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FAST WAVE PROPAGATION BY MODEL ORDER REDUCTION *

V. PEREYRA! AND B. KAELIN'

Abstract. Large scale wave propagation simulation is currently aeltike in reasonable turnaround times by
using distributed computing in multiple cpu clusters. Hwer if one needs to perform many such simulations, as
is the case in optimization, tomography, or seismic imagihgn the resources required are still prohibitive. Model
order reduction of large dynamical systems has been siufoligsssed in several application domains to paliate
that problem and in this paper we explore one of its manifiests, Proper Orthogonal Decomposition, for wave
propagation. We describe the method and show how it can hly @zerfaced with two different high fidelity
simulators. We exemplify its use on several problems ofgasing complexity and size.
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1. Introduction. There are many applications that require the repeatedi¢tatrsmu-
lation of acoustic, elastic or electromagnetic wave prgpiag. To name a few: structural
analysis, blast on structures, vibrations of Navy vesselsar, design of piezoelectric trans-
ducers for medical ultrasound, medical imaging and tharage uses of ultrasound, earth
seismic imaging for the oil industry and earthquake seisiggloptimization driven by sim-
ulation for material identification and optimal design. Agb, any significant improvement
in the performance of numerical simulators would be veryamant.

Model Order Reduction (MOR) refers to a collection of tecjugs to reduce the number
of degrees of freedom of the very large scale dynamical systhat result after space dis-
cretization of time-dependent partial differential eqoas. Some of these techniques have
been successfully employed in the simulation of VLSI citgutomputational fluid mechan-
ics, real-time control, heat conduction and other probl¢ms, 5, 7]. Not much has been
done for wave propagation, although it does not seem thas #ive fundamental difficulties
for its application P].

However, since none of these techniques are trivial tofiaterwith existing large scale
high fidelity codes, it is important to be able to select wishle correct approach in order
to minimize development costs. At this time we have centerathttention on the class of
methods that go by the name of Proper Orthogonal DecompongROD). We start from the
premise that it is possible to run a few full simulations witthe domain of interest. POD
uses snapshots from these simulations to form an orthodmasds for the solution space.
This can be thought of as a problem-dependent modal decatioposs opposite to the use
of artificial basis functions (Fourier expansions, wav@leBy using truncated Singular Value
Decompositions it is possible to reduce even further the sfzhis basis without sacrificing
accuracy and also to prevent the introduction of high fregyenoise. The dynamic behav-
ior of a new problem is calculated by solving projected coditton equations for the time
dependent coefficients of a linear combination of the nahasis functions.

A different class of methods, tailored to problems wherenexdew high fidelity sim-
ulations are not an option, is based on Krylov subspace maghifor large-scale matrix
computations§]. These methods generate reduced-order models that aredriaan sense
optimal, directly from the large-scale data matrices desug the given linear system. In-
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terfacing these techniques with high-fidelity codes is keiss&al, and would require major
modifications. Therefore, we will focus first on POD-type hwals. In a later stage we will
explore hybrid approaches that combine the easy of use of Ré&hods with the powerful
approximation properties of Krylov subspace-based orelduction.

We show numerical results in one and two dimensions disptpgdmpression rates from
701 to 34,222 and with overall acuracy between 1% and 10%.

2. Model Order Reduction. The purpose of Model Order Reduction (MOR) is to re-
place a large dynamical system by a smaller one that stitiucap the dynamics of interest
with sufficient accuracy. For wave propagation, when is jidsgo perform some high-
fidelity calculations using existing finite difference orifselement codes, the approach that
we will discuss here is called Proper Orthogonal Decoms(POD), the Karhunen-Loeve
Transform, Principal Components Analysis or, in more maderms, the Singular Value
Decomposition. This technique will allow us to analyze a ptar spatio-temporal dynamic
behavior and extract from it a (small) set of dominant congrts (data driven modes), sep-
arating them from noise and inessential underlying dynahiiehavior, while still giving a
sufficiently accurate description of the dynamics of ingere

It is similar to a mode analysis using Fourier, wavelets dreotartificial bases, but in
the approach under discussion we will use snapshots extt&rcim a number of high-fidelity
simulations that have appropriate inputs, in order to extitee most important problem spe-
cific modes. The ideal application is one in which we have ama&trized model that needs
to be calculated many times, such as in optimization, ingarparametric studies, multiple
inputs or source wavelets.

