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NOISE PROPAGATION IN REGULARIZING ITERATIONS
FOR IMAGE DEBLURRING *

PER CHRISTIAN HANSEN AND TOKE KOLDBORG JENSEN

Abstract. We use the two-dimensional discrete cosine transform toystod the noise from the data enters
the reconstructed images computed by regularizing iterstithrat is, Krylov subspace methods applied to discrete
ill-posed problems. The regularization in these methods faied via the projection onto the associated Krylov
subspace. We focus on CGLS/LSQR, GMRES, and RRGMRES, aa#@®lINRES and MR-II in the symmetric
case. Our analysis shows that the noise enters primarilyeifotim of band-pass filtered white noise, which appears
as “freckles” in the reconstructions, and these artifacaesent in both the signal and the noise components of the
solutions. We also show why GMRES and MINRES are not suitethfage deblurring.

Key words. Image deblurring, regularizing iterations, Krylov subsgmcCGLS, LSQR, GMRES, MINRES,
RRGMRES, MR-II.
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1. Introduction. Iterative solvers based on Krylov subspaces are impor@amini-
age deblurring problemg[], and when combined with good preconditioners 4] these
methods are favorable alternatives to the classical FE&dbalgorithms. The Matlab pack-
ages RSTOREToOOLS[23] and REGULARIZATION TooLs[13] provide implementations of
many of these methods.

In the setting of matrix computations, the model for the bhg of an image isd x = b,
where the vectors andb represent the sharp and blurred images, and the matepresents
the blurring process. Since image deblurring is a discteposed problem, it is necessary
to use regularization in order to compute stable solutidi®s 16]. Moreover, it is often
advantageous to impose boundary conditions on the recatistn, which is achieved by
a simple modification of the coefficient matrikd, 23, 25].

One of the main goals of any regularization method is to segxmras much as possible,
the noise in the reconstruction coming from noise in the datdle at the same time com-
puting a good approximate solution. Hence, for a given rggdtion method it is important
to understand its approximation properties as well as hauppresses or filters the noise.
In this paper we will perform a computational study of thesgpprties, with an emphasis on
how the noise from the data propagates to the reconstruction

We focus onregularizing iterations where we apply a Krylov subspace method to the
un-regularized problenmin ||[Ax — b|j2 or Ax = b. The regularization comes from the
restriction of the solution to the Krylov subspace assediatith the method, and the number
of iterations plays the role of the regularization paramet®y means of preconditioning
techniques one can modify the Krylov subspace in such a walyatgeneral smoothing
norm|| L z||2 is incorporated; se€l]l, 12, 14].

Objective assessment of the perceived quality of imagediffiault task [27]. In this
paper we use the two-dimensional discrete cosine trans(D@T) to perform a spectral
analysis of the solutions to the image deblurring problempated by means of regularizing

*Received November 28, 2007. Accepted August 18, 2008. eldienline on March 5, 2008. Recommended
by Zderek Strak@. This work was carried out as part of the project CSI: Contmutal Science in Imaging,
supported by grant no. 274-07-0065 from the Danish Agencgéience Technology and Innovation.

fDepartment of Informatics and Mathematical Modelling, TecahUniversity of Denmark, Building 321, DK-
2800 Lyngby, Denmarkpch@imm.dtu.dk ).

tDepartment of Management Engineering, Technical Universitpenmark, Building 424, DK-2800 Lyngby,
Denmark tkji@imm.dtu.dk ).

204



ETNA
Kent State University
http://etna.math.kent.edu

NOISE PROPAGATION 205

iterations, and we focus on CGLS/LSQR and GMRES, and theana&iMINRES, RRGM-
RES, and MR-IIl. In particular, we are interested in how theefdd noise from the data
enters the reconstruction. While error propagation stutkes been carried out before (see,
e.g., B]), we are not aware of studies of the spectral propertiessféconstructions and the
errors for regularizing iterations.

Our paper is organized as follows. Sectidgives brief descriptions of the image de-
blurring problem and regularization in the SVD basis, an8éttion3 we study the spectral
properties of the coefficient (blurring) matrix. Sectighand5 contain the main analysis of
the iterative methods via a careful study of the Krylov sw#tss, as well as a splitting of the
solutions into their signal and noise components. Finall\section6 we explain why the
perceived quality appears to be different for low noise lev@wo appendices describe the
blurring used throughout the paper, and the characteyisfiband-pass filtered white noise.

