our
figures and tables, that they confirm the theoretical results

2. Fast numerical methods for VIEs. Since we are interested in the linear stability
analysis of fast methods, we recall the formulation of thehmds when applied to the linear
VIE,

t
(2.1) y(t) = f(¥) —|—/ kE(t — m)y(r)dr, tel:=[0,T].
0
Let us discretize the intervdlby introducing a uniform mesh,
I, ={t, :=nh,n=0,...N, h>0,Nh=T1}.

The equationZ.1) can be rewritten, by relating it to this mesh, as

y(t) = Fu(t) + @ult), t € [tn, T],
where
2.2) Fu(t) = f(t) + /O k(t = )y(r)dr
and

t
D, (t) := / k(t —1)y(r)dr
tn
represent respectively thieg termand theincrement functionThe basic idea of FCOLL and
FVRK methods is to express the kernel by means of the inveapéate transform approxi-
mation formula introduced irf] in order to improve Talbot’'s approximatiof(, 12] on large
intervals. The idea proposed ifi][is to split a large interval into a sequence of subintervals
and in each subinterval to suitably use Talbot’s approxiomaiormula. More precisely, the
intervalI = [0, T is splitinto a sequence of fast growing intervals,

Iy=1[0,h], I;=[B"h,(2B'—1)n], 1=1,..,L,

whereB > 1is afixed integeran BL'—1)h > T. The chosen Talbot contolif associated
to each subinterval is parametrized by

(—m,m) =T
(2.3) ¥ — (V) = 0 + (Y cot (V) 4 ivd).

Such a contour is determined by opportunely choosing thengérical parameters, 1, and
v, which are such that all the singularities of the Laplacasfarm K (s) of the kernelk(t)

lie to the left of the contour. The approximation of the kérhg) on the intervall; results
from applying the trapezoidal rule on the Talbot's contbur

Np
(2.4) k(t) = %/F KN Y wOROD)eN e,
! Jj=—Np



ETNA

Kent State University
http://etna.math.kent.edu

STABILITY OF FVRK METHODS FOR VIEs 307

where

! i ! Jm
wj(-) = —mwl(ﬁj)a /\5-) =), ;= N+l
The number of quadrature pointd = 2N, + 1 chosen ol is independent of and it is
much smaller than would be required for a uniform approxiorabn the whole interval
[9].

The resulting error satisfie9[10]

(2.5) IE)|l,e; = Oe™V™M),

for M — oo, uniformly on I, where the positive constantdepends on the distance of
the singularities of the Laplace transforf(s) of the kernelk(¢) with respect to the Talbot
contour. The optimal choice of the parameters; andv in (2.3) is discussed ing, 10] and
is made in order to minimize the erro?.f) of the inverse Laplace approximation formula
(2.49).

It follows that the coefficients of the fast methods involkie evaluations of the Laplace
transform of the kernel at some suitable points of the complane. In the following sub-
section, we briefly recall the FCOLL and FVRK methods.

2.1. Fast collocation methods.The idea of a collocation method][is to approximate
the exact solution of4.1) by a piecewise polynomial functian(t) of the form

u(tn +0h) = Li(0)Yni 60€(0,1] n=0,..,N-1,
i=1

whereL;(0) is theith Lagrange fundamental polynomial with respecttdixed collocation
parameters; € [0,1]. The unknownsg, ; are determined by requiring tha{t) exactly
satisfies the integral equation in the collocation potpts:= ¢,, 4 ¢;h. In the case of FCOLL
methods §] such conditions lead to the following linear system

(I-hD)Y, = F,,
whereY, = (Yo, ., Vo) s Fu = (Fui, ..., Fum) " is @ numerical approximation of

(2.2), I denotes the identity matrix of orden, andD is a square matrix of dimensian
whose elements are