Another important application occurs in imaging using fu#ive solvers and reflection
data. This requires forward simulation from the sources iatejration backward in time
from the receivers. Snapshots of these two calculationd t@de correlated to form an
image in space of the materials sensed by the imaging prodédsa requires generating,
keeping and accessing a large number of very large 3D snegpshibis is done currently
in massively parallel super-computers and requires cenaiile network traffic that slows
down the process. An intriguing possibility is to perforne timodel order reduction described
below, employing a smaller number of snapshots and usingetthéced system to generate
the finer mesh of snapshots on the fly. This application woetglire only one simulation
per source and if the snapshots can be taken reasonablyadr BOD would considerably
reduce network traffic and access to secondary storagewith&eak components of large
distributed systems, which improve considerably slowantivhat Moore’s law postulates).

The procedure consists of the following steps:

e A pre-processing step in which a few large scale high-figelitlculations are per-
formed. In all the examples below we have used just one siiualto extract snap-
shots.

e An SVD of the matrix whose columns are spatial snapshotsaetad from those
simulations is calculated and truncated at the requireat &avel.

e The space-time approximate solution is written as a lin@antination of thek
selected modes (left singular vectors) with (unknotime dependertdoefficients.

e This Ansatz is replaced in the original equations in a Rigde&in collocation ap-
proach and due to the orthogonality of the modes, a reducsdrayof ODE’s will
result. Solving for the coefficients of the linear combioatfor a problem with new
inputs, a very economical procedure results - comparede@tiyinal high-fidelity
calculation.
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3. Model Order Reduction by Proper Orthogonal Decompositio. Let us consider a
first-order hyperbolic system already discretized in space

(3.2) w' = Aw + Bu(t),
v =Cuw,

wherew(t), B € RM and A, C are appropriate matrices and ’ represents time differentia
tion. Matrix A is sparse in the finite element or finite differences casefliuif an spectral
method is used. The vectarcontains the inputs (forcing function, time dependent latzup
conditions), while the vector contains the desired outputs (for instance, seismograras at
few locations). The vector B distributes the time depenfl@eing function over the desired
spots in the spatial mesh. For the state veatol/ is the number of degrees of freedom in
space, generally very large.

We assume that we either can observe (measure) the systearifars inputs at different
times or that we can numerically simulate it. 1®t= {¢,} i = 1,...,1 (I << M), be the
M x [ matrix whose columns are these spatial snapshots, adddet/ =V 7 be its Singular
Value Decomposition, wher@, V' are orthogonal matrices anticontains the singular values
o; in its diagonal, sorted in descending order of magnitudaecé&the vectors i/, V' have
normly equal to 1, the Frobenius norm is given by the sum of squartsedfingular values,

!
E? = g o2
i=1

If we truncate the SVD at thexth term, withm < | << M then the error (or left-over
energy) is

!
2 _ 2
0n, = g o;.

1=m-+1
Thus if we want to preserve a certain fraction of the totabinfation, say) < p < 1, then
m must be chosen so that
62 = (1 —p*)E>

Let the truncated set of left singular vectorsdobe calledU,,,. We now seek solutions
of system 8.1) (with the same spatial discretization), of the form
(3.2) w(z,t) = Up a(t),
wherea(t) is a vector of time dependent coefficients of dimensioto be determined. The
coefficientsa(t) for a new input are determined via Galerkin collocation. \glace in
system 8.1) the Anzatz 8.2), obtaining

Uy, da/dt = AU, a(t) + Bu(t),
v =CUp, a(t).
Multiplying by U the differential equation and since the columng/gf are orthogonal, we
get
da/dt = UL AU,, a(t) + (U~ B) u(t),

(3.3) v=(CUp) a(t),
which is the reduced system of ODE’s of dimensian whose solution will produce the
time dependent coefficientgt). Combining these coefficients with the spatial modgs

as in 3.2 produces the full solution for a new problem. The matrix oé reduced system
A,, = UL AU,,, is not sparse.
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Summary. The steps to follow then are:

. Runs full simulations with the same spatial mesh (for instanbarging the source
location).

