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DECOMPOSITIONAL ANALYSIS OF KRONECKER
STRUCTURED MARKOV CHAINS *

YUJUAN BAOT, ILKER N. BOZKURTY, TUGRUL DAYARY, XIAOBAI SUNS, AND KISHOR S. TRIVED(T

Abstract. This contribution proposes a decompositional iterative methith low memory requirements for the
steady-state analysis of Kronecker structured Markovrchaihe Markovian system is formed by a composition of
subsystems using the Kronecker sum operator for local tiransiand the Kronecker product operator for synchro-
nized transitions. Even though the interactions among st®s)s, which are captured by synchronized transitions,
need not be weak, numerical experiments indicate that therdoénefits considerably from weak interactions among
subsystems, and is to be recommended specifically in this case.
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1. Introduction. In a system composed of subsystems, various events talke fame
events are constrained only to a particular subsystem amteaalled local, while others
require the involvement of multiple subsystems to be redland can be called synchronized
(or global). The infinitesimal generator matrix underlyivigrkovian systems composed by
local and synchronized events can be expressed using timeéler sum operator for local
transitions and the Kronecker product operator for synuizex transitions44]. Since a
Kronecker sum can be written as a sum of Kronecker proddfs fhe potentially large
generator matrix of such systems can be kept in memory as asknonecker products of
the smaller subsystem transition matrices without hawrigetgenerated and stored. With the
help of a vector-Kronecker product algorithidf], this enables, at the expense of increased
analysis time, the iterative analysis of much larger Marovmodels on a given computer
than can be performed with the conventional flat, sparseixggneration approaci2§].

Throughout this work, we assume that the cross product cftdte spaces of the subsys-
tems is equal to the state space of the system. We furthenmagbiat each state of the system
is reachable from every other state in the system, implyiegrreducibility of the underly-
ing generator matrix, consequently the existence of isdstestate vector. Now, letting the
infinitesimal generator matrix corresponding to the cargims-time Markov chain (CTMC)
underlying the Kronecker representation be denote@ pthe objective is to solve the linear
system of equations

Q=0 (1.1)

for the (global) steady-state (row) vectat,without generating) and subject to the normal-
ization condition) _, _¢ m; = 1, whereS is the state space of the CTMC.

Stochastic automata networks (SANSg[24, 25], various classes of superposed stochas-
tic Petri Nets (SPNs)1[7, 19], and hierarchical Markovian models (HMMs},[10, 11] are
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Markovian modeling formalisms utilizing such a Kroneckepresentation. In this context,
the exponential growth of the size of the state space witmtlmeber of subsystems in the
specification of the model is referred to as the state spgues®n problem. The Kronecker
based representation provides an elegant, memory congeoiution to the problem albeit
not as timewise efficient as one would like to have. This higgéred much research, and
currently, multilevel methods7] and block SOR (BSOR) preconditioned projection meth-
ods B] appear to be the strongest iterative solvers for the stetatg analysis of Kronecker
based Markovian systems. The former class of solvers exfaisi convergence on many
problems, but it still has not been possible to provide altesiaracterizing their rate of con-
vergence 9], and examples are known where convergence is slow. On tiex band, the
latter class of solvers have many parameters that must b@qusdly chosen for them to be
effective, and they may yield considerable fill-in during flactorization of diagonal blocks
in the BSOR preconditioner for certain problems. Hencegtlestill room for research and
the recent review inl[6] can be consulted for issues pertinent to the analysis oh&cker
based Markovian representations.

This paper proposes a composite iterative method with lomang requirements for the
steady-state analysis of Kronecker based Markovian reptagons. The method is based on
decomposition into subsystems and is coupled with a GaeselSGS) B0 relaxation step.

In a given iteration, each subsystem is solved independéottits local steady-state vector
by restricting the effects of synchronized transitionshi® particular subsystem as a function
of the global steady-state vector computed in the previmuation. The Kronecker product
of the local steady-state vectors constitutes the local wfrthe current global steady-state
vector. Then the residual vector obtained by multiplying fbcal term with the generator
matrix held in Kronecker form is used to compute a correctenm for the current global
steady-state vector through GS. The local term, togethtbrtié correction term, determine
the current global steady-state vector. When the intemgtionong subsystems are weak,
the Kronecker product of the local steady-state vectorxpe&ed to produce a good ap-
proximation to the global steady-state vector and yields/emence in a small number of
iterations.

As we will show later, the proposed method can be formulagédguconcepts from al-
gebraic multigrid (AMG) R6] and iterative aggregation-disaggregation (IARB[ Ch. 6],
which is originally proposed for stochastic matrices hgvannearly completely decompos-
able block partitioning. However, we remark that the cona#pveak interactions among
(or near independence of) subsystems is orthogonal to theepd of near complete decom-
posability associated with stochastic matrices. This jshezause the former refers to the
possibility of expressing an infinitesimal generator ma&s a Kronecker sum plus a term in
which the nonzero values are smaller, compared to thoseiKtbnecker sum, whereas the
latter refers to the possibility of symmetrically permugtiand partitioning a stochastic matrix
such that the off-diagonal blocks have smaller probaegitcompared to those in the diag-
onal blocks. In this sense, the two concepts can be classifi@dultiplicative and additive,
respectively.

