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MINIMAL DEGREE RATIONAL UNIMODULAR INTERPOLATION
ON THE UNIT CIRCLE*

CHRISTER GLADER'

Abstract. We consider an interpolation problem with n distinct nodes z1,.. ., 2, and n interpolation values
W1, ..., Wn, all on the complex unit circle, and seek interpolants b(z) of minimal degree in the class consisting of
ratios of finite Blaschke products. The focus is on the so-called damaged cases where the interpolant of minimal
degree is non-uniquely determined. This paper is a continuation of the work in Glader [Comput. Methods Funct.
Theory, 6 (2006), pp. 481-492], which treated the uniquely solvable fragile and elastic cases.
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1. Introduction. The rational functions of degree n which are unimodular on the com-
plex unit circle 9D are given by all fractions of the form

50+,312+...+,3n2"
Bn+Bn1z2+...4 By 2"

The finite Blaschke products of degree n form a subset of the unimodular rational functions
of degree n. An irreducible rational function of form (1.1) is a finite Blaschke product when
all its zeros are in the open unit disk . Note that any function of form (1.1) may be written as
a fraction of two finite Blaschke products. This paper investigates the following interpolation
problem:

(11) ) /805"'NBTLEC'

Problem 1. Given distinct points z1, .. ., z, on 0D and arbitrary points w1, . .., Wy, on
9D, find a rational function b(z) of the form (1.1) and of as low degree as possible satisfying
the interpolation conditions

b(zj):wj, j:l,...,n.

The boundary interpolation problems considered in Problem I can be classified into three
categories: fragile, elastic and damaged problems. The fragile and elastic problems are
uniquely solvable and a constructive characterization of the solution to Problem I in these
classes was given by Glader in [2]. In the paper at hand we will treat the remaining non-
uniquely solvable damaged cases, giving in Section 3 a constructive method, based on solving
a coneigenvalue problem, to determine a parametrization of all solutions to Problem I.

The above classification was introduced by Semmler and Wegert [8, 9] in boundary in-
terpolation with finite Blaschke products. In [9] the interpolation problems are divided into
three classes depending on the minimal degree (winding number) m of an interpolant:

1) Fragile problems where 0 < m < (n — 1)/2, (unique solution),
2) Elastic problems where m = (n — 1)/2, (n is odd, unique solution),
3) Damaged problems where (n — 1)/2 < m < n — 1, (non-unique solution).

This division into three classes is also relevant for the bigger class (1.1) of unimodular
interpolants with the uniquely solvable elastic and fragile problems characterized by Theo-
rems 1.1 and 1.2 below and the damaged cases with minimal degree m > (n — 1)/2 having
non-unique solutions, a fact that is proved in Theorem 2.1 and Corollary 2.5.
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It was noted by Glader [2] that the minimal degree in unimodular interpolation gener-
ically satisfies m = |n/2], and in the case of even n = 2m we show in Theorem 2.1 in
Section 2 that if Problem I is damaged with minimal degree m' = m = n/2, then all solu-
tions b(z) are given by a Nevanlinna parametrization

P(2)e? +Q(z)

(1.2) b(z) = RGP +5(2)

with polynomials P, @, R, S that can be computed by a recursive procedure. This does not
hold for other damaged problems, which is proved in Corollary 2.5. Also note, for instance
by choosing wy = ... = wp—1 # Wy, that the minimal degree of a damaged Problem I can
bem' =n—1.

It is clear by in [2, Theorem 2.1] that if Problem I is fragile or elastic in the subclass
of finite Blaschke products, then this will also be the case in the class of unimodular inter-
polants, but a damaged Problem I for Blaschke products may not be damaged for unimodular
interpolants, for example choosing

27i/3 R | 27 s
/,zj—wj,wj—wj, ]_132735

w=e
gives a damaged Problem I for Blaschke products and an elastic unimodular problem with
the solution b(z) = 1/z. Also if we have a damaged unimodular Problem I, then the mini-
mal degree may be strictly less than the minimal degree of the corresponding Problem I for
Blaschke products, which is demonstrated in the concluding example of Section 3.

The study of interpolation problems on 8D with unimodular rational functions has a be-
ginning in the 1965 paper by Cantor and Phelps [1], where they nonconstructively showed
that there is always a finite Blaschke product interpolating the data. Younis [10] showed
in 1980 how to construct an interpolating Blaschke product which is of degree at most
n? — n. In 1987, Jones and Ruscheweyh [7] proved nonconstructively that there always

exists an interpolating Blaschke product of degree at most n — 1.

In the last few years there has been a renewed interest in both topological aspects of
boundary interpolation (see Semmler and Wegert [8, 9]) and construction of (minimal degree)
interpolants; see Glader [2], Glader and Lindstrém [3], Gorkin and Rhodes [4], Hjelle [5] and
Semmler and Wegert [8, 9].

Our aim is to complete the investigation started in [2] by considering the class of damaged
interpolation problems. In order to conveniently do this we will restate some results from [2]
that will be needed in Sections 2 and 3.

Suppose that we have n distinct points 21, ..., 2, and n arbitrary points wy, . ..,w, on
the unit circle. For evenn define m = n/2 and for odd n letm = (n—1)/2. We may without
restriction assume that z; = w; = 1 (by choosing suitable rotations of the interpolation data).
Exclude the trivial case where w; = ws = ... = w, = 1. Form' = 1,2,...,m we define
the (2m' + 2) x (2m' + 2) square matrix A,,-, where [ := 2m' + 1, by

I

1 2z ... 2" —w —wiz1 ... —wlz{"'

(1.3) A = ) )
1z ... 2 —w —wz ... —w”
1 1 ... 1 0 0 ... 0

The following result in [2] gives a constructive description of the elastic cases.
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THEOREM 1.1. Suppose that we have n = 2m + 1 distinct points z1,...,2, and n
arbitrary points w1, . .., Wy on the unit circle, such that z1 = w1 = 1. Problem I has a
solution b(2) of irreducible degree m if and only if det Ay, # 0 and the unique solution
T =(q0,...,Qn,0m,...,00)" to the square linear system
(1.4) Apz=(0,...,0,1)7

satisfies p(z;) #0, j =1,...,n, where p(z) := ag + a1z + ... + apz™.
If there exists an irreducible solution b(z) of degree m to Problem I, then it is given by
agt+arz+...+aq,z™
m + A1 2+ ... +0p 2™’

(1.5) b(z) =

where the coefficients are obtained from the solution x to (1.4).

In the fragile cases we have to append an additional condition to the ones in Theorem 1.1.
The next theorem is also found in [2].

