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CROSS-GRAMIAN BASED MODEL REDUCTION
FOR DATA-SPARSE SYSTEMS*

ULRIKE BAURT AND PETER BENNER

Abstract. Model order reduction (MOR) is common in simulation, contrad aptimization of complex dynam-
ical systems arising in modeling of physical processes, atittiapatial discretization of parabolic partial diffeiaht
equations in two or more dimensions. Typically, after a serseiditization of the differential operator by the finite
or boundary element method, we have a large state-space danensin order to accelerate the simulation time
or to facilitate the control design, it is often desirablestaploy an approximate reduced-order system of orger
with » < n, instead of the original large-scale system. We show how topee a reduced-order system with
a balancing-related model reduction method. The method isdb@se¢he computation of the cross-Gramiah
which is the solution of a Sylvester equation. As standagdrithms for the solution of Sylvester equations are of
limited use for large-scale (possibly dense) systems, wesiigate approaches based on the iterative sign function
method, using data-sparse matrix approximations (the hlacaicmatrix format) and an approximate arithmetic.
Furthermore, we use a modified iteration scheme for computingdmk factors of the solutioA’. The projection
matrices for MOR are computed from the dominant invariant sabspfX’. We propose an efficient algorithm for
the direct calculation of these projectors from the lowkréactors of X'. Numerical experiments demonstrate the
performance of the new approach.

Key words. Model reduction, balanced truncation, cross-Gramianahegical matrices, sign function method.

AMS subject classifications.93B11, 93B40, 93C20, 37MO05.

1. Introduction. We consider linear time-invariant (LTI) systems of thedaling form

Az(t) + Bu(t), t>0, z(0)=a°
Cx(t) + Du(t), t>0,
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with state matrixd € R"*", andB € R"*™, C € RP*" D € RP*"™. The system.1),
denoted by©(A, B, C, D), is assumed to be square (= p) and can be single-input/single-
output (SISO) . = p = 1) or multi-input/multi-output (MIMO) (» = p > 1). Furthermore,
we assume stability ofi(1), i.e., all eigenvalues of the coefficient matrixdenoted by\(A),
are assumed to be in the open left half pld@he. In practice, e.g., in the control of partial
differential equations, the system matuik often comes from the spatial discretization of
some partial differential operator. In this caseis typically large and the system matrices
are sparse. On the other hand, boundary element discietizaif integral equations lead
to large-scalelensematrices that often have a data-sparse represent&ipB87]. Hence, in
general, we will not assume sparsityAfbut we will assume that a data-sparse representation
of A exists. In this case we call (1) adata-sparsesystem.

Model order reduction (MOR) aims at approximating a givegdascale systeni (1) by
a system of reduced ordey r < n. In system theory and control of ordinary differential
equations, balanced truncation (BPP] and related methods are the methods of choice since
they have some desirable properties: they preserve thiitgtalb the system and provide
a global computable error bound which allows an adaptivécehaf the reduced order. The
basic approach relies on balancing the controllabilityr@iean and the observability Gramian
of X(A, B,C, D). A variant of the classical BT method is based on the cross¥zm [L,
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3, 18, 34]. The major part of the computational complexity of both M@Bproaches stems
from the solution of large-scale matrix equations, i.e.jvod Lyapunov equations for BT
or of one Sylvester equation for the cross-Gramian (CG)aaagr. In [L], the reduced-order
system is computed from the eigenspaces associated vgthdagenvalues of thex n cross-
Gramian. This is computationally very demanding and thiks far the problems considered
in this work. The approaches i,[18, 34] belong to the class of Krylov projection methods
as they iteratively compute low-rank approximations to ¢hess-Gramian by an implicitly
restarted Arnoldi method. An approximately balanced reduorder system is obtained by
a partial eigenvalue decomposition of this Gramian.

Here, we will discuss an alternative for large-scale, dgqarse systems, based on the
sign function method for Sylvester equatiois 12]. The derived CG approach is described
in Section2, which is divided into three parts. First, Sectidri gives the background for
balancing-related MOR. Then, the efficient solution of gher equations by a data-sparse
sign function methodd] is reviewed in Sectio.2. Based on the computed approximate low-
rank factors of the Gramian, we propose an effective contipataf the projection matrices
for MOR in Section2.3. Several numerical simulations demonstrate the perfoceafithe
new method in SectioB and concluding remarks follow in Sectidgn

2. Approximate cross-Gramian approach. In the following section we shortly review
the main properties of BT and the close connection to the GiBoagh.

