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A FAST ALGORITHM FOR SOLVING REGULARIZED TOTAL LEAST SQUARE S
PROBLEMS∗

JÖRG LAMPE† AND HEINRICH VOSS†

Abstract. The total least squares (TLS) method is a successful approachfor linear problems if both the system
matrix and the right hand side are contaminated by some noise. For ill-posed TLS problems Renaut and Guo
[SIAM J. Matrix Anal. Appl., 26 (2005), pp. 457–476] suggested an iterative method based on a sequence of linear
eigenvalue problems. Here we analyze this method carefully, and we accelerate it substantially by solving the
linear eigenproblems by the Nonlinear Arnoldi method (which reuses information from the previous iteration step
considerably) and by a modified root finding method based on rational interpolation.
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1. Introduction. Many problems in data estimation are governed by overdetermined
linear systems

Ax ≈ b, A ∈ R
m×n, b ∈ R

m,m ≥ n, (1.1)

where both the matrixA and the right hand sideb are contaminated by some noise. An
appropriate approach to this problem is the total least squares (TLS) method which determines
perturbations∆A ∈ R

m×n to the coefficient matrix and∆b ∈ R
m to the vectorb such that

‖[∆A,∆b]‖2
F = min! subject to(A + ∆A)x = b + ∆b, (1.2)

where‖ · ‖F denotes the Frobenius norm of a matrix; see, e.g., [7, 18].
In this paper we consider ill-conditioned problems which arise, for example, from the

discretization of ill-posed problems such as integral equations of the first kind; see, e.g.,
[4, 8, 11]. Then least squares or total least squares methods for solving (1.1) often yield
physically meaningless solutions, and regularization is necessary to stabilize the solution.

Motivated by Tikhonov regularization a well established approach is to add a quadratic
constraint to the problem (1.2) yielding the regularized total least squares (RTLS) problem

‖[∆A,∆b]‖2
F = min! subject to(A + ∆A)x = b + ∆b, ‖Lx‖ ≤ δ, (1.3)

where (as in the rest of the paper)‖ · ‖ denotes the Euclidean norm,δ > 0 is a regularization
parameter, andL ∈ R

k×n, k ≤ n defines a (semi-) norm on the solution through which
the size of the solution is bounded or a certain degree of smoothness can be imposed on
the solution. Stabilization by introducing a quadratic constraint was extensively studied in
[2, 6, 9, 15, 16, 17]. Tikhonov regularization was considered in [1].

Based on the singular value decomposition of[A, b], methods were developed for solving
the TLS problem (1.2) [7, 18], and even a closed formula for its solution is known. However,
this approach can not be generalized to the RTLS problem (1.3). Golub, Hansen and O’Leary
[6] presented and analyzed the properties of regularization of TLS. Inspired by the fact that
quadratically constrained least squares problems can be solved by a quadratic eigenvalue
problem [5], Sima, Van Huffel, and Golub [16, 17] developed an iterative method for solv-
ing (1.3), where at each step the right–most eigenvalue and corresponding eigenvector of a
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quadratic eigenproblem has to be determined. Using a minimax characterization for nonlin-
ear eigenvalue problems [20], we analyzed the occurring quadratic eigenproblems and taking
advantage of iterative projection methods and updating techniques we accelerated the method
substantially [13]. Its global convergence was proved in [14]. Beck, Ben-Tal, and Teboulle
[2] proved global convergence for a related iteration scheme by exploiting optimization tech-
niques.

A different approach was presented by Guo and Renaut [9, 15] who took advantage of the
fact that the RTLS problem (1.3) is equivalent to the minimization of the Rayleigh quotientof
the augmented matrixM := [A, b]T [A, b] subject to the regularization constraint. For solving
the RTLS problem a real equationg(θ) = 0 has to be solved where at each step of an iterative
process the smallest eigenvalue and corresponding eigenvector of the matrix

B(θ) = M + θN, with N :=

[

LT L 0
0 −δ2

]

,

is determined by Rayleigh quotient iteration. The iteratesθk are the current approximations
to the root ofg. To enforce convergence the iteratesθk are modified by backtracking such
that they are all located on the same side of the root which hampers the convergence of the
method.

