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FAST WAVE PROPAGATION BY MODEL ORDER REDUCTION ∗

V. PEREYRA† AND B. KAELIN‡

Abstract. Large scale wave propagation simulation is currently achievable in reasonable turnaround times by
using distributed computing in multiple cpu clusters. However, if one needs to perform many such simulations, as
is the case in optimization, tomography, or seismic imaging, then the resources required are still prohibitive. Model
order reduction of large dynamical systems has been successfully used in several application domains to paliate
that problem and in this paper we explore one of its manifestations, Proper Orthogonal Decomposition, for wave
propagation. We describe the method and show how it can be easily interfaced with two different high fidelity
simulators. We exemplify its use on several problems of increasing complexity and size.
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1. Introduction. There are many applications that require the repeated transient simu-
lation of acoustic, elastic or electromagnetic wave propagation. To name a few: structural
analysis, blast on structures, vibrations of Navy vessels,sonar, design of piezoelectric trans-
ducers for medical ultrasound, medical imaging and therapeutics uses of ultrasound, earth
seismic imaging for the oil industry and earthquake seismology, optimization driven by sim-
ulation for material identification and optimal design. As such, any significant improvement
in the performance of numerical simulators would be very important.

Model Order Reduction (MOR) refers to a collection of techniques to reduce the number
of degrees of freedom of the very large scale dynamical systems that result after space dis-
cretization of time-dependent partial differential equations. Some of these techniques have
been successfully employed in the simulation of VLSI circuits, computational fluid mechan-
ics, real-time control, heat conduction and other problems[1, 3, 5, 7]. Not much has been
done for wave propagation, although it does not seem that there are fundamental difficulties
for its application [2].

However, since none of these techniques are trivial to interface with existing large scale
high fidelity codes, it is important to be able to select wisely the correct approach in order
to minimize development costs. At this time we have centeredour attention on the class of
methods that go by the name of Proper Orthogonal Decomposition (POD). We start from the
premise that it is possible to run a few full simulations within the domain of interest. POD
uses snapshots from these simulations to form an orthogonalbasis for the solution space.
This can be thought of as a problem-dependent modal decomposition, as opposite to the use
of artificial basis functions (Fourier expansions, wavelets). By using truncated Singular Value
Decompositions it is possible to reduce even further the size of this basis without sacrificing
accuracy and also to prevent the introduction of high frequency noise. The dynamic behav-
ior of a new problem is calculated by solving projected collocation equations for the time
dependent coefficients of a linear combination of the natural basis functions.

A different class of methods, tailored to problems where even a few high fidelity sim-
ulations are not an option, is based on Krylov subspace machinery for large-scale matrix
computations [5]. These methods generate reduced-order models that are in acertain sense
optimal, directly from the large-scale data matrices describing the given linear system. In-
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terfacing these techniques with high-fidelity codes is lesstrivial, and would require major
modifications. Therefore, we will focus first on POD-type methods. In a later stage we will
explore hybrid approaches that combine the easy of use of PODmethods with the powerful
approximation properties of Krylov subspace-based order reduction.

We show numerical results in one and two dimensions displaying compression rates from
701 to 34,222 and with overall acuracy between 1% and 10%.

2. Model Order Reduction. The purpose of Model Order Reduction (MOR) is to re-
place a large dynamical system by a smaller one that still captures the dynamics of interest
with sufficient accuracy. For wave propagation, when is possible to perform some high-
fidelity calculations using existing finite difference or finite element codes, the approach that
we will discuss here is called Proper Orthogonal Decomposition (POD), the Karhunen-Loeve
Transform, Principal Components Analysis or, in more modern terms, the Singular Value
Decomposition. This technique will allow us to analyze a complex spatio-temporal dynamic
behavior and extract from it a (small) set of dominant components (data driven modes), sep-
arating them from noise and inessential underlying dynamical behavior, while still giving a
sufficiently accurate description of the dynamics of interest.

