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SOME REMARKS ON THE RESTARTED AND AUGMENTED GMRES METHOD *

JAN ZiTKO't

Abstract. Starting from the residual estimates for GMRES formulated bgynraauthors, usually in terms of the
quotient of the Hermitian part and the norm of a matrix or by gshre field of values of a matrix, we present more
general estimates which hold also for restarted and augm&WMRIES. Sufficient conditions for convergence are
formulated. All estimates are independent on the choice afiialiapproximation.
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1. Introduction. Let us consider the GMRES algorithm g for solution of a non-
singular and non-Hermitian system

Az =0b, AcC™™ =z becC™ (1.1)
Let 2y be an initial approximation;, = b — Axg # 0 the residual,
Km = [7'0, AT'(), ey Amilro}

the Krylov matrix andiC,,, (4, ro) = Range(K,,) the Krylov subspace. The GMRES algo-
rithm constructs the new approximatiop, in the affine space, + K,,,(4, ) such that

Tm =b— Ax,, 1 Range(AK,,).

In contrast to systems with normal matrices, eigenvalugibligions do not necessarily de-
termine the speed of convergence. It can happen, in thenegttase, that

[roll = [l = -+ = [lra—1]l > 0 and ||| =0

for an arbitrary spectrum, if exact arithmetic is used; fareninformation, seelf 13]. In
spite of this pessimistic information, the GMRES methodrs of the most popular iterative
methods, and various estimates [for,, || are studied. Experience shows that the convergence
is often superlinear, while many bounds indicate only linevergence. These bounds do
not characterize the behaviour f,,||/||7o|, and they can be misleading for highly non-
normal matrices. Bounds for GMRES are based on eigenvalues the field of values (or
pseudospectra), and a discussion on how descriptive tloeseld are, can be found ith(d].
Usual estimates have the form

Il < (1= @)™ [Irol %, (1.2)

wherep € (0,1]; see R, 4,7, 9, 11, 18]. The bounds of the forml(2) ensure convergence
of GMRES(n). It is well known (see ) that if the matrixH = (A + AH)/2 is positive
definite, theno = (Amin(H)/||Al|)?, and the inequality) < ¢ < 1 holds. The inequal-
ity (1.2) is proved for a larger class of matrices it/]. A non-stable situation appears if the
numberp is near zero. This difficulty can be caused by the presencégehealues close
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to zero (seel?)) as this slows down the convergence of GMRES, especiallinguhe first
iterations, and a restarted version may stagnate. Theraamg papersd, 5, 6, 8, 14, 16] ad-
dressing the question of how to remedy stagnation. The ptoseeGMRES{:, k), proposed
by Morgan [L4], will be considered in this paper, i.e., the restarted GNBR#th restartn,
where a subspace of dimensibns added to the subspaég,, (4, ro). The residual vector
of the GMRES{n, k) method will be denoted by,, wheres = m + k is the dimension of
the augmented space. In this paper, new estimate&-fgrgeneralize the results from ]|
and [L9], and give new sufficient conditions for convergence of GNIRE

In Section 2, the first restarted run of GMRES(k) is considered, and interesting con-
clusions for the GMRES method are discussed. In Sectiore3I5MRES, k) algorithm is
briefly analysed. In Section 4, new upper bounds for the uasidorm are derived and the
convergence of GMRES(, k) is studied. Remarks and open problems are discussed in the
concluding section.

Lets =m + k, and Ietr((f) andr{’ denote the initial and resultant residual vector after
the jth restart, respectively. The upper index will be omitted ivill be evident from the
context that both vectors are considered for the same tedtaroughout the paper we put
v = 19/||70]|. Considering the GMRES{, k) method, let a spacRange(Y},) of dimension
k be added td<,,, (A, o), whereY;, € C"*",

The symbolS,, denotes the unit sphere @&, and|| - || is the Euclidean norm. The
symbol P? denotes all polynomials of degree at maeswhich take the value zero at the
origin. We will assume that all considered Krylov and augtaedrKrylov subspaces have
maximal dimension. The symbdl (B) denotes the field of values of the matiixe C™"*".
Exact arithmetic is assumed throughout the paper.