2. The image deblurring problem and the SVD basis.Underlying the image deblur-
ring problem is a 2D Fredholm integral equation of the firsickiwhose kernel is thgoint
spread function{PSF) for the blurring; see Appendix. For simplicity of our analysis and
notation, we considet x n images and PSFs that are spatially invariant and separ#te in
variables. Discretization of the integral equation then leads to tloeleh

A XAT =B B =Bt L || (2.1)

3

whereX is the reconstructed imagB*a°t is the blurred noise-free image, represents the
noise, and the twe x n Toeplitz matricesA. and A, represent blurring in the direction of the
columns and rows of the image, respectively. Moreover, \garag that the elements of the
noise matrixt’ are statistically independent, uncorrelated withand coming from a normal
distribution with zero mean and standard deviatijon

By introducing the vectors: = vec(X) andb = vec(B), wherevec(-) stacks the
columns of the matrix, we can rewrite the above system in tis&l” form Az = b, in
which thePSF matrixA is then? x n? Kronecker producd = A, ® A.. The Kronecker
form of the PSF matrix lets us compute the SVD of large madrideie to the fact that given
the SVDs of the two matriced. and A,,

Ac = UCECVYCT7 Ar =U %, V;T7
we can write the SVD of the PSF matrk= A, ® A, as
A=USVT = (U, @ U) ) (17 (S, @ Se) T (Ve @ Vo) 1) 2.2)

Then? x n? permutation matriXI ensures that the diagonal elementd18f(3, @ X.)II
appear in non-increasing order. We emphasize that our sisaly the iterative methods is
not restricted to Kronecker products, but it holds for alFRBatrices.

Many regularization methods, including regularizing CGleSations, lead to regular-
ized solutionse,., Which take the form

7l2 uTb
Lreg = Z fk' GL]C Vk - (23)
k=1

For Tikhonov regularization we havk = o7/(c7 + A?), while the filter factors are 0 or 1
for the truncated SVD (TSVD) method. These methods are sorasteferred to as spectral

1 More general PSFs can be studied by the same approach, baptiraisle PSFs suffice to illustrate our points.
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filtering methods; in this paper we avoid this term, in ordet to confuse it with our DCT-
based spectral analysis. With the conventign. = vec(X,eg), €quation 2.3) immediately
leads to the expression

n2 Tb
u X
Xreg = Z fk O'Lk V[k]7 (24)
k=1 ’

wheref;, are the filter factorsy, are the singular values df, u;, are the left singular vectors,
and V¥ aren x n matrices such that, = vec(V*]) are the right singular vectors. This
relation shows that we can express the regularized solifignas a weighted sum over the
basis imaged/[*!.

With the Kronecker-product form of the PSF matrix equation 2.2) shows that there
are simple expressions for the singular values and vectbrs,; ando.; are the singular
values of4, and A, then their products are the singular valuesiofMoreover, ifu,;, uc;,
vy; andu; are the left and right singular vectors.éf and A., then the left and right singular
vectors ofA areu.; ® uy; andve; ® vy, respectively. Then(4) takes the form

n n

Xow =35 fis uriBucj | fij

Or; Oci
i—1 j—1 ri Ycj

where f;; is the filter factor associated with the produgt o.;, and the basis images are

given by VIl = v, oL
For two-dimensional problems we often observe a slow deédleosingular values,

and occasionally we have multiple singular values. For trenkcker product case, the slow

decay can be explained by the fact that the singular values arie the products,; o.; of

the singular values ofi, and A.. Even if we have a rather fast decay of the singular values

of each of these matrices, their products decay much sldweérthe matrixA is still very

ill-conditioned, becauseond(A4) = cond(A.) - cond(A;). We also see that il = A, then

we must have many double singular values.

3. The DCT and spectral properties of the PSF matrix. The two-dimensional dis-
crete cosine transform is a simple frequency transformistaften used in image processing.
If X is ann x nimage, then the transformed image is

X =dct2(X)=CX (T,

whereC € R™ " is an orthogonal matrix that represents the one-dimensD@a? [26].
The elements of are given by

1/n i=1
C,’j =
{\/2/7 cos(m(i —1)(2j —1)/(2n)),  i> 1.