(2:6) dis = Bs Bl ir
=0
and
- 1
BS = ]-_-[ Cs—Cy
r=1
r#s
m
(27) 05,0 = 1, Os,i = Z CnyCny---Cny;
ny<...<n;=1
nE#s
N, .
U= > ijK()\j)ecmAj.
Jj=—Np
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Each component of the lag terms approximation veEtpis computed in the following
way. Let us fix an integeB > 1 and letL be the smallest integer for whiah ., < 2B h.
The intervall0, ¢,,] is split into

=

[0,t,] =

(71, 11,
l

1

where the mesh points are of the formr, = ¢, B“h with ¢; > 1 determined by requiring
thatrg = t,, 7 = 0Oandforl = 1,....L — 1, t,.1 — 7, € [B'h, (2B' — 1)h]. We choose
a different Talbot contour for each interval and we denote;ﬁiland/\;l) the corresponding
weights and nodes in the formula.{).

Then we have

Foi= f(tns +Z Z WO KA eltnimnoN Y A i= 1,
=1 j=—

where
Ti—1
Z(TlflaTl,/\;'l)) :/ 6(”*1”)’\5”11(7’)(17.
Tl
In [6] the following convergence theorem has been proved.
THEOREM2.1. Lete(t) = y(t) — u(t) be the error of the FCOLL methods. Then

el = O(h™) + O~V M)

for every choice of the collocation parametérs. ¢; < ... < ¢, < 1.

REMARK 2.2. It is possible to achieve local superconvergence attbsh points by
opportunely choosing the collocation parametgrand sufficiently large\/:

(a) If the collocation parameters are the Radau Il pointgdot], then we have

_ h2m—1 )
[nax len] = O( )

(b) If the collocation parameters are the Lobatto pointg@ot], then we obtain

_ 2m—2
max |en| = O™ ™).
(c) Ifthe firstm — 1 collocation parameters are the Gauss pointgdot ) andc,, = 1,
then we obtain
nl = h2m72 .
max |en| = O( )

2.2. Fast Runge—Kutta methods.Runge—Kutta methods for VIEs (VRK method8) [
are determined by the “Butcher array” for ODEs

c| A

(2.8) i’

where the vectord = (b;);2;, ¢ = (¢;);; and the matrixA = (a;s){",_, are fixed. Ex-
plicit VRK methods of Pouzet type (PVRK methods) are cha@otd by a strictly lower
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triangular matrixA while implicit VRK methods of de Hoog and Weiss (HVRK methpds
are characterized by

1 ci m
(2.9) by, :/ Li(0)do, k=1,....m, ais ::/ Lo(0)d = c; » biLa(cicy), em = 1.
0 0 j=1
An m-stage FVRK method4] applied to the equatior2(l) reads

Fpmi1+hY bi®;Y,; FPVRK methods

Ynt1 = ' p ' n=0,..N—1,
Yo.m FHVRK methods,
Np
where®, = Z w; K (\;)e!=¢)" and the stages, ; are computed by solving the linear
j=—Np

system
(I-hrD)Y, =F,.
HereY, = (Ya1,..., Yn,m)T, F,=(Fn1, - Fnym)T is a numerical approximation o2 (2),

I denotes the |dentity matrix of order, D = (d;s) is a square matrix of dimension whose
elements are

ais\Ijis FPVRK methods
(2.10) dis =4 .S bWy Ly(cicr) FHVRK methods,
=1
and
NP
S wiK(\)eleimedr FPVRK methods
(2.11) Uy =4
P
S w;K(\j)eci(tmeohAi - FHVRK methods.
j:_Np

The lag term approximatioR', is the same for FPVRK and FHVRK methods and it is
computed through

L

Foi= f(tns +Z Z w )\(l e(t’"”'_” 1A (Tl_l,Tl,)\g»l)), i=1,..,m,
=1 j=—N,

where

(Tl 17777)\() 7h’ Z Zb e(Tl v trs A(Z)g( T‘Svi/?“.,s)a

"lsl

and the points; are the same of those determined for FCOLL methods.