2. The first restarted run of GMRES(m, k), and conclusions for GMRESs). If
we carry out the GMRES{, k) process, we basically perform the GMRES algorithm with
the spacéC,, (A, ro) +Range(Y}), instead ofC,,, (A, ro); for more details, seelp] and [14].

In the first restart we usually paf, = [A™rg, A7 F g, ..., A™TF=1ri]. Hence the
estimate fot|r{" |2 /|| |2 is equivalent with the estimate for GMRE$(The approximation
s € o + Ks(A, o) is constructed such that = b — Az, 1 AK(A,ro). The residual
vectorr, can be expressed in the form = ||ro|| (v — ¢s(A)v), whereqs € P? fulfills the
condition

= arg min ||[v — q(4)v||.
o = g min v~ a(A)v]

An easy calculation yields, for evegye P?, the relations

2 H A 2 H A 2
Il _ WAl e (Al
[[7oll lgs(A)v]] wesn  [lq(A)]]
HH 2 H 2
=1— min w Hywl” + |u2) St , (2.1)
weSy la(A)

where the matrices/, andsS5, denote the Hermitian and skew-Hermitian part of the matrix
q(A) respectively. Heré denotes the imaginary unit; for a detailed computation] &€l 9].
We have the following result, formulated in the real caseGMRES in Grcar’s report][1,
Corollary to Theorem 1].

THEOREM2.1. Lets € {1,2,...,n — 1}. If a polynomialg of degrees with ¢(0) = 0
exists such that

min |w” Hyw| >0 or min |wS,w| >0, (2.2)
weSy wWESy
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then GMRES)) is convergent, i.e., the iterations converge to the unsplation of(1.1).

Proof. If the assumption of Theoret1is fulfilled, then in each restart we obtain for
the quotient|r;||?/||ro]|? the estimatélr;||?/||ro]|*> < 1 — o, wherel — o € (0, 1), according
to (2.1). Hence

IrD2 < (1= r 12 = 1 = o)|IrY V2 < - < (1= 0)|Iro]%,

and therefordim, .7 =0. 0O

REMARK 2.2. The estimate fo;rgj) does not describe, in general, the real progress of
the residual vector.

REMARK 2.3. If H, is positive or negative definite, then the first inequality(2n2)
holds. The same can be analogously saidSipr Often in the literature the expression “the
matrix H, or S, is positive or negative definite” is used to refer to the ctodi(2.2).

For arbitraryz € S,, andq € P? there holds

2" (A)r = 2" (H, +8,)%x = ||Hyz|]* — ||S,z|* + 2i Re(z H,S,x). (2.3)

|Hqx|| < ||Sqx|| or [[Hgz| > [|Sqz|, VYzeC", x#0, (2.4)

then, according to2.3), Re(z¢*(A)x) < 0, Vz # 0, or Re(z¢*(A)z) > 0, Va # 0,
respectively, andV (¢*>(A)) does not contaif. Therefore, GMRES)) is convergent for all
j > 2s, according to the results in[10, 19].

Let us consider the first inequality i2.@). If .S, is nonsingular, then the first inequality
in (2.4) is equivalent to the following

{||Hq5qlsqx|

H,S;1(S,
<1,Vz e C"\ {0} y & ¢ sup 1545, (Sy2)]
[1Sq||

a0 [1(Sg2)ll

The strict inequalities follow from the continuity of themo and the compactness of the unit
sphere in finite dimensional spaces. Herldé, S, '|| < 1 if and only if

< 1}@||H,,Sq1|| <1

Re(z¢?(A)x) <0, Vz #0.
Analogously, if the matrix7, is nonsingular, thefiS, H ' | < 1if and only if
Re(z”¢*(A)z) >0, Va #0.

The concepts here formulated form another proof of the waigiesult by Simoncini and
Szyld [17], which is here generalized, to the complex case, for theixmpblynomialg(A).
Let us summarize the considerations above.