2.1. Background. BT [29] eliminates the states corresponding to the r smallest
Hankel singular valuegHSVs) from a balanced realization B8{ A4, B, C, D) to obtain a sys-
tem of orderr < n [36, Section 3.9], 2, Section 7.1]. The HSVs ofl(1) are given by the
square roots of the eigenvaluespg, i.e.,

APQ)={o},...,02}, 01> >0,2>0,

whereP denotes the controllability Gramian whi@ is the observability Gramian of.(2).
The reduced-order model

5.0

g(t) =

with A € R™", B ¢ R™*™, ' € RP*", D € RP*™, is achieved by applying the blocks
T;, T of the balancing transformation matfx(TPQT ! = diag(c?,- - - ,02)), defined by

Q> :B>

%(t) + B;u(t), t>0, (0) =20, 2.1)
Z(t) + Du(t), t>0,

*

T = [Tl} , T7'=[T,, %], with T/ T, € R"*"

to (1.1) as follows
(A, B,C, D) = (TAT,,T;B,CT,, D). (2.2)

The worst output error betweeh.() and @.1) is bounded 19 (if 2(0) = 0) by

n

ly — dlls g2( 3 aj) el 2.3)

Jj=r+1

with || - ||2 denoting theC,-norm for square-integrable functions ffnoco). This error bound
provides a reasonable way to adapt the selection of the eedolerr. In addition, the
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reduced-order system remains stable and balanced witlathe kISVs{c,...,0,} of the
original system.
In 1983, a new system Gramian was defined for stable SISOmsgste

X = / eMBC et (2.4)
0

which contains information on controllability of the systes well as on observabilityl f].
Therefore X € R™"*" is called thecross-Gramiarof the systemX.1). The definition was ex-
tended to symmetric MIMO system$7, 28]. Note that a realizatiod(A, B, C, D) is called
symmetric if the corresponding transfer function matrigT) G(s) = C(sI—A)"'B+Dis
symmetric. This is trivially the case for systems with= A", B = C*, D = 0. In[17, 28],
properties of the cross-Gramian were derived which unuetine usefulness ot for the
purpose of model order reduction. It was show#, [L7, 28] that for SISO and for symmetric
MIMO systems, the cross-Gramian satisfies

X2 =Po. (2.5)

By this identity, the HSVs oE(A4, B, C, D) are analogously given by the magnitude of the
eigenvalues oft,

O',L:‘)\Z(X)L fori=1,...,n.

It is possible to compute a reduced-order system direatipnfthe cross-Gramiaf’. Note
that under state-space transformations, the eigenvafu¥sace invariant

X = /OO TAT " tp o=t (TAT 'ty — =1L,
0

If X is diagonalizable an@’ is a balancing transformation, then
X =diag\, -, An),  with M| > > |\,

and the reduced-order system is simply given by the firstates of the balanced realiza-
tion. For SISO and symmetric MIMO systems, the system dyoamie projected onto the
eigenspaces associated with the largest eigenvalugsdliie computed reduced-order model
has the same properties as in BT model reduction, i.e. lisgabipreserved and a computable
global error bound exists. Note that this can also be donadorsymmetric, square MIMO
systems (withm = p), but without the theoretical background provided for tyenmet-
ric case, and therefore without any guarantee for the quafithe reduced-order system.
In Section3 it is shown for a numerical example that such a reduced-@gstem can be
a reasonable approximation to a non-symmetric MIMO systemedl. An alternative is pro-
posed in B4] where a non-symmetric, possibly non-square MIMO systeembedded into
a symmetric, square system of the same order but with motgsrgmd outputs.

In the following we describe an efficient implementation KOR by a CG approach,
using an approximate sign function solver for the solutiérihe Sylvester equation, and
a low-rank product QR algorithm for the computation of thejection matrices. This CG
approach yields an alternative for the widely used BT methbdpproximately the same
costs. A further motivation for this approach is given @[ by the following consistency
argument. In usual BT implementations, suitable for lasgale systems, the basis s&}s
andT. for projection are computed from approximations to the exaatrollability and ob-
servability Gramians. Since both Gramians are approxidhsgearately it can not be ensured



ETNA
Kent State University
http://etna.math.kent.edu

CROSS-GRAMIAN BASED MODEL REDUCTION FOR DATA-SPARSE SYSWVES 259

that the same basis sets would have been computed by thedtehs Gramians. In other
words, there might be a gap between the approximation esfdPsand Q, which influences
the computed reduced-order system in some way. This protid&snot occur if we compute
projection matrices from an approximation to the crossr@aa. Moreover, the examples in
Section3 indeed demonstrate that the CG approach sometimes hastagivans properties
compared to BT.

