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ADAPTIVE CONSTRAINT REDUCTION FOR TRAINING
SUPPORT VECTOR MACHINES *

JIN HYUK JUNG!, DIANNE P. O’LEARY?, AND ANDRE L. TITSS

Abstract. A support vector machine (SVM) determines whether a givenrgbdepattern lies in a particular
class. The decision is based on prior training of the SVM oat@apatterns with known classification, and training
is achieved by solving a convex quadratic programming probf&nte there are typically a large number of training
patterns, this can be expensive. In this work, we proposelaptare constraint reduction primal-dual interior-point
method for training a linear SVM witld; penalty (hinge loss) for misclassification. We reduce the edatjpnal
effort by assembling the normal equation matrix using only d-alebsen subset of patterns. Starting with a large
portion of the patterns, our algorithm excludes more and monecessary patterns as the iteration proceeds. We
extend our approach to training nonlinear SVMs through Graairix approximation methods. We demonstrate the
effectiveness of the algorithm on a variety of standardpgesitlems.

Key words. Constraint reduction, column generation, primal-dual intepoint method, support vector ma-
chine.
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1. Introduction. Characteristics such as gill placement, coloring, andthaban pre-
dict whether or not a mushroom is edible. Pattern recognitisks such as this can be auto-
mated by use of aupport vector machingVM). Given apattern(set of observed character-
istics)x in some domain set, the SVM decides whether or not the pattern is in a particular
class, e.g., “edible”. In the case ofiaear SVM, the machine makes the decision by testing
whether the point int’ specified by the pattern is above or below a hyperplane

{x:(w,x) —v=0}.

Here (-, -) denotes an inner product. Before the SVM can be put to us@jrang process
determines the parametexsand~, based on a set tfaining patternsx; each having a pre-
determined classification labgl = +1,7 = 1, ..., m, e.g., “edible” or “not edible”. The goal
is to set the parameters so that

sign((w,x;) —v) =v;, fori=1,..,m.

Thus, the machine is trained to correctly identify the pagevith known classifications and
is then used for classifying future patterns. If no hypemplaeparates the two classes, then
a loss function is included in the training to add a penaltyniicsclassification. In either case,
this training process can be formulated as a convex quagratgram (CQP).

Often, the number of training patterns is very much larger than the dimensionof
(andw), and it is well known thatv and~y are determined by a small subset of the training
patterns. In this paper, we develop an efficient primal-digrior-point method (PDIPM)
for solving this CQP. The novelty of our algorithm is the wagt we iteratively identify the
small subset of critical training patterns and ignore ttst.re
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Other authors have also exploited the fact that the numberitidal patterns is small.
Osuna et al.75] proposed a decomposition algorithm for the dual SVM foratioin, solving
a sequence of reduced problems, and JoacHitfjpfoposed some improvements. Plad]
proposed a sequential minimal optimization (SMO) algonitthat allows only two variables
to change at a time; see the four essay<0j for further discussion of the literature. Ferris
and Munson 14] considered training linear SVMs withy and/s hinge loss functions. They
efficiently applied the Sherman-Morrison-Woodbury (SMWinfzula to solving the normal
equations for training the SVM, the most expensive opendtiadhe PDIPM. Gertz and Grif-
fin [16] proposed using either a parallel direct solver or a preitmmed conjugate gradient
solver tailored for the PDIPM normal equations in trainimgS/M with ¢, hinge loss.

In this work the focus is again on the normal equations foréthhinge loss formula-
tion. Like Osuna et al., we reduce computational cost by timgitunnecessary constraints
or patterns in assembling the matrix for the normal equatiddowever, in contrast to the
decomposition based algorithms, we solve amhe optimization problem, using constraint
selection only to determine the search direction at eachtitan of a PDIPM. Our algorithm
is closely related to a PDIPM proposed for solving a gene@P@vith many inequality con-
straints P2].

Reducing the computational cost of linear and convex pragrang by using only a small
number of the constraints has been actively studied. 38 pioneered a “build-down”
scheme for linear programming (LP), proposing a rule that gafely eliminate inequality
constraints that will not be active at the optimum. Dantzid &e [9] proposed a “build-up”
IPM of dual affine-scaling form. A potential reduction algbm proposed by YeJ9] allows
column generation for linear feasibility problems, and lara Sun 23] proposed a similar
scheme for convex quadratic feasibility problems, to whigdPs can be transformed. Den
Hertog et al. proposed “build-up” and “build-down” IPM varits [L1, 12]. They also pro-
posed a path-following cutting plane algorithm for convergramming, where they used
the “build-up and -down” IPM for LP to solve a sequence of LRxations of the convex
programming 10].

In our algorithm the constraints at each step are choserdlmasgg on the current iter-
ate, rather than by building up or down. Related algorithard P were considered irBp]
and [34].

To present our algorithm, we begin in Sectidby formulating the SVM training prob-
lem as a CQP. In SectioB, we describe our adaptive constraint reduction approach fo
a quadratic programming version of Mehrotra’s predictomector (MPC) algorithm (se@#],
[17], and [L6]). We extend our results to certain nonlinear SVMs in Seciioln Sectionb,
numerical results are presented. Finally, concluding resare provided in Sectiof

Throughout this paper we denote matrices by upper-casdéitdds and column vectors
by lower-case bold letters. The entries of a veatarex;, while those for a matri¥ arek;;.
Theit" row of the matrixX is denoted bk?". Given a vectoy, the matrixY is the diagonal
matrix formed from the entries in the vecto¥ = diag(y). The cardinality of a sef is
denoted by} S]|.