THEOREM2.4. Letg € PY be arbitrary. LetS, or H, be nonsingular. Then
(a) if S, is nonsingular, then

{Re(z"¢*(A)z) <0,Vz € C™",z £0} & ||Hq5'q_1|| <1
(b) if H, is nonsingular, then
{Re(z"¢*(A)z) > 0,Vz € C",x #£0} & |SH ' <1

If W (q(A)?) does not contai, then GMRES) is convergent for alj > 2s.



ETNA
Kent State University
http://etna.math.kent.edu

224 J. ZTKO

3. The augmented GMRES method.Let some vectory € C" \ {0}, be added to
K (A, o). The iteratione,, 1 is constructed in the linear variety

zo + K (A4, 70) + span{y};

see [L4, 16, 19]. In this cases = m + 1 and, analogously to the previous section, the residual
vectorr,,+1 can be written in the form

rm1 = [[70[|(v = gm(A)v) = Bmi1 Ay,

where the minimal residual condition, 1 L Range(AK,,, Ay) determiness,,,.; € C,
as well as the coefficients of the polynomig| € P° . Hence, for an arbitrary polynomial
q € P% andj € C we have

71l < [[llroll (v = a(A)v) — BAyY[| = [||Iroll(1 — a(A))v — Ag

p(A)

)

wherep(0) = ||ro|| andy = By. The last relations yield the following theorem.
THEOREM3.1.Letm € {1,2,...,n — 1} andp be a polynomial of degree at mast,
p(0) = ||7o|. If the vectorg € C™ which solves the equation

Ag = p(A) (3.1)

is added ta},, (A, ro), thenr,, ;1 = 0.
A similar formulation is given by Saad il f]. Unfortunately, solving equatior8(1) is
a problem similar to the original one. We carry out anothexysis.

4. The second and subsequent restartsLet the subspac®ange(Y}) be added to
K (A, 1) in all following restarts, wher&’, € C™* andm + k < n. The matrixY;,
and thereforeRange(Y}), is fixed here, and this is not the setting of most practicg-au
mented subspace algorithms, where approximations to atbaaeubspace (for example the
eigenspace corresponding to the smallest eigenvaluesjlatdated and updated during each
restart. In many cases, a good approximation defined by axmétis achieved after a small
number of restarts, and used in the following restarts. Icti&e 2, we discussed the first
restarted run of GMRES(, k). During the next restarts, usually the eigenvalues aneneig
vectors of the obtained Hessenberg matrix are used for th&reetion of a matrix’,, which
is subsequently improved. There are many papers in which ahniques are described;
see for example3, 5, 6, 14]. Our goal is to describe in general the behaviour of thedresi
norm for GMRES(n, k).

Let us consider an arbitrary projectianof the vectorr, = ||ro|jv onto the space
Range(AK,,, AY;). It can be written in the fornx = ||rollq(A)v + Ay, wherey €
Range(Yy) andg € PY,. Letr = ro — 2z = ||ro||(v — q(A)v) — Ay andU = [¢(A)v, AYy].

It is assumed thal/ is full rank. The matrixP = U(U”U)~'U* is the orthogonal projec-
tor for the spac®ange(q(A)v, AY}), and for the residual vectot, L Range(AK,,, AY:),
there holds

2
Ts -
Hro|||2 <1—v"Pu <1~ [JU0]PAmin (UT0) )
o uter Ut
B )\max(UHU) a TI"(UHU)
H 2 H 2
<1 o wTg(A)w]® + [[w™ AYy| Vge PP, (4.1)

— min ,
wes,  [lq(A)[]? + | AYk[F
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wherel i, (U7 U)~1) denotes the minimum eigenvalue of the matfix’ U)~!, and|| - | »
is the Frobenius norm.

Let the(j — 1)th restart be performed. In thiéh restart, the subspaBenge(Y},) is again
added tokC,,, (A4, o). We have in this casel’) = Y™ v =¢{/|r{|, v L Range(AY},),
and

_ | @)oo ] T (g(Av)Po | _
UHU_{ (AY2) v }_[ 0 dim }—“Q(A)”)H“)el- (4.2)
Hence,
||r£f'>||2 N
<1-—|v"q(A)v]?e] (UMU) " e. (4.3)

1§12

Now, we estimate? (UHU)~'e; from the following inequalities:

1:(6’{61) (61 (UH )_7(UHU)%61)2
H(UHU) o2 |(UHT) 2 e |2
= (T Ler)(eF (UTD)ey),
and, hence,

1 1
ef UHU)er  [lg(A)v]*”

(el (UTU) "ey) >
Substitution to 4.3) yields the estimate

I 12 _ | oM a(A)P?
e la(A)v]|?

wherev L Range(AY}). Let us summarize all previous investigations and resalthe
following theorem.