. Extract k snapshots from each simulation, for a totdl-efk * s columns in®.

. Calculate the SVD ob (complexity of the SVD for a/ x [ matrix isO(M x [2)).

. Truncate at leveh < 1.

. With the resultingn modes construct the matrices of the reduced system:

=

g~ wWN

A, =ULAU,,, B,, =ULB(z), Cp = C(x)U,.

6. To solve a new problem (say with the source at a differesttiom, or a diferent
input source), we solve the reduced systems of ODE’s fordlefficientsa; (t), j =
1,...,m, in the representatioB.2 of the solution. Of course, we can also solve the
same problem, with the object of producing intermediaryetismapshots between
the selected sparse ones.

7. To obtain the solution in the original space do= Ua.

8. Validation: compare reduced results with full high fitkehesults (at the sensors!).

Comments. In the previous algorithms there are some undeterminedttjiggnnamely:
the number of full simulations, the number of snapshoisand the levep. A possible way
of deciding the proper number of simulations and snapst&sides some experimentation)
would be to start withs = 1, and increment it if necessary. A good indicator that we have
enough snapshots would be when small (normalized, i.adetiby the largest one) singular
values start showing. Using an updating algorithm for thecessive SVD’s would be an
efficient way to proceed].

Since the real expense is in the simulation, one caniakasonably large to start with,
and let the SVD analysis decide if some snapshots are notilmatiig information to the
reduced transfer function. In this way there isapriori guess and we would stop as soon as
there is enough information content in our data set of snatgsh

The use of a high-order method provides already a benefieglation in the initial
number of spatial degrees of fredom (by a factor of up to 10j6@BD, when compared with
a second order finite element method). For realistic probleéhe original system will still be
too large and too time consuming for wholesale real-timeusation, and thus we need to be
able to speedup the calculation further by using these oedkrction techniques.

4. Example: scalar wave equation .We consider as a simple test problem to validate
these ideas, the 1D scalar wave equation in a semi-infinitelgeneous half space, writen in
first order form

v =pp,,
p/ = Kvwa

wherew, p are the velocity and the vertical component of the strespaetively, whilep, K
are density and the bulk modulus respectively. The initial boundary conditions are

v(0,z) =0,
p(O,CL‘) =0,
p(t, 1) =0,
p(t,0) = Ricker(t),

where the forcing function is a 50 Hz Ricker wavelet with aitygle 1. We take for this
experimentp = 2000 k/m?, ¢, = 3000 m/s, K = 1.8 x 10'°P.
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Once the problem is discretized in space (on a staggered ns@siy second order accu-
rate centered differences), we obtain the block structure,

w'l o 0 A12 w1
4.1) [ wl } = [ Ay 0 ws +2/p B R(t),
where the vectors , wo contain the discretized valuesofind p respectivelyA;5, As; are
bi-diagonal and B is a vector with all zeroes except for th& iomponent that is equal to 1.
The 2 in the forcing term comes from the top and bottom freaserconditions. To advance
in time we use leapfrog, assuming that is available at andws is available at + dt/2,

w1 (t + dt) = w1 (t) + dt Algwg(t + dt/?),

Equation ¢.1) is the full system of ODEs that we want to reduce. Due to tleeisp structure
it is convenient to continue the reduction in block form. hlet®,, ®, be the matrices of
shapshots fouv, p respectively, and let

Oy = U1 S VT, @y = UpSo V'
be their singular value decompositions. Introducing theam,
wy, = U1a1 (t)7 Wo = Ugag(t)7

and replacing in the differential equation, after some &oldal manipulations we obtain the
reduced system,

a’l o 0 U1TA12U2 aq UlTBl
= Lm0 L] o[ 0 e

Observe that we can choose a different number of modes fdr eathe two sets of
variables.