2. Support vector machines.An SVM is a binary classifier, answering ‘yes’ or ‘no’ to
an input pattern, based on whether or not the pattern liespartcular half space. In this
section we review the formulation of SVMs and their training

2.1. Data representation, classifier, and feature spacelhe training data patterns are
defined as

(X1, Y1) ooy (Xins Ym) € X x {=1,+1}, (2.1)
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FIGURE 2.1: By mapping the patterns in the pattern spdce, z2) to a higher dimensional
feature spacéz?, r3,v/2z12,), the SVM constructs an ellipsoidal classifier in the oridina
pattern space by finding a linear classifier in the featurecepa

wherem is the number of training patterns.

A linear classifieris a hyperplandx : (w,x) = v} in X’ that separates the-" patterns
(y; = —1) from the “+” patterns ¢, = +1). For a patterx € X, the decision or prediction
of the classifier is

y = sign((w, x) — 7). (2.2)
To find a good classifier, it may be necessary to ulsature map

& XM (2.3)
x — ¢(x), (2.4)

to map the training patterns intof@ature spacét{ (possibly of higher dimension) endowed
with an inner product:, -),. We define the length or norm of a vectoe H to be

lallz = v/{a, a)s.

A linear classifier determined in the feature space may inducerdinearclassifier in
the original pattern space. For example, define a featurefroapR? to R? as

o : RZR3,

(2.5)
(xla xQ)T = (m%a Z‘%, \/§I1$2)T.
Then the inner-product in the feature spae can be used to define the separatoRi
illustrated in Figure2.1. Accordingly, we first limit our study to linear SVMs iR", and then
consider nonlinear SVMs in Sectiodsind5.2.

2.2. Maximizing the separation margin. We now focus on finding a linear classifier,
wherex; € R™ fori = 1,...,m. We use the standard inner prodget, x») = x7 x.

If the training patterns are strictly separable, then tlecinfinitely many hyperplanes
that can correctly classify the patterns, as illustrateéfigure 2.2 To choose a desirable
separating hyperplane, we seek one that maximizesdparation margindefined to be the
minimal distance from the hyperplane to the™patterns {;; = 1) plus the minimal distance
to the “—” patterns {;, = —1).
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(A) Available planes. (B) The plane with maximal margin.

FIGURE 2.2: The SVM is trained to find a hyperplane with maximal sepanati@argin. The
hyperplane can classify data according to the predeterthilabels. Circles and squares
denote positive and negative patterns, respectively.

How can we find this hyperplane? If the patterns are separtiae there exists at least
one “+” pattern and one " pattern closest to any separating hyperplane. Definé the
and “—" class boundary plane$o be the two hyperplanes parallel to the separating hyper-
plane that contain these two patterns. Then the distaneebatthese class boundary planes
is the separation margin, and we defin@nd~y so that{x : (w,x) = v} is the plane halfway
between them. Since the patterns are separable, there &teonpin between the boundary
planes, and we can scakeand~ so that, for all € {1, ..., m},

or equivalently

yi((w,x;) —7) > 1.

So, the boundaries of the half spaces defined2§) @nd @.7) are the %" and “—” class
boundary planes.

Since the distance between the boundary planegiis where||w|* = (w,w), the
problem can now be modeled as an optimization problem,a#ilehard-margin SVM

o1
min §||W||§ (2.8)
W,y
st Y(Xw —ey) > e, (2.9)

whereX = [x1,..x,,]7 € R™*" ande = [1,...,1]7. Notice that this problem has one
constraint per pattern. Typically. > n, and that is the case we consider here.

If the data are not separable, there is no solution to the mand)in optimization problem.
To cope with this situation, we addnaisclassification penaltiy the objective functionZ.8).
We introduce a nonnegative relaxation variaglen order to measure misclassification, ob-
taining relaxed constraints

yi((w,x;) —7) > 1§ (2.10)

Adding an/; misclassification penalty to the objective functichg), we get the (primal)
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soft-margin SVMwith ¢; hinge loss) proposed by Cortes and Vaprit:

min 1||w||§ +17g (2.11)

w,v,& 2

st. Y(Xw—ey)+&>e, (2.12)
£>0, (2.13)

wheret is anm-dimensional vector of positive penalty parameters fortthde-off between
the separation margin maximization and the error mininemat This soft-margin formula-
tion is often preferred to the hard-margin formulation evemen the training patterns are
strictly classifiable4]. Notice this formulation is a CQP with. nontrivial constraintsd.12),

m bound constraint2(13), m relaxation variable§, andn variablesw, wherem > n.

2.3. Dual formulation, Gram matrix, and support vectors. The dual of the CQP
given by formulae?.11)-(2.13 is

1
max —§aTYKch +ela (2.14)
(e
st. yla=0, (2.15)
0<a<nm, (2.16)

where the symmetric positive semidefinite Gram makix R"*"" has entries
k'L] == <Xiaxj>a

(i.e., K = XXT) and wherey; is the dual variable associated with teconstraintin 2.12).
If o* solves this dual problem, then we can compute the solutidhegrimal prob-
lem (2.1D)-(2.13 from it:

w =XYoo =Y ajyx, forS=1{i:0<al}, (2.17)
€S
1
V= e > (W xi) —ui), forSon={i:0<a <7}, (2.18)
Sorl 2
& =max {1 —y;((W*,x;) —%),0}, fori=1,...,m. (2.19)

Note that £.18) is obtained fromZ%.12), noticing that
yi((wi,x;) —~") =1 forallisuchthad < o < ;.