2.2. Efficient solution of large-scale Sylvester equationsThe cross-Gramiar2(4) is
equivalently given by the solution of the Sylvester equafi®y/]

AX + XA+ BC = 0. (2.6)

For the numerical solution of large-scale Sylvester eguative consider the modified sign
function method as described iB]] This method combines the iteration scheme with the
hierarchical t{) matrix format p3, 24] and the corresponding approximate arithme#f6, [
22], and computes low-rank factors é&f. The overall procedure is shown in Algorithin
below, for more details (including scaling strategies) weer to B]. In the following, we
describe some of the important steps of the algorithm.

The matrix sign function gives an expression for the sofutib of the Sylvester equa-
tion (2.6) [31] by

son]4 BC] _ [~ 2%
Mo —al=lo 1|

In large-scale computations it is of particular interestéonpute low-rank solution factors
if X has low rank (rankY) < n) or, at least, low numerical rank. The latter case is of
particular relevance; in many large-scale applicatioeaiit be observed that the eigenvalues
of X decay rapidly, see e.g4,[21, 30]. Then, the memory requirements can be consider-
ably reduced by computing low-rank approximations to tHerink factors directly. Thus,
X~ YZ withy e Rmn(X) | 7 ¢ Rn-(X¥)xn exploiting the expected low numerical rank
of X: n.(X) < n. The sign function can be modified for the direct calculatidrsuch
low-rank factors 7, 12]. The numerical rank:,(X) is determined during the iteration by
a given threshold, applying rank-revealing QR factorizations in the cormsging steps of
Algorithm 1 below. Note that) in step 12 of Algorithml can be directly accumulated
in Br11 and needs not be generated explicitly. However, the cortipng complexity of
the method grows cubically and storage requirements gradmgtically withn. To avoid
this effect, the large-scale matrix and the iteratesl, are approximated in the data-sparse
‘H-matrix format (denoted byl;;) during the sign function iteration. The hierarchical matr
arithmetic (¢, LUy, H-forward/backward substitution) is used to reduce the adatpnal
cost in these iteration parts. The approximate operationsfdinear-polylogarithmic com-
plexity, O(nlog?(n)k(€)?), wherek(e) denotes the blockwise ranks in &fimatrix approx-
imation, which are determined by a parametés obtain a relative erro®(¢). For detailed
descriptions of thé{-matrix format and arithmetic, see, e.d.4][ 20, 22, 24]. Thus, the over-

all complexity of the data-sparse sign function iteratias,summarized in Algorithr, is
linear-polylogarithmic.

The described algorithm is especially suitable for largales systems obtained by the
spatial discretization of parabolic partial differentjuations which might have fully popu-
lated system matrices. Note that, in principle, all methwtigch compute low-rank factors
of X, e.q., [/, 8, 12], can be used in the CG approach for MOR as described in thie nex
section.
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ALGORITHM 1 (Calculate approximate factods, Z of X for AX + XA + BC = 0).

INPUT: A € R, B e R"™"™ C ¢ R"™*"™, convergence tolerance tol, rank drop tolerance
T.
OUTPUT: Approximation§” andZ to full-rank factors of the solutiof’.
1. Ay «+— Ay
2: Bg— B
3. Cyp«—C
4: k=0
5: while || A, + I,,|| > tol do
: [L,U] «+ LUx(Ag)
Solve LW = (I,,)» by H-forward substitution.
SolveUV = W by H-backward substitution.
Apy1 — (A V)
10: Bk+1 — % [Bk VB]J
1| Ck
G
12:  Compute a rank-revealing QR factorization

© o N o

11: Cigq

R R
Cun = Qe T 12| e

Wlth HR22||2 < THCk_l’_lHQ andel c RSXS_
13 Compress rows of'y; to sizes:

Crt1 < [Rui1, Ri2|1g.