The DCT-transformed imag& provides a frequency representation of the imagevhere
each elementf(ij is the coefficient to a specific basis image; see, €1g,, p. 136]. The
elementX,; represents a constant, and the eIeméhgsandXﬂ correspond to simple cosine
waves of varying frequency in horizontal or vertical diiens over the entire image. The
remaining elements ok represent combinations of frequencies in the two direstioFhe
lowest spatial frequencies are represented in the topdafiee, and the highest in the opposite
corner; Figure.lillustrates this.

2There are several types of DCT transforms. The one adoptedshtite most commonly used, which is named
DCT-2 in [26].
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FIGURE 3.1. The DCT transform shows that the image is dominated by leguincy information.

For discrete ill-posed problems arising from first-kind direlm integral equations, we
know from the analysis inlf5] that the singular vectors; andw; of the coefficient matrix
A tend to have an increasing number of sign changes in theineglts as the index in-
creases. That is, the smaller the singular valyehe more high-frequent the appearance of
the corresponding singular vectarsanduv;.

For two-dimensional problems we expect a similar behabigirthe concept of frequency
is more complicated because the singular vectors now qamnekto two-dimensional basis
images. The correct way to study the spectral behavior osithgular vectors is therefore
to study the two-dimensional spectral behavior of the biasegesV' ¥l or VIl = v,; 07,
e.g., by means of the DCT. We need to sort the latter basisdésmagcording to decreasing
singular valuesr;o; using the permutation matrid from equation 2.2); the sorted basis
images are then equal tW0'*!.

To illustrate this we construct two coefficient matrickand A as Kronecker products of
32 x 32 Toeplitz matrices. Referring to Appendix the matrixA describes isotropic blurring
with s, = s, = 3 anda = 0, and A describes non-isotropic blurring with = 3, s, = 5,
anda = 5. The first four basis imageg[!! to V4 of A are shown in Figur&.2, together
with their DCTs|V!| to |V'14)|. The rightmost picture in Figur@.2 shows the “accumulated

DCT” (3,2 v |2)1/2, which collects all the dominating spectral componenthanfirst
150 basis images. We see that the main contributions lideresdisc in the upper left corner
of the spectrum, showing that all the first basis images aveflequent.

Figure3.3 shows the first four basis images fdr We see that some frequencies in one
direction appear before the corresponding frequency iarathiections in the image. This is
clearly seen in the fourth basis imagé!, which is dominated by the DCT componé]@’tf‘],

while in the symmetric casg! is dominated by,"s. We also see from the plot of the “accu-

mulated DCT"(321%9 [[1]2)"/? that the frequency contents are no longer located primarily
inside a disc, but the main contribution is still low-freqtie

The above study corresponds to using zero boundary congljtimt precisely the same
behavior is observed if we use other boundary conditiongif).( We conclude that, in
analogy with 1D problems, we can think of the SVD as a 2D speédgcomposition of the
problem.

4. Krylov subspace methods.Given a matrix\/ and a vectop, the Krylov subspace of
dimensiork is defined agCi. (M, v) = span {v, Mv, M?v,..., M*~1v}. Krylov subspaces
have been studied extensively (see, e®).2P]) and they are necessary for investigating the
regularizing properties of the methods in consideration.

4.1. The methods studied hereThe two algorithms CGLS and LSQR, which are de-
signed to solve the least squares problein | A2z — b||», are mathematically equivalent.
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FIGURE 3.2. Basic imaged/[il, i = 1,2, 3, 4 (top) for the symmetric coefficient matrik and theirs DCTs

|V [¥]| (bottom), together with the “accumulated DCTS ;29 |V 1]2)1/2,

FIGURE 3.3. Similar to Figure3.2, but for the non-symmetric coefficient matrx

They work implicitly with the normal equationd” Az = ATb and are thus based on the
Krylov subspaceC;, (AT A, ATb). LSQR constructs basis vectors for this Krylov subspace
via the Lanczos bidiagonalization algorithm, which givies partial decomposition

AWy, = Upq1By, (4.1)

wherelV, is a matrix withk orthonormal columns that span the Krylov subspace. Thexnatr
Uk+1 hask+1 orthonormal columns, and its first column is chosemas= b/||b||2, which
simplifies the implementation considerably. The maBixis a(k + 1) x k lower bidiagonal
matrix. The LSQR iterate*) minimizes the 2-norm of the residual in the Krylov subspace,
i.e.,z(*) = argmin, || Az — b||, such that: € K;(AT A, ATb), and it follows that

o™ =Wy &, & = argming||Br€ — pella,

wheree; is the first canonical unit vector iR**! andp = ||b||>. This algorithm can be
implemented using short recurrences, and thus one can stavidg the partial decomposi-
tion (4.1).