It is similar to a mode analysis using Fourier, wavelets or other artificial bases, but in
the approach under discussion we will use snapshots extracted from a number of high-fidelity
simulations that have appropriate inputs, in order to extract the most important problem spe-
cific modes. The ideal application is one in which we have a parametrized model that needs
to be calculated many times, such as in optimization, inversion, parametric studies, multiple
inputs or source wavelets.

Another important application occurs in imaging using fullwave solvers and reflection
data. This requires forward simulation from the sources andintegration backward in time
from the receivers. Snapshots of these two calculations need to be correlated to form an
image in space of the materials sensed by the imaging process. That requires generating,
keeping and accessing a large number of very large 3D snapshots. This is done currently
in massively parallel super-computers and requires considerable network traffic that slows
down the process. An intriguing possibility is to perform the model order reduction described
below, employing a smaller number of snapshots and using thereduced system to generate
the finer mesh of snapshots on the fly. This application would require only one simulation
per source and if the snapshots can be taken reasonably far apart, POD would considerably
reduce network traffic and access to secondary storage (the two weak components of large
distributed systems, which improve considerably slower than what Moore’s law postulates).

The procedure consists of the following steps:

• A pre-processing step in which a few large scale high-fidelity calculations are per-
formed. In all the examples below we have used just one simulation to extract snap-
shots.

• An SVD of the matrix whose columns are spatial snapshots extracted from those
simulations is calculated and truncated at the required error level.

• The space-time approximate solution is written as a linear combination of thek
selected modes (left singular vectors) with (unknown)time dependentcoefficients.

• This Ansatz is replaced in the original equations in a Ritz-Galerkin collocation ap-
proach and due to the orthogonality of the modes, a reduced system of ODE’s will
result. Solving for the coefficients of the linear combination for a problem with new
inputs, a very economical procedure results - compared to the original high-fidelity
calculation.
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3. Model Order Reduction by Proper Orthogonal Decomposition. Let us consider a
first-order hyperbolic system already discretized in space,

w′ = Aw + Bu(t),(3.1)

v = Cw,

wherew(t), B ∈ RM andA, C are appropriate matrices and ’ represents time differentia-
tion. Matrix A is sparse in the finite element or finite differences case, butfull if an spectral
method is used. The vectoru contains the inputs (forcing function, time dependent boundary
conditions), while the vectorv contains the desired outputs (for instance, seismograms ata
few locations). The vector B distributes the time dependentforcing function over the desired
spots in the spatial mesh. For the state vectorw, M is the number of degrees of freedom in
space, generally very large.

We assume that we either can observe (measure) the system forvarious inputs at different
times or that we can numerically simulate it. LetΦ = {φi} i = 1, ..., l (l << M ), be the
M × l matrix whose columns are these spatial snapshots, and letΦ = UΣV T be its Singular
Value Decomposition, whereU, V are orthogonal matrices andΣ contains the singular values
σi in its diagonal, sorted in descending order of magnitude. Since the vectors inU, V have
norml2 equal to 1, the Frobenius norm is given by the sum of squares ofthe singular values,

E2 =

l
∑

i=1

σ2
i .

If we truncate the SVD at themth term, with m ≤ l << M then the error (or left-over
energy) is

δ2
m =

l
∑

i=m+1

σ2
i .

Thus if we want to preserve a certain fraction of the total information, say0 < p ≤ 1, then
m must be chosen so that

δ2
m

∼= (1 − p2)E2.

Let the truncated set of left singular vectors ofΦ be calledUm. We now seek solutions
of system (3.1) (with the same spatial discretization), of the form

w(x, t) = Um a(t),(3.2)

wherea(t) is a vector of time dependent coefficients of dimensionm to be determined. The
coefficientsa(t) for a new input are determined via Galerkin collocation. We replace in
system (3.1) the Anzatz (3.2), obtaining

Um da/dt = AUm a(t) + Bu(t),

v = CUm a(t).