In [4] the following convergence theorem has been proved.

THEOREM 2.3. Lete,, = y(t,) — 7, be the error of the FVRK method. Letbe the
order of the corresponding classical VRK method (i.e., hgtihe same Butcher array). Then

max |e,] = O(h?) + O(e~ VM),
1<n<N

REMARK 2.4. By choosing implicit FHVRK methods with nodgs } as in Remari2.2,
we obtain superconvergent FVRK methods, ije.— 2m — 1 with m Radaull points,
p = 2m — 2 with m Lobatto points angh = 2m — 2 with m — 1 Gauss points and,, = 1.
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3. Stability analysis for the basic test equation.In this section we will analyze the
stability properties of the fast methods with respect toltasic test equation,

(3.1) y(t) =1+ /L/O y(7)dr, t €[0,T], Re(u) < 0.

Since the exact solutiop(t) of (3.1) tends to zero when goes to+oo, it is natural
to require that the numerical solutiap, produced by a numerical method when applied to
the equation 3.1) with stepsizeh, has the same behaviour. Thus we recall the following
definition of numerical stability.

DEeFINITION 3.1. A numerical method is said to be stable for given= hu € C if the
numerical solutiory,,, resulting from applying the method t8.{) with fixed stepsiza, tends
to zero whem — +oc.

DEFINITION 3.2. The region of absolute stability of the method is the setlofallues
z € C for which the method is stable.

DEFINITION 3.3. The method is said-stable if its region of absolute stability includes
the negative complex half plade .

The application of either a FVRK method (FPVRK and FHVRK noethor a FCOLL
method to the equatior3 (1), leads to the following linear system,

(3.2) (I1-:D)Y, =F,,

where the matrixD is obtained from2.10 for FVRK methods and from2(6) for FCOLL
methods withK (s) = 1, and

n—1

(3.3) F,=u+zY QY

k=0

Hereu = (1,...,1)T andef_)k is a square matrix of dimension whose elements are
(3.4) '

NP (Z) >\(
by S Y etni—tk o) FVRK methods
LN
" bt m NE <7 oltni=tN" [ =0 [ (p)dg FCOLL method
)\(z)e je ) methods.
Jj=—Np 7 0

The index in the formula 8.3) is determined by, andk in such a way that, € |7, 71—1].

In the following theorem we provide the expression for thabgity matrix of fast meth-
ods.

THEOREM 3.4. A fast method applied to the test equati@nl) leads to the two term
relation,

(3.5) Y, =R(2)Yn-1,
where
(3.6) R(z) = (I+21-:D)'Q")

is a square matrix of dimensiom, with le) = Qn n_1 given by 8.4 and D defined by

(2.6) or (2.10.
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Proof. Assuming thatlet(I — D) # 0, the formula 8.2) can be rewritten as

n—1
(3.7) Y, =(I—-:D)"! <u+zZij}kYk>.

k=0

By subtracting the expressions ¥, andY,,_; given by 3.7) and by opportune manipula-
tions, we obtain, for, > 1,

n—2
(38) Y,=O+z(1- zD)‘l §1))Yn71 + Z 2(I— ZD)_l [Qg,)k _ lelyk Y,
k=0

with
Yo =(I-2D) 'u

Let us denote withf(¢) the inverse Laplace transform approximation —?Sofobtained
through the formulaZ.4). Then the formulag.4) can be rewritten as

(Qg)’“)” -

We can freeze the relative error of the inverse Laplace feansapproximationf (t)
obtained through the formul&(4) in the approximation interval, as this error is of order
O(e*cm), independently ot. Since the exact inverse Laplace transform%ois a con-
stant function, this implies thaf(¢) is a constant function, too. It follows that ir3.9)
Qif)k = ngil_k and thus the theorem is provedl.

"The next result is an immediate consequence of The@rdrand of the Definitior8.