THEOREM4.1.Letm, k,s € {1,2,....,n—1}, s =m+k < n,andY;, € C"** be a
rank k£ matrix. Let the subspadeange(Y},) be added to the corresponding Krylov subspace
for all restarted runs. Lej > 1 be an integer. Then, for thgh restart and for ally € P2,
the following estimate holds

()2 Ho(A)wl?
e R a0l (4.4)
”Téj)”z WESy llg(A)l

wLRange(AY )

It follows immediately from(4.4) that if an integerm exists such that: + &£ < n and
the system of equations

wg(A)w =0 (4.5)
wl AY;, =0 (4.6)

does not have any solution ¢, (or equivalently has only the solutian = 0 in C"), then
GMRES(n, k) is convergent.

REMARK 4.2. The same theorem can be formulated if the conditioB) {s replaced
either by the equality H,w = 0 or w* S,w = 0.
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Let the equation4.5) have a nontrivial solution, i.e0), € W (q(A)). Moreover let
M = {u € S,|ufg(A)u = 0}.

The condition 4.6) suggests to find’, such thatu? AY;, = 0 implies thatu ¢ M, and
therefore to make the quotient id.() less than 1. Let us remark that the last implication is
equivalent with the relation

wveM = ufAY, £0, (4.7)

which may be easier to verify.

REMARK 4.3. If Range(Y})) is an A-invariant subspace, then the prodddf; in the
relations ¢.2), (4.4), (4.6), and @.7) can be substituted byj,.

In [19] we find an estimate for the case when the sfaeege(Y},) is added to the Krylov
subspace, and the gap betwdemge(Y},) and an A-invariant spadeange(Y}) is less than
some small number. The estimate is similar tal(4), only the set for the minimum is larger
and depends on

5. Conclusions and some open question&estarting tends to slow down convergence,
and the difficulty may be caused by the eigenvalues closestrto These are potentially bad,
because itis impossible to have a polynomiaf degreen such thap(0) = 1 and|p(z)| < 1
on any Jordan curve around the origin; sé2 p. 55]. Usually, an eigenspace corresponding
to the smallest eigenvalues is taken Runge(Y}), and the corresponding algorithms give
good results 14, 16]. If we consider a normal matri¥l with the eigenvalues having only
positive or negative real part andz) = z, thenW(A) is the convex hull of the spectrum
of A. If the Krylov subspace is enriched by an eigenspace caorelipg to the smallest
eigenvalues, and these eigenvalues are therefore remmavedtfe spectrum, then the convex
hull of the remaining eigenvalues can be far from zero andsequently, the right hand
side of @.4) is smaller and the estimate is better. When an eigenspacesponding to the
smallest eigenvalues is added to the Krylov space, the cgenee is faster and stagnation is
removed in practical computation.

In our theoretical considerations, an arbitrary subspa®aensidered, and the question
“to find some sufficient condition for convergence” was tfammed into the question whether
the intersection of fields of values and sets of the fofig)(contains zero or not. The above
investigations imply some open problems.

1) How to estimate generally, for a given polynomjalall solutions of the equation
wq(A)w = 0, forw € S, with the constraintv | Range(AY}), and vice versa
how to construct the polynomialfulfilling the assumption of Theorerh 1?

2) How to obtain, for special matrices and polynomials, tebdviour of the integer
function

wq;(A)w]?

min LI Sy B
€S, (A 2 )
’U)LRT:ng(AYk) ”q]( )”

fG)=1- j €L s],

and compar¢ (j) with the behaviour of the sequenite; || /||rol?, for j between 1
and the index of the restart? (This would be the answer on tlestepn on how
descriptive these bounds are.)

3) How to find an inexact solution 08(1) very fast?
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