THEOREM 1.2. Suppose that we have n = 2m + 1 or n = 2m distinct points z1, . . ., Zn
and n arbitrary points wi, ..., Wy on the unit circle, such that 21 = wy = 1. Problem I
has a solution b(z) of irreducible degree m' < m if and only if det A,y # 0 and the unique
solution x = (Qg, . .., 0ms, Q5 ..., 00) L to the square linear system

(1.6) Az =(0,...,0,1)T

satisfies p(z;) # 0, j = 1,...,2m' + 1, where p(z) == a9 + 12+ ... + am 2™, and
additionally the function b(z) formed by the components in x and defined by (1.7) satisfies
b(z,) = wj, J= 2m'+2,...,n.

If there exists an irreducible solution b(z) to Problem I of degree m' < m in the case
n = 2m+1orn = 2m, then

i
agtarz+ ...+ oy 2™
A + 012+ ...+ 0 2™

(1.7) b(z) =

where the coefficients are obtained from the solution x to (1.6).

2. Parametrization through recursion. The following theorem and corollary charac-
terizes the damaged problems having solutions representable by a Nevanlinna parametrization
and the proof of Theorem 2.1 gives a recursive procedure to construct the parametrization in
(1.2). A small example with n = 5 at the end of the section demonstrates the sparsity of both
fragile problems and damaged problems with minmal degree m' > [n/2].

THEOREM 2.1. Suppose that we have n. = 2m distinct points 21, . . . , zn and n arbitrary
points wi, . . ., Wy, on the unit circle and that Problem I is damaged with minimal degree
m' = m = n/2. Then we can find polynomials P,Q, R, S of degree at most m' such that
all solutions b(z) to Problem I are given by the Nevanlinna parametrization (1.2) for such
0 € [0,27) that do not produce any poles on the unit circle. There are at most n such
exceptional values of 6 and zero-pole cancellation in (1.2) on 0D occurs precisely in the set
I, ={z1,...,2n} when 6 runs through [0, 2r).

Proof. 1. Consider first the distinct interpolation nodes 27, 22 and the distinct interpola-
tion values wy, wa.

1.1. Assume that wi2s # w221, (i.e., the w;’s are not a simple rotation of the z;’s).
Using the ansatz

b(z) = ap + ibo + (a1 +1ib1)z

- ) '7b' € Ra
a; — ’lb1 + (a() - ibo)z 43205
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and the interpolation conditions b(z;) = w;, j = 1,2, we can deduce that all rational uni-
modular interpolants of exact degree 1 are obtained by the parametrization

Pi(2)e” + Q1(2)
R, (z) e + S (z)

@.1) Bi(2) =

for those parameter values 6 € [0,27) that give a pole in (2.1) that is not on the unit circle,
and where

Py (2) = wa(waz1 — wi122) + wa(wy — wa)z,
(22) Q1(2) = wiwz (22 — 21)z,
Ri(2) = wa(z1 — 22),

S1(2) = (wg —w1)2z120 + (w122 — Wa21)Z .

There are two exceptional values of 6, namely

i0

e’ = wiwWwars (7é Zl) = By (Z) =w; and e'f

=21 = Bl(Z)EUJ2,

and the corresponding zeros and poles that are cancelled on the unit circle are given by 2 = 24
and z = 2z, respectively.

If wiz1 # wazs (Or w1z = wa2s), then the set of all zeros of By(z) in (2.1) when 6
runs through all but the two exceptional values in [0, 27) form a circle (or a line) that goes
through the points 2; and 2», but does not include them, and the circle (or the line) does not
pass through z = 0.

1.2. Assume now that w;za = ws21, so the interpolation values are a rotation of the
nodes. In this case, with the polynomials in (2.2), the parametrization in (2.1) breaks down to
one solution, By (2) = w1Z; 2, so we need to find new polynomials for the parametrization.

1.2.1. Assume further that zo # —z;. Then with the same ansatz as in part 1.1 of the
proof we obtain the polynomials

Pi(2) =wiz122 — (w1 +w2)212,
) = —w w2y ,

(2.3) Q1(z
) = —21z,
S1(z) = —(w1 + wa)z1 +wy 2,

in the parametrization (2.1) of all solutions. The exceptional values of § are given by

i

e’ = —w1Zy => Bl(z) =w; and e'?

= —wsZ; = Bl(z) = wa,

with corresponding zero-pole cancellation in z = z and 2 = 21, respectively.

1.2.2. Assume now that 2o = —z;. With the polynomials in (2.3) the parametrization
breaks down to one solution, B; (z) = w21 /2. To obtain all solutions we use the polynomi-
als

(2.4) Pi(z) =wi(z —iz1), Qi1(2) =—-wi(iz1 +2),
Ri(z) =21 — iz, Si1(z) = —z — iz,

with the two exceptional values of € given by

ew =—i = Bl(z) =w; and ew =1 = Bl(Z) = ’IUQ(: —'11)1),
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with corresponding zero-pole cancellation in z = 29 and z = 21, respectively.

In part 1.2 of the proof, if zo # —z; (or 22 = —2z1), then the set of all zeros of By (z)
in (2.1) when 6 runs through all but the two exceptional values in [0, 27) form a circle (or a
line) that goes through the points z; and 23, but does not include them, and that also passes
through and includes 2 = 0.

In part 1 of the proof we note that zero-pole cancellation in (1.2) occurs precisely in the
set Iy = {z1, 22} when € runs through [0, 27).

2. Suppose now that we have n = 2m distinct nodes 21, ..., 2, on the unit circle and
n interpolation values wj, ..., wy,, not all identical, and that Problem I is damaged with
minimal degree m' = m. We may then assume that the data is arranged so that wo # ws.
Our goal is to derive a recursive procedure to obtain a parametrization of form (1.2), the case
n = 2 (m = 1) being solved above in part 1 of the proof.

Let 1 < k < m' = n/2 and assume that a parametrization of all solutions of exact
degree k to the interpolation problem with data {z1, ..., 225 } and {wy, ..., way } is given by

Pi(2) e + Qk(2)
Rk(z) e 4 Sk(z) ’

2.5) Bi(z) =

with polynomials Py, Qf, Ry, Sk, of degree at most k, and 8 € [0, 27) with the exception of at
most 2k values on 6 that each generate in (2.5) at least one and at most & poles, counted with
multiplicity, on the unit circle. Let I, be the set of poles on 81D generated by these special
values of  and assume that I, = {21,..., 22k}

If we fix z := 29541 & I in (2.5), then By(z2x+1) can be interpreted as a Mobius

transformation mapping the unit circle injectively onto itself when € runs through [0, 27).
This holds, because if we choose three different values of 8 that are not exceptional values,
say 85, j =1,2,3, and let sz be the three corresponding unimodular interpolants given by
(2.5), then sz (z2k+1), J = 1,2,3, are three distinct numbers on the unit circle. Suppose
that this does not hold and that Bgl(zzk_,_l) = Bzz (22k+1). Then le (2) — Bgz (2) is a
rational function of degree at most 2k with zeros in the distinct points 21, . . . 3 Z2k+1, SO it
is actually identically zero, which is a contradiction. Therefore we can find a 8; € [0, 27)
so that By (z2r41) = waky1. The same procedure fixing z := zap1o & I in (2.5) gives a
6y € [0,27) so that By, (22542) = wapo. Denoting @ := ei% and 1y = €2 we find that

Sk(22k+5) Waktj — Qr(22k+5)

(2.6) ;= :
7 Pu(zakts) — Ri(22h45) woky

j=1,2.