COROLLARY 3.5. If the eigenvalues oR(z) are within the unit circle, then the fast
method is stable. The region of absolute stability of thehogkts thus the set

by f(tni — tey) FVRK methods
"f(tni —ty —Oh)L;(0)dd FCOLL methods.

=

o

S ={z€eC:leig(R(2))] < 1}.

Note that the stability regions of the fast methods dependhennumber of points
M = 2N, + 1 chosen for the approximatio2 &). If M — +oo, since the fast methods
tend to the classical ones, we expect that the same happetiefoorresponding stability
regions.

THEOREM 3.6. The stability regions of the fast methods tend,dds— oo, to the
stability regions of the corresponding classical methods.

Proof. Let us consider the stability matri8.©). If M — oo we have

le) — ub”

D— A
whereb” andA are given by 2.8) for FPVRK methods and by2(9) for FHVRK methods.
Since we are considering a linear constant kernel, it is émsieck that the vectds” and

the matrixA for FCOLL methods are the same as those of FHVRK methods nitediately
follows that

R(z) = r(z) =1+ 2(I—-2A) 'ub”.
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This is anm x m matrix whose eigenvalues adg = 1 + b7 (I — 2A)"1u = r(z) with
multiplicity 1 andA2 = 1 with multiplicity m—1. SiinceY, = (I—zD)_lu is an eigenvector
associated with the eigenvalugz), it follows that the two-term recursiorB(5) of the fast
methods tends to

Y, =7r(2)Yn-1.

We observe that the previous formula is the two-term reoursi the classical methods (see
[1]), and so the theorem is provedl.
The following corollary, with fixed numbe¥/ = 2N, +1 of points on the Talbot contour,
provides a condition on the parameteyssufficient for unbounded stability regions.
COROLLARY 3.7.If the parameters; satisfy,

(3.9) leig(1- D1Q{Y)| < 1,

then the stability region of the fast method with respectteedion (3.1) is unbounded.
Proof. From the expressiors(€) for the stability matrixR.(z), we obtain

and thus the theorem follows.
We now provide some examples of fast methods which satigyctindition.
ExAMPLE 3.8. The implicit Euler FHVRK method is characterizediy= 1, ¢; = 1,
by = 1, a;1 = 1. The stability matrix isR(z) = 1 + z(1 — zdu)*ngl), where

(1) Ny o o N
1 = Z )\{1)6 i = ﬁ andd11 = 01b1‘I’11L1(C101) = \1111 = Z >\—Z = Q.
j=—Np "i j=—Np
It can immediately be proved that the conditi@d) is satisfied, since
1-pQl = -2 <,
«

so the implicit Euler FHVRK method has an unbounded stghiéigion for all values of\/.
In fact the stability function is

zp

b)
11—z«

R(z)=1+

and an easy computation shows th&fz)| < 1 if and only if z is outside the circl&,, g

centered aC' = ( 555, O) with radiusr = \204—175| Then the implicit Euler FVRK method
is A-stable for all values of/, the circleC, g being entirely contained in the right half of the
complex plane. We observe that whigh— oo, thena, 3 — 1 and the stability region tends
to that of the classical Euler method, that is, the regiorsidetthe circle centered ifi, 0)
and with radius equal to.

ExAMPLE 3.9. We checked that, if we fi%/, > 21, then the fast midpoint rule (i.e.,
the 1—point Gauss FHVRK method characterized py- %) satisfies the conditiorB(9) and
thus the stability region is unbounded; see Figuésn the section of stability plots.

ExAMPLE 3.10. Analogously, we checked that the stability regiormef3—point Radau Il

FHVRK method ¢, = 4*10@, cy = 4+1(\)/6, c3 = 1) is unbounded for any fixed value of,.
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Im(z)

FI1G. 3.1.Stability regions of the classical implicit Euler VRK medhg Fast implicit Euler VRK method

4. Stability analysis for the convolution test equation.Now we will study the stability
properties of the fast methods with respect to the convarfuist equation,

(4.2) y(t) =1 +/0 w+ot—")y(r)dr, t€[0,T], p<0, oc<O0.