Multiplying by UT
m the differential equation and since the columns ofUm are orthogonal, we

get

da/dt = UT
mAUm a(t) + (UT

mB) u(t),

v = (CUm) a(t),(3.3)

which is the reduced system of ODE’s of dimensionm, whose solution will produce the
time dependent coefficientsa(t). Combining these coefficients with the spatial modesUm

as in (3.2) produces the full solution for a new problem. The matrix of the reduced system
Am = UT

mAUm, is not sparse.
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Summary. The steps to follow then are:
1. Runs full simulations with the same spatial mesh (for instance, changing the source

location).
2. Extract k snapshots from each simulation, for a total ofl = k ∗ s columns inΦ.
3. Calculate the SVD ofΦ (complexity of the SVD for aM × l matrix isO(M × l2)).
4. Truncate at levelp < 1.
5. With the resultingm modes construct the matrices of the reduced system:

Am = UT
mAUm, Bm = UT

mB(x), Cm = C(x)Um.

6. To solve a new problem (say with the source at a different position, or a diferent
input source), we solve the reduced systems of ODE’s for the coefficientsaj(t), j =
1, ..., m, in the representation3.2 of the solution. Of course, we can also solve the
same problem, with the object of producing intermediary time snapshots between
the selected sparse ones.

7. To obtain the solution in the original space do:w = Ua.
8. Validation: compare reduced results with full high fidelity results (at the sensors!).

Comments. In the previous algorithms there are some undetermined quantities, namely:
the number of full simulationss, the number of snapshotsb and the levelp. A possible way
of deciding the proper number of simulations and snapshots (besides some experimentation)
would be to start withs = 1, and increment it if necessary. A good indicator that we have
enough snapshots would be when small (normalized, i.e., divided by the largest one) singular
values start showing. Using an updating algorithm for the successive SVD’s would be an
efficient way to proceed [6].

Since the real expense is in the simulation, one can takeb reasonably large to start with,
and let the SVD analysis decide if some snapshots are not contributing information to the
reduced transfer function. In this way there is noa priori guess and we would stop as soon as
there is enough information content in our data set of snapshots.

The use of a high-order method provides already a beneficial reduction in the initial
number of spatial degrees of fredom (by a factor of up to 10,000 in 3D, when compared with
a second order finite element method). For realistic problems, the original system will still be
too large and too time consuming for wholesale real-time simulation, and thus we need to be
able to speedup the calculation further by using these orderreduction techniques.

4. Example: scalar wave equation .We consider as a simple test problem to validate
these ideas, the 1D scalar wave equation in a semi-infinite homogeneous half space, writen in
first order form

v′ = ρ−1px,

p′ = Kvx,

wherev, p are the velocity and the vertical component of the stress, respectively, whileρ, K
are density and the bulk modulus respectively. The initial and boundary conditions are

v(0, x) = 0,

p(0, x) = 0,

p(t, 1) = 0,

p(t, 0) = Ricker(t),

where the forcing function is a 50 Hz Ricker wavelet with amplitude 1. We take for this
experiment,ρ = 2000 k/m3, cp = 3000 m/s, K = 1.8 × 1010P.
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Once the problem is discretized in space (on a staggered meshusing second order accu-
rate centered differences), we obtain the block structure,

[

w′

1

w′

2

]

=

[

0 A12

A21 0

] [

w1

w2

]

+ 2/ρ B R(t),(4.1)

where the vectorsw1, w2 contain the discretized values ofv and p respectively,A12, A21 are
bi-diagonal and B is a vector with all zeroes except for the first component that is equal to 1.
The 2 in the forcing term comes from the top and bottom free surface conditions. To advance
in time we use leapfrog, assuming thatw1 is available att andw2 is available att + dt/2,

w1(t + dt) = w1(t) + dt A12w2(t + dt/2),

w2(t + 3dt/2) = w2(t + dt/2) + dt A21w1(t + dt).