14:  Compute a rank-revealing LQ factorization

L 0
Br11Qc =11p [L; L22:| @B

with HL22||2 < THBk+1”2 andLu S RtXt, (QB)II = QB(l tt, 1 S)
15.  Compress columns @81 Q¢ to sizet:

L
By 1B {L;j .

16: if t < sthen
17: Multiply Cj.1 from the left by(Qp)11 € R>®: Cry1 « (QB)11Cki1-
18: else

19: Multiply Bji1 by (@)1 € R™*®: Byyy — Brg1(QB)11-
20.  endif

21: k=k+1

22: end while

23 Y %Bk, 7 — %Ck
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2.3. Computation of the projection matrices. We compute the projection matrices
T, andT,. for MOR as the left and right dominant invariant subspaceg’dfy particular
Schur decompositions af Z. We propose a numerically efficient and accurate algorithm f
the computation of these dominant invariant subspacest, Ritbasis for the right invariant
subspace of Z corresponding to the largest eigenvalues is computed,

(YZ)V, =V, Ay,

whereA; = diag\1, ..., A) sothai\,.| > |\-41] and the eigenvalues are in non increasing
magnitude order. The remaining— r eigenvalues ot”Z are smaller in magnitude. The
columns ofV, € R"*” span the dominant right invariant subspac&'d. In practice, we
compute a Schur decomposition of the “small” matrix prodddt € R (X)xn-(X) - The
Schur decomposition will be done without explicitly comipgtthe product of the two factors
Z andY using the followingow-rankversion of the so-calledroduct QR algorithm

1. Compute an economy-size QR decompositioli afith column pivoting:

?:Q1R1HT7 Ql ER”XHT(X), R1 ERn,(X)Xn.,.(X)’

where@ has orthonormal columng; is upper triangular antl is a permutation.
2. Multiply and permute

Z - ZQleR"T(X)X”T(X),

Y «— RI7T e R (X)xn-(X)
3. Compute the product Hessenberg fornzZaf
H\Hy, — Ul ZU,UTY UL,

whereH; is upper Hessenberg, upper triangularl/; andU, are orthogonalZ6,
Section 4.2.3].
4. Compute the product Schur decomposition

5152 — W1TH1W2W2TH2W1,

where S, is in real Schur form,Ss is upper triangularJ¥’; and W, are orthogo-
nal [26, Section 4.2.1]. The eigenvalues are ordered by descenuaggitude.
The low-rank product QR algorithm yields the invariant suéase ofZ Y by the column span
of U Wy,

ZY UWy = UyWy 51.5,.

By ordering the eigenvalues, the dominant right invariatispace of the approximate cross-
GramianY Z corresponding to the largest (in magnitude) eigenvalues can be derived using
the firstr columns ofU; W, (denoted by the MTLAB colon notation/; Wi (:, 1 : 1)) setting

V, .= Y (U;Wi(;,1 : 7)) € R™*". Note that the size of the reduced-order system can be
easily determined by a given error tolerance using theraiie

n
min{reN‘Z ) |5\j(}7Z)|§tol}.
J=r+1

The left dominant invariant subspace¥# is given by the column spai; € R™*" satis-
fying
WY Z) =MW/
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can computé¥; analogously tdV,. via the low-rank product QR algorithm applied to

YT ZT. The projection matrices for MOR are obtained similarly e balancing-free SR
method[35] by an orthogonalization o#;. and W,. For this purpose we compute two

eco

sett

nomy-size QR decompositions
Vr = Q’I“RT and Wl = QlRla QT? Ql € Rnxrv

ingl,. = Q,,T; = (QTQ,)~*QT, and obtain a reduced-order system by project
g Q (Q Qr) Q] y Y proj

All steps of the cross-Gramian approach are summarizedgorAhm2.

ALGORITHM 2 (Approximate Cross-Gramian approach for LTI systemblj.

INP

UT: Ay € R™*™, B e R™™, C e R™*", D e R™*™ tol, 7, €.

OUTPUT: A ¢ R™*", B € R"™*™ (' € R™*", D € R™*™: reduced order, error bound.

. Compute low-rank factors” ¢ R™*"(X) 7 c R (X)xn of the cross-Gramiad’ by

Algorithm 1.

: Compute right invariant subspa€g 1, of Z'Y by the low-rank product QR algorithm

with eigenvalues in non increasing ordgg| > --- > \S\n,(x)l-
e (X)

: Adaptive choice of by tol: § =2 3~ 1\;] < tol.

j=r+1

. Compute right dominant invariant subspacec R"*" of Y Z:

V, = Y(U,W1(:,1:7)).