)

Suppose that w; = w2 and 0~1 is not a special value of 6, that is, § = 51 in (2.5) does not
generate poles on OI. This could occur only if & < m' — 1, because otherwise Bj(z) in (2.5)
with @ = 6; would be an interpolant of degree k = m' — 1 to all of the data, which gives
a contradiction. Then it is possible to find an index i € {2k + 3,...,n} so that when we
interchange the data points zop42 With z; and wag42 with w;, respectively, we have Wy # W
in (2.6). If this were not the case, then Bg(z) in (2.5) with § = 51 would be a uniquely
determined fragile interpolant (of degree k < m/) to the data {z1,...,2,}, {w1,...,wn},
which gives a contradiction.

Suppose that w; = wy and f,isa special value of 8 giving k1 poles, 1 < k; < k, on the
unit circle for By(z) in (2.5). Considering the case with poles of multiplicity one, (the case
with poles of higher multiplicity is treated in an analogous manner), we may, by renumbering
if necessary, assume that z1, .. ., 2x, are the poles in (2.5). Suppose further, if £ < m/' — 1,
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that for every index i € {2k+3,...,n} the interchanging of the data points 22442 with z; and
Wok+42 with w;, respectively, results in @; = Ws in (2.6). Then the corresponding function
le (z) in (2.5) is of degree k — k1, (due to zero-pole cancellationin z = z;, j = 1,...,ky),
and le (2j) =wj, j =ki1+1,...,n.Let B(z) be one of the damaged interpolants of exact
degree m' = n/2. Then F(z) := le (2) — B(z) is a rational function of degree at most
(k—k)+m'<(n/2—-1-Fki)+n/2=n—Fk —1. Since F(z;) =0, j =k +1,...,n,
we have F'(z) = 0, but this gives a contradiction.

Thus we conclude that when Problem I is damaged with m' = n/2 it is always possible
to rearrange the data points {24, ..., 2n}, {ws, ..., wy} so that @; # W2 holds in (2.6).

Now consider the interpolation problem with nodes {z2x+1, 22r+2} and interpolation
values {7, Wa }, where @; # W2. All unimodular interpolants of degree 1 are given by

. ﬁ) i6 A
2.7) B(z) = M
R(z)e? 4+ S(z)
for those 6 € [0, 2) that do not give a pole on the unit circle, and where P(2),Q(2),R(2)
and S(z) are constructed from one of the formulas (2.2), (2.3) or (2.4). According to part 1

of the proof there are two exceptional values of 6 corresponding to the poles 2 = 2241 and
2 = Zopyo on OI. Substituting ¥ in (2.5) by B in (2.7) gives a parametrization

_ Pupi(2)e” + Qria(2)

2.8 B = - ,

( ) k+1 (Z) Rk+1 (Z) ezg + Sk+1 (Z)

where

(2.9) Pey1 =P P+QrR, Qry1=PQ+QiS,

Rk+1=RkP+SkR, Sk+1=RkQ+SkS',

of all rational unimodular interpolants of exact degree k + 1 to the interpolation data
{21, -, 22k42}, {w1,..., wary2}, with the exception of those parameters € in (2.8) that
give poles on the unit circle. To prove that no solutions are lost in (2.8) we choose an ar-
bitrary interpolant B(z) of irreducible degree k¥ + 1 and extend the interpolation problem
by appending a node 2 € 9D \ {z1,..., 22,42} and a corresponding interpolation value
@ := B(%). Then the extended problem with 2(k + 1) + 1 nodes and minimal degree k + 1
is elastic with the unique solution B(z). If we fix z := Z in (2.8), then there is a § € [0, 27)
such that = @ gives Br11(Z) = w. Assuming that 6 is an exceptional value of 6 we
reach a contradiction in an analogous way to the second paragraph after (2.6) by consider-
ing F(2) := Byy1(2) — B(2) for @ = 6. Thus 6 is not an exceptional value of 8 and then
Biy1 = B when 6 = 0.

Next we determine the location of the poles on D of Bj41 constituting the set Ij41.
Thus we have to determine the zeros of Rii1e? 4+ Sky1, 8 € [0,27), on the unit circle,
which using (2.9) is equivalent to solving the equation

(2.10) Ri(2)(P(2)e™ + Q(2)) + Sk(2)(R(2)e? + S(2)) = 0.

Clearly zop11 and za42 are solutions and belong to Ij41 for two suitable choices of € given
by part 1 of the proof. Let zg € JD be a solution to (2.10) such that ze41 7# 20 # 22k+2-
For z = zg equation (2.10) is equivalent to

P(20) e + Q(20)
R(z0) €¥® + S(z0)

(2.11) Ry(20) + Sk(20) =0,
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from which we conclude that 2o € I. All points zg € Iy are zeros for equations (2.10)
and (2.11), for appropriate choices of 6. Thus we have I11 = {21,..., 22p+2} and at most
2k + 2 exceptional values of § in [0, 27) that generate the poles in Iy4;. O

REMARK 2.2. The proof of Theorem 2.1 presents a recursive construction of the Nevan-
linna parametrization of all solutions to a damaged Problem I with n = 2m interpolation
nodes and minimal degree m' = n/2. This parametrization has the advantage over the one
constructed in Section 3 in that it is easy to check, by computing the solutions for different
values of the parameter 0, if there are interpolating finite Blaschke products. In each recursive
step we can also keep track of how the exceptional values of § are transformed by B when
'’ is substituted in (2.5).

REMARK 2.3. That the number of exceptional values of 8 € [0,27) can be strictly
less than n is demonstrated by a small example, (n = 4, m' = m = 2), where z; = 1,
2o = 4,23 = —1,2g = —tand wy; = l,ws = —1, w3 = ¢,ws = 4. Then the recursive
procedure gives the parametrization

(66 —3 — (1+3i)z+ (2+1i)22)e? + (2 — 6i)z + (2 + 4i)22
(442i—(6—2i)2)et® +1+2i— (3+4)z+ (6—360)22 '

Bsy(z) =

with three exceptional values of 8, {e?¥i} = {4/5 + 3i/5, —1, —7/25 — 24i/25}, that give
the poles In = {#1,...,24}.