Since the exact solution(t) of (4.1) goes to zero wheh— +o0, it is natural to require that
the numerical solution,,, produced by the fast methods when applied4td)(with stepsize
h, has the same behaviour.

Thus we recall the following definition of numerical statyil[3].

DEFINITION 4.1. A numerical method is said to be stable for given= hu, w := h%c
if it yields an approximate solutiop,, which satisfies;,, — 0 asn — oo whenever it is
applied with a fixed stepsiZze> 0 to the test equatior(1).

DEFINITION 4.2. The region of stability of the method is the set of all val(esv) for
which the method is stable.

Let D andD be obtained by substituting (s) = 1/s and K (s) = 1/s2 in (2.6)-(2.7)
(FCOLL methods) and in210-(2.11) (FVRK methods), respectively, and B = f)/h.
Then the application of a fast method to the test equatial) [eads to

(4.2) Yn=N""Fy,
n—1

(4.3) F,=u+ Z [ng?T + (w (n—7) I+wd) Q;”T — ng?r Y.,
r=0

where the matriceQﬁf?r are given by 8.4) and

(4.4) N=1- 2D — wD,

N, w® (tn,i*f'r,s))\y)
bs 220 N, ( 5))28 — FVRK methods
— - AN n,i T8
o) - y
(45) (Qn,r is N, wy) e(tn,i*MM](-l) 1

L e L [N L(0)dd  FCOLL methods,
=N, (W) T g

(46) (Pg)r)ls - CS( _gll,)r)iysa
0 = diag(cy, ..., cs),




ETNA

Kent State University
http://etna.math.kent.edu

314 G. CAPOBIANCO, D. CONTE, |. DEL PRETE, E. RUSSO

are square matrices of dimension The index in the formula 4.3) is determined by, and
k in such a way that, € [r;, 7,—1] and the matriXN is supposed to be nonsingular.

THEOREM 4.3. A fast method applied to the test equatidnl) leads to the following
recurrence relation

(4.7) Yoo =EY, 1 — FY,,
where
E=N-! (N +wQlY + S) :
F=-N'S,
S=N+ ngl) + wH_le) — ngl),
N is given by 4.4), andQ{" = Qf}}rlnﬂ, QY = nglJ)rQ.,nJrl' plY = Piw)rz 41 @re given

by 3.4), (4.9), (4.6
Proof. From @.2) and @.3) it is possible to obtain the relation

(4.8) NY, o= (N +wQ +8) Yoi - (S-T,, ) Yo
+ Z ( gzﬂ T Tnlzrl Ptw AQnH r) Y,

where

AQY. =¥, -qQ, . AQ¥ =qV -QY,,.
AP(” =P —pY

n—1,r»

TV =2AQ0 + [w(n —r) I+wd] AQY, — wAP)

n,r?

andQn " nl)T, PSf?T are given by 8.4), (4.5), (4.6).

As in Section3, by freezing the reIative error of the inverse Laplace tfama approx-
imation, it follows thatQ”, = Q' . Similarly we obtain thaQ{", = Q" , and
P( ) P(l) . Thus the relation4.8) becomes a difference equation of fixed order and
the theorem |s provetﬂ]

The relation 4.7) can be written in the form

n—1,r-

Y, Y,
(4.9) [ o ] — R(z,w) [ v }
forn=1,2,..., where
E F
(4.10) R(z,w) = { I o } .

The next result immediately follows from relation$.9-(4.10 and from the Defini-
tion4.2

COROLLARY 4.4. If the eigenvalues dR(z, w) are within the unit circle, then the fast
method is stable. The stability region of the method is thaset

S={(z,w) eR_ xR_ : |eig(R(z,w))| < 1}.
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As was proven in Theore®.6for the basic test equation, in the case of the convolution
test equation we are also able to prove that

THEOREM4.5. The stability regions of the fast methods tendVas- oo, to the stability
regions of the corresponding classical ones.