The subscript “on” will be explained in the next paragraph. iWh* = ((W*,x;) — ;)

for everyi € Son, the averaging in4.18 provides somewhat better accuracy than using
a single equation to determing’. Equation £.19 is obtained from .12 and @.13. In
view of (2.17), the Lagrange multipliety; can be interpreted as the weight of i pattern

in defining the classifier.

Support vector§SVs) are the patterns that contribute to defining the diassie., those
associated with positive weiglat’. The on-boundarysupport vectors have weight strictly
between the lower boun@d and the upper bound;, and, geometrically, lie on their class
boundary plane, i.e., bot (12 and @.13 are active. Theff-boundarysupport vectors have

1They use a scalar.
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Pattern Type af 57 &
Off-boundary support vector ; 0 (0, 00)
On-boundary support vector (0, 7;) 0 0
Nonsupport vector 0 (0,00) 0

TABLE 2.1: Classification of support vectors and nonsupport vectoesels; is the optimal
slack variable, defined as := y; ((w*, x;) —7*)+&F — 1, associated with thé” constraint
in (2.12.

the maximal allowable weight; = 7, and lie on the wrong side of the class boundary plane,
i.e., (2.12 is active but 2.13) is inactive p8].? We summarize this classification in Talfle.
We now have formulated our optimization problem and turnaitegntion to solving it.

3. Adaptive constraint (pattern) reduction. In this section we present a standard
primal-dual interior-point method for training our SVM, duthen improve the efficiency of
the method by adaptively ignoring some patterns. Since pattarn corresponds to a primal
constraint, this is called constraint reduction.

3.1. Primal-dual interior-point method. Since the soft-margin formulation for the
SVM (2.10)-(2.13 is a CQP, every solution to the associated Karush-Kuhrk@iu(KKT)
conditions is a global optimum. Therefore, training the mae is equivalent to finding a
solution to the KKT conditions for the primaR(11)-(2.13 and the dualZ.14)-(2.16) prob-
lems [L6]:

w-XTYa =0, (3.1)

yla=0, 3.2)

T—-ax—u=0, (3.3)
YXw—7y+&—e—s=0, (3.4)
Sx=0, (3.5)

Ug =0, (3.6)

s,u,x, & >0,

wheres is a slack variable vector for the inequality constrairtsd ), andu is a slack for
the upper bound constraint&.{6 and a vector of multipliers for the non-negativity con-
straints £.13). Conditions 8.1)-(3.3) relate the gradient of the objective function to the con-
straints that are active at an optimal solution, whed) is the primal feasibility condition.
Conditions 8.5) and @.6) enforce complementary slackness.

In order to find a solution, we use a PDIPM. We apply a Newt&a-thethod to solv-
ing the KKT conditions, with perturbations added to the camentarity conditions3.5)
and @.6). For the variant of the MPC algorithm discussedif][(analogous to that in3g]),
the search direction is obtained by solving the system oétaojus

Aw —XTYAa = —(w - X'Ya) = —ry,
yIAa=—yla=—ry,
2In many articles discussing the decomposition method, the témimund” and “bound support vectors” are

used to denote on-boundary and off-boundary support \@aespectively. The former terms are based on the bound
constraints2.16), whereas the latter terms are based on geometry.
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—Ax—Au=—(T—ax—u) = —ry,
YXAw —yAy+ A —As=—(YXw—yy +E—e—8) = —rg,
SA«x + diag(x)As = —rgy,
diag(&)Au + UAE = —rgy,.

First, an affine scaling (predictor) directiotnwa™ A2 Ag" Agaf Aadff Aud) is
computed by setting

rsv = S«, (3.7)
sy = Ug. (38)

Then, the combined affine-scaling and corrector step ismdday setting

rev = St — ope + ASMA KA (3.9)
req = diag(&)u — ope + AUMAE, (3.10)

where thecomplementarity measutés defined by

sTa+ £Tu
2m

)

o > 0 is acentering parametedefined later, and\S?" and AU?™ are diagonal matrices
formed fromAs®™ and Au®® respectively. These equations can be reduced todnmal
equations

ool
_ T~vo-1 Yy - r
where
Q = diag(x) 'S + U~ ! diag(&),
y=XTvyQ ly =XTQ e,
Tw =Tw + XTYQ rg, andry = ro —y' 2 'rq. Once 8.11) has been solved fakw,
the incrementa\y, Aax, A, Au, andAs are obtained by solving

A= Srgy (—Fa+5"AW), (3.12)
Ax=—-Q 7 (rg + YXAW — yAy), (3.13)
AE = —U~!diag(&)(Fy — Ax), (3.14)
Au = — diag(&) ! (rgq + UAE), (3.15)
As = — diag(a) *(rsy + SAx), (3.16)

wherer,, = ry, + diag(&) 'rg, andrg = rs + diag(x) 'rgy — U~ ! diag(&)T,; see [L6]
for detailed derivation.

