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ADAPTIVE CONSTRAINT REDUCTION FOR TRAINING
SUPPORT VECTOR MACHINES ∗

JIN HYUK JUNG†, DIANNE P. O’LEARY‡, AND ANDRÉ L. TITS§

Abstract. A support vector machine (SVM) determines whether a given observed pattern lies in a particular
class. The decision is based on prior training of the SVM on a set of patterns with known classification, and training
is achieved by solving a convex quadratic programming problem.Since there are typically a large number of training
patterns, this can be expensive. In this work, we propose an adaptive constraint reduction primal-dual interior-point
method for training a linear SVM withℓ1 penalty (hinge loss) for misclassification. We reduce the computational
effort by assembling the normal equation matrix using only a well-chosen subset of patterns. Starting with a large
portion of the patterns, our algorithm excludes more and more unnecessary patterns as the iteration proceeds. We
extend our approach to training nonlinear SVMs through Grammatrix approximation methods. We demonstrate the
effectiveness of the algorithm on a variety of standard testproblems.

Key words. Constraint reduction, column generation, primal-dual interior-point method, support vector ma-
chine.
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1. Introduction. Characteristics such as gill placement, coloring, and habitat can pre-
dict whether or not a mushroom is edible. Pattern recognition tasks such as this can be auto-
mated by use of asupport vector machine(SVM). Given apattern(set of observed character-
istics)x in some domain setX , the SVM decides whether or not the pattern is in a particular
class, e.g., “edible”. In the case of alinear SVM, the machine makes the decision by testing
whether the point inX specified by the pattern is above or below a hyperplane

{x : 〈w,x〉 − γ = 0}.

Here〈·, ·〉 denotes an inner product. Before the SVM can be put to use, atraining process
determines the parametersw andγ, based on a set oftraining patternsxi each having a pre-
determined classification labelyi = ±1, i = 1, ...,m, e.g., “edible” or “not edible”. The goal
is to set the parameters so that

sign(〈w,xi〉 − γ) = yi, for i = 1, ...,m.

Thus, the machine is trained to correctly identify the patterns with known classifications and
is then used for classifying future patterns. If no hyperplane separates the two classes, then
a loss function is included in the training to add a penalty for misclassification. In either case,
this training process can be formulated as a convex quadratic program (CQP).

Often, the number of training patternsm is very much larger than the dimension ofx

(andw), and it is well known thatw andγ are determined by a small subset of the training
patterns. In this paper, we develop an efficient primal-dualinterior-point method (PDIPM)
for solving this CQP. The novelty of our algorithm is the way that we iteratively identify the
small subset of critical training patterns and ignore the rest.
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Other authors have also exploited the fact that the number ofcritical patterns is small.
Osuna et al. [25] proposed a decomposition algorithm for the dual SVM formulation, solving
a sequence of reduced problems, and Joachims [21] proposed some improvements. Platt [26]
proposed a sequential minimal optimization (SMO) algorithm that allows only two variables
to change at a time; see the four essays in [20] for further discussion of the literature. Ferris
and Munson [14] considered training linear SVMs withℓ1 andℓ2 hinge loss functions. They
efficiently applied the Sherman-Morrison-Woodbury (SMW) formula to solving the normal
equations for training the SVM, the most expensive operation in the PDIPM. Gertz and Grif-
fin [16] proposed using either a parallel direct solver or a preconditioned conjugate gradient
solver tailored for the PDIPM normal equations in training an SVM with ℓ1 hinge loss.

In this work the focus is again on the normal equations for theℓ1 hinge loss formula-
tion. Like Osuna et al., we reduce computational cost by omitting unnecessary constraints
or patterns in assembling the matrix for the normal equations. However, in contrast to the
decomposition based algorithms, we solve onlyoneoptimization problem, using constraint
selection only to determine the search direction at each iteration of a PDIPM. Our algorithm
is closely related to a PDIPM proposed for solving a general CQP with many inequality con-
straints [22].

Reducing the computational cost of linear and convex programming by using only a small
number of the constraints has been actively studied. Ye [38] pioneered a “build-down”
scheme for linear programming (LP), proposing a rule that can safely eliminate inequality
constraints that will not be active at the optimum. Dantzig and Ye [9] proposed a “build-up”
IPM of dual affine-scaling form. A potential reduction algorithm proposed by Ye [39] allows
column generation for linear feasibility problems, and Luoand Sun [23] proposed a similar
scheme for convex quadratic feasibility problems, to whichCQPs can be transformed. Den
Hertog et al. proposed “build-up” and “build-down” IPM variants [11, 12]. They also pro-
posed a path-following cutting plane algorithm for convex programming, where they used
the “build-up and -down” IPM for LP to solve a sequence of LP relaxations of the convex
programming [10].

In our algorithm the constraints at each step are chosen based only on the current iter-
ate, rather than by building up or down. Related algorithms for LP were considered in [32]
and [34].

To present our algorithm, we begin in Section2 by formulating the SVM training prob-
lem as a CQP. In Section3, we describe our adaptive constraint reduction approach for
a quadratic programming version of Mehrotra’s predictor-corrector (MPC) algorithm (see [24],
[17], and [16]). We extend our results to certain nonlinear SVMs in Section 4. In Section5,
numerical results are presented. Finally, concluding remarks are provided in Section6.

Throughout this paper we denote matrices by upper-case boldletters and column vectors
by lower-case bold letters. The entries of a vectorx arexi, while those for a matrixK arekij .
Theith row of the matrixX is denoted byxT

i . Given a vectory, the matrixY is the diagonal
matrix formed from the entries in the vector:Y = diag(y). The cardinality of a setS is
denoted by|S|.

2. Support vector machines.An SVM is a binary classifier, answering ‘yes’ or ‘no’ to
an input pattern, based on whether or not the pattern lies in aparticular half space. In this
section we review the formulation of SVMs and their training.