5. Numerical results. We run the second order finite elements code FLEX for 5000
time steps, withvt = 0.00033, corresponding to a CFL condition 699 for the problem
above and collect 100 equally spaced time snapshots. FLEX lespfrog, a second or-
der explicit integrator in time and essentially symmetiiifedences (on an staggered mesh)
in space. For the reduced system we use as time integratamothee SVODE of Brown,
Hirschman and Byrnéf] in its stiff option.

The first experiment simply tries to reproduce the resultSIdEX by solving the same
problem but with the reduced system. In Fig&ré we cross-plot the results of the 2 codes
for a snapshot at the 1250th time step. The results are goegetdall accuracy. Observe
that the two sets of variables differ in about 7 orders of nitagie.

In the second experiment (Figuse?) we solve the reduced system with a Ricker source
atx = 500, with a frequency of 40 Hz and amplitude equal to 2 and shovstia@shot at the
750th time step. We still cross-plot with the results for BL&ith the original source in order
to verify visually if there are changes in wave form or ampdie. Now we see wave pulses
propagating in both direction from the center for the velpciomponent, some extraneous
results for the vertical component of the stress and subiatdigh frequency noise. Observe
that the expected vertical stress amplitude is still 1, beeaof the way in which we apply
this forcing function.

Finally, we repeat the second experiment but taking onlye6dingular vectors (i.e.,
we drop the 34 vectors associated with the smallest singalaes; see Figurg.3). Now, as
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FiG. 5.1. Comparison of FLEX (solid curves) and MOR (dashed curves)lt® Ricker source at top (left
end), t=0.4125. Top figure: velocity; bottom figure: verticamponent of the stress.

hoped, we get much cleaner results and the system has 1aBlearinstead of 2000, a factor
greater than 15 order reduction! (Figurel).

These results will not be totally surprising to anyone faanilvith least squares fitting.
The bad results obtained when using too many basis funcai@sist another manifestation
of the phenomenon of over-fitting; i.e., we are approxinmtiary faithfully spurious noise
and amplifying it as we integrate along. Thus, it is doublpéificial to filter out these highly
oscillatory modes associated with the small singular \@lsace we also get an additional
reduction in the size of the problem, i.e., enhanced datapecession plus high frequency
noise filtering.

6. Wave equation in second order form.Some solvers keep the equations in second
order form,

wye = v2 Aw + Bu(t),
or, after space discretization,
(6.1) w” = Aw + Bu(t).

We follow the same procedure, by proposing the Ansatz, t) = U,,a(t), and substituting
in the differential equationg 1), obtaining

a’(t) = UL AUa(t) + UL Bul(t).

Introducing the auxiliary variables; (t) = a(t), a2(t) = o’(¢), then we obtain the first order
form of the reduced equations for use in a conventional ODégirator,

!/
a; = az,

al, = Ray + UL Bu(t),
whereR = UL AU,,.
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FI1G. 5.2.Source for MOR (dashed curves) at x=500; Ricker wavelefjueacy = 40 Hz, amplitude = 2. FLEX
results (solid curves) are still for problem with source afxthey are shown only for wave shape comparison.

TABLE 7.1
Coefficients for 8th order aproximation to the second deivea

5 .y s R S s
5 72 5 5 315

7. Interfacing with a high order finite difference solver. We consider now a finite
difference solver using a high order spatial approximatidtnis is a a valuable approach
when either high accuracy or long integrations are requibatialso as a way to decrease the
number of spatial degrees of freedom required, a signifigestilem in 3D.