REMARK 2.4. Numerical experiments in Matlab were made with an implementation of
the recursive procedure suggested by the above proof. After having computed the Nevanlinna
parametrization for an interpolation problem, the parameter interval [0, 27) was discretized
with step size 0.01 giving 629 values 6;, and the interpolation error was determined for each
6;. The interpolation values w; were chosen randomly on the unit circle. We considered
two ways of choosing the nodes z;, either randomly or equidistantly on the unit circle. A
general observation was that the closer a §; was to an exceptional value of 8, the bigger the
error was, which seems natural, since these cases correspond to nearly zero-pole cancellation
in the parametrization. When looking at error plots there would typically be peaks in the
vicinity of exceptional values of # and the error for other 6;°s would be relatively close to the
minimal error. We observed that for randomly chosen z; about 90% of the §;’s gave an error
that was less than 10 times the minimal error. For equidistant 2;’s this figure was usually
about 80%. Another way to obtain reduction in precision was to choose several nodes z;
very closely spaced on the circle. Next we present some numerical data of typical (average)
results obtained for problems with n = 20, 30, 50 and 100 nodes z;. We do this in the form of
triplets: (n,maximal error,minimal error). As explained above, the attention should be paid to
the first and last component in the triplet. For randomly chosen nodes z; we got the results:

(20,10°%,10712), (30,107 7,10~ 1Y), (50,10°%,10719), (100,10 3,10 7).
For equidistantly chosen nodes the results:
(20,1079,10713), (30,107%,1072), (50,107%,107?), (100,10°,107%).

Interestingly, the equidistant choice of nodes gave slightly better results for n < 30 whereas
the problems with randomly chosen nodes seemed to give more precise results when n > 50.
At least for even n < 100 it can be expected that the recursive procedure behaves quite well
numerically. But on the other hand the precision in the implementation done by the author
seems no longer satisfactory for all problems when n > 100, so it might be that the recursive
procedure is numerically suited for small and middle-sized problems.



ETNA

Kent State University
http://etna.math.kent.edu

RATIONAL UNIMODULAR INTERPOLATION 95

COROLLARY 2.5. Suppose that Problem I is damaged with minimal degree m' > |n/2].
Then Problem I has infinitely many solutions and the set of all solutions cannot be represented
by a Nevanlinna parametrization of form (1.2).

Proof. 1. Suppose that Problem I is damaged with minimal degree m' > |n/2] and
that one arbitrarily chosen solution is given by b1 (z). We can then extend the given inter-
polation data with nodes z,41,-- -, 22m and interpolation values wy, 1 = by (zn41),---,
Wapy = b1 (zam). The extended problem must be damaged with minimal degree exactly m’
and by Theorem 2.1 it has infinitely many solutions. All solutions of the extended problem
solve the original Problem I, so it also has infinitely many solutions.

2. Assume that all solutions to the damaged Problem I are given by the Nevanlinna
parametrization

P(2) e +Q(2)

S ErE Ok

for such 6 € [0, 27) that do not produce any poles on the unit circle and where the polyno-
mials P, @, R, S are of degree at most m/'. Let us denote this parametrization by Npl. Then
the arbitrarily chosen interpolant by (z) in part 1 of the proof belongs to Np1 and is given by
6 = 6,. Applying the recursive construction in the proof of Theorem 2.1 to the extended
interpolation problem in part 1 of the proof we can find a Nevanlinna parametrization of
solutions to the extended problem of the form (1.2) containing by (z). All solutions in this
parametrization are solutions to the original Problem I. Let us denote this parametrization by
Np2 and choose an interpolant by (z) Z by (z) from Np2. Then bz (z) also belongs to Np1 and
is given by 8 = 65 # 61. Define the rational function F5(2) := b1(2) — ba(2) of degree at
most 2m'. We have F>(z;) =0, j = 1,...,2m' and

(et — &) (P(2)S(2) — Q(2)R(2))
(eP1R(z) + S(2))(e??2R(2) + S(z)) ’

FQ(Z) =

so we conclude that there is a k; € C so that

2m
P(2)S5(z) — Q(2)R(z) = Kk H(z —2j) .
j=1
We make a new extension of the original Problem I by choosing nodes 2,11, - - -, 2o, dis-
tinct from each other and from the nodes in the first extended problem, and interpolation
values Wp11 = b1(Zny1),---,Wamr = b1(Z2mr). The new extended problem is dam-

aged with minimal degree m' and has a Nevanlinna parametrization denoted Np3. Suppose
bs(z) € Np3 is a solution different from by (). Then b3(z) € Npl and is obtained from Npl
with 8 = 03 # 6. In analogy with the above we have a new factorization of PS — QR,

2m'

P(2)S(2) — Q(2)R(2) = ko ﬁ(z -z) [ z-%), keC,
j=1 Jj=n+1

which gives the desired contradiction. 0

That the damaged problems with minimal degree m' > |n/2| are quite sparse in the
set of all interpolation problems with n nodes is implied by the determinant criteria in Theo-
rems 1.1 and 1.2. The easiest examples of damaged problems with minimal degree
m' > |n/2] are those where n — m' of the interpolation values are equal to wy and m/
values are equal to wa, but these are of course not the only examples.
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EXAMPLE 2.6. As a demonstration of the sparsity of fragile and damaged problems we
consider interpolation problems with nodes 2z = 1,2 = €™/* 23 = i,24 = —1,25 = —i
and interpolation values wy = 1,wy = —1 and ws,ws and wy chosen freely on the unit
circle. Such a problem is fragile (m' = 1), elastic (m' = 2) or damaged (m' > 2). The
determinant criteria in Theorems 1.1 and 1.2 give that the fragile problems are obtained when

ws is chosen freely on 0D \ {—1} and
y V224 (V2+ 2uws w _ V2ws +ws (V2 — 2)ws — 2)
4 — ’ 3 = .
V2424 (V2 - 2)ws V2 =24+ V2w — 2ws

The damaged problems are obtained when w4 and wy are chosen arbitrarily on the circle so
that

V2 -2+ (V2 +2)ws w :\/ﬁw5+w4((\/_—2)w5—2)
2+ (V2-2uws V2-2+2w, - 2ws

Thus we have “one degree of freedom” constructing fragile problems and “two degrees of
freedom” to obtain damaged problems.

wy #

As we have seen in this section in Theorem 2.1 the damaged problems of minimal degree
m' = |n/2| are nicely representable by a Nevanlinna parametrization that can be computed
recursively and which allows an easy check if there are interpolants of degree m/ that are finite
Blaschke products. When m' > |n/2] the picture is more complicated and the next section
offers another way to parametrize all damaged interpolants and an algorithm to determine the
minimal degree m/' and to construct a parametrization of all interpolants of minimal degree. It
will however not be easy in this case to decide if the parametrization contains finite Blaschke
products.

