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ON THE DECREASE OF A QUADRATIC FUNCTION ALONG THE
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Abstract. The Euclidean gradient projection is an efficient tool for the expansion of an active set in the active-
set-based algorithms for the solution of bound-constrainedquadratic programming problems. In this paper we exam-
ine the decrease of the convex cost function along the projected-gradient path and extend the earlier estimate given
by Joachim Scḧoberl. The result is an important ingredient in the development of optimal algorithms for the solution
of convex quadratic programming problems.
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1. Introduction. While there are well known classical results concerning the rate of
convergence of many algorithms for the solution of unconstrained quadratic programming
problems in terms of bounds on the spectrum of the Hessian matrix [1], until recently there
were no such results on the decrease of the cost function for the algorithms that were proposed
to solve the problem

min
x∈Ω

f(x), (1.1)

whereΩ = {x : x ≥ ℓ}, f(x) = 1

2
xTAx − xT b, ℓ andb are given columnn-vectors and A

is an× n symmetric positive definite matrix. The standard results either provide bounds on
the contraction of the gradient projection [2], or guarantee only some qualitative properties
of convergence [2, 4, 5, 12, 13, 16]. For example, Luo and Tseng [14, 15] proved the linear
rate of convergence of the cost function for the gradient projection method even for more
general problems, but they did not make any attempt to specify the constants. Let us recall
that the need for such estimates emerged in the development of scalable algorithms for the
solution of the discretized variational inequalities. Indeed, the first result of this type is due
to Scḧoberl [17], who found a bound on the R-linear convergence of the decrease off for the
gradient projection method and used the estimate to developprobably the first theoretically
supported scalable algorithm for variational inequalities. Later he proposed a better proof
which enabled him to improve the original estimate [11]. The result was exploited in the
analysis of the rate of convergence of the active set based algorithms, which combined the
conjugate gradient method with the fixed step length gradient projection and the proportioning
algorithms [6, 11].

The estimates mentioned above share an unpleasant drawback, namely, they give a bound
on the rate of convergence only for the step lengthα ∈ (0, ‖A‖−1], with the best bound for
α = ‖A‖−1, while the best results were observed experimentally for larger values ofα, not
supported by any estimate. The point of this note is to extendthe estimate [11] providing
a nontrivial bound also forα ∈ (‖A‖−1, 2‖A‖−1]. Our proof is based on the analysis of
the gradient path for the cost function which dominates‖A‖−1f and whose Hessian is the
identity matrixI.
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2. The projected-gradient path of a function whose Hessian is the identity. We start
our exposition by an analysis of the special quadratic function

F (x) :=
1

2
xTx− cTx,

defined forx ∈ R
n along the projected-gradient path

PΩ (x− α∇F (x)) = max{x− αg, ℓ}, g := ∇F (x) = x− c,

where themax is assumed to be carried out componentwise. Alternatively,for α > 0 and a
fixedx ∈ R

n, we can describe the projected-gradient path by means of thereduced gradient
g̃, which is defined componentwise by

g̃i(α) := min{(xi − ℓi)/α, gi}.

Thus,

PΩ (x− αg) = x− αg̃(x)

and we can define

ψ(α) := F
(
PΩ (x− αg)

)
= F (x) + ϕ(α),

ϕ(α) := −αgT g̃(α) +
α2

2
‖g̃(α)‖2,

(2.1)

where‖ · ‖ denotes the Euclidean norm. Let us first examine the one dimensional case.
LEMMA 2.1. Let x, ℓ, c denote real numbers, withx ≥ ℓ. For α ∈ (0, 2), let F be

defined as above forn = 1 and letϕ be defined by (2.1). Then, for anyα ∈ (0, 1],

ϕ(α) ≥ ϕ(2 − α). (2.2)

Proof. First observe that, ifn = 1 andα > 0, then the above definitions reduce to

g = x− c, g̃(α) = min{(x− ℓ)/α, g}

and

ϕ(α) = −αg̃(α)g +
α2

2
(g̃(α))

2
.

Moreover, ifg = 0 andα > 0, thenϕ(α) = 0 and, ifg 6= 0,

ϕ(α) =

{
ϕF (α) for α ≤ (x− ℓ)/g or g < 0,

ϕA(α) for α ≤ (x− ℓ)/g and g > 0,

where

ϕF (α) :=

(
−α+

α2

2

)
g2 and ϕA(α) := −(x− ℓ)g +

1

2
(x− ℓ)2.

Thus, for anyα,

ϕF (2 − α) =

(
−(2 − α) +

(2 − α)2

2

)
g2 = ϕF (α), (2.3)
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and, ifg ≤ 0,

ϕ(α) = ϕF (α) = ϕF (2 − α) = ϕ(2 − α),

i.e., (2.2) holds true.
Let us now assume thatg > 0 and denoteα = (x − ℓ)/g. Thus, ifα ∈ (0, 1], thenϕ is

nonincreasing on(0, 2) and (2.2) is satisfied forα ∈ (0, 1]. To finish the proof, notice that if
1 < α, then

ϕ(α) = ϕF (α), α ∈ (0, 1],

ϕ(α) ≤ ϕF (α), α ∈ (1, 2),

so that we can use (2.3) to obtain, forα ∈ (0, 1],

ϕ(2 − α) ≤ ϕF (2 − α) = ϕF (α) = ϕ(α).