Renaut and Guo [15] tacitly assume in their analysis of the functiong that the smallest
eigenvalue ofB(θ) is simple which is in general not the case. In this paper we alter the
definition of g, and we suggest two modifications of the approach of Guo and Renaut thus
accelerating the method considerably. We introduce a solver for g(θ) = 0 based on a ra-
tional interpolation ofg−1 which exploits the known asymptotic behavior ofg. We further
take advantage of the fact that the matricesB(θk) converge asθk approaches the root of
g. This suggests solving the eigenproblems by an iterative projection method thus reusing
information from the previous eigenproblems.

The paper is organized as follows. In Section2 we briefly summarize the mathematical
formulation of the RTLS problem, we introduce the modified functiong, and we analyze it.
Section3 presents the modifications of Renaut’s and Guo’s method which were mentioned in
the last paragraph. Numerical examples from the “Regularization Tools” [10, 12] in Section3
demonstrate the efficiency of the method.

In this paper the minimum of a Rayleigh quotient on a subspaceappears at many in-
stances. It goes without saying that the zero element is excluded of the mentioned subspace
in all of these cases.

2. Regularized Total Least Squares.It is well known (cf. [18], and [2] for a different
derivation) that the RTLS problem (1.3) is equivalent to

‖Ax − b‖2

1 + ‖x‖2
= min! subject to‖Lx‖2 ≤ δ2. (2.1)

We assume that the problem (2.1) is solvable, which is the case if the row rank ofL is n or
if σmin([AF, b]) < σmin(AF ) where the columns of the matrixF form an orthonormal basis
of the null spaceN (L) of L, andσmin(·) denotes the minimal singular value of its argument;
cf. [1].

We assume that the regularization parameterδ > 0 is less than‖LxTLS‖, wherexTLS

denotes the solution of the total least squares problem (1.2) (otherwise no regularization
would be necessary). Then at the optimal solution of (2.1) the constraint‖Lx‖ ≤ δ holds
with equality, and we may replace (2.1) by

φ(x) :=
‖Ax − b‖2

1 + ‖x‖2
= min! subject to‖Lx‖2 = δ2. (2.2)
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The following first order condition was proved in [6]:
THEOREM 2.1. The solutionxRTLS of RTLS problem(2.2) solves the problem

(AT A + λIIn + λLLT L)x = AT b, (2.3)

where

λI = λI(xRTLS) = −φ(xRTLS), (2.4)

λL = λL(xRTLS) = − 1

δ2
(bT (AxRTLS − b) + φ(xRTLS)). (2.5)

We take advantage of the following first order conditions which were proved in [15]:
THEOREM 2.2. The solutionxRTLS of RTLS problem(2.2) satisfies the augmented

eigenvalue problem

B(λL)

[

xRTLS

−1

]

= −λI

[

xRTLS

−1

]

,

whereλL andλI are given in(2.4) and (2.5).
Conversely, if((x̂T ,−1)T ,−λ̂) is an eigenpair ofB(λL(x̂)) whereλL(x̂) is recovered

according to(2.5), thenx̂ satisfies(2.3), andλ̂ = −φ(x̂).
Theorem2.2suggests the following approach to solving the regularizedtotal least squares

problem (2.2) (as proposed by Renaut and Guo [15]): determineθ such that the eigen-
vector(xT

θ ,−1)T of B(θ) corresponding to the smallest eigenvalue satisfies the constraint
‖Lxθ‖2 = δ2, i.e., find a non-negative rootθ of the real function

g(θ) :=
‖Lxθ‖2 − δ2

1 + ‖xθ‖2
= 0. (2.6)

Renaut and Guo claim that (under the conditionsbT A 6= 0 andN (A) ∩ N (L) = {0}) the
smallest eigenvalue ofB(θ) is simple, and that (under the further condition that the matrix
[A, b] has full rank)g is continuous and strictly monotonically decreasing. Hence,g(θ) = 0
has a unique rootθ0, and the corresponding eigenvector (scaled appropriately) yields the
solution of the RTLS problem (2.2).

Unfortunately these assertions are not true. The last component of an eigenvector corre-
sponding to the smallest eigenvalue ofB(θ) need not be different from zero, and in that case
g(θ) is not necessarily defined. A problem of this type is given in the following example.

EXAMPLE 2.3. Let

A =





1 0
0 1
0 0



 , b =





1
0√
3



 , L =

[√
2 0

0 1

]

, δ = 1.