Equation (4.1) is the full system of ODEs that we want to reduce. Due to the special structure
it is convenient to continue the reduction in block form. Thus, letΦ1, Φ2 be the matrices of
snapshots forv, p respectively, and let

Φ1 = U1Σ1V
T
1 , Φ2 = U2Σ2V

T
2

be their singular value decompositions. Introducing the Ansatz,

w1 = U1a1(t), w2 = U2a2(t),

and replacing in the differential equation, after some additional manipulations we obtain the
reduced system,

[

a′

1

a′

2

]

=

[

0 UT
1 A12U2

UT
2 A21U1 0

] [

a1

a2

]

+ 2/ρ

[

UT
1 B1

0

]

R(t).

Observe that we can choose a different number of modes for each of the two sets of
variables.

5. Numerical results. We run the second order finite elements code FLEX for 5000
time steps, withδt = 0.00033, corresponding to a CFL condition of0.99 for the problem
above and collect 100 equally spaced time snapshots. FLEX uses leapfrog, a second or-
der explicit integrator in time and essentially symmetric differences (on an staggered mesh)
in space. For the reduced system we use as time integrator thecode SVODE of Brown,
Hirschman and Byrne [4] in its stiff option.

The first experiment simply tries to reproduce the results ofFLEX by solving the same
problem but with the reduced system. In Figure5.1 we cross-plot the results of the 2 codes
for a snapshot at the 1250th time step. The results are good toeye-ball accuracy. Observe
that the two sets of variables differ in about 7 orders of magnitude.

In the second experiment (Figure5.2) we solve the reduced system with a Ricker source
atx = 500, with a frequency of 40 Hz and amplitude equal to 2 and show thesnapshot at the
750th time step. We still cross-plot with the results for FLEX with the original source in order
to verify visually if there are changes in wave form or amplitude. Now we see wave pulses
propagating in both direction from the center for the velocity component, some extraneous
results for the vertical component of the stress and substantial high frequency noise. Observe
that the expected vertical stress amplitude is still 1, because of the way in which we apply
this forcing function.

Finally, we repeat the second experiment but taking only 66 left singular vectors (i.e.,
we drop the 34 vectors associated with the smallest singularvalues; see Figure5.3). Now, as
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FIG. 5.1. Comparison of FLEX (solid curves) and MOR (dashed curves) results. Ricker source at top (left
end), t=0.4125. Top figure: velocity; bottom figure: vertical component of the stress.

hoped, we get much cleaner results and the system has 132 variables instead of 2000, a factor
greater than 15 order reduction! (Figure5.4).

These results will not be totally surprising to anyone familiar with least squares fitting.
The bad results obtained when using too many basis functionsare just another manifestation
of the phenomenon of over-fitting; i.e., we are approximating very faithfully spurious noise
and amplifying it as we integrate along. Thus, it is doubly beneficial to filter out these highly
oscillatory modes associated with the small singular values, since we also get an additional
reduction in the size of the problem, i.e., enhanced data compression plus high frequency
noise filtering.

6. Wave equation in second order form.Some solvers keep the equations in second
order form,

wtt = v2 △ w + Bu(t),

or, after space discretization,

w′′ = Aw + Bu(t).(6.1)

We follow the same procedure, by proposing the Ansatzw(x, t) = Uma(t), and substituting
in the differential equation (6.1), obtaining

a′′(t) = UT
mAUma(t) + UT

mBu(t).

Introducing the auxiliary variables,a1(t) = a(t), a2(t) = a′(t), then we obtain the first order
form of the reduced equations for use in a conventional ODE integrator,

a′

1 = a2,

a′

2 = Ra1 + UT
mBu(t),

whereR = UT
mAUm.
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FIG. 5.2.Source for MOR (dashed curves) at x=500; Ricker wavelet, frequency = 40 Hz, amplitude = 2. FLEX
results (solid curves) are still for problem with source at x=0; they are shown only for wave shape comparison.