The GMRES algorithm is based on the Arnoldi process, thasttoats an orthonormal
basis for the Krylov subspadé, (A, b) leading to the partial decomposition

AWy, = Wiy Hy, W1 = (Wi, @gp1), (4.2)

where thek columns oWk provide an orthonormal basis for the Krylov subspace,fﬁm‘s a
(k+1) x k upper Hessenberg matrix. The first columilify is again chosen as; = b/||b||».
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FIGURE 4.1. Image deblurring examples. Left to right: true imade blurred imageB due to the symmetric
PSF matrixA, and blurred imageB due to the nonsymmetric PSF matrix

If Ais symmetric then,, reduces to tridiagonal form, and the construction of theiglar
decomposition4.2) can be done by a three-term recurrence as implemented ifREA8\ In
this case the solution can be updated without explicitlyistpthe partial decomposition. In
the general case, no such short recurrence exists and GMEHESS to store all the constructed
Krylov vectors.

The GMRES/MINRES iteraté(*) minimizes the residual norm with respect to the above
Krylov subspace, i.e3(*) = argmin||A 2z — b||o such that: € K,(A, b), which leads to the
relation

sk _ Wi Ek’ Ek = argmingnﬁk g_ peillas

where agair; is the first canonical unit vector and= [|b||.

There exists a variant of GMRES that usés as the starting vector for the Krylov
subspace, instead éf leading to the “shifted” Krylov subspadé (A, Ab). In the non-
symmetric case the algorithm is called RRGMRESY], and the algorithm MR-II'9, 10]
is an efficient short-term recurrence implementation of thethod for symmetric matrices.
The partial decomposition in RRGMRES/MR-II is written as

AW, = Wy Hy, Wit = (Wi, Wgpr)-

The RRGMRES/MR-Il iterate is thed*) = W, &, with &, = argmin|| Hj, £ — W)L, b|o.
These two methods are now available iBGULARIZATION TooLS[13].

4.2. Examples of iterates.We illustrate the typical behavior of the iterative methods
using two examples. The true imadeis al75 x 175 sub-image of the image “Barbard?][
Two PSF matrices are used: a symmettiand a nonsymmetrid with the following param-
eters (see Appendik for details)

A:sc=4, s, =4, «a=0; A:s.=8, s =10, a=4. (4.3)

In both cases, we add Gaussian white ndisscaled such thgtF||r/||B|lr = 0.05. The
true image and the two blurred and noisy images are showrguré4.1.

Figure4.2shows the LSQR, MINRES, and MR-II solutions after 5, 10, ahd@rations
for the symmetric PSF matrix, and we see that the algorithies\gery different solutions.
The LSQR solutions slowly improve, but after 25 iteratioome noise has appeared as small
circular “freckles” (see Appendi® for a characterization of these freckles). The MINRES
solutions get dominated very fast by high-frequency naigty the noise level defined above,
the iterates are strongly deteriorated by noise after oritgrations. The MR-II solutions
show artifacts similar to the LSQR solutions, but the cogeece seems faster as the solution
after 10 MR-Il iterations is visually similar to the LSQR stibn after 25 iterations.
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MINRES LSQR

MR-

e

5 iterations 10 iterations 25 iterations

FIGURE 4.2. LSQR, MINRES, and MR-l iterateg®), 2(*) andz(¥) with the symmetric PSF matriA, for
k = 5,10, and 25 iterations.

The solutions for the non-symmetric PSF matrix are shownigure 4.3. Here, the
LSQR algorithm is again seen to generate some structurgactst observed after 25 iter-
ations. The artifacts are no-longer circular, due to the-isotropic blurring, but they are
still band-limited and certainly not high-frequent as tluése seen in the GMRES solutions.
The RRGMRES solutions again show artifacts similar to ttdaats for LSQR. But the
difference in convergence speed is not as large as for LS@R& I in Figure4.2.