3. Parametrization of damaged solutions. Suppose that we have n = 2m + 1 or
n = 2m distinct points 21, ..., 2z, and n arbitrary points w1, . .., w, on the unit circle such
that Problem I is damaged, i.e., the minimal degree m/' of interpolants is greater than m
for odd n and at least m for even n. Thus the solution to Problem I is nonunique and our
goal in this section is to present constructive algebraic criteria to determine the minimal de-
gree m' and a parametrization of all solutions to Problem I. In the theorems concerning the
damaged cases it is not needed to assume that we have rotated the interpolation data so that
1 =W = 1.

Suppose that b(z), not necessarily in irreducible form and given by

o+arz+ ... +au_q2" !
Qp1+0n o02+...+ap2"m 1’

(3.1 b(z) = Qgy...,0n_1 €C,

is a solution to Problem I. We shall prove that b(z), and in fact all interpolating rational
unimodular functions of degree at most n — 1, can be constructed with the aid of linear com-
binations of n linearly independent coneigenvectors connected to a coneigenvalue problem
formed directly using the given interpolation data. To this end we define the n X n matrices
E,, D, and C,, by

1 z - z{“l wlz{l*l s w21 wWr

(G2 E.=|: : |, Da=

n—1 Wn zz—l

Wnp 2p  Wn
and

(3.3) C.=E'D,.
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The matrix C), is well-defined because E,, is a nonsingular Vandermonde matrix. Before we
continue with our main theme we need to establish some properties of the matrices in (3.2)
and (3.3).

LEMMA 3.1. Let I,, denote the n x n identity matrix and choose 8 € [0,2) so that
—e~ %% s not an eigenvalue of Cy,. Define further the matrix Sg by Sg := € C,, + e~ ¥ I,,.
Then

CnCn=1, >
the matrix Sy is nonsingular and

(34 Co=255, .

Proof. Define diagonal matrices W and J and the permutation matrix P by

n—1

wq 0 k4 0 0 1
W = s J = 5 P = ’
0 W 0 Zn1 1 0
Notice that PP = P? = I, and that since wj and z; are on the unit circle we have

WW = JJ=1I,. Itis now easily verified that we have the representations
D,=WE,P, E,P=JE,.
From this we conclude that
E7'=PE, Jand PE,' = E;'J,
and thus by (3.3) and the identities above we have
C.Co,=E,*WE,PE, WE,P=E,"WE,E,' JWE, P
—E'WWJE,P=E;'JE,P=PE, E,P=1,.

Since Sy can be written in the form Sy = €' (C,, — (—e~%?) I,,) and by assumption —e~¢2¢
is not an eigenvalue of C',, we find that Sy is nonsingular. Furthermore

ChSy=Ch(eC,+eI,)=e%C,C,+eC, =5,

which establishes formula (3.4). 0

Continuing with our investigation, we restate the assumption that b(z) in (3.1) is a solu-
tion to Problem I, not necessarily in irreducible form. Letting the numerator coefficients in
(3.1) define the vector y = (ap, ..., a, 1) we find that the satisfied interpolation conditions

b(Zj):U)j, j:l,...,n,
can be expressed in the equivalent forms
(3.5) Ey=D,y & Cy=py, p=1,

which means that y is a coneigenvector and a solution to a so-called coneigenvalue problem
with the corresponding coneigenvalue u = 1. See, e.g., Horn and Johnson [6, Section 4.6]
for the definition and properties of coneigenvalue problems.
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Let {e1, ..., ey} denote the standard basis in R". Then the linearly independent columns
V1, - ..,V of S defined in Lemma 3.1 are given by
v =eChej+e P e; = (agj),...,a%j))T, ji=1,...,n.

These vectors supply us with n linearly independent coneigenvectors associated with the
coneigenvalue ;4 = 1 1in (3.5), because

CoTj=e"C,Chej+eChej=v;, j=1,...,n.

A linear combination ¢;v; + ... 4+ cyvy, is a coneigenvector corresponding to u = 1 if and
only if ¢1,...,¢, € R Then we can find real numbers cy, ..., ¢y, so that the numerator of
b(z) in (3.1) is given by

(3.6) p(z) =
1 k=1

Conversely, every linear combination ¢1 vy +. . . + ¢, v, With ¢; € R will give the numerator
p(2) in (3.6) of an interpolating unimodular rational function of degree at most n — 1, except
for the choices of ¢y, - . ., ¢, € R which yield one or several zeros for the numerator p(z) (and
the denominator of b(z)) in the set {21, ..., 2, } of interpolation nodes resulting in zero-pole
cancellation and possibly destroying the interpolation property at such nodes. (A solution
where the interpolation property is not destroyed due to zero-pole cancellation is not lost, for
instance if we have zero-pole cancellation in z; of multiplicity one, p(z) = p(z)(z — 21), and
P(z) is the numerator of an unimodular interpolant, then any choice of t1 € 0D\ {z1,...,2,}
will correspond to a set of real numbers ¢y, .. ., ¢, that give p(z) = p(2)(z — t1) in (3.6).)
Zeros for p(z) in points on the unit circle other than nodes will cause the degree of the
interpolant to drop but will not affect the interpolation property. Thus we have proved the
following theorem that gives us a parametrization of all rational unimodular interpolants with
the aid of the independent coneigenvectors v; and the parameters ¢i, .. .,c, in R.

THEOREM 3.2. Suppose that we have n distinct points z1,...,2n and n arbitrary
points wy, . . . , Wy, on the unit circle giving a damaged Problem I. Let n linearly independent
coneigenvectors corresponding to the coneigenvalue i = 1 for the matrix C,, be given by
the column vectors v; = (agj) ,agf))T, ji=1,...,n,0f Sy in Lemma 3.1. Suppose that
an arbitrarily chosen rational unimodular interpolant, not necessarily in irreducible form, is

given by

P

g +arz+ ... +anpq 2"t

3.7 b(z) = ceyan 1 €C.
( ) (Z) Qp 1+ 22+...+0a zn—l’ Qo, ,Op—1
Then we can find real numbers ci, . . . , ¢y, such that
(3.8) aj=Y cal?d, j=0,...,n-1.
k=1

Conversely, every choice of ¢1,. .. ,c, € R that via (3.8) defines b(z) in (3.7) so that the
numerator has no zeros in the set {z1, . .., zn}, gives a rational unimodular interpolant.