2.1. Data representation, classifier, and feature space.The training data patterns are
defined as

(x1, y1), ..., (xm, ym) ∈ X × {−1,+1}, (2.1)
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x1

x2

FIGURE 2.1: By mapping the patterns in the pattern space(x1, x2) to a higher dimensional
feature space(x2

1, x
2
2,
√

2x1x2), the SVM constructs an ellipsoidal classifier in the original
pattern space by finding a linear classifier in the feature space.

wherem is the number of training patterns.
A linear classifieris a hyperplane{x : 〈w,x〉 = γ} in X that separates the “−” patterns

(yi = −1) from the “+” patterns (yi = +1). For a patternx ∈ X , the decision or predictiony
of the classifier is

y = sign(〈w,x〉 − γ). (2.2)

To find a good classifier, it may be necessary to use afeature map

Φ : X→H (2.3)

x 7→ Φ(x), (2.4)

to map the training patterns into afeature spaceH (possibly of higher dimension) endowed
with an inner product〈·, ·〉H. We define the length or norm of a vectora ∈ H to be

‖a‖H =
√

〈a,a〉H.

A linear classifier determined in the feature space may induce anonlinearclassifier in
the original pattern space. For example, define a feature mapfrom R

2 to R
3 as

Φ : R
2→R

3,

(x1, x2)
T 7→ (x2

1, x
2
2,
√

2x1x2)
T .

(2.5)

Then the inner-product in the feature spaceR
3 can be used to define the separator inR

2

illustrated in Figure2.1. Accordingly, we first limit our study to linear SVMs inRn, and then
consider nonlinear SVMs in Sections4 and5.2.

2.2. Maximizing the separation margin. We now focus on finding a linear classifier,
wherexi ∈ R

n for i = 1, ...,m. We use the standard inner product〈x1,x2〉 = xT
1 x2.

If the training patterns are strictly separable, then thereare infinitely many hyperplanes
that can correctly classify the patterns, as illustrated inFigure2.2. To choose a desirable
separating hyperplane, we seek one that maximizes theseparation margin, defined to be the
minimal distance from the hyperplane to the “+” patterns (yi = 1) plus the minimal distance
to the “−” patterns (yi = −1).
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(A) Available planes. (B) The plane with maximal margin.

FIGURE 2.2: The SVM is trained to find a hyperplane with maximal separation margin. The
hyperplane can classify data according to the predetermined labels. Circles and squares
denote positive and negative patterns, respectively.

How can we find this hyperplane? If the patterns are separable, then there exists at least
one “+” pattern and one “−” pattern closest to any separating hyperplane. Define the“ +”
and “−” class boundary planesto be the two hyperplanes parallel to the separating hyper-
plane that contain these two patterns. Then the distance between these class boundary planes
is the separation margin, and we definew andγ so that{x : 〈w,x〉 = γ} is the plane halfway
between them. Since the patterns are separable, there is no pattern in between the boundary
planes, and we can scalew andγ so that, for alli ∈ {1, ...,m},

〈w,xi〉 − γ ≥ yi, if yi = +1, (2.6)

〈w,xi〉 − γ ≤ yi, if yi = −1, (2.7)

or equivalently

yi(〈w,xi〉 − γ) ≥ 1.

So, the boundaries of the half spaces defined by (2.6) and (2.7) are the “+” and “−” class
boundary planes.

Since the distance between the boundary planes is2
‖w‖ , where‖w‖2 = 〈w,w〉, the

problem can now be modeled as an optimization problem, called thehard-margin SVM:

min
w,γ

1

2
‖w‖2

2 (2.8)

s.t. Y(Xw − eγ) ≥ e, (2.9)

whereX = [x1, ...xm]T ∈ R
m×n ande = [1, ..., 1]T . Notice that this problem has one

constraint per pattern. Typicallym ≫ n, and that is the case we consider here.
If the data are not separable, there is no solution to the hard-margin optimization problem.

To cope with this situation, we add amisclassification penaltyin the objective function (2.8).
We introduce a nonnegative relaxation variableξ in order to measure misclassification, ob-
taining relaxed constraints

yi(〈w,xi〉 − γ) ≥ 1 − ξi. (2.10)

Adding anℓ1 misclassification penalty to the objective function (2.8), we get the (primal)
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soft-margin SVM(with ℓ1 hinge loss) proposed by Cortes and Vapnik1 [8]:

min
w,γ,ξ

1

2
‖w‖2

2 + τ
T
ξ (2.11)

s.t. Y(Xw − eγ) + ξ ≥ e, (2.12)

ξ ≥ 0, (2.13)

whereτ is anm-dimensional vector of positive penalty parameters for thetrade-off between
the separation margin maximization and the error minimization. This soft-margin formula-
tion is often preferred to the hard-margin formulation evenwhen the training patterns are
strictly classifiable [4]. Notice this formulation is a CQP withm nontrivial constraints (2.12),
m bound constraints (2.13), m relaxation variablesξ, andn variablesw, wherem ≫ n.

2.3. Dual formulation, Gram matrix, and support vectors. The dual of the CQP
given by formulae (2.11)-(2.13) is

max
α

−1

2
α

T YKYα + eT
α (2.14)

s.t. yT
α = 0, (2.15)

0 ≤ α ≤ τ, (2.16)

where the symmetric positive semidefinite Gram matrixK ∈ R
m×m has entries

kij = 〈xi,xj〉,

(i.e.,K = XXT ) and whereαi is the dual variable associated with theith constraint in (2.12).
If α∗ solves this dual problem, then we can compute the solution tothe primal prob-

lem (2.11)-(2.13) from it:

w∗ = XT Yα
∗ =

∑

i∈S

α∗
i yixi, for S = {i : 0 < α∗

i }, (2.17)

γ∗ =
1

|Son|
∑

i∈S

(〈w∗,xi〉 − yi) , for Son = {i : 0 < α∗
i < τi}, (2.18)

ξ∗i = max {1 − yi(〈w∗,xi〉 − γ∗), 0} , for i = 1, ...,m. (2.19)

Note that (2.18) is obtained from (2.12), noticing that

yi(〈w∗
i ,xi〉 − γ∗) = 1 for all i such that0 < α∗

i < τi.