Now we are able to extract the information we need on the values of F along the
projected-gradient path.

LEMMA 2.2. Letx, ℓ, c ∈ R
n, withx ≥ ℓ. For α ∈ (0, 2), letF be defined as above and

letϕ be defined by (2.1). Then, for anyα ∈ (0, 1],

ψ(α) ≥ ψ(2 − α).

Proof. Let us define, for anyξ ∈ R andα > 0,

Fi(ξ) =
1

2
ξ2 − ciξ and ϕi(α) = −αgig̃i(α) +

α2

2
(g̃i(α))

2
.

Using the notation introduced above, we get

ψ(α) =

n∑

i=1

(
Fi(xi) + ϕi(α)

)
.

To complete the proof, it is enough to apply Lemma2.1.

3. Decrease of the cost function along the projected-gradient path. In order to use
Lemma2.2 in our analysis, let us assume thatx ∈ Ω is arbitrary, but fixed, so that we can
define, for eachα ∈ R, a quadratic function

Fα(y) = αf(y) +
1

2
(y − x)T (I − αA)(y − x).

We shall assume thatα‖A‖ ≤ 1, so that, for anyy ∈ R,

Fα(y) ≥ αf(y), Fα(x) = αf(x) and ∇Fα(x) = α∇f(x).

Moreover, the Hessian matrix ofFα is the identity, so thatF has the form assumed in
Lemma2.2. We shall use some other relations from [11].

LEMMA 3.1. Let x̂ denote the unique solution of (1.1), λ1 be the smallest eigenvalue of
A, α ∈ (0, ‖A‖−1], x ∈ Ω andg = Ax− b. Then

αf
(
PΩ (x− αg)

)
− αf(x̂) ≤ Fα

(
PΩ (x− αg)

)
− αf(x̂)

and

Fα

(
PΩ (x− αg)

)
− αf(x̂) ≤ α(1 − αλ1)

(
f(x) − f(x̂)

)
. (3.1)
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Proof. Replacef by αf in the statement and the proof of Theorem 4.1 of [11].
Now we are ready to prove the main result.
THEOREM 3.2. Let x̂ denote the unique solution of (1.1), λ1 be the smallest eigenvalue

ofA, x ∈ Ω, g = Ax− b, µ = 2‖A‖−1 andα ∈ (0, µ]. Then

f
(
PΩ (x− αg)

)
− f(x̂) ≤ η(α)

(
f(x) − f(x̂)

)
,

where

η(α) = max{1 − αλ1, 1 − (µ− α)λ1}.

Proof. To begin, let us observe that, forα ∈ (0, ‖A‖−1], the statement reduces to
Lemma3.1. Moreover, it is enough to prove the statement forα ∈ (‖A‖−1, µ), as the case
α = µ, i.e.,

f
(
PΩ (x− µg)

)
− f(x̂) ≤ f(x) − f(x̂),

follows by the continuity argument.
To prove the statement forα ∈ (‖A‖−1, µ), let us first assume that‖A‖ = 1 and let

α = 1 + δ, δ ∈ (0, 1). ThenFδ dominatesδf and we can apply Lemma2.2to the functionf
to get

δf
(
PΩ (x− αg)

)
≤ Fδ

(
PΩ (x− αg)

)
≤ Fδ

(
PΩ (x− δg)

)
.

Combining the latter inequality with (3.1), we get

δf
(
PΩ (x− αg)

)
− δf(x̂) ≤ δ(1 − δλ1)

(
(f(x) − f(x̂)

)
,

that is,

f
(
PΩ (x− αg)

)
− f(x̂) ≤ (1 − δλ1)

(
(f(x) − f(x̂)

)
.

To complete the proof, it is enough to apply the last inequality to the function‖A‖−1f .

4. Comments and conclusions.Theorem3.2 fills in a longstanding gap in our theory
of optimal algorithms [6, 11] for the solution of bound-constrained quadratic programming
problems. In particular, the result can be used in the analysis of these algorithms to obtain
a bound on the rate of convergence in terms of bounds on the spectrum, for step lengths
that are longer than allowed by the original theory. Moreover, the result also improves our
understanding of the optimal algorithms for bound- and equality-constrained quadratic pro-
gramming problems [7, 8].

We remark that these algorithms were the key ingredients, together with the theoretical
results concerning the FETI, BETI, TFETI and TBETI domain decomposition methods, in
the development of scalable algorithms for the solution of variational inequalities, discretized
either by the finite element method [9, 10] or by the boundary element methods [3].
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[17] J. SCHÖBERL, Solving the Signorini problem on the basis of domain decomposition techniques, Computing,
60 (1998), pp. 323–344.