Then the conditions ‘[A, b] has full rank’, ‘bT A = (1, 0) 6= 0’, and ‘N (A) ∩ N (L) = {0}’
are satisfied. Furthermore,

B(θ) =





1 + 2θ 0 1
0 1 + θ 0
1 0 4 − θ



 ,

and the smallest eigenvaluesλmin(B(0.5)) = 1.5 andλmin(B(1)) = 2 of

B(0.5) =





2 0 1
0 1.5 0
1 0 3.5



 and B(1) =





3 0 1
0 2 0
1 0 3
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have multiplicity2, and forθ ∈ (0.5, 1) the last component of the eigenvectoryθ = (0, 1, 0)T

corresponding to the minimal eigenvalueλmin(B(θ)) = 1 + θ is equal to0. This means that
g is undefined in the interval(0.5, 1) because(xT

θ ,−1)T cannot be an eigenvector.
To fill this gap we generalize the definition ofg in the following way:
DEFINITION 2.4. LetE(θ) denote the eigenspace ofB(θ) corresponding to its smallest

eigenvalue, and letN :=

[

LT L 0
0 −δ2

]

. Then

g(θ) := min
y∈E(θ)

yT Ny

yT y
= min

(xT ,xn+1)T ∈E(θ)

‖Lx‖2 − δ2x2
n+1

‖x‖2 + x2
n+1

(2.7)

is the minimal eigenvalue of the projection ofN to E(θ).
This extends the definition ofg to the case of eigenvectors with zero last components.
THEOREM 2.5. Assume thatσmin([AF, b]) < σmin(AF ) holds, where the columns of

F ∈ R
n,n−k form an orthonormal basis of the null space ofL. Theng : [0,∞) → R has

the following properties:
(i) if σmin([A, b]) < σmin(A), theng(0) > 0;

(ii) limθ→∞ g(θ) = −δ2;
(iii) if the smallest eigenvalue ofB(θ0) is simple, theng is continuous atθ0;
(iv) g is monotonically not increasing on[0,∞);
(v) let g(θ̂) = 0 and let y ∈ E(θ̂) be such thatg(θ̂) = yT Ny/‖y‖2, then the last

component ofy is different from0;
(vi) g has at most one root.
Proof. (i): Let y ∈ E(0). Fromσmin([A, b]) < σmin(A) it follows thatyn+1 6= 0 and

xTLS := −y(1 : n)/yn+1 solves the total least squares problem (1.2); see [18]. Hence,
δ < ‖LxTLS‖ impliesg(0) > 0.

(ii): B(θ) has exactly one negative eigenvalue for sufficiently largeθ (see [15]) and the
corresponding eigenvector converges to the unit vectoren+1 having one in its last component.
Hence,limθ→∞ g(θ) = −δ2.

(iii): If the smallest eigenvalue ofB(θ0) is simple for someθ0, then in a neighborhood
of θ0 the smallest eigenvalue ofB(θ) is simple as well, and the corresponding eigenvectoryθ

depends continuously onθ if it is scaled appropriately. Hence,g is continuous atθ0.
(iv): Let yθ ∈ E(θ) be such thatg(θ) = yT

θ Nyθ/yT
θ yθ. Forθ1 6= θ2 it holds that

yT
θ1

B(θ1)yθ1

‖yθ1
‖2

≤ yT
θ2

B(θ1)yθ2

‖yθ2
‖2

and
yT

θ2
B(θ2)yθ2

‖yθ2
‖2

≤ yT
θ1

B(θ2)yθ1

‖yθ1
‖2

.

Adding these inequalities and subtracting equal terms on both sides yields

θ1

yT
θ1

Nyθ1

‖yθ1
‖2

+ θ2

yT
θ2

Nyθ2

‖yθ2
‖2

≤ θ1

yT
θ2

Nyθ2

‖yθ2
‖2

+ θ2

yT
θ1

Nyθ1

‖yθ1
‖2

,

i.e.,

(θ1 − θ2)(g(θ1) − g(θ2)) ≤ 0,

which demonstrates thatg is monotonically not increasing.

(v): Assume that there existsy =

[

x̂
0

]

∈ E(θ̂) with

0 =
yT Ny

yT y
=

x̂T LT Lx̂

x̂T x̂
.
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Thenx̂ ∈ N (L), and the minimum eigenvalueλmin(θ̂) of B(θ̂) satisfies

λmin(B(θ̂)) = min
z∈Rn+1

zT B(θ̂)z

zT z
=

[x̂T , 0]B(θ̂)

[

x̂
0

]

x̂T x̂

= min
x∈N (L)

[xT , 0]B(θ̂)

[

x
0

]

xT x
= min

x∈N (L)

xT AT Ax

xT x
.