The subscript “on” will be explained in the next paragraph. While γ∗ = (〈w∗,xi〉 − yi)
for every i ∈ Son, the averaging in (2.18) provides somewhat better accuracy than using
a single equation to determineγ∗. Equation (2.19) is obtained from (2.12) and (2.13). In
view of (2.17), the Lagrange multiplierαi can be interpreted as the weight of theith pattern
in defining the classifier.

Support vectors(SVs) are the patterns that contribute to defining the classifier, i.e., those
associated with positive weightα∗

i . The on-boundarysupport vectors have weight strictly
between the lower bound0 and the upper boundτi, and, geometrically, lie on their class
boundary plane, i.e., both (2.12) and (2.13) are active. Theoff-boundarysupport vectors have

1They use a scalarτ .
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Pattern Type α∗
i s∗i ξ∗i

Off-boundary support vector τi 0 (0,∞)
On-boundary support vector (0, τi) 0 0
Nonsupport vector 0 (0,∞) 0

TABLE 2.1: Classification of support vectors and nonsupport vectors. Heres∗i is the optimal
slack variable, defined ass∗i := y∗

i (〈w∗,xi〉−γ∗)+ξ∗i −1, associated with theith constraint
in (2.12).

the maximal allowable weightα∗
i = τi and lie on the wrong side of the class boundary plane,

i.e., (2.12) is active but (2.13) is inactive [28].2 We summarize this classification in Table2.1.
We now have formulated our optimization problem and turn ourattention to solving it.

3. Adaptive constraint (pattern) reduction. In this section we present a standard
primal-dual interior-point method for training our SVM, and then improve the efficiency of
the method by adaptively ignoring some patterns. Since eachpattern corresponds to a primal
constraint, this is called constraint reduction.

3.1. Primal-dual interior-point method. Since the soft-margin formulation for the
SVM (2.11)-(2.13) is a CQP, every solution to the associated Karush-Kuhn-Tucker (KKT)
conditions is a global optimum. Therefore, training the machine is equivalent to finding a
solution to the KKT conditions for the primal (2.11)-(2.13) and the dual (2.14)-(2.16) prob-
lems [16]:

w − XT Yα = 0, (3.1)

yT
α = 0, (3.2)

τ − α − u = 0, (3.3)

YXw − γy + ξ − e − s = 0, (3.4)

Sα = 0, (3.5)

Uξ = 0, (3.6)

s,u,α,ξ ≥ 0,

wheres is a slack variable vector for the inequality constraints (2.12), andu is a slack for
the upper bound constraints (2.16) and a vector of multipliers for the non-negativity con-
straints (2.13). Conditions (3.1)-(3.3) relate the gradient of the objective function to the con-
straints that are active at an optimal solution, while (3.4) is the primal feasibility condition.
Conditions (3.5) and (3.6) enforce complementary slackness.

In order to find a solution, we use a PDIPM. We apply a Newton-like method to solv-
ing the KKT conditions, with perturbations added to the complementarity conditions (3.5)
and (3.6). For the variant of the MPC algorithm discussed in [16] (analogous to that in [36]),
the search direction is obtained by solving the system of equations

∆w − XT Y∆α = −(w − XT Yα) ≡ −rw,

yT ∆α = −yT
α ≡ −rα,

2In many articles discussing the decomposition method, the terms“in-bound” and “bound support vectors” are
used to denote on-boundary and off-boundary support vectors, respectively. The former terms are based on the bound
constraints (2.16), whereas the latter terms are based on geometry.
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−∆α − ∆u = −(τ − α − u) ≡ −ru,

YX∆w − y∆γ + ∆ξ − ∆s = −(YXw − γy + ξ − e − s) ≡ −rs,

S∆α + diag(α)∆s = −rsv,

diag(ξ)∆u + U∆ξ = −rξu.

First, an affine scaling (predictor) direction(∆waff,∆γaff,∆ξ
aff,∆saff,∆αaff,∆uaff) is

computed by setting

rsv = Sα, (3.7)

rξu = Uξ. (3.8)

Then, the combined affine-scaling and corrector step is obtained by setting

rsv = Sα − σµe + ∆Saff∆α
aff, (3.9)

rξu = diag(ξ)u − σµe + ∆Uaff∆ξ
aff, (3.10)

where thecomplementarity measure3 is defined by

µ =
sT α + ξ

T
u

2m
,

σ > 0 is a centering parameterdefined later, and∆Saff and∆Uaff are diagonal matrices
formed from∆saff and∆uaff respectively. These equations can be reduced to thenormal
equations

M∆w ≡
(

I + XT YΩ−1YX − ȳȳT

yT Ω−1y

)

∆w = −r̄w − 1

yT Ω−1y
r̄αȳ, (3.11)

where

Ω = diag(α)−1S + U−1 diag(ξ),

ȳ = XT YΩ−1y = XT Ω−1e,

r̄w = rw +XT YΩ−1rΩ, andr̄α = rα −yT Ω−1rΩ. Once (3.11) has been solved for∆w,
the increments∆γ, ∆α, ∆ξ, ∆u, and∆s are obtained by solving

∆γ =
1

yT Ω−1y

(

−r̄α + ȳT ∆w
)

, (3.12)

∆α = −Ω−1(rΩ + YX∆w − y∆γ), (3.13)

∆ξ = −U−1 diag(ξ)(r̄u − ∆α), (3.14)

∆u = −diag(ξ)−1(rξu + U∆ξ), (3.15)

∆s = −diag(α)−1(rsv + S∆α), (3.16)

wherer̄u = ru + diag(ξ)−1rξu andrΩ = rs + diag(α)−1rsv − U−1 diag(ξ)r̄u; see [16]
for detailed derivation.