. Compute right invariant subspaég W, of Y7 Z7 by the low-rank product QR algo-

rithm.

. Compute left dominant invariant subspdée € R"*" of Y Z:

Wy = ZT (U Wi(:,1: 7).

: Compute QR decompositions = Q.. R,., W; = Q;R; and projection matrices

T, =Q. T=(QTQ) Q.

: Compute reduced-order model:

A=TAnT,, B=T,B,C =CT,, D= D.

(32
We

3. Numerical results. All numerical experiments were performed on an SGI Altix370
Itanium Il processors, 1300 MHz, 64 GBytes shared mepooity one processor is used).
make use of the LAPACK and BLAS libraries for performing gtandard dense matrix

operations and include the routine DGEQPX of the RRQR Iibfaf] for computing the
rank-revealing QR factorization. For tiié-matrix approximation we employ HLib 1.29].
The parameter which determines the desired accuracy in each matrix blse& &t the end
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of Section2.2) is chosen in dependency on the rank drop tolerandey - = ¢ = 1075.
This is inspired by preliminary work for an approximate BTthad also using th&{-matrix
format for the solution of the arising large-scale Lyapurquations®]. It is shown in ] by

a rough error analysis that the choice- ¢ leads to an error of sizein the computed Hankel
singular values as well as in the projection matrices, and th the reduced-order model.
The results obtained by the CG method are compared withtsgfsoim this approximate BT
method.

Besides the data-sparse solver for Sylvester equationkyorithm 1, all computational
steps of the cross-Gramian approach (Algoritfjrare computed in dense arithmetic. For the
product QR algorithm, we employ the routimg03vD from the SLICOT Library 9, 33] to
compute the product Hessenberg form of a product of matrigémut evaluating any part
of the product. The matrix product is transformed furtheptoduct real Schur canonical
form by the HAPACK P5, 26] routine DHGPQR and reordered bpTGSRT such that the
magnitudes of the eigenvalues appear in non increasing.orde

Note that, in order to measure the accuracy of the computhdtesl-order systems, we
have to analyze the influence of ti&matrix error introduced by the approximation of the
original coefficient matrix4 in H-matrix format. Thus, the data-sparse MOR methods are
actually applied to

Gu(s) = C(sI — Ay)"'B + D.
We split the approximation error into two parts using thartgle inequality:
IG = Glloo < IG = Grelloo + |G = Gl (3.1)

where|| - || denotes thé..-norm of a rational transfer function. For the approximate
BT method, error bounds are derived B].[ We recall the bound for the specific case of
systems with symmetric, negative definite matdixand A, respectively). With as TFM
associated to the reduced-order syst@mi)( obtained by applying BT t@s4,, and some
assumptionsd, Theorem 4.4], the approximation err&.J) is bounded by

16~ Gl < 5 e C1RIBIR0) +2( Y- a5) 2

Jj=r+1

where); is the largest eigenvalue of andg; are the HSVs ok (A4, B, C, D). Note that
lo; — ;| ~ € by choosing the tolerances accordingly, i+ ¢ andg; = |);|. If all the
involved quantities are computed with an approximatiomreof orderO(¢), this bound is
also valid for SISO and symmetric MIMO systems reduced byGReapproach, due to the
theoretical equivalence to BT.

As a basis for our test examples, we consider a convectitusitin equation in the unit
square? = (0, 1)? with a heat source in some subdom&ip:

%(t,&) = V7T(a(&) - Vx(t,€)) +c- Vx(t,&) + b(&)u(t), €€ te(0,0), (3.3)

whereb(-) = Xq, andXq,, is the characteristic function of the control domain. THéudion
coefficienta is a material-specific quantity depending on the heat candtye the density
and the heat capacity. The convective term is describeddR?. We impose homogeneous
Dirichlet boundary conditions and discretize with lineanité elementspy, ..., , andn
inner grid pointsg;. In the weak form of the partial differential equation we aselassical
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Galerkin approachx(t,&) ~ Y1, Z;(t)p;(€). For then unknownsz; we obtain a system
of linear differential equations

Ei(t) = —Ai(t) + Bu(t), (3.4)
with matricesE, A, B defined by the entries

B, = / oi(€)p; (€) e, Ay = / a(€) (Ti(€), Vo3 (6)) + (e Vip; (€))pi(€) dE,

Q

Q
Bu = [M@eds.  forij=L...n
Q

The output equation is given by a measurement of the tempert a small subdomai,,:

1) €j € QO7

i forj=1,...,n.
0, otherwise,

y(t) = Cz(t),  where Cy; = {
The number of basis function of the finite element ansatzespggachosen as = 16, 384.
We approximate the x n mass matrix in H-matrix format and transform the equation to
standard form using a formatted Cholesky decomposifioa: LL” such thatz := L7z.
The resulting state matrid = —L AL~ is also stored a${-matrix. Thus, we have
a large-scale stable LTI system as introducedlin)( with B = L~'B € R™*! andC =
CL~T e R'*", i.e., a SISO system.

First we choose the diffusion constant@s) = 1.0 and setc = (0,0)7, thus equa-
tion (3.3) simplifies to the non stationary heat equation. We comgadrequency response
errors|| G — G|, obtained by the cross-Gramian approach, with those offiheoaimate
BT method B]. The H..-norm error betweelt’;; and( is estimated by the pointwise ab-
solute values computed at 20 fixed frequencigs= 1074, .., 10° in logarithmic scale, as
described inf].

With tol = 10~4, the reduced order is determinedras- 4 and the approximate error
bound is computed to b= 4.3 x 10~5. Note that using” andZ in Algorithm 2 reduces
the computable part of the original BT error bou2d3j to

n,(X) ~
0=2 [A]s
j=r+1

since only the largest,(X) eigenvalues of the cross-GramiafZ are computed by the
low-rank product QR algorithm. Thus,may under-estimate the errd@.9) if n.(X) < n.
In practise, the estimate usually gives an accurate errasure. The frequency response
errors for thelH{-matrix based BT and CG method are shown in the upper plotgfrEB. 1L
We observe that both curves as well as the computed errords@unearly coincide. We
also depict the errors between the original (withd{smatrix approximation) and the CG
reduced-order systefit; — (| in the lower plot of Figure3.1to demonstrate the reliability
of our approach. Note that there is no visible differencevieen the corresponding error plots
and that all curves satisfy the approximate error bolinthus, other error sources using the
‘H-matrix format in the CG approach seem to be negligible.

Next we varya(-) over the domain:

]-Oa 56 [71>1] X [7%7%]7

a(g): 10_4a 56 [_%7%] X ([—1,—%)U(%,1])7
1, otherwise.
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2d heat equation, n = 16,384, e=1=1.e-6,tol=1.e-4 - r=4
T T

10
107°L E
" O = = = O = O = O — O — e g
= \
e \
5 10°F N 4
o «
g N
o
D 10°E \.\' 4
= KN
g AN
S 107k LY ]
g 10 N
T \
N,
10°H - A ‘o
""" BT: |Gy (jw) — G(jw)| AN
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BT: 0.
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107 107 10° 10° 10* 10°
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2d heat equation, n = 16,384, e =1=1.e-6,tol=1.e-4 - r=4
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FIGURE 3.1. Frequency response errors for the two-dimensional heaaggp using the cross-Gramian ap-
proach as described in Algorith

By the given tolerance of0—*, the reduced order is determined by= 3. The frequency
response errors for BT and CG reduced-order models arestotgliishable in the upper plot
of Figure3.2. We observe a good approximation of the reduced systenisydarty for larger
frequencies. The differences betwelgf — G| and||G — G||o for the CG approach
are again negligible, see the lower plot in Fig®@. This means that using approximate
Gramians does not contribute much to the errors betweerridjiea and the reduced-order
system. The results fulfill the approximate error bound ef 8.7 x 107°.

Now we include convection by setting = (0,1)%, which leads to a nonsymmetric
stiffness matrix4 in (3.4). To make the convective term dominant, the diffusion coeffit
is reduced ta(-) = 10~* over the whole domaif2. In this example the eigenvalues.dfare
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2d heat equation with varying a, n = 16,384, e=1=1.e-6,tol=1.e-4 - r=3
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2d heat equation with varying a, n = 16,384, e=1=1.e-6,tol=1.e-4 - r=3
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FIGURE 3.2. Frequency response errors for the two-dimensional heaagop with varying diffusion using
the cross-Gramian approach as described in Algorithm

close to the imaginary axis, i.e._,r{lin IRe(\;(A))] =~ 2 x 1073, so that the sign function