That is,

λmin(B(θ̂)) = (σmin(AF ))2. (2.8)

On the other hand, for everyx ∈ N (L) andα ∈ R, it holds that

λmin(B(θ̂)) = min
z∈Rn+1

zT B(θ̂)z

zT z
≤

[xT , α]B(θ̂)

[

x
α

]

xT x + α2

=

[xT , α]M

[

x
α

]

xT x + α2
− θ̂

α2δ2

xT x + α2
≤

[xT , α]M

[

x
α

]

xT x + α2
,

which implies

λmin(B(θ̂)) ≤ min
x∈N (L), α∈R

[xT , α]M

[

x
α

]

xT x + α2
= (σmin([AF, b]))2,

contradicting (2.8) and the solvability conditionσmin([AF, b]) < σmin(AF ) of the RTLS
problem (2.2).

(vi): Assume that the functiong(θ) has two rootsg(θ1) = g(θ2) = 0 with θ1 6= θ2.
With E(θ) being the invariant subspace corresponding to the smallesteigenvalue ofB(θ) it
holds that

g(θj) = min
y∈E(θj)

yT Ny

yT y
=:

yT
j Nyj

yT
j yj

= 0, j = 1, 2.

Hence, the smallest eigenvalueλmin,1(B(θ1)) satisfies

λmin,1(B(θ1)) = min
y

yT B(θ1)y

yT y
=

yT
1 My1

yT
1 y1

+ θ1
yT
1 Ny1

yT
1 y1

=
yT
1 My1

yT
1 y1

,

which implies

yT
1 My1

yT
1 y1

= min
y

yT B(θ1)y

yT y
≤ yT

2 B(θ1)y2

yT
2 y2

=
yT
2 My2

yT
2 y2

. (2.9)

Interchangingθ1 andθ2 we see that both sides in (2.9) are equal, and therefore it holds that
λmin := λmin,1(B(θ1)) = λmin,2(B(θ2)).

By part (v) the last components ofy1 andy2 are different from zero. So, let us scale
y1 = [xT

1 ,−1]T andy2 = [xT
2 ,−1]T .

We distinguish two cases:
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Case 1: Two solution pairs(θ1, [x
T ,−1]T ) and(θ2, [x

T ,−1]T ) exist, withθ1 6= θ2 but
with the same vectorx. Then the last row of

B(θj)

[

x
−1

]

=

[

AT A + θLT L AT b
bT A bT b − θjδ

2

] [

x
−1

]

= λmin

[

x
−1

]

, j = 1, 2, (2.10)

yields the contradictionθ1 = 1
δ2 (bT Ax − bT b + λmin) = θ2.

Case 2: Two solution pairs(θ1, [x
T
1 ,−1]T ) and(θ2, [x

T
2 ,−1]T ) exist, withθ1 6= θ2 and

x1 6= x2. Then we have

λmin = min
y

yT B(θ1)y

yT y
=

yT
1 B(θ1)y1

yT
1 y1

=
yT
1 My1

yT
1 y1

+ θ1
yT
1 Ny1

yT
1 y1

=
yT
1 My1

yT
1 y1

=
yT
1 My1

yT
1 y1

+ θ2
yT
1 Ny1

yT
1 y1

=
yT
1 B(θ2)y1

yT
1 y1

= min
y

yT B(θ2)y

yT y
.

Therefore,y1 is an eigenvector corresponding to the smallest eigenvalueλmin of both,B(θ1)
andB(θ2), which yields (according to Case 1) the contradictionθ1 = θ2.

Theorem2.5demonstrates that if̂θ is a positive root ofg, thenx := −y(1 : n)/y(n + 1)

solves the RTLS problem (2.2) wherey denotes an eigenvector ofB(θ̂) corresponding to its
smallest eigenvalue.

However,g is not necessarily continuous. If the multiplicity of the smallest eigenvalue of
B(θ) is greater than 1 for someθ0, theng may have a jump discontinuity atθ0, and this may
actually occur; cf. Example2.3 whereg is discontinuous forθ0 = 0.5 andθ0 = 1. Hence,
the question arises whetherg may jump from a positive value to a negative one, such that it
has no positive root.