For nodes in the interior of the mesh (i.e., at least 4 nodeydwm any boundary), we
shall use an 8th order approximation in the space finite idiffee solver. The discretization
formula for the second spatial derivatives is centered gnthsetric,

(ealijn = Y @iz jk/02°,
|=—4,4

where the coefficients; are given in Tabl€'.1; see p, 8].
The approximation is used for all the coordinate directidfar instance, for the Lapla-
cian in 3D we would have

Au(wi, vz, 20) = v(@isys,26) > aklwigngn/00® + wi gk /0y* + wij k)07,
I=—4,4

whereuw is the velocity of propagation.

In order to compare the accuracy of the reconstruction we imtiégrate the reduced
system so as to reproduce all the time steps of the high fidmide (which are provided and
from where we extract one evernyjump ones for the reduction phase). Thusyifis the
M x k matrix of snapshots, corresponding to k integration stejps thie high fidelity code,
then® (M x [) are the selected snapshots, with k/nsjump.
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Singular Values and Cummulative Frobenius Norm for 100 Modes
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FiG. 5.3.Singular values and cummulative Frobenius norm
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FIG. 5.4.Same as in Figuré.2, but MOR uses only 66 modes, instead of 100
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TABLE 8.1
Two possible approaches

Modality Computation Storage| Reconstruction
‘ (one snapshot)

1. Pre-calculate and saJeT * m? (pre-process) T *m M xm

2. Calculate on the fly \1 TI2 1 m? ‘ M xm

The ultimate purpose of this experiment is to assess theljlitysof using the reduced
system to reconstruct on the fly non-selected snapshotse 8ia don’t have control on the
internal stepsize in the ODE integrator there is a strongipdgy that the discrete source
wavelet will need to be evaluated at times other thanit and therefore we will use linear
interpolation as needed.

8. Complexity. The above algorithm can help in two respects:
e Reduced computation when solving many similar problems;
e Reduced storage.
In order to get a feeling for its potential in these two aspea will make some storage and
flop counts to compare the direct (D) and reduced (R) appesach

We assume that we havd discrete state variables (spatial mesh)total number of
time steps, and that snapshots are used for reduction &< T').

Work for D, 1 time stepO(M).

Work for R, 1 time stepO(m?), since reduced system is not sparse.

Work for reduction (pre-process): SVD af x m matrix: O(Mm?).

Reconstruction of 1 snapshett) = U,,a(t): O(Mm).

Storage forT’ full snapshotsT” = M words.

Storage for m reduced snapshais: M words.

We show in TableB.1 the cost of computation in flops and storage in words for two
possible approaches to the calculation of a number of siépsbr forward modeling with
the reduced system to be used for wave equation imaging. Tdteofie assumes that the
calculation for all desired snapshots is done a priori ardcibrresponding coefficientst)
are saved and then used to reconstruct a particular snapshahe second approach, in
order to reconstruct a snapshot we integrate the reducézhsysing as initial conditions the
closest saved snapshot (for the computational cost weaertsie worst possible case, when
we need to integrate essentially to the next saved snapBjot {ime steps)). By choosing to
integrate from the closest snapshot (i.e., backwards iéssary) we can halve that count. In
both cases we assume that only the restricted set@ifapshots is available, for an additional
storage cost oM « m words.

9. 2D numerical results. We consider a simple 2D problem to start: propagation in a
square homogeneous domain with a source term (Ricker wiegdplied in the center. To
simplify even further we will stop the propagation before gignal reaches the boundaries,
so that we do not have to worry about boundary conditionsiastiage. Specifically we have
the following uniform mesh,

nx = 261, ny = 261, dr = dy = 26.8, dt = 0.0024,

and we run for 550 time steps, extracting field snapshots/duerth step. Using a threshold
of 0.9999999 the program selects 86 modes, which corresptorttie number of degrees of
freedom of the reduced system. This is a reduction in dinoeradity of 68121/86 = 791.
Once the dynamics is calculated the reconstructed appaigifield is essentially identical
to the high fidelity calculation, showing no visible dispers
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] xtpen =
‘Next”l?rev”guitHRestart|EiEE:z>;>§|Rigid||Forwards || 500 |