Proof. The proof is analogous to that of Theoré&n and it is obtained by proving that
the three term recursior (7) tends to the three term recursion of classical methad<]

REMARK 4.6. In the case = 0 the region of absolute stability of a fast method with
respect to the test equatioh.{), given by Corollary4.4, reduces to the interval of absolute
stability of the fast method with respect to equatidril.

REMARK 4.7. As a consequence of Corollady?, it follows that, for any fixedV,, if
the parameters; satisfy the condition3.9), then the corresponding fast methods are charac-
terized by unbounded stability regions with respect to éqnd4.1) along thez-axis.

_4a-28_, 4
W=F2a * Fza

FIG. 4.1. Stability region of the implicit Euler FVRK method

FiG. 4.2.Stability region of the classical implicit Euler VRK method

EXAMPLE 4.8. Let us consider the implicit Euler FVRK method chareezesl by
m=1,¢, = 1,b; = 1, a1 = 1. As we proved in Exampl8.8, the condition 8.9 is
satisfied for any fixed value a¥,, then it follows from Remark!.7 that the stability region
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of implicit Euler FVRK method with respect to equatieh) is unbounded along theaxis.
In this case we have

NP
Wi
di1 = Clbl‘IjllLl(Clcl) =V = Z 2.
J=—Np A
NP
diy = c1b1Vy Ly (cier) = Uy = wj &
11=2q — _ .
25, OGP
TR L) e
Q= /\%e i =8
J=—Np"j
oW = = W,gl) A -
' m)> h
j=—Np (/\j )

P = =5

N=1-az— aw,

from which it follows that

l—az—aw l—az—aw

1 0

[ (B—20)z+(B—2a)w+2 _ (B—a)ztaw+l

An easy computation shows thaig(S)| < 1 if and only if

- 4o — 203 4

w = Zz — =

0 —2a 0 —2a

and the stability region is shown in Figudel We can observe that wheW — oo then
a, 3,8 — 1, @ — 0, and the stability region tends to that of classical Eulethod, that is,
the region characterized by

w > 2z —4

and represented in Figuse2.

EXAMPLE 4.9. As we observed in Examp9, if we fix N, > 21, then the fast
midpoint rule satisfies the conditioB.Q) and thus the stability region with respect to equation
(4.2) is unbounded along theaxis.

ExaMPLE 4.10. We checked that the stability region of the 3—pointdald FHVRK
method is unbounded along theaxis for any fixed value oiV,; see Figuré.4in the section
of stability plots.

5. Stability plots. In this section, we report the stability regions of two methgone
explicit and one implicit) with respect to the basic test &tipn 3.1) and two methods with
respect to the convolution test equatignlj.

In Figures5.1and5.2we report the stability regions, with respect to the basit égua-
tion, respectively of the 3-points Ill order Heun FPVRK madhwhose Butcher array is

o o o o0

1/31/3 0 0

2/310 2/3 0
1/4 0 3/4
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FiG. 5.1. Stability regions of the 3—points Heun method (Fast with = 2, 8 and Classic) with respect to
equation 8.1).

-5000 0

FiG. 5.2. Stability regions of the midpoint rule (Fast witN,, = 14, 18,20, 21 = Classic) with respect to
equation 8.1).

and of the fast midpoint rule, characterizeddy= 1.

In Figures5.3 and5.4, we report the plots of the stability regions, with respectte
convolution test equation, of an explicit and an implicitthua, respectively. Namely, we
consider the 4-points IV order FPVRK method whose Butchexyais

0o o o o0 0
1/211/2 0 0 0
1210 12 0 0
1 o o 1 0

[1/6 1/3 1/3 1

76

and the the 3—points Radau Il FHVRK method characterized,by 45¥8, ¢, = 445,
C3 = 1.
For all plots we report the stability regions of the fast nueth at different values a¥,
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FiG. 5.3. Stability regions of the 4—points IV order FPVRK method {Reith N, = 12, 20 and Classic) with
respect to equationd(1).