Forming and solving the normal equations (3.11) is the most time consuming task in a
step of the predictor-corrector algorithm, so we now focus on how to speed up this process.
Fine and Scheinberg [15] and Ferris and Munson [14] use the dual formulation (2.14)-(2.16),

3It is sometimes called theduality measure.
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so their normal equations involve anm × m matrix, considerably larger than ourn × n
matrix M. They use the Sherman-Morrison-Woodbury (SMW) formula to reduce compu-
tational complexity fromO(m3) to O(mn2). In contrast, Gertz and Griffin [16] solve the
normal equations (3.11) iteratively, using a matrix we callM(Q) as a preconditioner. The
approach of Woodsend and Gondzio [35], with ℓ1 hinge loss, results in the same KKT system
and search direction equations as those of Gertz and Griffin.However, they apply a different
sequence of block eliminations, resulting in different normal equations. Chapelle discusses
relations between the primal and dual based approaches [6]. He shows that when using the
SMW formula, finding the search direction has the same computational complexity for the
primal as for the dual, but he argues that the primal approachis superior, because it directly
attempts to maximize the separation margin. We choose to speed up the computation by
forming an approximation to the matrixM.

3.2. Constraint reduction. In [22] we developed and analyzed an algorithm for solving
CQPs by replacing the matrixM in the normal equations (3.11) by an approximation to it. In
this section we see how this idea can be applied to the SVM problem.

Sinceyi = ±1 andΩ is diagonal, we see that

YΩ−1Y = Ω−1 and yT Ω−1y = eT Ω−1e.

Now, consider the matrix of the normal equations (3.11),

M = I + XT YΩ−1YX − ȳȳT

yT Ω−1y

= I +

m
∑

i=1

ω−1
i xix

T
i − (

∑m
i=1 ω−1

i xi)(
∑m

i=1 ω−1
i xi)

T

∑m

i=1 ω−1
i

,

and the matrix

M(Q)≡I +
∑

i∈Q

ω−1
i xix

T
i −

(
∑

i∈Q ω−1
i xi)(

∑

i∈Q ω−1
i xi)

T

∑

i∈Q ω−1
i

, (3.17)

whereQ ⊆ {1, . . . ,m} and

ω−1
i =

αiui

siαi + ξiui

.

If Q = {1, . . . ,m}, thenM(Q) = M. If Q ⊂ {1, . . . ,m}, thenM(Q) is an approxima-
tion, accurate if the neglected terms are small relative to those included. The approximation
reduces the computational cost for the matrix assembly, which is the most expensive task in
a PDIPM, fromO(mn2) to O(|Q|n2).

How do we obtain a good approximation? Strict complementarity typically holds be-
tween the variabless andα and betweenu andξ, so we make use of this assumption. The
last term inM(Q) is a rank-one matrix, so the bulk of the work is in handling thesecond term.
Patterns associated with largerω−1

i make a larger contribution to this term. Sinceαi+ui = τi,
the quantityω−1

i becomes very large exactly when bothsi andξi are close to zero. Therefore,
as seen in Table2.1, the important terms in the first summation in (3.17) are associated with
the on-boundary support vectors. Identifying on-boundarysupport vectors is not possible un-
til we find the maximal margin classifier and its class boundaries. At each iteration, however,
we have an approximation to the optimal value ofωi, so we find prospective on-boundary
support vectors by choosing the patterns with smallωi. As described in [16], a growingω−1

i
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diverges to infinity at anO(µ−1) rate and a vanishingω−1
i converges to zero at anO(µ) rate.

Therefore, as the intermediate classifier approaches the maximal margin classifier, it becomes
clearer which patterns are more likely to be on-boundary support vectors. This enables us to
adaptively reduce the index set size used in (3.17). To measure how close the intermediate
classifier is to the optimal one, we can use the complementarity measureµ, which converges
to zero. At each iteration, we set the sizeq of our index setQ to be a value between two
numbersqL andqU :

q = max {qL,min {⌈ρm⌉, qU}}, (3.18)

where the heuristic choice

ρ = µ
1

β

tends to synchronize decrease of|Q| with convergence of the optimality measure. Hereβ > 0
is a parameter for controlling the rate of decrease, andqU is also an algorithm parameter,
but qL changes from iteration to iteration. At the first iteration we randomly chooseqU

indices, because we have no information about the classifier. Fast clustering algorithms may
improve the initial selection [3].

We now show how to choose patterns and determineqL at each iteration. Based on
our examination ofω−1

i , there are several reasonable choices. DefineQ(z, q), the set of all
subsets ofM = {1, . . . ,m} that contain the indices ofq smallest components ofz ∈ R

m:

Q(z, q) = {Q |Q ⊆ M, |Q| = q andzi ≤ zj ∀i ∈ Q, j /∈ Q}. (3.19)

If there are no ties for theqth smallest component, thenQ(z, q) contains a single index set.
It is also possible to include additional indices in these sets for heuristic purposes, as allowed
by [32]. Then, we have the following choices of patterns:

• Rule 1: Q(YXw− γy + ξ− e, q). This rule selects the patternsxi corresponding
to indices in these sets with the smallest “one-sided” distance to its class boundary
plane, meaning that we only consider patterns that are on thewrong side of their
class boundary plane. Assuming primal feasibility, this measures the slacks of the
primal constraints (2.12). This choice is most intuitive because support vectors con-
tribute to defining the classifier, which is the underlying idea for most decomposition-
based algorithms. Inspired by the rate of convergence or divergence ofω−1

i , as noted
above, we define the lower boundqL on the index set size by

qL =

∣

∣

∣

∣

{

i :
αi

si

≥ θ
√

µ or si ≤
√

µ

}∣

∣

∣

∣

,

whereθ is a prescribed parameter, so that we include terms with small values ofsi.
• Rule 2: Q(Ωe, q). The patternsxi chosen by these sets have the smallestωi, and

thus the largest contributions to the second term in the definition of the matrixM.
Again, considering the rate of convergence or divergence ofω−1

i , we define the
lower boundqL on the index set size by counting the number of largeω−1

i :

qL =
∣

∣{i : ω−1
i ≥ θ

√
µ}

∣

∣ , (3.20)

whereθ is a prescribed parameter. Under our strict complementarity assumption,
the value ofqL will eventually converge to the number of divergingω−1

i , or, equiv-
alently, the number of on-boundary support vectors.
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Either of these choices, however, may have an imbalance between the number of patterns
selected from the “+” and “−” classes. In the worst case, we might select patterns from only
one of the classes, whereas on-boundary support vectors aretypically found in both classes.
To avoid this unfavorable situation, we might want to use abalancedchoice of patterns,
specifying the numberq+ andq− chosen from each class as

q+ = max

(

q+
L ,min

(⌈

min (⌈ρm⌉, qU )

2

⌉

,m+

))

, (3.21)

q− = max

(

q−L ,min

(⌈

min (⌈ρm⌉, qU )

2

⌉

,m−

))

, (3.22)

wherem+ andm− are the number of “+” and “−” patterns, respectively. The valuesq+
L

andq−L are lower bounds defined for each class; for example, insteadof (3.20) we use

q+
L = |{i : ω−1

i ≥ θ
√

µ andyi = 1}|,
q−L = |{i : ω−1

i ≥ θ
√

µ andyi = −1}|.

We adjust eitherq+ or q− so thatq+ + q− = q, the desired number of patterns. Givenq+

andq−, we define the sets

Q+(z, q+) = {Q |Q ⊆ M, |Q| = q+ andzi ≤ zj ∀i ∈ Q, j /∈ Q anddi = dj = +1},
Q−(z, q−) = {Q |Q ⊆ M, |Q| = q− andzi ≤ zj ∀i ∈ Q, j /∈ Q anddi = dj = −1}.

The setQ is the union of one set inQ+(z, q+) and another inQ−(z, q−):

Q ∈ Q(z, q) = {Q |Q = Q+ ∪ Q−, Q+ ∈ Q+(z, q+) andQ− ∈ Q−(z, q−)}.

In the notation, we have suppressed the dependence ofQ(z, q) onq+ andq−, to be consistent
with notation for the non-balanced choice (3.19). Having determinedQ, we construct the
reduced normal equation for one step of our interior-point method by assembling the matrix
for the normal equation using a subset of the patterns, and solving

M(Q)∆w = −r̄w − 1

yT Ω−1y
r̄αȳ. (3.23)

Then we solve (3.12)-(3.16) for ∆γ, ∆α, ∆ξ, ∆u, and∆s. Before we proceed, we have to
ensure that the reduced matrixM(Q) is positive definite.

PROPOSITION3.1. The matrixM(Q) is symmetric and positive definite.
Proof. See Proposition 1 in [16].
The following proposition explains the asymptotic convergence of the reduced matrix to

the unreduced one.
PROPOSITION 3.2. For q defined in (3.18) and for all Q ∈ Q(Ωe, q), there exists

a positive constantCM satisfying‖M − M(Q)‖2 ≤ CM

√
µ.

Proof. See Proposition 5 in [16].
Winternitz et al. presented convergence results for a MPC constraint reduction algorithm

for LP [34]. In recent work [22], we provided a convergence proof for a constraint-reduced
affine-scaling primal-dual interior-point method for convex quadratic programming. Typi-
cally, MPC algorithms require less work than affine scaling,especially when the initial point
is not near the central path. Therefore, we state in Algorithm 1 a variant of a Mehrotra-type
predictor-corrector algorithm with a constraint reduction mechanism to determineM(Q).
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ALGORITHM 1 (Constraint reduced SVM (CRSVM)).

Parameters: β > 0, τ > 0, θ > 0, integerqU satisfyingqU ≤ m, Bal ∈ {false, true},
CC ∈ {‘one-sided dist’, ‘omega’}.
Given a starting point(w, γ,ξ, s,α,u) with (ξ, s,α,u) > 0.
for k = 0, 1, 2, . . . do

Terminate if convergence is detected:

max {‖rw‖∞, |rα|, ‖ru‖∞, ‖rs‖∞}
max{‖A‖∞, ‖τ‖∞, 1} ≤ tolr and µ ≤ tolµ,

or iteration count is reached.

If Bal is false, then determineq according to (3.18); otherwise determineq+ andq−

from (3.21) and (3.22).
Pick Q from Q(YXw − γy − e + ξ, q) if CC is ‘one-sided dist’, or fromQ(Ωe, q)
if CC is ‘omega’.

Solve (3.23) and (3.12)-(3.16) for (∆waff,∆γaff,∆ξ
aff,∆saff,∆αaff,∆uaff) using

affine-scaling residuals from (3.7)-(3.8).
Determine predictor step length:

αaff := max
α∈[0,1]

{α : (ξ, s,α,u) + α(∆ξ
aff,∆saff,∆α

aff,∆uaff) ≥ 0}. (3.24)

Set

µaff :=
(s + αaff∆saff)T (α + αaff∆αaff) + (ξ + αaff∆ξ

aff)T (u + αaff∆uaff)

2m
.

Setσ := (µaff/µ)3.