4.3. The power basis of the Krylov subspace.The regularizing properties of the
Krylov subspace methods come from the fact that for disdlep@sed problems, the right-
hand side is rich in SVD components corresponding to the large singudéues. For this
reason, the basis vectors for the Krylov subspaces are ialsanrthese directions. We il-
lustrate this in Figureé.4, which shows the coefficients of the first five Krylov vectanghie
SVD basis (the columns df) for all methods.

Consider first the Krylov vectors in the left part of Figutel, corresponding to the
symmetric matrixA. For all methods, it is evident that all the Krylov vectorg aich in
right singular vectors corresponding to the largest simguélues, and that the coefficients
are damped according to the multiplication withh A or A.

However, the fact that the noisy right-hand sidis present in the MINRES basis has
a dramatic impact, because the noise componesatvec(E) in b is present in the Krylov
subspace, leading to a large amount of white noise in theKigdbv vector, and therefore
in all the MINRES solutions. While the remaining Krylov verdaare identical to those of
MR-I11, we see that it is crucial to avoid the noisy vechan the Krylov subspace.
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GMRES LSQR

RRGMRES

5 iterations 10 iterations 25 iterations

_ FIGURE4.3.LSQR, GMRES, and RRGMRES iteraté®), #(*) andz(*) with the nonsymmetric PSF matrix
A, for k = 5, 10, and 25 iterations.
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FIGURE 4.4. The coefficients in the SVD basis of the first five Krylov sutespactors for the different algo-
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from the rest.



ETNA
Kent State University
http://etna.math.kent.edu

212 P. C. HANSEN AND T. K. JENSEN

MINRES LSQR

MR-II

FIGURE 4.5. DCTSs associated with selected Krylov and Arnoldi vectoes, tolumns ofVy,, Wy, and W,
(converted to images), fdr = 40 iterations. From left to right, we show columns 1, 3, 15, afd 4

The SVD coefficients for the first five Krylov vectors for themsymmetric matrixA
are shown in the right part of Figufe4. The CGLS/LSQR Krylov vectors exhibit a behavior
similar to the symmetric case where the coefficients are édnlyy the multiplication with
A'A

For GMRES and RRGMRES the situation is different. For GMRES rtoise compo-
nentse = vec(FE) is again clearly present in the first Krylov vector, and fottbmethods
the vectors do not exhibit much damping from one vector tadad. As explained in18g],
this is caused by a mixing of the SVD components when multiglyith A, where each
SVD component in théth Krylov vectors is a linear combination of (in principld) 8vD
components in the previous iteration.

4.4. Two orthonormal bases of the Krylov subspace Another perspective on the
Krylov subspaces is provided by the orthonormal basis vedttat span these subspaces.
Obvious choices of these vectors are the Lanczos and Arwetdors, i.e., the columns of
the matricedVy, Wk, ande generated by the three methods. Figdreshows the DCTs
associated with selected columns of these matricek fori0 iterations. It is evident that we
include higher frequency components in the bases as we taleitarations. The white-noise
component, arising from, is clearly visible in the GMRES/MINRES basis.

However, there are other sets of bases that provide imgonfanmation. If the SVD of
the bidiagonal matrix3;, in (4.1) is given by

Bi, = P % QF,
then we can write the CGLS/LSQR iteratesad® = (W, Q) X' (p PLe;), and the or-
thonormal columns of the matri¥,. Q. provide an alternative basis for the CGLS/LSQR
Krylov subspace. Similarly, with the SVDs of the HessenbatricesH;, and Hy, from
GMRES and RRGMRES, we have

ﬁk:ﬁkikég, ﬁk:ﬁkikég>
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MINRES LSQR

MR-II

FIGURE 4.6. DCTs associated with selected column$1gf Q., ﬁ/\k @k ande Qk (converted to images)
for k = 40 iterations. From left to right, we show columns 1, 3, 15, afd 4

and thus the columns @k @k andﬁ//k @k provide orthonormal bases for the Krylov sub-
spaces of GMRES/MINRES and RRGMRES/MR-II, respectively.