—0 -20

— 60

BN 6
N> 16
CN230
j Classic

FiIG. 5.4. Stability regions of the 3—points Radau Il method (Fast with = 6, 16, 30 and Classic) with
respect to equation(l).

and of the classical methods.

The plots show as for the explicit methods the regions of tlagsical methods are
straightway reached for very small values &f. The same occurs for all other explicit
methods we have tested. As regards the implicit methods anebserve that this value of
N, is generally larger than for explicit methods, however imeens not very large.

Numerical experiments have been carried out in order tathesteliability of the stabil-
ity conditions in nonlinear problems. We report the resoli¢ained on the following two-
parameters class of VIES,

t
5.1) yt)=1—a+ae " —bt+ / (b + ae_(t_7)> y*(r)dr, t€[0,30],
0

whose exact solution ig(t) = 1. By following a customary approach, we compare the results
obtained by our methods on the nonlinear equattof) ith the theoretical stability regions
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found by a linearized version of the equation. To this endntegrate the equatio (1) with
the following parameters.

Problem « b
A 75 -82.5
(5.2) B 37.5 -45

C 100 -102.5
D 0.16 -2.66

Then, (seed, p. 457]), we consider the linear expansion in Taylor sesfabe partial deriva-
tive of the kernek (t — 7,y(7)) == (b+ ae~*=7)) y?(7) with respect tq, obtaining

Ok (t —,y(7))
y

This means we integrate the convolution test equatiof) (vith the following parameters.

(5.3) ~ [2(a+b) — 2a(t — 7)]y(7).

Problem p=2(a+b) o=-2a

A -15 -150
B -15 -75

C -5 -200
D -5 -0.32

In this way, beginning with a stepsize= 0.1 and doubling it from time to time, we move
into the (hu, h%0) plane, along the parabolas having curvatufgsfrom the inside to the
outside of the theoretical stability regions.

We report in Tables.1and in Figures$.5-5.6 some results obtained by applying, with
the different stepsizé, the 4-points IV order FPVRK method (which we call E4) and the
implicit Euler FVRK method to the problem5.Q).

Np=10 Np=15
D i_—x—— E i—_"f
s g
) 2
/' /—
4t 7 Ar 5
"4 ’ 4 ’
6 - & =~
/’ . /(
sl Problem A sl Problem A
8| — - —-Problem B “H—-—-ProblemB |
— — Problem C — — Problem C
Problerm D Problem D
OF e stability ks
e ; ¥ stability
instability X instability
12 PR . . . . . . . 42 T ; v L . - 7 i :
5 45 -4 35 43 25 2 45 4 05 @O 5 A5 4 35 3 25 =2 -5 1 405 0

FiG. 5.5.Plots with differents in the plane(hu, h?0) of stable and instable results for the 4-points IV order
FPVRK method withV;,, = 10 and N, = 15 on the problemsH.2).

In the figures we emphasize with’‘or * x’ the points(hu, h?c) for the h listed in the
second column of the Tabfe 1

The table and the figures confirm how the stability of the meshaepends on the choice
of the parameters andb, on the stepsizé, and on the numbe¥/ = 2N,, + 1 of points on
the Talbot contour. In fact, we can observe, by varyirandb, how the pointghu, h2o) fall
or not into the theoretical stability regions (gray coladine the figures) and how the methods
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Np=15
0 i T

5[ 7/ X ——————— Problem A | 1 o5 r Is J /X’ ------- Problem A |
X — - = Problem B X — -~ Problem B