The following Theorem demonstrates that this is not possible for the standard caseL = I.
THEOREM 2.6. Consider the standard caseL = I, whereσmin([A, b]) < σmin(A) and

δ2 < ‖xTLS‖2.
Assume that the smallest eigenvalue ofB(θ0) is a multiple one for someθ0 . Then it

holds that

0 6∈ [ lim
θ→θ0−

g(θ), g(θ0)].

Proof. Let Vmin be the space of right singular vectors ofA corresponding toσmin(A),
andv1, . . . , vr be an orthonormal basis ofVmin.

Sinceλmin(B(θ0)) is a multiple eigenvalue of

B(θ0) =

[

AT A + θ0I AT b
bT A bT b − θ0δ

2

]

,

it follows from the interlacing property that it is also the smallest eigenvalue ofAT A + θ0I.

Hence,λmin(B(θ0)) = σmin(A)2 + θ0, and for everyv ∈ Vmin we obtain

[

v
0

]

∈ E(θ0) with

AT b ⊥ Vmin.
If the last component of an element ofE(θ0) does not vanish, then it can be scaled to

[

x
−1

]

. Hence,

[

AT A + θ0I AT b
bT A bT b − θ0δ

2

] [

x
−1

]

= (σmin(A)2 + θ0)

[

x
−1

]



ETNA
Kent State University 
etna@mcs.kent.edu

18 J. LAMPE AND H. VOSS

from which we obtain(AT A − σmin(A)2I)x = AT b. Therefore, it holds thatx = xmin + z
wherexmin = (AT A − σmin(A)2I)†AT b denotes the pseudonormal solution andz ∈ Vmin.
Hence,

V :=

[[

v1

0

]

, . . . ,

[

vr

0

]

,

[

xmin

−1

]]

is a basis ofE(θ0) with orthogonal columns and

g(θ0) = min
y∈E(θ)

yT Ny

yT y
= min

w∈Rr+1

wT V T NV w

wT V T V w
= min

w∈Rr+1

wT

[

Ir 0
0 ‖xmin‖2 − δ2

]

w

wT

[

Ir 0
0 ‖xmin‖2 + 1

]

w

demonstrating that

g(θ0) = min

{

1,
‖xmin‖2 − δ2

‖xmin‖2 + 1

}

=
‖xmin‖2 − δ2

‖xmin‖2 + 1
≥ ‖xTLS‖2 − δ2

‖xmin‖2 + 1
.

The active constraint assumption‖xRTLS‖2 = δ2 < ‖xTLS‖2 finally yields thatg stays
positive atθ0.

For general regularization matricesL it may happen thatg does not have a root, but it
jumps below zero at someθ0.

REMARK 2.7. A jump discontinuity ofg(θ) can only appear at a valueθ0 if λmin(B(θ0))
is a multiple eigenvalue ofB(θ0). By the interlacing theoremλmin is also the smallest eigen-
value ofAT A+θ0L

T L. Hence there exists an eigenvectorv of AT A+θ0L
T L corresponding

to the smallest eigenvalueλmin, such that̄v = (vT , 0)T ∈ E(θ0) is an eigenvector ofB(θ0).
The Rayleigh quotientRN (v̄) = (v̄T Nv̄)/(v̄T v̄) of N at v̄ is positive, i.e.,RN (v̄) = ‖Lv‖2.

If g(θ0) < 0, there exists somew ∈ E(θ0) with RN (w) = g(θ0) < 0 andw has a non
vanishing last component. In this case of a jump discontinuity below zero it is still possible
to construct a RTLS solution: A linear combination ofv̄ andw has to be chosen such that
RN (αv̄ + βw) = 0. Scaling the last component ofαv̄ + βw to -1 yields a solution of the
RTLS problem (2.2), which is not unique in this case.

EXAMPLE 2.8. Let

A =





1 0
0 1
0 0



 , b =





1
0√
5



 , L =

[√
2 0

0 1

]

, δ =
√

3. (2.11)

Then,1 = σmin(A) > σ̃min([A, b]) ≈ 0.8986 holds, and the corresponding TLS problem has
the solution

xTLS = (AT A − σ̃2
minI)−1AT b ≈

[

5.1926
0

]

.