TABLE 7.1
Coefficients for 8th order aproximation to the second derivative

−1

560

8

315

−1

5

8

5

−205

72

8

5

−1

5

8

315

−1

560

7. Interfacing with a high order finite difference solver. We consider now a finite
difference solver using a high order spatial approximation. This is a a valuable approach
when either high accuracy or long integrations are required, but also as a way to decrease the
number of spatial degrees of freedom required, a significantproblem in 3D.

For nodes in the interior of the mesh (i.e., at least 4 nodes away from any boundary), we
shall use an 8th order approximation in the space finite difference solver. The discretization
formula for the second spatial derivatives is centered and symmetric,

[uxx]i,j,k ≃
∑

l=−4,4

alui+l,j,k/δx2,

where the coefficientsak are given in Table7.1; see [9, 8].
The approximation is used for all the coordinate directions. For instance, for the Lapla-

cian in 3D we would have

∆u(xi, yj , zk) ≃ v(xi, yj , zk)
∑

l=−4,4

ak[ui+l,j,k/δx2 + ui,j+l,k/δy2 + ui,j,k+l/δz2],

wherev is the velocity of propagation.
In order to compare the accuracy of the reconstruction we will integrate the reduced

system so as to reproduce all the time steps of the high fidelity code (which are provided and
from where we extract one everynsjump ones for the reduction phase). Thus, ifΨ is the
M × k matrix of snapshots, corresponding to k integration steps with the high fidelity code,
thenΦ (M × l) are the selected snapshots, withl = k/nsjump.
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FIG. 5.3.Singular values and cummulative Frobenius norm

FIG. 5.4.Same as in Figure5.2, but MOR uses only 66 modes, instead of 100
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TABLE 8.1
Two possible approaches

Modality Computation Storage Reconstruction
(one snapshot)

1. Pre-calculate and saveT ∗ m2 (pre-process) T ∗ m M ∗ m
2. Calculate on the fly T /2 m2 M ∗ m

The ultimate purpose of this experiment is to assess the possibility of using the reduced
system to reconstruct on the fly non-selected snapshots. Since we don’t have control on the
internal stepsize in the ODE integrator there is a strong possibility that the discrete source
wavelet will need to be evaluated at times other thanj ∗ dt and therefore we will use linear
interpolation as needed.

8. Complexity. The above algorithm can help in two respects:
• Reduced computation when solving many similar problems;
• Reduced storage.

In order to get a feeling for its potential in these two aspects we will make some storage and
flop counts to compare the direct (D) and reduced (R) approaches.

We assume that we haveM discrete state variables (spatial mesh),T total number of
time steps, and thatm snapshots are used for reduction (m << T ).

Work for D, 1 time step:O(M).
Work for R, 1 time step:O(m2), since reduced system is not sparse.
Work for reduction (pre-process): SVD ofM × m matrix: O(Mm2).
Reconstruction of 1 snapshotw(t) = Uma(t): O(Mm).
Storage forT full snapshots:T ∗ M words.
Storage for m reduced snapshots:m ∗ M words.
We show in Table8.1 the cost of computation in flops and storage in words for two

possible approaches to the calculation of a number of snapshots for forward modeling with
the reduced system to be used for wave equation imaging. The first one assumes that the
calculation for all desired snapshots is done a priori and the corresponding coefficientsa(t)
are saved and then used to reconstruct a particular snapshot. In the second approach, in
order to reconstruct a snapshot we integrate the reduced system using as initial conditions the
closest saved snapshot (for the computational cost we consider the worst possible case, when
we need to integrate essentially to the next saved snapshot (T/m time steps)). By choosing to
integrate from the closest snapshot (i.e., backwards if necessary) we can halve that count. In
both cases we assume that only the restricted set ofm snapshots is available, for an additional
storage cost ofM ∗ m words.