30F — —Problem C | 1 3gf — — Problem C |
] < Problem D ‘ 1 Prablem D

351 e stabilty |1 55| ¢ stability
g X instability X instability

40 L gl L L L L i L 40 L A L L L . 1 I
-10 9 8 -7 B -5 -4 -3 -2 -1 0 -10 -9 -8 7 6 5 -4 -3 2 -1 o

FiG. 5.6. Plots with differenth in the plane(hpu, h%0) of stable and instable results for the implicit Euler
FVRK method withV,, = 10 and V;,, = 15 on the problems.2).

on the nonlinear problenb(1) are stable if we increasd,,. In particular, for the Implicit
Euler method the problems, B andD are well solved £ in Figure5.6) when(hu, h?o) are
inside the stability regions already withi, = 10; the equatiorC' shows stability problems
(x in the left Figure5.6) with i = 0.1 when the fast method is run with, = 10, but it is
well solved onceV, increases td5. For the IV order FPVRK method, the dependence from
N, is more pronounced. In fact, the problems B and C' show instability for(hu, h?c)
with » = 0.1 inside the theoretical stability regions whép, = 10 (x in the Figure to left

in 5.9, but it’s sufficient to increasé/,, to 15 and the stability is reached {n the Figure to
rightin5.5).

6. Concluding remarks. In this paper we analyze the stability properties of two s
of numerical methods for Volterra integral equations of Hiaenstein type, namely, fast collo-
cation and fast Runge-Kutta methods. The detailed combruof the methods and the results
on the computational cost and convergence are reporté&liamfl [4]. These fast methods are
based on the inverse Laplace transform approximation fanmiroduced in 9] that allows
us to reduce drastically the computational cost of the nstheserving good convergence
properties. Here the stability analysis of the two clas$@sathods is carried out with respect
the basic test equatio3.(l) and the convolution test equatiof.{). We proved that the sta-
bility properties depend on the numher = 2.V, + 1 of points chosen on the Talbot contour.
In particular for fixedNV,, we found the stability matrix for both classes of methods aed
determined a condition that provides methods with unbodred&bility regions. Moreover
w,e showed that Euler method is A—stable for each valu®,gfwhile the midpoint rule is
A-stable forN, > 21. We have done also some experimental tests on a class ohaanli
problems and they confirm the theoretical results.

We recall that in the specialized literature there are soapeps on other antitransfor-
mation techniques and improvements of Talbot's approxonasee, for example8| 13, 14,
15]. Inthe paper1], Lubich and his collaborators have already constructedenical meth-
ods for VIEs based on the inverse Laplace Transform appratiamn introduced in the pa-
per [8]. It would be an interesting topic for future work to studgtpossibility of constructing
numerical methods for VIEs based on other fast antitransétion techniquesl3, 14, 15],
in order to analyze how the reduction of the error of the isedraplace transform approxi-
mation formulas influences the performance of the methods.
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TABLE 5.1
Numerical results on problems.Q).
Problem| h  2(a+b)h  —2ah? N, Abs.Err. inf  Abs.Err. in/
Euler out E4 out
Aol 1S 15 13 s1tros M osegoz M
02 3 6 10 Shieos M nan o
04 -6 24 12 ﬂ;g:gg out . out
Bojoi s 075 0 Jine M jeergp
02 3 3 0 Toees M nan o
04 -6 12 o SeeEd in : out
06 9 27 ig iﬁgigg out . out
¢ (o1 05 2 12 g:gggjr&? in 7.2??-04 in
02 1 8 10 Soommn M nan O
D 0.1 -0.5 -0.003225 ig i:ggg:gg in g%g:gg in
02 4 00120 10 yiiene M gorgs
04 2 00816 1¢  gergs M gigegy
06 3 16T 10 Feoene M ggrgp
08 4 02004 ¢ yoayy M yggegy
10 5 03225 1o S9E% i NN out
1.2 -6 -0.4644 ig i:g;g:g? in - out
1.4 -7 -0.6321 ig i:gégﬁ in - out
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