F|gure4 6 shows the DCTs associated with selected columns of the cealiiiy, @y,
Wk Qk, ande Qk for k = 40 iterations. As we take more iterations, the dominating spéc
components in these basis vectors are band-limited and &dairly narrow band of spatial
frequencies (showing up as freckles in the solutions). &¥STs thus confirm that, for each
new iteration, we tend to keep the existing low-frequendgrimation in the iteration vector,
and add components with slightly higher frequencies. Agdie white noise component is
clearly present in all the GMRES/MINRES basis vectors.

5. Study of signal and noise componentsWe now study in more detail how the noise
propagates to the solutions, by considering how the thretbods treat, on one hand, the
wanted signal contents from the exact comportéftt = vec(B®*) and, on the other
hand, the contents from the noise component vec(E). This analysis is, of course, only
possible when the noise is explicitly known.

The LSQR solution, given by*) = W, B' Uk-',-lb can be splitinto the signal and noise

components:®) = ")+ 2 with
2 =We Bl UT bt and ) = W, B UT
pexact — YWk D U4 Lo’ = Wk D U6
Similarly, for the GMRES and RRGMRES methods we have thétsi

20 =% +2® and W =P, +30.
The Lanczos bidiagonalization process is generatéd@agd noth***°t), and thereforesbexact
differs from the LSQR solution produced witkact as starting vector. The same is true for
GMRES and RRGMRES. This situation, where the signal compibaepends on the noise
in the data, is unique for regularizing iterations, due ®dependence of the Krylov subspace
onb = b¥a ¢, In regularization methods, such as Tikhonov and TSVD, ttex factorsf;,
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SymmetricA NonsymmetricA

FIGURE5.1. Splitting of the solutions by LSQR (top), GMRES (middle), RRGMRES (bottom) aftér= 10
iterations, in the signal and noise components.

in (2.3) depend only oM, and thus the signal component

2

n
§ fk: 0']: lugbexact Vg
k=1

is independent on.
The above splitting is often used in studies of regular@athethods, where one writes

the reconstruction errar®) — zex2<t as a sum of the regularization ermﬁ@act — x®act and

the perturbation errar [12]. For example, it was used i8] and [20] to study error prop-
agation and ringing effects for Tikhonov image deblurrifithe situation is more complex
here, because the signal and noise components are coufilxértdly for different Krylov
subspace methods and, in fact, for different right-hanedssi@he purpose of this section is to
illustrate this aspect.

Figureb5.lillustrates the splitting for LSQR, GMRES, and RRGMRES fue tBarbara”
image. Both the symmetric and the non-symmetric PSF matdrestudied. We see how the
noise propagates very differently in the three methodstalttee differences in the associated
Krylov subspaces.

The LSQR algorithm produces low-frequent ringing effectsthe signal component

x,(f:,zact for both the symmetric and the nonsymmetric coefficient maand no freckles are
present in this component. In accordance with the obsensin the previous section, the
noise componertték) consists of bandpass-filtered noise in the form of freckéew the

shape of the freckles depends on the shape of the pointespreetion. It is interesting to
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SymmetricA NonsymmetricA

k=10 k=25 k=10 k=25

FIGURE5.2. The LSQR noise componemg“) and the corresponding DCTs.

see how both the ringing in the signal component and the lgsdk the noise component are
correlated with the contours of the image, caused by thefgpKcylov subspace.

As we have already observed, MINRES and GMRES propagate te-wbise compo-
nent in the signal componeﬁg'jx)m, caused by the explicit presence of the noise in the basis
vectors for the Krylov subspace. The white-noise compoisepéarticularly pronounced in
the GMRES signal component. This example clearly illussathy MINRES and GMRES
cannot be recommended as general regularization methgadsntathat is substantiated fur-
ther in [18].

The RRGMRES and MR-II signal components behave much liké 8@R signal com-
ponents, except that they tend to carry more details afeeséime number of iterations. The
noise components resemble those of the LSQR method. Foyriaetric matrix, the freck-
les are smaller in diameter than for LSQR, and they are maiblgiin the signal component.
For the nonsymmetric matrix, both components are quitelairto the LSQR components.
Avoiding the noisy vectob in the RRGMRES/MR-1I subspace gives a huge improvement of
the quality of the solutions.