Forming and solving the normal equatiorsi(l) is the most time consuming task in a
step of the predictor-corrector algorithm, so we now focasow to speed up this process.
Fine and Scheinberd f] and Ferris and Munsorifl] use the dual formulatior?(14)-(2.16),

3|t is sometimes called théuality measure
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so their normal equations involve an x m matrix, considerably larger than our x n
matrix M. They use the Sherman-Morrison-Woodbury (SMW) formula tuce compu-
tational complexity fromO(m?) to O(mn?). In contrast, Gertz and Griffinlf] solve the
normal equations3(11) iteratively, using a matrix we calM () as a preconditioner. The
approach of Woodsend and Gondzsg], with ¢, hinge loss, results in the same KKT system
and search direction equations as those of Gertz and Giiftimever, they apply a different
sequence of block eliminations, resulting in differentmat equations. Chapelle discusses
relations between the primal and dual based approaéhesig shows that when using the
SMW formula, finding the search direction has the same coatijpmial complexity for the
primal as for the dual, but he argues that the primal appr@shperior, because it directly
attempts to maximize the separation margin. We choose tedspp the computation by
forming an approximation to the matrix.

3.2. Constraint reduction. In [22] we developed and analyzed an algorithm for solving
CQPs by replacing the matriM in the normal equation$3(11) by an approximation to it. In
this section we see how this idea can be applied to the SVMgmub

Sincey; = +1 and2 is diagonal, we see that

YQO 'Y =0Q! and y'Q ly=eTQ e

Now, consider the matrix of the normal equatioBsL(),

ooT
M=I+X'YQ lyx_- 2
* yIQ-ly
— I+ iw—lx‘XT - (221 wilxi)(ZZ’Ll ‘*’flxz‘)T
- 7 1%, m —1 ’
i=1 Zi:l Wi

and the matrix

(Cieqwi 'xi)(Xieqwi 'xi)"

— -1 T i€Q i €eQ i

Mg =I+ g w; XX; — : > wl_l ,
i€Q ieQ Wi

(3.17)

where@ C {1,...,m} and

-1 QiU
f =
sia + &y

If @ = {1,...,m}, thenM gy = M. If Q@ C {1,...,m}, thenMq, is an approxima-
tion, accurate if the neglected terms are small relativldésée included. The approximation
reduces the computational cost for the matrix assemblyghwisi the most expensive task in
a PDIPM, fromO(mn?) to O(|Q|n?).

How do we obtain a good approximation? Strict complemetytaypically holds be-
tween the variables and « and betweem andg, so we make use of this assumption. The
last term inM ) is a rank-one matrix, so the bulk of the work is in handlingsbeond term.
Patterns associated with Iarg@fr1 make a larger contribution to this term. Sinecgt-u; = 7,
the quantityw,” ! becomes very large exactly when bettand¢; are close to zero. Therefore,
as seen in Tablg.1, the important terms in the first summation $117) are associated with
the on-boundary support vectors. Identifying on-boundaiyport vectors is not possible un-
til we find the maximal margin classifier and its class bouredarAt each iteration, however,
we have an approximation to the optimal value.gf so we find prospective on-boundary
support vectors by choosing the patterns with smallAs described in1€], a growingw, !
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diverges to infinity at a(;~ ') rate and a vanishing; ' converges to zero at an(;) rate.
Therefore, as the intermediate classifier approaches thiemabmargin classifier, it becomes
clearer which patterns are more likely to be on-boundarpstipectors. This enables us to
adaptively reduce the index set size used3ri (). To measure how close the intermediate
classifier is to the optimal one, we can use the compleméntagasureg:, which converges
to zero. At each iteration, we set the sizef our index set) to be a value between two
numbersy;, andqy:

q = max {qz, min {[pm],qu}}, (3.18)

where the heuristic choice

Q=

p=p

tends to synchronize decrease®@f with convergence of the optimality measure. Hgre 0
is a parameter for controlling the rate of decrease, @nds also an algorithm parameter,
but ¢, changes from iteration to iteration. At the first iteratioe wandomly choosey
indices, because we have no information about the clasdtest clustering algorithms may
improve the initial selectiond).

We now show how to choose patterns and determinat each iteration. Based on
our examination ofu; !, there are several reasonable choices. Defl(e ¢), the set of all
subsets of\f = {1,...,m} that contain the indices afsmallest components afc R™:

Qz,q) ={Q|Q C M, |Q|=qgandz < z;Vi € Q,j ¢ Q}. (3.19)

If there are no ties for the'!” smallest component, thed(z, ¢) contains a single index set.
Itis also possible to include additional indices in theds && heuristic purposes, as allowed
by [32]. Then, we have the following choices of patterns:

e Rule 1: 9(YXw — vy + & — e, ). This rule selects the patterss corresponding
to indices in these sets with the smallest “one-sided” distao its class boundary
plane, meaning that we only consider patterns that are owtbreg side of their
class boundary plane. Assuming primal feasibility, thisaswees the slacks of the
primal constraintsd.12). This choice is most intuitive because support vectors con
tribute to defining the classifier, which is the underlyingador most decomposition-
based algorithms. Inspired by the rate of convergence ergince 0&1;1, as noted
above, we define the lower boungd on the index set size by

qL—‘{i:‘”zeﬂorsisﬁ}',
Si

wheref is a prescribed parameter, so that we include terms withl sadakes ofs;.

e Rule 2: Q(Qe,q). The patternx; chosen by these sets have the smallesand
thus the largest contributions to the second term in the itiefinof the matrixM.
Again, considering the rate of convergence or divergencei_df, we define the
lower boundyy, on the index set size by counting the number of Iavgé:

gr = |{i:w; " > 0yn}], (3.20)

wheref is a prescribed parameter. Under our strict complementasisumption,
the value ofy;, will eventually converge to the number of divergimgl, or, equiv-
alently, the number of on-boundary support vectors.
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Either of these choices, however, may have an imbalanceekatthe number of patterns
selected from the4” and “—" classes. In the worst case, we might select patterns frdgn on
one of the classes, whereas on-boundary support vectotgpacally found in both classes.
To avoid this unfavorable situation, we might want to uskatancedchoice of patterns,
specifying the numbey* andg— chosen from each class as

¢* = max <qg, min ([Wl ,m+>) , (3.21)
¢~ = max (qL, min ([WW ,m_>) , (3.22)

wherem™ andm~ are the number of+” and “—” patterns, respectively. The valugs
andq; are lower bounds defined for each class; for example, instegd20) we use

af = {i:w;' > 0y/pandy; = 1},
q; = |{i:w; ' >0\/pandy; = —1}|.