SinceN (L) = {0}, the RTLS problem (2.11) is solvable and the constraint at the solution is
active, becauseδ2 = 3 < 53.9258 ≈ ‖LxTLS‖2

2 holds.
Figure2.1shows the corresponding functiong(θ) with two jumps, one atθ = 0.25, and

another one atθ = 1, which falls below zero.
The matrixB(θ) for θ0 = 1

B(1) = [A, b]T [A, b] + 1

[

LT L 0
0 −δ2

]

=





3 0 1
0 2 0
1 0 3
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FIGURE 2.1. Jump below zero ofg(θ) in the caseL 6= I

has the double smallest eigenvalueλmin = 2 and corresponding eigenvectorsv = (0, 1, 0)T

andw = (1, 0,−1)T . The eigenvectors withRN (x) = 0 and last component−1 arex1 =
v+w = (1, 1,−1)T andx2 = −v+w = (1,−1,−1)T yielding the two solutionsxRTLS,1 =
(1, 1)T andxRTLS,2 = (1,−1)T of the RTLS problem (2.11).

REMARK 2.9. Consider a jump discontinuity atθ̂ below zero and let the smallest eigen-
value of(AT A + θ̂LT L) have a multiplicity greater than one (in Example2.8 it is equal to
one). Then there exist infinitely many solutions of the RTLS problem (2.2), all satisfying
RN ([xT

RTLS ,−1]T ) = 0.

3. Numerical method. Assuming thatg is continuous and strictly monotonically de-
creasing, Renaut and Guo [15] derived the following update

θk+1 = θk +
θk

δ2
g(θk)

for solvingg(θ) = 0, where at stepk (xT
θk

,−1)T is the eigenvector ofB(θk) corresponding
to λmin(B(θk)), andg is defined in (2.6). Additionally, backtracking was introduced to make
the method converge, i.e., the update was modified to

θk+1 = θk + ι
θk

δ2
g(θk) (3.1)

whereι ∈ (0, 1] was reduced until the sign conditiong(θk)g(θk+1) ≥ 0 was satisfied. Thus,
Renaut and Guo considered the method described in Algorithm1.

Although in general the assumptions in [15] (continuity and strict monotonicity ofg as
defined in (2.6)) are not satisfied, the algorithm may be applied to the modified functiong in
(2.7) since generically the smallest eigenvalue ofB(θ) is simple and solutions of the RTLS
problem correspond to the root ofg.

However, the method as suggested by Renaut and Guo suffers two drawbacks: The sug-
gested eigensolver in line 7 of Algorithm1 for finding the smallest eigenpair ofB(θk+1) is
the Rayleigh quotient iteration (or inverse iteration in aninexact version, where the eigen-
solver is terminated as soon as an approximation to(xT

k+1,−1)T is found satisfying the sign
condition). Due to the required LU factorizations at each step this method is very costly. An
approach of this kind does not take account of the fact that the matricesB(θk) converge as
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Algorithm 1 RTLSEVP [Renaut and Guo [15]]
Require: Initial guessθ0 > 0

1: compute the smallest eigenvalueλmin(B(θ0)), and the corresponding eigenvector
(xT

0 ,−1)T

2: computeg(θ0), and setk = 1
3: while not convergeddo
4: ι = 1
5: while g(θk)g(θk+1) < 0 do
6: updateθk+1 by (3.1)
7: compute the smallest eigenvalueλmin(B(θk+1)), and the corresponding eigenvector

(xT
k+1,−1)T

8: if g(θk)g(θk+1) < 0 then
9: ι = ι/2

10: end if
11: end while
12: k = k + 1
13: end while
14: xRTLS = xk+1

θk approaches the root̂θ of g. We suggest a method which takes advantage of information
acquired in previous iteration steps by thick starts. Secondly, the safeguarding by backtrack-
ing hampers the convergence of the method considerably. We propose to replace it by an
enclosing algorithm that generates a sequence of shrinkingintervals, all of which contain the
root. The algorithm further utilizes the asymptotic behavior of g.

3.1. Nonlinear Arnoldi. A method which is able to make use of information from
previous iteration steps when solving a convergent sequence of eigenvalue problems is the
Nonlinear Arnoldi method, which was introduced in [19] for solving nonlinear eigenvalue
problems.

As an iterative projection method it computes an approximation to an eigenpair from a
projection to a subspace of small dimension, and it expands the subspace if the approximation
does not meet a given accuracy requirement. These projections can be easily reused when
changing the parameterθk A similar technique has been successfully applied in [13, 14] for
accelerating the RTLS solver in [17] which is based on a sequence of quadratic eigenvalue
problems.