Solve (3.23) and (3.12)-(3.16) for (∆w,∆γ,∆ξ,∆s,∆α,∆u) using combined step
residuals from (3.9)-(3.10).
Determine the step length for the combined step:

α := 0.99 max
α∈[0,1]

{α : (ξ, s,α,u) + α(∆ξ,∆s,∆α,∆u) ≥ 0}. (3.25)

Set

(w, γ,ξ, s,α,u) := (w, γ,ξ, s,α,u) + α(∆w,∆γ,∆ξ,∆s,∆α,∆u).

end for

When the matrixX is sparse, the first two terms inM(Q) are probably also sparse, but
adding the third term makes the matrix dense. Therefore, in this case we solve the normal
equations (3.23) by computing a sparse Cholesky factor (with full pivoting)for the sum of
the first two terms, and then applying the SMW formula to incorporate the rank 1 matrix.
WhenX is dense, we fully assembleM(Q) and obtain its dense Cholesky factor.
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4. Kernelization. So far we have considered the case in which the Gram matrixK is
defined askij = xT

i xj , corresponding to the standard inner product〈xi,xj〉 = xT
i xj . More

generally, we might defineK using a symmetric and positive semidefinitekernel:4

k : X × X→R

(x, x̄) 7→k(x, x̄),

settingkij = k(xi,xj).5 We assume that the dimension of the spaceX is ℓ, reservingn for
the rank of the approximation toK used in the optimization problem derived below.

If a data set has an enormous number of training patterns, buildingK may not be feasible.
For example, if the kernel is Gaussian,K is usually dense even when the matrixX of training
patterns is sparse. Even worse, the matrixM is nowm × m, and our constraint reduction is
not effective. The reason for this is that ifK has full rank, our KKT conditions become

Kw − KYα = 0,

yT
α = 0,

τ − α − u = 0,

YKw − γy + ξ − e − s = 0,

Sα = 0,

Uξ = 0,

s,u,α,ξ ≥ 0,

corresponding to the primal problem

min
w,γ,ξ

1

2
wT Kw + τ

T
ξ

s.t. Y(Kw − eγ) + ξ ≥ e,

ξ ≥ 0.

The resulting normal equations matrix is

M = K + KT YΩ−1YK − ȳȳT

yT Ω−1y
, (4.1)

which is difficult to approximate. Several researchers [6, 15, 30] have proposed to replace the
Gram matrix with a low rank approximationK ≈ VG2VT , whereG is ann× n symmetric
and positive definite matrix andV is anm × n matrix, for m ≫ n. If V has full rank,
thenK has rankn. Such approximations have been computed using the truncated eigenvalue
decomposition [7, 18], low rank Cholesky factorization with symmetric pivoting[2, 15], the
Nyström method [13, 33], and kernel PCA map [19, 31]. For some kernels, the fast multipole
method [27, 37] can be employed to compute the truncated eigenvalue decomposition.

Substituting a low rank approximation forK allows constraint reduction to be effective
in training nonlinear SVMs, if we are careful in our problem formulation. Consider an ap-
proximate dual CQP withK in (2.14)-(2.16) replaced byVG2VT . What primal problem

4Researchers in the machine learning field often use “positivedefinite” to denote “positive semidefinite” and
“strictly positive definite” for “positive definite”. Here we use the more common definitions from mathematics.

5 The kernel is symmetric ifk(x, x̄) = k(x̄,x) for everyx, x̄ ∈ X . It is positive semidefinite if the Gram
matrix is positive semidefinite foreveryfinite collection of pattern vectors. In this case, there is an associated
reproducing kernel map that allows us to defineK in the way we have indicated; see [4] and [30] for more details.
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would induce this dual? It is the problem obtained by substituting VG for X in the pri-
mal (2.11)-(2.13). Therefore, to take advantage of constraint reduction in training nonlinear
SVMs, we use the dataVG in place ofX and apply Algorithm1.

If G is only readily available in its squared inverse formG−2, we could think of let-
ting w̄ = Gw∈ R

n, which leads to the following problem:

min
w̄,γ,ξ

1

2
w̄T G−2w̄ + τ

T
ξ

s.t. Y(Xw̄ − eγ) + ξ ≥ e,

ξ ≥ 0,

whereX = V. This formulation would be useful if computingG is not desirable. For
instance,G−2 is a submatrix ofK when the empirical kernel map [29, 31] is employed.
Applying the constraint reduction to this formulation is straightforward. A simple change
of M(Q) from (3.17) to

M(Q) = G−2 + XQ
T YQ2Ω−1

Q2YQ2XQ −
ȳ(Q)ȳ

T
(Q)

yQ
T Ω−1

Q2yQ

, (4.2)

whereȳ(Q) = XT
QYQ2Ω−1

Q2yQ, and the substitution of̄w for w, ∆w̄ for ∆w, and

rw̄ = G−2w̄ − XT Yα

for rw, are all the required modifications.

5. Numerical results. We tested Algorithm1 using MATLAB version R2007a on a ma-
chine running Windows XP SP2 with an Intel Pentium IV 2.8GHz processor with 16 KB L1
cache, 1 MB L2 cache, 2×1 GB DDR2-400MHz configured as dual channel, with Hyper
Threading enabled.

Both tolr and tolµ were set to10−8. The iteration limit was set to 200. We set the
parameters asβ = 4 to control the rate of decrease ofq, θ = 102 to determineqL, andτi = 1
for i = 1, ...,m to penalize misclassification. In our experiments we varyqU . The initial
starting point was set as in [16]:

w = 0, γ = 0, ξ = s = α = u = 2e.

We compared Algorithm1 CRSVM to LIBSVM [5], and SVMlight [21]. We set their
termination tolerance parameters as their default value10−3.