If n = 2 orn = 3 and Problem I is damaged, then the minimal degree is n — 1 and all
solutions are given by the parametrization in Theorem 3.2, which is also the case if n > 3 and
the minimal degree of interpolants is » — 1. To obtain all solutions to a damaged Problem I
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when n > 3 and the minimal degree is less than n — 1 we are led to find the subspace
of R™ giving the parameter values of c¢i, ..., ¢, in Theorem 3.2 that yield minimal-degree
interpolants. This can be done in a systematic way by imposing zeros on the unit circle.

Suppose therefore that Problem I is damaged, that n > 3 and that there are damaged
interpolants of degree at most m’, where m’ < n — 1. Define k := (n —1) —m' > 0.
Choose arbitrarily k& distinct points #q,...,fr on the unit circle such that
{t1,..-,tk} N {z1,...,2,} = 0. Suppose that b(z) is an arbitrarily chosen damaged inter-
polant of degree at most m' given, not necessarily in irreducible form, by

b(Z)_ ﬂ0+ﬂlz+"'+ﬂm’zm’

- = = = 7 ﬂO)"'JIBm’e(C-
ﬂm’+ﬂm’—1z+"'+ﬂozm

Impose k zeros, t; =: 2% j =1,...,k, on OD obtaining b = b by

ko i6; _ —ib; n—1
b(z)z(He e z)bz at+arz+...+ap-12

(3.9) = — .
Up—1+0p_22+ ...+ 0oz

et e—i0; _ @i 4
We conclude that there are (damaged) interpolants of degree at most m’ < n — 1 if and only
if for any choice of k = (n — 1) —m/ distinct points t1, . .., tr € D not coinciding with any
of the nodes 21, .. ., zp, it is possible to find real numbers ¢y, . .., ¢, such that p(z) in (3.6)
satisfies p(z;) #0, j =1,...,n,and p(t;) =0, j =1,..., k.

Suppose now that we have the k points ¢1,. .., t; as specified above and the n linearly
independent coneigenvectors v; = (agj ), ... ,agf ))T, j = 1,...,n, associated with the
coneigenvalue p = 1 for C), and given by the columns of Sy in Lemma 3.1. We wish to
obtain an algebraic criterion for deciding if there are damaged interpolants of degree at most
m' = (n—1) — k. We define the following homogeneous linear system with k equations and
n unknowns ¢y , . .. , Cp,

n

(3.10) Z(ickag-k))tflzo, I=1,...k.

j=1 k=1

Then (3.10) has the equivalent matrix formulation

(3.11) Hc=0,
where ¢ = (c1, - - -, c,)T and where the elements of H are given by
n .
(3.12) Hy,=Yd 47", 1=1,.,kr=1..n.
j=1

We are interested in nontrivial real solutions to (3.11). First we establish that rank H = k.
Let the independent columns of Sy define the polynomials

éj(z):agj)+...+ag)z"71, ji=1,....,n.

Choose arbitrarily n distinct points z1,...,z, on OD. Let the matrix G have the elements
Gi; = ®(=;), i,j = 1,...,n. Suppose that G is singular. Then there exist numbers
A1, .-y A, not all zero, such that E;;l Aj ®;(x;) = 0fori = 1,...,n. The polynomial
P(z) := E;‘Zl Aj ®;(x) # 0 has n distinct zeros, which gives a contradiction, so G is non-
singular. We observe that the elements of H are given by H; ; = ®;(t;), i =1,...,k, j =
1,...,n, and thus the k£ rows of H are independent and rank H = k.
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Assume now that a basis for the null space of H is given by the vectors
(3.13) uy =@, T j=1,.. n—k.

Since H is a matrix with complex elements we cannot in general assume that the basis in
(3.13) is real. To get the desired subspace of real solutions c to (3.11) we must consider all
complex linear combinations of the vectors in (3.13) that result in real vectors c. Let U be the
matrix with the basis vectors in (3.13) as columns,

(3.14) U= (uyuz ... Upg)-

Denote by U™ and U™ the real and imaginary parts of U. We define the n x 2(n — k) real
block matrix NV by

(3.15) N = (Umyre).

The null space of N corresponds to all linear combinations of the basis in (3.13) that result in
real vectors. More precisely, let an arbitrary linear combination of the basis vectors in (3.13)
be given by

n—k
(3.16) > (aj+ibj)uj, aj,b; €R.

j=1
The requirement that the vector in (3.16) is real is equivalent to the equation
Nz =0,

where 2 := (a1,...,an_g,b1,...,bn_1)T. Since we assume that Problem I is damaged we
havem' >n/2andk = (n—1) —m' <n/2—1,s02(n — k) > n + 2 and consequently
the null space of N is nontrivial and at least 2-dimensional. On the other hand it is easy to
show that the rank of N is at least n — k. Let n' denote the dimension of the null space of N,
where 2 < n' < n — k, and suppose that a real basis for this null space is given by

(3.17) a:j:(:cgj),...,a:g@_k))T, j=1,...,n"

Now we define the real vectors y1, ..., Yy, by

G.18)  gi= > @ +ia? Yu= @, g, =1, 0
1=1

Next we show that the vectors in (3.18) are linearly independent. Introduce the notation

dl(T) :=$l(T) +iw£2k+l, I=1,....n—k,r=1,...,n.
Then for the unknowns a1, ..., a, € C we have, since the vectors uy, ..., u,_j defined in

(3.13) are linearly independent, that

n' n'
(3.19) Yayp=0s ...  ad” =0, I=1,...n—k.
r=1

r=1

We note that if n’ < n — k, then the system in (3.19) is overdetermined and if n' = n — k,
then the system is square. The fact that the vectors in (3.17) are independent makes it easy to
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show that the columns of the rightmost system in (3.19) are independent, so only the trivial
solution a; = ... = a, = 01is possible. Thus we conclude that the real vectors in (3.18) are
linearly independent and provide us with a basis for the real solutions ¢ of (3.11).

Denote by p;(z), for j = 1,...,n', the polynomial p(z) in (3.6) obtained by choosing
cr = y,(cj ), k = 1,...,n. Then it follows from the conclusion made after formula (3.9)
that there are damaged interpolants of degree at most m' if and only if there is no index
i€{1,2,...,n} suchthat p; (2;) = p2(2;) = ... = pw(2;) = 0.