9. 2D numerical results. We consider a simple 2D problem to start: propagation in a
square homogeneous domain with a source term (Ricker wavelet) applied in the center. To
simplify even further we will stop the propagation before the signal reaches the boundaries,
so that we do not have to worry about boundary conditions at this stage. Specifically we have
the following uniform mesh,

nx = 261, ny = 261, dx = dy = 26.8, dt = 0.0024,

and we run for 550 time steps, extracting field snapshots every fourth step. Using a threshold
of 0.9999999 the program selects 86 modes, which corresponds to the number of degrees of
freedom of the reduced system. This is a reduction in dimensionality of 68121/86 = 791.
Once the dynamics is calculated the reconstructed approximate field is essentially identical
to the high fidelity calculation, showing no visible dispersion.
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FIG. 9.1.Reduced order calculation for 3 layers model

TABLE 9.1
Running for different number of snapshots

#snap rank nsjump Compression ratio result
275 82 2 831 OK
139 71 4 959 OK
69 63 8 1081 OK
55 50 10 1362 OK, but starts showing some oscillations

ahead of front
35 32 16 2129 It does not work

9.1. A three layer example.Next we consider a model with three horizontal constant
velocity layers, leaving everything else the same as above.The results are entirely similar,
although now, for the same level of energy we require only 82 modes, for a compression ratio
of 831. The results are shown in Figures9.1 and9.2. We also explore for this model what
happens when one uses different number of snapshots for the analysis (the original set of 550
snapshots is decimated by taking one out ofnsjump, for various values ofnsjump). The
results are shown in Table9.1.

9.2. A large scale inhomogeneous velocity problem.Now we consider a portion of
a real model with variable velocity involving a (high velocity) salt body Figure9.3. This
is a much larger problem with a complex heterogeneous velocity, involving a2001 × 2001
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FIG. 9.2.Exact calculation for 3 layer model

points mesh with an spacing of 26.8 m. The source is still applied in the center of the model.
The original solver produces 251 snapshots spaced at 0.0024sec (that requires 4.02 Gbites
of memory!). We use for the reduction one out of every two (126snapshots) and the SVD
analysis cuts this further to 117 modes.That is a reduction in the number of degrees of
freedom by a factor of 34,222.

In Figures9.4and9.5, we see the comparison of snapshots for the original and reduced
system. In this problem there is no direct comparison of amplitudes since the full fidelity
results have been corrected for geometrical spreading while the reduced ones have not. How-
ever, all the different phases show in the reduced solution at the correct spatial spots.

10. Solving as a second order system.It would be of interest to solve the problem
in its original second order form and also using the same procedure that is used in the high
fidelity code, instead of reducing to first order and using a high order external integrator. We
do that in this section and show that the results are similar,although the procedure is faster.
We use a simple second order approximation to the second derivative centered at the previous
point to obtain an explicit integrator,

ai = 2ai−1 − ai + Rai−1 + UT
mBu(t − dt).

The initial conditions area0 = a1 = 0.
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FIG. 9.3.Velocity for 2D inhomogeneous model, courtesy of BP.

FIG. 9.4.Reduced solution for timestep = 532
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FIG. 9.5.Exact solution for timestep = 532

For the 3 layers problem we see in Figure10.1a comparison between the exact and the
approximate solutions after 500 integration steps. For better comparison we have extracted a
1D section around the middle of the model.

11. Conclusions.We have described a model order reduction method based on projec-
tion into a small subspace of time snapshots of the solution of a wave propagation problem.
We have shown, in one and two dimensional problems, from simple to fairly complex media,
that the method gives reasonably accurate solutions with a very significant reduction in the
number of spatial degrees freedom. The approximations showvery low dispersion and some
visible dissipation.

For problems in which the kinematics is important, such as inlarge scale seismic imag-
ing, these approximations should be adequate, although they would require further testing.
The impact of the order reduction will be most appreciated inlarge scale three-dimensional
problems that need to be solved repeatedly with small variations in the source position or in
material properties.
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that led to this research.
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