5.1. Linear SVM examples. We tested our implementation on problemsMUSHROOM,
ISOLET, WAVEFORM, andLETTER, all taken from [16]. Except for theISOLET problem, all
inputs were mapped to higher dimensional feature space via the mapping associated with the
second order polynomial kernelk(x, x̄) = (xT x̄+ 1)2, as in [16]. The mappingΦ is defined
as

Φ : R
l→R

n







x1

...
xl






7→

√
2

[

x2
1√
2
, . . . ,

x2
l√
2
, x1x2, . . . , x1xl, (5.1)

x2x3, . . . , x2xl, . . . , xl−1xl, x1, . . . , xl,
1√
2

]T

,
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Name ISD FSD Patterns (+/−) SVs (+/−) On-SVs (+/−)

MUSHROOM 22 276 8124 (4208/ 3916) 2285 (1146/1139) 52 (31 / 21)
ISOLET 617 617 7797 (300 / 7497) 186 (74 / 112) 186 (74 /112)
WAVEFORM 40 861 5000 (1692/ 3308) 1271 (633 / 638) 228 (110/118)
LETTER 16 153 20000 (789 /19211) 543 (266 / 277) 40 (10 / 30)

TABLE 5.1: Properties of the problems. ISD: Input space dimension. FSD: Feature space
dimension using the map (5.1). SVs: support vectors. On-SVs: on-boundary support vectors.

wheren =
(

l+2
2

)

=
(

l
2

)

+ 2l + 1. The ith row of X is set toΦ(xi)
T , wherexT

i is theith

training input. We also normalized the resulting matrix using

xij =
xij

maxkl |xkl|
, (5.2)

as directed in [16]. Properties of the problems are summarized in Table5.1.
In our experiment, we compared our algorithms to the unreduced MPC algorithm, which

uses all the constraints for every iteration. We experimented with several variants of our
algorithms:

• nonadaptive balanced constraint reduction, which uses fixed q+ andq− throughout
the iteration;

• adaptive non-balanced constraint reduction, which determinesq as in (3.18);
• adaptive balanced constraint reduction, which determinesq+ andq− as in (3.21)

and (3.22).
We chose constraints using either one-sided distance (YXw − γy + ξ − e) or Ωe to form
the setQ, as explained in Section3.2, resulting in six algorithm variants.

In Figure5.1aand5.1b, the time and iteration count of the algorithm with the two con-
straint choices and the balanced selection scheme are compared to those of the unreduced
MPC. We setqU = m, Bal = true, andCC = ‘one-sided dist’ orCC = ‘omega’. Bar
graphs are grouped by problem. All algorithms produced residuals with similar accuracy,
and Figure5.1bshows that the number of iterations is insensitive to algorithm choice. As
a result, all of the constraint reduction algorithms are faster than the unreduced MPC algo-
rithm, as seen in Figure5.1a. In solving hard problems (MUSHROOM and WAVEFORM for
instance, which have many support vectors), it is observed that the constraint choice based
onΩe shows better performance than the other. This is because thenumber of on-boundary
support vectors is nevertheless small in the hard cases; seeTable5.1.

Figure5.2 compares the balanced and nonbalanced adaptive reduction algorithms over
a range ofqU . In solving well balanced problems, the two algorithms showlittle difference,
as seen in Figure5.2a. On the other hand, for problems such asISOLET, having many more
patterns in one class than the other, balanced selection gives more consistent performance, es-
pecially for small values ofqU , as seen in Figure5.2b. In problems with more than two clas-
sification labels, a one-class-versus-the-rest approach is frequently employed [30, Chap. 7],
so the number of “−” patterns is often much larger than the number of “+” patterns.

In Figure5.3, we compare the adaptive and nonadaptive balanced reduction algorithms
over a range of values of the upper bound on the index sizeqU . Observe that there is little
difference in iteration counts between the two variants over a large range ofqU values. The
time taken to solve a problem decreases very slowly or remains almost invariant with the
adaptive algorithm, asqU decreases over this range, whereas the nonadaptive algorithm is
more expensive for large values ofqU .
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FIGURE 5.1: Time and iteration count of adaptive reduction with balanced selection, com-
pared to those for the original MPC algorithm. The value ofqU is set tom (100%) for all
cases.
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FIGURE 5.2: The adaptive balanced and adaptive nonbalanced algorithmsare compared,
with the constraint choice based onΩe.

In Figure5.4, the two constraint choices based on one-sided distance andΩe are applied
to the adaptive balanced reduction algorithm and are compared over a range ofqU values. In
solving easy problems having almost all support vectors on the boundary planes, it is hard
to say which constraint choice is better than the other. For hard problems, theΩe based
constraint choice is capable of filtering out more patterns at later iterations and shows better
performance.

In Figure5.5, we compare the number of patterns used and the complementarity mea-
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(B) WAVEFORM, a hard problem.

FIGURE 5.4: The two constraint choices are applied for adaptive balanced reduction.

surementµ at every iteration for various choices ofqU . WhenqU is large, the graphs ofµ are
quite close to each other. From these graphs we see that the search direction of the adaptive
reduction algorithm is not as good as that of the unreduced algorithm at early iterations. At
later iterations, however, the search direction of the adaptive reduction algorithm is as good
as that of the unreduced MPC algorithm, and sometimes better.

We compared our algorithm CRSVM to LIBSVM [5] and SVMlight [21] on theADULT

problem of the UCI repository [1]. We obtained a formatted problem from the LIBSVM web
page [5]. The problem consists of 9 sparse training sets with different numbers of sample
patterns. Each training set has a corresponding testing set. For this comparison, we used
the linear SVM, giving the algorithmsX in a sparse format with no modification except the
normalization (5.2). We used adaptive balanced constraint reduction, choosing patterns based
on Ωe. Figure5.6 shows the timing results. Observe that the timing curve of our algorithm
is close to linear, while those of LIBSVM and SVMlight are between linear and cubic [26].
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FIGURE 5.6: Timing results of algorithms for linear SVM training onADULT data sets.