To study the freckles in more detail, we consider the LSQRhorkiand compute the
DCT of the noise componeniék) for iterationsk = 10 andk = 25, as shown in Figuré.2
for both the symmetric and the nonsymmetric coefficient maffhis figure confirms that
the freckles are indeed bandlimited noise, because thegspmnd to a bandlimited ring of
frequencies in the DCT domain, and the ring moves towardsanifjequencies as the number
of iterations increases.

A closer analysis of the LSQR noise componeéﬁ) reveals that it tends to be dom-
inated by contributions from the last few columns in the mat¥’, i, and similarly the
RRGMRES noise component tends to be dominated by the lastédwnns ofW;C @k.
These vectors represent the highest spatial frequencit ireconstruction, thus explain-
ing the presence of the freckles. A simple mechanism for vémga'some of) the freckles is
thus to remove these particular components in the solutim@ truncated SVD solution to
the “projected problemsthin || By € — pe||» andmin || Hy € — WL, b||», using a truncation
parameter close th. This use of regularization applied to the projected pnolikeadvocated
in [11, 19], and the resulting method is sometimes referred tolagaid method
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RRGMRES

FIGURE 5.3. Comparison of LSQR and RRGMRES solutionskfor= 25 with those obtained by TSVD
regularization of the projected problem. The removal of sheallest SVD component dramatically reduces the
amount of freckles.

Figure5.3 compares the standard and regularized LSQR and RRGMRE &ossldior
k = 25; the removal of the smallest SVD components in the projeptetilem clearly re-
moves a substantial amount of freckles. At the same timantbgified solutions appear less
sharp, because the highest frequencies (that gave rise frettkles) are explicitly removed.

6. Low noise levels are different. For a very low noise level, GMRES was reported
in [6] to exhibit faster convergence than LSQR and produce “Des@utions. This seems
contradictory to our results, and the purpose of this finefige is to study the quality of the
reconstructions for low noise levels. We use the nonsymmPBt®F matrix, and the noise
level is reduced tq E||x /|| B2t ||p = 5 - 1074,

The two top rows in Figuré.1 show the LSQR, GMRES, and RRGMRES solutions
after 30 iterations, together with their DCTs. From the tow,rit appears that the GMRES
solution has the highest amount of visual detail, and it sg@rbe superior to the RRGMRES
and LSQR solutions. But from the second row we also see teaBMRES solution carries
a much larger amount of white noise than the LSQR and RRGMRE&GNS.

The two bottom rows show the corresponding noise comporeaerdsheir DCTs. As
before, the noise component appears as freckles, and igloof the freckles is correlated
with the contours in the image. For all iteratiols< 30 the norm of the noise component is
much smaller than the norm of the solution component. Hetheeerror in the reconstruc-
tions is primarily due to the error in the solution component

For low noise levels, the GMRES solution appears to be Vigsaiperior to the other
solutions because the freckles are not as visible as forehighise levels. The freckles
are very disturbing to the human eye, while this is not thesdas the propagated white
noise in the signal component. In fact, the white noise:{ “masks” the freckles and
creates an illusion of improved resolution through highpatgl frequencies, even though no
information can be reliably reconstructed beyond the apiquencies associated with the
freckles.

The LSQR and RRGMRES solutions, on the other hand, do not adarge white-noise
component that “masks” the freckles, and hence these gpfuliehave similar to the case of
larger noise levels, and they appear as inferior to the GMR&&ion. However, all recon-
structions have errors of the same magnitude, the errargjeear in different incarnations
with very different spectral properties.

7. Conclusion. We used the two-dimensional DCT to study the properties gfi+e
larizing iterations for image deblurring. First, we showbat the SVD provides a two-
dimensional frequency decomposition similar to the omeettisional case. Turning to the
algorithms, we show that all the Krylov subspace methoddumre reconstructions that can
be considered as low-pass filtered versions of the “naivadmstruction (similar to Tikhonov
and TSVD). The main difference is that, for regularizingaténs, noise and artifacts in the
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FIGURE 6.1. Top rows: LSQR, GMRES, and RRGMRES solutions after 30itesatnd their DCTs, for
the nonsymmetric PSF matrig with a very low noise leve| E||r /|| B2 ||p = 5 - 10~%. Bottom rows: the
corresponding noise components and their DCTs. The GMRIE8osvis the visually most pleasing.

form of “freckles” are present in both the signal and noismponents. CGLS/LSQR and
RRGMRES/MR-II are superior to GMRES/MINRES for regulatiza problems because
they provide better suppression of the noise; for our exasblere is no clear winner among
the two methods.