We adjust eithe™ or ¢~ so thatg™ + ¢~ = ¢, the desired number of patterns. Giwgh
andq—, we define the sets

QM (z,q") ={Q|Q C M, |Q| =q" andz; < z;Vi € Q,j ¢ Q andd; = d; = +1},
0 (2,q7)={Q|QC M, |Q =q andz < z;Vie Q,j ¢ Qandd; = d; = —1}.

The setQ) is the union of one set i@ (z, ¢™) and another iR~ (z, ¢~ ):
Qe Qz,9)={Q|Q=QTUQ™, Q" € Q7 (z,¢") andQ™ € Q" (z,¢7)}-

In the notation, we have suppressed the dependen@ézf;) ong™ andq—, to be consistent
with notation for the non-balanced choicg 19. Having determined), we construct the
reduced normal equation for one step of our interior-poiathrad by assembling the matrix
for the normal equation using a subset of the patterns, daohgo

o
Tyt

Mg)Aw = —Ty (3.23)
Then we solve¥.12-(3.16) for Ay, A«x, AE, Au, andAs. Before we proceed, we have to
ensure that the reduced mathf ) is positive definite.

PROPOSITION3.1. The matrixM ) is symmetric and positive definite.

Proof. See Proposition 1 irlp]. O

The following proposition explains the asymptotic coneerge of the reduced matrix to
the unreduced one.

PROPOSITION3.2. For ¢ defined in 8.18 and for all @ € Q(Qe,q), there exists
a positive constant’yy satisfying||[M — M|z < Omy/1-

Proof. See Proposition 5 irlp]. O

Winternitz et al. presented convergence results for a MRStcaint reduction algorithm
for LP [34]. In recent work R2], we provided a convergence proof for a constraint-reduced
affine-scaling primal-dual interior-point method for cemvquadratic programming. Typi-
cally, MPC algorithms require less work than affine scalegpecially when the initial point
is not near the central path. Therefore, we state in Algoritha variant of a Mehrotra-type
predictor-corrector algorithm with a constraint redustinechanism to determirfe .
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ALGORITHM 1 (Constraint reduced SVM (CRSVM)).
Parameters 5 > 0, T > 0, 0 > 0, integerqy satisfyinggy < m, Bal € {false true},
CC € {‘one-sided dist*omega’}.
Given a starting pointw, v, &, s, &, u) with (&, s, &, u) > 0.
for k=0,1,2,... do
Terminate if convergence is detected:

max {[|rwlloos [7al, [Itulloos [[7s]loo }
max{|[Al|oo, [|I7][o0; 1}

<tol, and p <tol,,

or iteration count is reached.

If Bal is false, then determing according to 8.18; otherwise determing™ andq—
from (3.21) and 3.22.

Pick @ from Q(YXw — vy — e + §,q) if CC' is ‘one-sided dist’, or fronQ(Q2e, q)
if CC'is‘omega’.

Solve .23 and (.12-(3.19 for (Awa" A2 Ag™ As? Aaxd Audf) using
affine-scaling residuals fron3(7)-(3.9).
Determine predictor step length:

Qaff = m[%}i] {a: (& s, au) +a(AE" As®T Aa?® Aud™) > 0. (3.24)
agel0,
Set
p (s + aarAsT™) T (o + gt Ao@™) + (& 4 aar AEENT (1 + agrAudf)
aff 1= .

2m

Seto := (aft/1)”.

Solve @.23 and @.12-(3.16 for (Aw, Ay, AE, As, Ax, Au) using combined step
residuals from.9)-(3.10.

Determine the step length for the combined step:

o :=0.99 m[%xl] {a:(&,s,x,u) + a(AE, As, Ax, Au) > 0}. (3.25)
agl0,

Set
(W7 7? E’? S? (x') u) :: (W7 rY? E’? S7 a? u) + O((AW, A’Y7 AE’? AS? Aa’? Au)'

end for

When the matrixX is sparse, the first two terms M () are probably also sparse, but
adding the third term makes the matrix dense. Thereforehigndase we solve the normal
equations .23 by computing a sparse Cholesky factor (with full pivotirig) the sum of
the first two terms, and then applying the SMW formula to ipooate the rank 1 matrix.
WhenX is dense, we fully assembM ) and obtain its dense Cholesky factor.
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4. Kernelization. So far we have considered the case in which the Gram mEKtrix
defined ag;; = x!'x;, corresponding to the standard inner prodpgt x;) = x7 x;. More
generally, we might definK using a symmetric and positive semidefirktgnel*

k: X x X—=R

(x,%x)—k(x,x),

settingk;; = k(x;, xj).5 We assume that the dimension of the spacis ¢, reservingn for
the rank of the approximation € used in the optimization problem derived below.