SourceWave.3_snapout . H@

FIG. 9.1.Reduced order calculation for 3 layers model

TABLE 9.1
Running for different number of snapshots

#snap| rank | nsjump | Compression ratid result
275 | 82 2 831 OK
139 | 71 4 959 OK
69 63 8 1081 OK
55 50 10 1362 OK, but starts showing some oscillations
ahead of front
35 32 16 2129 It does not work

9.1. Athree layer example.Next we consider a model with three horizontal constant
velocity layers, leaving everything else the same as abdhe. results are entirely similar,
although now, for the same level of energy we require only ®es, for a compression ratio
of 831. The results are shown in Figureéd and9.2 We also explore for this model what
happens when one uses different number of snapshots fonéhgses (the original set of 550

snapshots is decimated by taking one outefump, for various values ofisjump). The
results are shown in Tabie 1

9.2. A large scale inhomogeneous velocity problemNow we consider a portion of
a real model with variable velocity involving a (high veltgi salt body Figured.3. This
is a much larger problem with a complex heterogeneous wglanoivolving a2001 x 2001
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=] xtpen ] =1
|Next||Prev||Quit||Restart| i‘z‘%;o;s”RiqidHForwards || 500 |

3

in-line {x)

—5000-4000-3000—-2000-1000 O 1000

irceWave. 3 H@

F1G. 9.2.Exact calculation for 3 layer model

points mesh with an spacing of 26.8 m. The source is stilliagph the center of the model.
The original solver produces 251 snapshots spaced at 0€¥i2@&hat requires 4.02 Gbites
of memory!). We use for the reduction one out of every two ($8épshots) and the SVD
analysis cuts this further to 117 modeshat is a reduction in the number of degrees of
freedom by a factor of 34,222.

In Figures9.4and9.5, we see the comparison of snapshots for the original ancceztiu
system. In this problem there is no direct comparison of @omes since the full fidelity
results have been corrected for geometrical spreadinguiind reduced ones have not. How-
ever, all the different phases show in the reduced solutidimeacorrect spatial spots.

10. Solving as a second order systemt would be of interest to solve the problem
in its original second order form and also using the samequfore that is used in the high
fidelity code, instead of reducing to first order and usingghlarder external integrator. We
do that in this section and show that the results are singldrpugh the procedure is faster.
We use a simple second order approximation to the seconehtied centered at the previous
point to obtain an explicit integrator,

a; =2a;_1 —a; + Ra;_1 + U;;CBu(t — dt).

The initial conditions areg = a; = 0.
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F1G. 9.3. Velocity for 2D inhomogeneous model, courtesy of BP.
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gtdin

FI1G. 9.4.Reduced solution for timestep = 532
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- xtpen EEE

|Hext ||Prev | | Quit ||Restart ||Run

shon §|Riqid

in—line (x}
800 10000 12000 14000 18000 18000

g2tdin

F1G. 9.5.Exact solution for timestep = 532

For the 3 layers problem we see in Figur@.1a comparison between the exact and the
approximate solutions after 500 integration steps. Fdebebmparison we have extracted a
1D section around the middle of the model.

11. Conclusions.We have described a model order reduction method based @tpro
tion into a small subspace of time snapshots of the soluti@wveave propagation problem.
We have shown, in one and two dimensional problems, fromlgitagfairly complex media,
that the method gives reasonably accurate solutions wittrasignificant reduction in the
number of spatial degrees freedom. The approximations steoydow dispersion and some
visible dissipation.

For problems in which the kinematics is important, such daige scale seismic imag-
ing, these approximations should be adequate, althoughwibald require further testing.
The impact of the order reduction will be most appreciatethige scale three-dimensional
problems that need to be solved repeatedly with small wanatin the source position or in
material properties.
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