Furthermore, if there exist damaged interpolants of degree at most m’, then all real linear
combinations of the vectors in (3.18) giving vectors ¢ = (c1,...,¢,)T that define polyno-

mials p(z) in (3.6) with no zeros in {21, ..., 2,}, give rational unimodular interpolants of
irreducible degree at most m’. Thus we have:

THEOREM 3.3. Suppose that we have n distinct points z1, . . . , 2, and n arbitrary points
W1,. .., Wy on the unit circle 8D and that Problem I is damaged. Let the integer m' be chosen
so thatn/2 < m' < n — 1 and define k := (n — 1) —m' > 0. Choose arbitrarily the k
distinct points 11, . .., ty on the unit circle so that {t1,...,tx} N {z1,...,2n} = 0. Letn
linearly independent coneigenvectors

vj = (agj),...,a(]))T, ji=1,...,n,

associated with the coneigenvalue p = 1 for the matrix C, in (3.3) be given by the columns
of Sg in Lemma 3.1. Let the matrices H, U and N be defined by (3.12), (3.14) and (3.15),
respectively. Then the vectors

(3.20) yi= @, e, =10, 2<n <n—k,

obtained from (3.18), form a real basis for all real solutions c to the homogeneous equation
(3.11). Define the polynomials

(3.21) pi(2) = i(i y agk)) AU =10

i=1 k=1
Then there exist damaged rational unimodular interpolants of degree at most m' if and only
if there is no index i € {1,2,...,n} such that p1(z;) = p2(2;) = ... = pw(2;) =0.
If there exist damaged interpolants of degree at most m', then all such interpolants can be

constructed by considering all real linear combinations ¢ = (c1,...,c,)T = z;blzl B Yj
B; € R, of vectors in (3.20) that define polynomials p(z) by

(3.22) p(z) =3 (D eral?) 21 = 3" Bips(2),
j=1

J=1 k=1
with no zeros in {z1, . .. , 2 }. All such p(z) define rational unimodular interpolants

n—1

' Qp—1+0p_22+...+aq 2"’ J - Pt LA

that are reducible to a degree at most m'.

Now we are in a position, using Theorems 1.1, 1.2, 3.2 and 3.3, to present an algorithm
for classifying any given interpolation problem. We can determine if it is fragile, elastic or
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damaged. In the fragile and elastic cases we can calculate the unique solution of minimal
degree. In the damaged cases we can find a parametrization of all solutions of minimal
degree.

Algorithm for determining all interpolants of minimal degree

Suppose we are given n distinct points 21, . . ., 2, and n points wy, . . . ,w, on 0D, n > 2,
such that z; = wy; = 1, (no restriction). Define m := |n/2]. We exclude the trivial case
w1 = ...= Wy, so the minimal degree m/' satisfies 1 < m' <n — 1.

Step 1. If n is even, then go to Step 2, otherwise form the matrix A,, in (1.3) and use
Theorem 1.1 to decide if Problem I is elastic. If it is not elastic, then go to Step 2, otherwise
calculate the unique solution b(2) in (1.5) and go to Step 7.

Step 2. If n < 4, then go to Step 4, otherwise define m' := 0.

Step 3. Set m’ := m/ + 1. Form the matrix A,,,; in (1.3) and use Theorem 1.2 to check
if Problem I has a fragile solution of degree m/'. If there is a fragile solution b(z), then obtain
it from (1.7) and go to Step 7. If there is no fragile solution of degree m' and if m’ =m — 1,
then go to Step 4, otherwise iterate Step 3.

Step 4. Form the matrices E,, and D,, in (3.2) and compute the matrix C', in (3.3).
Determine the eigenvalues of C,,. Choose 8 € [0, 27) so that —e~2% is not an eigenvalue of
C'y,. Compute the nonsingular matrix Sy in Lemma 3.1 and let the columns of this matrix be
given by v; = (agj), ... ,aﬁf))T, j=1,...,n. If n < 4, then go to Step 6. If n is even, then
define m' := m — 1, otherwise define m' := m.

Step 5. Set m' := m' +1. Define k := (n—1) —m/' and choose distinct points ¢y, . . ., t
on 0D so that {¢1,...,tx} N {21,...,2,} = 0. Compute the matrix H in (3.12) and a basis

uj = (ugj), e ,u%j))T, j=1,...,n — k, for the null space of H. Use this basis to form
the matrices U and NV in (3.14) and (3.15). Compute a real basis z; = (xg]), R méj()n_k))T,

j=1,...,n", 2 <n' <n—k, for the null space of N. Form the real basis for all real
solutions ¢ to (3.11), given by y; = (47, ...,y¥)T, j =1,...,n', in (3.18), with the aid
of {u; };”;lk and {z; };”':1 Use Theorem 3.3 to determine if there are damaged interpolants
of degree at most m/'. If Theorem 3.3 shows that there are interpolants of degree at most m/,
then Problem I is damaged and the minimal degree of interpolants is exactly m'. In this
case use the vectors {v;}7_; and {y; }?’:1, and formula (3.23) to obtain a parametrization of
all damaged solutions of minimal degree m' and go to Step 7. If there are no interpolants of
degree at most m' and if m' = n — 2, then go to Step 6, otherwise iterate Step 5.

Step 6. The minimal degree of the interpolants is m' = n — 1 and with the aid of the
vectors v, 7 = 1,...,n computed in Step 4, and formulas (3.8) and (3.7) in Theorem 3.2,
we obtain a parametrization of all solutions to Problem I.

Step 7. Terminate the algorithm.
An implementation of the algorithm in Matlab code is available upon request.

REMARK 3.4. The main problems in implementing the algorithm are found in step 4 in
solving the coneigenvalue problem (3.5) and partly in step 5 in choosing the zeros t1, .. ., tg
that are imposed on the unit circle in the damaged cases. We have found that a sound way of
imposing the zeros on the circle is to sort the open arcs that do not contain nodes with respect
to their length, and to place the ¢;’s in the middle of the longest arcs, one ¢; in each chosen
arc. We have considered two ways of implementing step 4 and done numerical experiments
with randomly chosen interpolation values w;, and either equidistant or randomly chosen
nodes z;.
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a) Suppose first that the nodes z; are equidistant and that the w; are randomly cho-
sen on the circle. Then it is numerically safe to form the matrix C), in (3.5) by inverting
the Vandermonde matrix F,,, because we have observed that F,, has just one singular value
o = 4/n, so the condition number in the 2-norm is cond(E,) = 1. Furthermore, the ma-
trix Cp, has all its eigenvalues on the unit circle, so in forming the matrix Sp in Lemma 3.1
we have chosen 6 so that —e~%2? is in the middle of the longest open arc of the circle that
does not contain eigenvalues of C,,. By this selection we have noticed that the condition
number of Sy is quite small for n < 100. We have conducted numerical experiments with
n = 20, 30, 50 and 100. For each generated interpolation problem we have, from the numeri-
cally obtained parametrization of solutions of minimal degree, randomly chosen 500 solutions
and determined the interpolation error for each solution, storing the minimal, maximal and
mean interpolation error in a quadruple of the form: (n,maximal error,minimal error,mean
error). For each n we have taken the averages of all generated quadruples, where attention
should be paid to the third and fourth component. We obtained the following results:

(20,1071°,10714,10712), (30,107°,10713,10711),
(50,107*,107%,107), (100,1072,107%,107%).