All our Matlab codes used in the examples in this work arelalsé from the home page
http://mwww.imm.dtu.dk/ ~ pch/NoisePropagation.htmi

Appendix A. Isotropic and non-isotropic blurring matrices. Underlying the image
deblurring problem is a 2D Fredholm integral equation offtre kind

1 1
/ / K@y ey) Fley)dedy = G@'y),  0<st<1, (Al
0 0

whereF’ andG represent the exact and blurred images, and the kéfriglthe point spread
function (PSF) for the blurring. Our work here is restricted to theecedere the PSF is
spatially invariant and separates in the variables,Kéz/', v/, x, y) = (2’ — ) k. (v — y),
wherex, andk, are given functions.

When we discretizeA.1) by means of the midpoint quadrature rule with collocation i
then x n grid of midpoints of the pixels, then we obtain two matricésand B which are
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FIGURE A.1. The isotropic (left) and non-isotropic (right) PSFs usedimr numerical experiments, obtained
by means of the parameters in equatidrsy.

samples of the imageB andG. Moreover, the matricegl, and A, in equation 2.1) are
Toeplitz matrices whose elements are samples of the fursotioandx,.

For our numerical experiments we need both isotropic andiswinopic PSFs, and we
use a generalization of the normal distribution. Let

o(x) = ! exp (—W) and ®(x) = /_; o(t)dt

sV 2T

be the standard Gaussian density function and its disimibdiinction, and define
Folx) =2¢(x) P(ax).

ThenF, is the density function for thekew-normal distributioif1], in which « is the skew-
ness parameter. The scale parametantrols the width ofF,,, and by a proper choice of the
location parameter we can ensure that the maximum of the density funcfgris centered
atx = 0.

By setting the functions:. and , equal toF, for different choices otx and s, we
obtain point-spread functions that are, in general, notrépic. The pseudo-Matlab code for
generating the Toeplitz matricek. and A, takes the form

vecAc = skewnormal(-n+1:n-1, ey Sey QU);
Ac = toeplitz(vecAc(n:-1:1),vecAc(n:end));
vecAr = skewnormal(-n+1:n-1, Ly Sy Q);

Ar = toeplitz(vecAr(n:-1:1),vecAr(n:end));

where the functiorskewnormal , which computes the skew-normal density functiy, is
given by

function y = skewnormal(x, s, alpha)

mu = fminsearch(@SN,0,[ ],0,s,alpha);

y = -SN(x,mu,s,alpha);

function y = SN(x, mu, s, alpha) % Subfunction.

y = -2 *normpdf(x+mu,0,s). *normcdf(alpha  * (x+mu),0,s);

Here we use functions from Matlab’'s&risTICS TOOLBOX to generate the Gaussian density
and distribution functions. Figur.1 shows two PSFs generated by this approach.

Appendix B. “Freckles” are band-pass filtered white noise. A white-noise random
image X is characterized by having pixels whose values are statltiuncorrelated and
have the same variance. Since the DCT is an orthogonal tranafion, it follows that the
DCT imageX is also a white-noise image.

A filtered random image is obtained by filtering its spect@hponents. In particular,
if Fis a matrix of zeros and ones, then we can generate an imadedi Gaussian white
noise by means ok, =idct2(F.  *randn(n))
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Low pass Band pass High pass
: st e

P

FIGURE B.1. Top: the filtered DCT imagesict2(F.  *randn(n)) . Bottom: the corresponding filtered
imagesXg; = idct2(F.  *randn(n)) . Band-pass filtered white noise appears as “freckles”.

The choice of the locations of the onedHletermines the type of filtering. ¥;; = 1 for
i?+j2 < k? for somek < v/2n, then we obtain low-frequency noise, while high-frequency
noise is obtained foi?+;2 > k2. If the indices forF;; = 1 satisfyk, < i>+;2 < ki, then
we keep only spectral components in a range of spatial frezjes, and we say tha&y; is
band-pass filtered white nois&his kind of noise has the characteristic visual appearainc
the “freckles” that we often see in the reconstructions. BgereB. 1 for examples of filtered
noise.
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