Let Tk(µ) = M + θkN − µI, then Algorithm2 is used in step 7 of Algorithm1. The
Nonlinear Arnoldi method allows thick starts in line 1, i.e., solvingTk(λ)u = 0 in stepk of
RTLSEVP we start Algorithm2 with the orthonormal basisV that was used in the preceding
iteration step when determining the solutionuk−1 = V z of V T Tk−1(λ)V z = 0.

The projected problem

V T Tk(µ)V z = (([A, b]V )T ([A, b]V )z + θkV T NV − µI)z = 0 (3.2)

can be determined efficiently, if the matricesV , [A, b]V andLV (1 : n, :) are known. These
are obtained on-the-fly appending one column to the current matrix, at every iteration step of
the Nonlinear Arnoldi method. Notice that the explicit formof the matricesM andN are not
needed to execute these multiplications. Moreover, we can take advantage for the following
updates onθ by computing the product([A, b]V )T ([A, b]V ) in advance.

For the preconditioner, it is appropriate to choosePC ≈ N−1, that stays constant
throughout the whole algorithm. This can be computed cheaply, sinceL andN are typi-
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Algorithm 2 Nonlinear Arnoldi

1: Start with initial basisV , V T V = I
2: For fixedθk find smallest eigenvalueµ of V T Tk(µ)V z = 0 and corresponding eigenvec-

tor z
3: Determine a preconditionerPC ≈ T−1

k (µ)
4: setu = V z, r = Tk(µ)u
5: while ‖r‖/‖u‖ > ǫ do
6: v = PCr
7: v = v − V V T v
8: ṽ = v/‖v‖, V = [V, ṽ]
9: Find smallest eigenvalueµ of V T Tk(µ)V z = 0 and corresponding eigenvectorz

10: Setu = V z, r = Tk(µ)u
11: end while

cally banded matrices. Otherwise a coarse approximation isalso good enough; in most cases
even the identity matrix (that means no preconditioner) is also sufficient.

3.2. Root-Finding algorithm. Figure3.1 shows the typical behavior of the graph of a
functiong close to its root̂θ. On the left ofθ̂ its slope is often very steep, while on the right of
θ̂ it approaches its limit−δ2 quite quickly. This makes it difficult to determinêθ by Newton’s
method, and this made the backtracking in [15] necessary to enforce convergence.
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FIGURE 3.1. Plot of a typical functiong(θ)

Instead, we apply an enclosing algorithm that incorporatesthe asymptote ofg, since it
turned out that this has still dominant influence on the behavior of g close to its root. Given
three pairs(θj , g(θj)), j = 1, 2, 3, with

θ1 < θ2 < θ3 and g(θ1) > 0 > g(θ3) (3.3)

we determine the rational interpolation

h(γ) =
p(γ)

γ + δ2
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wherep is a polynomial of degree 2 andp is chosen such thath(g(θj)) = θj , j = 1, 2, 3.
If g is strictly monotonically decreasing in[θ1, θ3] then this is a rational interpolation of
g−1 : [g(θ3), g(θ1)] → R. As our next iterate we chooseθ4 = h(0). In exact arithmetic
θ4 ∈ (θ1, θ3), and we replaceθ1 or θ3 by θ4 such that the new triple satisfies (3.3).

It may happen, due to nonexistence of the inverseg−1 on [g(θ3), g(θ1)] or due to round-
ing errors very close to the rootθ̂, thatθ4 is not contained in the interval(θ1, θ3). In this case
we perform a bisection step such that the interval is guaranteed to still contain the root. If
two positive valuesg(θi) are present, then setθ1 = (θ2 + θ3)/2 otherwise, in the case of two
negative valuesg(θi) setθ3 = (θ1 + θ2)/2.

If a discontinuity is encountered at the root, or close to it,then a very smallǫ = θ3 −
θ1 appears with relatively largeg(θ1) − g(θ3). In this case we terminate the iteration and
determine the solution as described in Example2.8.

4. Numerical Example. To evaluate the performance of the RTLSEVP method for
large dimensions we use test examples from Hansen’sRegularization Tools[10]. The eigen-
problems are solved by the Nonlinear Arnoldi method according to Section3.1and the root-
finding algorithm from the Section3.2 is applied.

Two functionsphillips andderiv2, which are both discretizations of Fredholm integral
equations of the first kind, are used to generate matricesAtrue ∈ R

n×n, right hand sides
btrue∈ R

n and solutionsxtrue∈ R
n such that

Atrue xtrue = btrue.