To avoid the inversion of E,, we considered another way of generating Sy. By considering
the first equation E,y = D, ¥ in (3.5), and by separating the real and imaginary parts, we
obtain the equation

Gz=0,
where the 2n x 2n real block matrix G is given by

G E;'Le _ D;Le _E:'Lm _ szm
m m re re

En -D n En +D n
The notation indicates the use of the real and imaginary parts of E, and D,, respectively.
As a consequence of the fact that C,, has n linearly independent coneigenvectors associated
with the coneigenvalue p = 1, the null space of G is always n-dimensional with a real basis
U1, - - -, Up, Which is conveniently computed with the matlab command: null (G). Let ug)
be a vector defined by the n first components in u and let ug) be defined by the n last
components. Defining y; := u;cl) + iuﬁf), k =1,...,n, we obtain n linearly independent
coneigenvectors associated to the coneigenvalue 4 = 1, so we can define Sy to be the matrix
with columns y1,...,y,. When we have equidistant nodes then, independent of n and wj,
we have observed that Sp has one singular value ¢ = 1, so cond(Sy) = 1. Performing
similar numerical experiments as described above with this second approach we obtained the
following results:

(20,1071°,1071*,10712), (30,10°°,107 13,10 11),
(50,1075,107°,1077), (100,1073,107%,1079).

Our conclusion is that with our implementation both numerical methods described perform
in a reliable way for problems with equidistant nodes and n < 100.

b) Next we consider randomly chosen nodes z; and interpolation values w; on the unit
circle. Then the experiments showed that when n > 20 it is no longer wise to invert the
Vandermonde matrix E,. The only reliable option is to compute a real basis for the null
space of GG, as described above, to define Sy. In doing so we obtained, after performing
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numerical experiments:

(20,107°,10713,1071Y), (30,1077,1071°,1079),
(50,107*,10%,107%), (100,1073,107%,107°).

As arule one should use the second method to compute Sy, and if one has the choice, then
equidistant nodes would give two reliable numerical methods for problems with n < 100.
In the experiments above n was chosen even and w; randomly, which almost certainly re-
sults in damaged problems with minimal degree n/2, since the minimal degree m' generi-
cally satisfies m’ = |n/2]. We have also constructed damaged problems where the min-
imal degree is bigger than |n/2|, for instance by choosing w; = ... = wp, = 1 and
Wiyl = ... = Wy # w1, and the numerical observation was that the algorithm managed
quite satisfactorily in determining the minimal degree when n < 100.

For the interesting subset of interpolating finite Blaschke products the presented algo-
rithm can determine if there are fragile or elastic solutions and in the case of a damaged
Problem I it supplies us with a lower bound of the minimal degree of interpolating Blaschke
products. The purpose of the following example is to show that the lower bound need not be
sharp.

EXAMPLE 3.5. We choosen = 4andzy = 1, 20 = 4, 23 = —1, 24 = —i and
w; = we = 1, wg = wg = —1. Our algorithm shows that there is no fragile solution
and that the minimal degree of damaged solutions is m' = 2. Mathematica was used to
symbolically compute a parametrization of all solutions to Problem I.

We have chosen § = 0 in Lemma 3.1, which gives Sy = C4 + I4, and explicitly

- 0 d+i 0
0 344 0 L _ i

So=1 4 22 T 22
5+35 0 s—3% 0

202 1 202 s, i

272 272

Since k = (n — 1) —m' = 1 we impose one pole on the unit circle, which we have chosen to
bet; := (1+ z)/\/i The matrices H, U and N in (3.12), (3.14) and (3.15) are given by

H=[1 V23 +%) 142 V2(-1+5 7],

V-3 -3 VA(-h- )
B 0 0 1
U= 0 1 0 )
1 0 0
V2 _9 _3v/2 V2 _1 _A2
©o o o 0 o 1
N =
o 0 0 0 1 0
o 0 o0 1 0 0

A real basis in (3.17), of dimension n' = 2, for the null space of N is given by
{.Z'l = (_37 07 ]-7 07 07 O)Ta T2 = (_2\/57 17 07 07 07 O)T} -
A real basis for all real solutions ¢ to (3.11) is now given by (3.18),

{y1 = (-2v/2,1,0,-3)T, y» = (=3,0,1,—2v2)T}.
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The polynomials in (3.21) are then easily computed,

p(2)=(z—1+0)/V2)(2—4i— (2+4) V22— (4+2i) 2%,
pa(2) = (2 — (1 +0)/V2) (1 — 3i) V2 — (24 6i) 2 — (3 + i) V22%).

For arbitrary 81, B2 € R we define the polynomial p(z) in (3.22),
p(z) :== B1p1(2) + Bap2(2) -

It is easy to check that p(z) has no zeros in {z1,. .., 24} if and only if 8; # £f>. Forming
b(z) in (3.23) we obtain all damaged interpolants of degree m' = 2,

i+ Ky(By,B2) z + 2°
1+ Ky(By, B2) 2 — i 2%

b(z) = Kl(BlJﬂQ) Blaﬂ? S RJ ﬂl # iﬂQa

where
(1430 81+ (1+20) V25,
B = Gy vaR - G-
and
Ky(p1,P2) := (=1+3i) \/5/81 —(2—-40) By

A+3) P14+ (1+2)V208

If f1 = B2 # 0,then b(2) = 1 and if B, = —fB> # 0, then b(z) = —1, so both cases give a
constant unimodular function that does not interpolate the data. In the case 81 = 2 = 0 the
function b(2) is undefined.

Let ry and ry, (dependent of f312), denote the zeros of b(z) when we have chosen
B1 # £B2. We see from the numerator of b(z) above that 1 7o = 4 must hold and thus
we conclude that exactly one of the zeros is in I and the other one is in C \ D. Conse-
quently, there are no interpolating Blaschke products of degree m’' = 2, (they are all of
degreen — 1 = 3).

Observing that Ky (81, 82) - K2(B1,02) = 1 — i and that | K1 (51, 82)| = 1 we obtain a
Nevanlinna parametrization of the solutions of minimal degree m' = 2,

(1 —i)z+e? (i +22)
1—i22)+e?(1+4)z’

b(z):( 06[—7r,7r),0¢:i:g,
which we already knew should exist by Theorem 2.1. Numerical experiments suggest that

when n is even the minimal degree is m' = n/2 if and only if the dimension of the null space
of Nisn' = 2.

The important subclass of finite Blaschke products still offers difficult and interesting
problems: How do we determine the minimal degree of interpolants in the damaged cases
in an effective way, and is it possible to construct a parametrization of all such interpolants?
These questions are left for future research.
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