If a data set has an enormous number of training patterndjmgi may not be feasible.
For example, if the kernel is Gaussidg is usually dense even when the maiXbof training
patterns is sparse. Even worse, the mawixs nowm x m, and our constraint reduction is
not effective. The reason for this is thatf has full rank, our KKT conditions become

Kw-KYa=0,

yloa=0,

T—a—u=0,

YKw -7y +&—-e—-s=0,

Sax =0,
Ug =0,
s,u,«x, & >0,

corresponding to the primal problem

1
min —w! Kw + 17§
w,,& 2

st. Y(Kw—ey)+§&>e,
£>0.

The resulting normal equations matrix is

M-K{K'yo 'yK - Y 4.1)

B y'Q-ly’ '
which is difficult to approximate. Several researchérdp, 30] have proposed to replace the
Gram matrix with a low rank approximatidd ~ VG2V T, whereG is ann x n symmetric
and positive definite matrix an¥ is anm x n matrix, form > n. If V has full rank,
thenK has rank:. Such approximations have been computed using the truheggenvalue
decomposition, 18], low rank Cholesky factorization with symmetric pivotifig, 15], the
Nystrom method 13, 33], and kernel PCA maplP, 31]. For some kernels, the fast multipole
method P7, 37] can be employed to compute the truncated eigenvalue dexsitigm.

Substituting a low rank approximation fé allows constraint reduction to be effective
in training nonlinear SVMs, if we are careful in our probleorrhulation. Consider an ap-
proximate dual CQP witfK in (2.14-(2.16) replaced byVG2V7T. What primal problem

“Researchers in the machine learning field often use “pogifmite” to denote “positive semidefinite” and
“strictly positive definite” for “positive definite”. Here &vuse the more common definitions from mathematics.

5 The kernel is symmetric ik(x, %) = k(x, x) for everyx,x € X. Itis positive semidefinite if the Gram
matrix is positive semidefinite foeveryfinite collection of pattern vectors. In this case, thererisaasociated
reproducing kernel map that allows us to defifien the way we have indicated; se§ pnd [30] for more details.
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would induce this dual? It is the problem obtained by sultiy VG for X in the pri-
mal (2.11)-(2.13. Therefore, to take advantage of constraint reductionaiming nonlinear
SVMs, we use the daf{G in place ofX and apply Algorithml.

If G is only readily available in its squared inverse fo@12, we could think of let-
tingw = Gwe R"™, which leads to the following problem:

1
min —w! G *w +1TE

w,7,& 2
st Y(Xw—ey) + &> e,
£>0,

whereX = V. This formulation would be useful if computinG is not desirable. For
instance,G 2 is a submatrix ofK when the empirical kernel mag9, 31] is employed.
Applying the constraint reduction to this formulation isasghtforward. A simple change
of M) from (3.17) to

Y@Y{(g

M(Q) = G72 + XQTYQZQé%YQQXQ — m,
Q2

(4.2)

wherey ) = XgYQzQé%yQ, and the substitution of for w, Aw for Aw, and
re =G ?w—-X"Yx
for ry,, are all the required modifications.

5. Numerical results. We tested Algorithni using MATLAB version R2007a on a ma-
chine running Windows XP SP2 with an Intel Pentium IV 2.8GHagessor with 16 KB L1
cache, 1 MB L2 cache,>21 GB DDR2-400MHz configured as dual channel, with Hyper
Threading enabled.

Both tol, andtol,, were set tol0—%. The iteration limit was set to 200. We set the
parameters a8 = 4 to control the rate of decrease@fd = 102 to determingy, andr; = 1
fori = 1,...,m to penalize misclassification. In our experiments we vary The initial
starting point was set as inf:

w=0 7=0,&=s=a=u=2e.

We compared Algorithmi CRSVM to LIBSVM [5], and SVM#9"* [21]. We set their
termination tolerance parameters as their default vaiue.

5.1. Linear SVM examples. We tested our implementation on problemigsHROOM,
ISOLET, WAVEFORM, andLETTER, all taken from [L6]. Except for theiSOLET problem, all
inputs were mapped to higher dimensional feature spacéeimbpping associated with the
second order polynomial kerne{x, %) = (x7x + 1)2, as in [L6]. The mappingd is defined
as

d : R'-R"
T
' o2 22
l
— V2 | RSl g, ma, (5.1)
V2 V2
)
T
1
T2X3y .., X2XYy o o3 L]—1X], Ty - - - T,



ETNA
Kent State University
http://etna.math.kent.edu

ADAPTIVE CONSTRAINT REDUCTION FOR TRAINING SUPPORT VECTORACHINES 169

Name ISD FSD Patterns-(/—) SVs 4/-) On-SVs (+/-)

MUSHROOM 22 276  8124(4208/ 3916) 2285 (1146/1139) 52(31 / 21)
ISOLET 617 617 7797(300 / 7497) 186(74 [/ 112) 186 (74 /112)
WAVEFORM 40 861 5000 (1692/ 3308) 1271(633 / 638) 228(110/118)
LETTER 16 153 20000 (789 /19211) 543(266 / 277) 40 (10 / 30)

TABLE 5.1: Properties of the problems. ISD: Input space dimension. :H=ature space
dimension using the map.(l). SVs: support vectors. On-SVs: on-boundary support v&cto

wheren = (‘1?) = () + 21 + 1. Thei*" row of X is set to®(x;)”, wherex! is thei*"
training input. We also normalized the resulting matrixgsi
maxig; |LL‘;€1‘

as directed in16]. Properties of the problems are summarized in Tahle

In our experiment, we compared our algorithms to the unred®dPC algorithm, which
uses all the constraints for every iteration. We experiegntith several variants of our
algorithms:

e nonadaptive balanced constraint reduction, which used fixeandg~ throughout
the iteration;
e adaptive non-balanced constraint reduction, which detersg as in ¢.19);
o adaptive balanced constraint reduction, which determirieand ¢~ as in @.21)
and 3.22).
We chose constraints using either one-sided distaWiéeéw — vy + & — e) or Qe to form
the set(), as explained in Sectio®2, resulting in six algorithm variants.