In all cases the matricesAtrueand[Atrue, btrue] are ill-conditioned.
To construct a suitable TLS problem, the norm ofbtrue is scaled such that‖btrue‖2 =

maxi ‖Atrue(:, i)‖2 holds. The vectorxtrue is scaled by the same factor. The noise added to
the problem is put in relation to the maximal element of the augmented matrix

maxval= max (max (abs[Atrue, btrue])).

We add white noise of level 1-10% to the data, settingσ = maxval· (0.01, . . . , 0.1), and
obtain the systemsAx ≈ b to be solved whereA = Atrue+ σE andb = btrue+ σe, and
the elements ofE ande are independent random variables with zero mean and unit variance.
The matrixL ∈ R

(n−1)×n approximates the first order derivative, andδ is chosen to be
δ = 0.9‖Lxtrue‖2.

TABLE 4.1
Example phillips, aver. CPU time in sec.

noise 1% 10%
n 1000 2000 4000 1000 2000 4000

CPU time 0.06 0.15 0.57 0.05 0.14 0.54
MatVecs 19.8 19.0 20.0 18.8 18.2 18.9

TABLE 4.2
Example deriv2, aver. CPU time in sec.

noise 1% 10%
n 1000 2000 4000 1000 2000 4000

CPU time 0.07 0.20 0.69 0.07 0.19 0.68
MatVecs 24.9 24.6 24.1 23.6 23.4 23.6
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The numerical test were run on a 3.4 GHz PentiumR4 computer with 8GB RAM under
MATLAB R2007a. Tables4.1 and4.2 contain the CPU times in seconds and the number
of matrix-vector products averaged over 100 random simulations for dimensionsn = 1000,
n = 2000, andn = 4000 with noise levels1% and10% for phillips andderiv2, respec-
tively. The outer iteration was terminated if the residual norm of the first order condition
was less than10−8. The preconditioner was calculated with UMFPACK [3], i.e., MATLAB’s
[L,U, P,Q] = lu(N), with a slightly perturbedN to make it regular.

It turned out that a suitable start basisV for the Nonlinear Arnoldi is an orthonormal
basis of the Krylov spaceK(M, en+1) of M with initial vector en+1 of small dimension
complemented by the vectore := ones(n + 1, 1) of all ones. In the starting phase we de-
termine three valuesθi such that not allg(θi) have the same sign. Multiplying theθi either
by 0.01 or 100 depending on the sign ofg(θi) leads after very few steps to an interval that
contains the root ofg(θ).

Figure4.1 shows the convergence history of the RTLSEVP algorithm. Theproblem is
phillips from [10], with a dimension ofn = 2000 and a noise level of1%.
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FIGURE 4.1. Convergence history of RTLSEVP

This convergence behavior is typical for the RTLSEVP methodwhere the eigenvalue
problems in the inner iteration are solved by the Nonlinear Arnoldi method. An asterisk
marks the residual norm of an eigenvalue problem in an inner iteration, a circle denotes the
residual norm of the first order condition in an outer iteration and a diamond is the value
of the functiong(θk). The cost of one inner iteration is approximately one matrix-vector
product (MatVec), whereas an outer iteration is much cheaper. It only consists of evaluating
the functiong(θk), solving a 3x3 system of equations for the newθk+1 and evaluating the
first order condition. The outer iteration together with theevaluation of the first residual of
the next EVP can be efficiently performed by much less than oneMatVec.

The size of the starting subspace for the Nonlinear Arnoldi is equal to six, which cor-
responds to the six MatVecs at the first EVP residual. After 16MatVecs the three starting
pairs(θi, g(θi)) are found. This subspace already contains such good information about the
solution that only two more MatVecs are needed to obtain the RTLS solution. The main costs
of Algorithm 1 with the Nonlinear Arnoldi method used in step 7 and the proposed root-
finding algorithm in step 6 are only matrix vector multiplications. The number of MatVecs is
much less than the dimension of the problem, hence the computational complexity is of order
O(n2) with n being the smaller matrix dimension ofA.
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5. Conclusions. Regularized total least squares problems can be solved efficiently by
the RTLSEVP method introduced by Renaut and Guo [15] via a sequence of linear eigen-
problems. Since in general no fixed point behavior to a globalminimizer can be shown, the
functiong(θ) is introduced. A detailed analysis of this function and a suitable root-finding
algorithm are presented. For problems of large dimension the eigenproblems can be solved
efficiently by the Nonlinear Arnoldi method.
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