iteration suffers from numerical problems when using arr@xmate arithmetic with error
tolerance greater thahx 10~%; see the discussion ii], Remark 1.3.5]. For this example

it is advised to set = 10~® to avoid error amplification introduced, amongst othersthay
reciprocal of the square of the real part of the critical sigdue); (compare with the bound

for the symmetric case3(2); for details seeq]. The reduced order for the tolerante*

is determined to be = 9. The error in the CG reduced-order model satisfies the cagdput
error estimaté = 3.3 x 10~°, and is nearly the same as for the BT reduced-order system;
see Figure.3. Furthermore, the CG error curves it — G|« and||Gy — G|~ are very
close.
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Convection—diffusion equation, n = 16,384, e =1=1.e-8,tol=1.e-4 - r=9
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Convection—diffusion equation, n = 16,384, e =1 =1.e-8,tol=1.e-4 - r=9
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FIGURE 3.3. Frequency response errors for the convection-diffusiomagiqn using the cross-Gramian ap-
proach as described in Algorithh

Next we apply Algorithm2 to a symmetric MIMO system as obtained by the spatial
discretization of 8.3 with a(-) = 1.0, ¢ = (0,0)7, using agaim = 16, 384 grid points.
The dimension of the input space is enlargedte= 8, additionally setting” = BT. The
reduced order determined by the CG approach foetal0—* is» = 11. In Figure3.4 the
error plots for several of the 64 input/output channels efdjistem are depicted. All graphs
satisfy the computed error estimate- 8.1 x 10~°.

In the last example we reduce the dimension of a non-symengtstem resulting from
the finite element semi-discretization of a two-dimensitieat equation similar td(4). The
number of grid points i& = 5177 and Neumann boundary conditions describing different
inputs are applied a parts of the boundary, thus = 6. The output matrixC' is defined
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to minimize the temperature difference between certaith goints withp = 6. BT and the
CG approach are applied to reduce the dimension of the sgsisimg a tolerance threshold
of 10~. The results for two input/output channels are shown in I@U5. It is observed
that the CG reduced-order system is of smaller dimensieni4 than the system computed
by BT (r = 18). The corresponding error curves are quite close (in thetglot, the CG
error is even smaller) and the CG reduced-order systenfisatike error estimate, though no
theoretical background exists for the CG approach appti@dh-symmetric MIMO systems.
This example shows that there exist situations where the @f8oach is preferable to BT,
although this is not supported by theory so far.

Input 1 to Output 1 Input 1 to Output 2

__________

Frequency response errors
=
o
’
’
Frequency response errors
=
o

10° 10° 10 10
Frequency w Frequency w

Input 2 to Output 1 Input 2 to Output 2

10"

100

10 '

Frequency response errors
Frequency response errors

‘ 0 ‘ 5 10- ‘ 0 ‘ 5
10 10 10 10
Frequency w Frequency w

FIGURE 3.4. Frequency response errors for the two-dimensional heaaggu withm = p = 8, using the
cross-Gramian approach as described in Algoritm

4. Conclusions. We have shown that a balancing-related cross-Gramian apipr@an
be used for MOR of large-scale linear systems resulting figemi-) discretizations of para-
bolic control systems. For SISO and for symmetric MIMO sgstethe computed reduced-
order models have the same desirable properties as obtaynise usual BT method. Fur-
thermore, it is shown that the method can be applied to gesystems, provided that = p.
Employing formatted arithmetic in a sign function-basedivEster solver, approximate low-
rank factors of the cross-Gramian can be computed with tipelylogarithmic complexity.
From these low-rank factors, the projection matrices for RM@re derived directly, using
a low-rank product QR algorithm. The approximation quatifythe reduced-order system
depends on the parametefor the blockwise accuracy in thHE-matrix arithmetic. This is
confirmed by several numerical experiments which dematesttee usefulness of the CG
approach.



(1]

[2]
(3]

(4]
(3]
(6]

ETNA
Kent State University
http://etna.math.kent.edu

CROSS-GRAMIAN BASED MODEL REDUCTION FOR DATA-SPARSE SYSWS 269
Input 1 to Output 1, n =5177, m = p=6, € = 1=1.e-6, tol = 1.e—4
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FIGURE 3.5. Frequency response errors for the two-dimensional heatgop withm = p = 6, non-
symmetric, using the cross-Gramian approach as describédgorithm?2.
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