In Figure5.1laand5.1h the time and iteration count of the algorithm with the twm€o
straint choices and the balanced selection scheme are cednfmathose of the unreduced
MPC. We setyy = m, Bal = true, andCC = ‘one-sided dist’ orC'C' = ‘omega’. Bar
graphs are grouped by problem. All algorithms produceddtesds with similar accuracy,
and Figure5.1b shows that the number of iterations is insensitive to atgorichoice. As
a result, all of the constraint reduction algorithms areeiathan the unreduced MPC algo-
rithm, as seen in FigurB.1la In solving hard problemsmMusHROOM and WAVEFORM for
instance, which have many support vectors), it is observatithe constraint choice based
on Qe shows better performance than the other. This is becauswaithber of on-boundary
support vectors is nevertheless small in the hard case3abdeb. 1.

Figure5.2 compares the balanced and nonbalanced adaptive redutgmnitlians over
a range ofyyy. In solving well balanced problems, the two algorithms slitive difference,
as seen in Figuré.2a On the other hand, for problems suchi®@sLET, having many more
patterns in one class than the other, balanced selectien giere consistent performance, es-
pecially for small values of;;, as seen in Figurg.2h In problems with more than two clas-
sification labels, a one-class-versus-the-rest appraafrequently employed3p, Chap. 7],
so the number of “” patterns is often much larger than the number-ef patterns.

In Figure5.3, we compare the adaptive and nonadaptive balanced redwdtjorithms
over a range of values of the upper bound on the indexgjzeObserve that there is little
difference in iteration counts between the two variants eviarge range ofy values. The
time taken to solve a problem decreases very slowly or resnaimost invariant with the
adaptive algorithm, ag;; decreases over this range, whereas the nonadaptive higdst
more expensive for large values@f.
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FIGURE 5.1: Time and iteration count of adaptive reduction with balasheelection, com-
pared to those for the original MPC algorithm. The valuegpfis set tom (100%) for all
cases.
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(A) MUSHROOM problem: in solving a well (B) ISOLET problem: in solving a poorly
balanced problem, the two algorithms showbalanced problem, the balanced algorithm
little difference. shows better robustness.

FIGURE 5.2: The adaptive balanced and adaptive nonbalanced algoritaraxompared,
with the constraint choice based 6te.

In Figure5.4, the two constraint choices based on one-sided distancarade applied
to the adaptive balanced reduction algorithm and are cosdparer a range afy; values. In
solving easy problems having almost all support vectorshenbbundary planes, it is hard
to say which constraint choice is better than the other. Rod Iproblems, th&e based
constraint choice is capable of filtering out more pattetriatar iterations and shows better
performance.

In Figure5.5, we compare the number of patterns used and the compleritgemea-
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FIGURE 5.3: LETTER problem: the adaptive and nonadaptive balanced algoritarescom-
pared, with the constraint choice based Qe.
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(A) ISOLET, an easy problem. (B) WAVEFORM, a hard problem.

FIGURE 5.4: The two constraint choices are applied for adaptive balaheeluction.

suremenj at every iteration for various choices@f. Whengy is large, the graphs qf are
quite close to each other. From these graphs we see thatateh shrection of the adaptive
reduction algorithm is not as good as that of the unreducgatigthm at early iterations. At
later iterations, however, the search direction of the tidapeduction algorithm is as good
as that of the unreduced MPC algorithm, and sometimes better

We compared our algorithm CRSVM to LIBSVNs[and SVM®*9"* [21] on the ADULT
problem of the UCI repositoryl]. We obtained a formatted problem from the LIBSVM web
page p]. The problem consists of 9 sparse training sets with difienumbers of sample
patterns. Each training set has a corresponding testingFsetthis comparison, we used
the linear SVM, giving the algorithmX in a sparse format with no modification except the
normalization §.2). We used adaptive balanced constraint reduction, chggsitierns based
on Qe. Figure5.6 shows the timing results. Observe that the timing curve ofabgorithm
is close to linear, while those of LIBSVM and SVNI' are between linear and cubizd].
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FIGURE 5.5: LETTER problem: adaptive balanced reduction based®a constraint choice.
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(A) Timing results.

(B) Timing complexity is almost linear in
the number of training patterns.

FIGURE 5.6: Timing results of algorithms for linear SVM training @mULT data sets.

5.2. Nonlinear SVM examples.We compared our algorithm to LIBSVM and SVMI*.
We used adaptive balanced constraint reduction, choositigrps based ofee. We tested
the algorithms on thebuLT problem of the UCI repository. For this comparison, we used
a Gaussian kerndl(x,x) = exp (—||x — %[?/(202)) with o = /1/2, wherel is 123, the
dimension of the input patterss.

We computed a low-rank approximationkousing both MaTLAB’s EIGS function and
our implementation in MTLAB of a low rank Cholesky factorization with symmetric piv-
oting [15. The CHOL algorithm returns a rank Cholesky factorL. and a permutation

6This is the default setting of Gaussian kernel in LIBSVM.
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with 6414 training patterns. with rank 64 from EIGS and rank 300 from
CHOL.