5.2. Nonlinear SVM examples.We compared our algorithm to LIBSVM and SVMlight.
We used adaptive balanced constraint reduction, choosing patterns based onΩe. We tested
the algorithms on theADULT problem of the UCI repository. For this comparison, we used
a Gaussian kernelk(x, x̄) = exp

(

−‖x − x̄‖2/(2σ2)
)

with σ =
√

l/2, wherel is 123, the
dimension of the input patterns.6

We computed a low-rank approximation toK using both MATLAB ’s EIGS function and
our implementation in MATLAB of a low rank Cholesky factorization with symmetric piv-
oting [15]. The CHOL algorithm returns a rankn Cholesky factorL and a permutation

6This is the default setting of Gaussian kernel in LIBSVM.
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FIGURE 5.7: Gram matrix approximation onADULT data sets.

matrixP such thatPT LLT P ≈ K.
Figure5.7 shows results for these approximations on theADULT data set.7 Figure5.7a

and5.7bshow relative error of the low rank approximation toK measured by

‖K − VΛVT ‖∞/‖K‖∞ and ‖K − PT LLT P‖∞/‖K‖∞.

As illustrated in Figure5.7a, for a given rank EIGS approximatesK much better than CHOL.
However, EIGS uses a fast multipole algorithm, IFGT, to approximate matrix-vector products
involving K, and there is a limit to how large the rank can be before IFGT becomes imprac-
tically slow, since its tolerance must be tightened as the rank is increased. In our experiments
we set the IFGT tolerance to bemin(0.5, 4/

√
rank). Figure5.7bshows that, when the rank

is fixed, errors in the Gram matrix approximation by CHOL are more sensitive to the number
of training patterns. Figure5.7cand5.7dshow the time to approximateK. In Figure5.7a
and5.7c, EIGS and CHOL were tested on the set of 6414 training patterns. In Figure5.7b

7IFGT supports dense input only.
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FIGURE 5.8: Nonlinear SVM training onADULT data sets.

Size LIBSVM SVMLight CRSVM(+EIGS) CRSVM(+CHOL)

1605 83.57 83.57 83.62 83.60
2265 83.94 83.94 83.93 83.95
3185 83.85 83.84 83.85 83.84
4781 83.97 83.97 83.97 83.97
6414 84.15 84.15 84.17 84.19

11220 84.17 84.18 84.21 84.21
16100 84.58 84.58 84.58 84.45
22696 85.01 - 84.82 84.98
32561 84.82 - 84.92 84.85

TABLE 5.2: Accuracy shown as percent of testing patterns correctly classified.

and5.7d, we requested a rank 64 approximation from EIGS and a rank 300approximation
from CHOL.

Figure 5.8a compares CRSVM with the other methods. Notice both LIBSVM and
SVMlight are implemented in the C language. We expect we can improve CRSVM and
CHOL by implementing them in C. We requested 64 eigenvalues and eigenvectors from EIGS
to form a rank 64 approximation toK. We set CHOL to form a rank 300 approximation. Fig-
ure5.8bshows times for both the approximation and the training. Table 5.2shows accuracy
of the classifier generated by each algorithm, measured by the percentage of correctly classi-
fied testing patterns. The classifiers were tested on data sets associated with the training set.
Notice that, with a proper approximation, it is possible to get a classifier performing as well
as the one trained with the exact matrix.

5.3. Visualizing how the algorithm works. To illustrate how our algorithm achieves
efficiency, we constructed a two dimensional toy problem. Wegenerated 2000 uniformly dis-
tributed random points in[−1, 1]× [−1, 1]. Then, we set an intentional ellipsoidal separation
gap and deleted patterns inside the gap, resulting in 1727 remaining patterns.
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Iteration:  0, # of obs: 1727

(A) 0/1727

Iteration:  2, # of obs: 1727

(B) 2/1727

Iteration:  4, # of obs: 1092

(C) 4/1092

Iteration:  6, # of obs:  769

(D) 6/769

Iteration:  8, # of obs:  452

(E) 8/452

Iteration: 10, # of obs:  290

(F) 10/290

Iteration: 12, # of obs:  138

(G) 12/138

Iteration: 14, # of obs:   30

(H) 14/30

FIGURE 5.9: Snapshots of finding a classifier using the adaptive reduction algorithm for
a randomly generated toy problem in 2-dimensional input space. The mapping associated
with the second order homogeneous polynomial kernel is usedto find the surface. The num-
bers below each figure indicate(iteration)/(number of involving patterns).

Figure5.9shows snapshots of several iterations of the adaptive balanced reduction algorithm
(with qU = m) in solving the problem. Patterns are chosen based onΩe. To find an ellip-
soidal classifier, the mapping (2.5) (associated with a second order homogeneous polynomial
kernel) is used to map the 2-dimensional input space of the problem to a 3-dimensional feature
space. The dashed ellipsoids are the boundary curves, corresponding to boundary planes in
the feature space. As the iteration count increases, the number of selected patterns decreases,
and only the on-boundary support vectors are chosen at the end, leading to significant time
savings.

6. Conclusion. We presented an algorithm for training SVMs using a constraint reduced
IPM with a direct solver for the normal equations. Significant time saving is reported for all
problems, since the algorithm acts as an adaptive filter for excluding unnecessary patterns.
For problems in which iterative solvers are appropriate, constraint reduction would reduce
the cost of matrix-vector products.

Balanced constraint selection is more robust than unbalanced. TheΩe constraint choice
proved to be more effective than the one-sided distance, especially for hard problems that
have many off-boundary support vectors. Other constraint choice heuristics can be used pro-
vided that they include constraints that seem to be most active at the current point. Blending
different constraint choices is also allowable.

We experimentally compared our algorithms with other popular algorithms, including
LIBSVM and SVMlight. We showed the potential of our algorithms on training linear SVMs.
In training nonlinear SVMs, we showed how our algorithm can be applied when using a low-
rank approximation to the Gram matrix.

The algorithm has substantial potential parallelism, but load balancing could be chal-
lenging, since constraints are dynamically chosen.
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