FIGURE 5.7: Gram matrix approximation oADULT data sets.

matrix P such thaP”LLTP ~ K.
Figure5.7 shows results for these approximations onAlbesLT data set. Figure5.7a
and5.7bshow relative error of the low rank approximationkomeasured by

1K~ VAV /|K|s and |[K—PTLLP|o/|K|/s.

As illustrated in Figuré. 73 for a given rank EIGS approximat& much better than CHOL.
However, EIGS uses a fast multipole algorithm, IFGT, to agpnate matrix-vector products
involving K, and there is a limit to how large the rank can be before IFGbbes imprac-
tically slow, since its tolerance must be tightened as th& imincreased. In our experiments
we set the IFGT tolerance to hein(0.5,4/+v/rank). Figure5.7bshows that, when the rank
is fixed, errors in the Gram matrix approximation by CHOL am@rensensitive to the number
of training patterns. Figur.7cand5.7dshow the time to approximaf&. In Figure5.7a
and5.7¢ EIGS and CHOL were tested on the set of 6414 training patteim Figure5.7b

7IFGT supports dense input only.
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(A) Timing results of algorithms oRDULT  (B) Time to approximate the Gram matrix
data sets. The CRSVM time includes Graand train SVMs with a rank 64 approxima-
matrix approximation. tion through EIGS.

FIGURE 5.8: Nonlinear SVM training omDULT data sets.

Size LIBSVM SVMLight CRSVM(+EIGS) CRSVM(+CHOL)

1605 83.57 83.57 83.62 83.60
2265 83.94 83.94 83.93 83.95
3185 83.85 83.84 83.85 83.84
4781 83.97 83.97 83.97 83.97
6414 84.15 84.15 84.17 84.19
11220 84.17 84.18 84.21 84.21
16100 84.58 84.58 84.58 84.45
22696 85.01 - 84.82 84.98
32561 84.82 - 84.92 84.85

TABLE 5.2: Accuracy shown as percent of testing patterns correctlgsifeed.

and5.7d we requested a rank 64 approximation from EIGS and a rankap@@oximation
from CHOL.

Figure 5.8a compares CRSVM with the other methods. Notice both LIBSVMI an
SVM!ight gre implemented in the C language. We expect we can improv@V®Rand
CHOL by implementing them in C. We requested 64 eigenvalndeaenvectors from EIGS
to form a rank 64 approximation i&. We set CHOL to form a rank 300 approximation. Fig-
ure5.8bshows times for both the approximation and the training.€fal2 shows accuracy
of the classifier generated by each algorithm, measuredebpetctentage of correctly classi-
fied testing patterns. The classifiers were tested on degassbciated with the training set.
Notice that, with a proper approximation, it is possible &b g classifier performing as well
as the one trained with the exact matrix.

5.3. Visualizing how the algorithm works. To illustrate how our algorithm achieves
efficiency, we constructed a two dimensional toy problem.géeerated 2000 uniformly dis-
tributed random points if-1, 1] x [—1, 1]. Then, we set an intentional ellipsoidal separation
gap and deleted patterns inside the gap, resulting in 172Aaining patterns.
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obs: 1727 Iteration: 2, # of obs: 1727 Iteration: 4, # of obs: 1092 Iteration: 6, # of obs: 769
o . 3 oeon . }

R

e

YN

(A) 0/1727 (B) 2/1727 (C) 4/1092 (D) 6/769

Iteration: 8, # of obs: 452 Iteration: 10, # of obs: 290 Iteration: 12, # of obs: 138 Iteration: 14, # of obs: 30

(E) 8/452 (F) 10/290 (G) 12/138 (H) 14/30

FIGURE 5.9: Snapshots of finding a classifier using the adaptive redndaiigorithm for

a randomly generated toy problem in 2-dimensional inputceparhe mapping associated
with the second order homogeneous polynomial kernel is tesBdd the surface. The num-
bers below each figure indicatéeration) /(number of involving patterns

Figure5.9shows snapshots of several iterations of the adaptive t&adareduction algorithm
(with g = m) in solving the problem. Patterns are chosen basefenTo find an ellip-
soidal classifier, the mapping.6) (associated with a second order homogeneous polynomial
kernel) is used to map the 2-dimensional input space of thid@m to a 3-dimensional feature
space. The dashed ellipsoids are the boundary curvessponding to boundary planes in
the feature space. As the iteration count increases, théewuaof selected patterns decreases,
and only the on-boundary support vectors are chosen at thdeading to significant time
savings.

6. Conclusion. We presented an algorithm for training SVMs using a constraduced
IPM with a direct solver for the normal equations. Significeme saving is reported for all
problems, since the algorithm acts as an adaptive filterxoluding unnecessary patterns.
For problems in which iterative solvers are appropriateyst@int reduction would reduce
the cost of matrix-vector products.

Balanced constraint selection is more robust than unbathnthe(2e constraint choice
proved to be more effective than the one-sided distancescedly for hard problems that
have many off-boundary support vectors. Other constr&iaioe heuristics can be used pro-
vided that they include constraints that seem to be mosteaatithe current point. Blending
different constraint choices is also allowable.

We experimentally compared our algorithms with other papualgorithms, including
LIBSVM and SVM'9"t We showed the potential of our algorithms on training lir@¥Ms.

In training nonlinear SVMs, we showed how our algorithm carapplied when using a low-
rank approximation to the Gram matrix.

The algorithm has substantial potential parallelism, baul balancing could be chal-
lenging, since constraints are dynamically chosen.
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