The fixed-point iteration presented ihJ for stochastic reward nets (SRNSs) is also moti-
vated by the concept of near independence of subsystenis apgroximative. Although not
particularly geared towards Kronecker structured Marowsystems, the decomposition is
inspired by the Kronecker sum operator reflecting the logaligion of subsystems. It can be
considered as an extension of the work28][ which is intended for a particular application
area. There are other methods in the literature that arellesgecially on decomposing Kro-
necker structured Markovian representations. For instgdtprovides an iterative method
for SANs that bounds the solution from below and above usolghedra theory and disag-
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gregation. Itis argued through two small examples that #reegated bounds are satisfactory
only if the interactions among subsystems are weak, or ties @& synchronized transitions
are more or less independent of the states of subsystemie@thier hand 5] introduces an
approximative method for superposed GSPNs, which itexigtoperates individually only on
states that have higher steady-state probabilities; tinairéng states are aggregated. Con-
siderable storage savings are obtained for the globalst&atk vector due to its compact
representation as a Kronecker product of aggregated debsysteady-state vectors. The
method proposed in this paper is different from these methothat it is not approximative
and it aims to compute the solution exactly up to computecipi@n. It is coded into the
APNN toolbox [1] which is developed for HMMs since, to the best of our knowgledthis is
the toolbox having the largest set of steady-state soleersronecker structured Markovian
representations which can serve as benchmarks for our meahexperiments.

The next section introduces the Markovian model used in #pepand provides a small
example. SectioB presents the decompositional iterative method. The pexposethod is
compared with other iterative methods on various exampldsnamerical results are given
in Sectiond. The conclusion is drawn in Secti@n

2. Model composition. Consider the following Kronecker representation of the GOIM
underlying a Markovian system composed of multiple sulesystinteracting through syn-
chronized transitions, wher® and ) denote the Kronecker sum and Kronecker product
operators 31], respectively.

DEFINITION 2.1. Let K be the number of subsyster§$?) = {0,1, ..., |S**)| -1} be the
state space of subsysténfor & = 1,2, ..., K, ty, be a local transition (one per subsysterh),
be the set of synchronized transitions among subsystes, abe the rate of synchronized
transitiont, € 7. Then

Q = Qlocal + stnchronized (2-1)

where

K K
Qlocal = @ Q§§)7 stnchronized: Z Tt ® Ql(g]:) + D,
k=1

te€T k=1

D is the diagonal correction matrix that sums the row€Xfnchronized0 zero,ng) and QE’:)
are matrices of ordefS®)| capturing transitions between states of subsystamder local
transitionty and synchronized transitionn € 7, respectively.

PROPOSITIONZ2.2. The matricesocqr and Qsynchronizedn@ve zero row sums by con-
struction.

We remark that the state space @) is K-dimensional and is given by
S =80 x 8@ x ... x SF) wherex is the cross product operator. Hence, each state
in S can be represented byf-tuple. Throughout the text, we denote the stateS by the
K-tuples = (s1, 59, ...,5x), wheres, € S¥) fork =1,2,... K.

ExAMPLE 2.3. We illustrate these concepts with a simple system wiictsists of/<
subsystems interacting through synchronized transitidine kth subsystem has;, redun-
dant components (implyings(®)| = n,;, + 1) only one of which is working (i.e., operating)
at a given time instant fok = 1,2,..., K. The working component in subsystérfails
independently of the working components in the other subsys, with an exponentially
distributed time having ratg;. When a working component in a subsystem fails, it is re-
placed with one of the intact redundant components in thiasysiem in no time and one
again has a working subsystem. Furthermore, there is oa@mnegmn in subsysterk who can
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repair a failed component independently of the failed congmts in the other subsystems
with an exponentially distributed time having ratg. Hence, the considered model is that
of a system with redundant components, each of which doebawet to be highly reliable.
It improves steady-state availability by using a larger benof redundant components, and
not by employing highly reliable individual components.

For this system, local transition rate matrices have tlagaigional form in

— Ak AL
e =M 4 pr) A
k
QY = : 5
pe —(Me+pe) A
Kk —Hk

To center the discussion around the solution method ratttaer the model, at this point we
consider the existence of a single synchronized transitigrrepresenting a global reset to
the initial state (or a global repair corresponding to catelecovery by repairing all failed
redundant components) with ratein which all redundant components are intact and all
subsystems are functioning, when the system is in the dtadtabfailure. Such synchronized
transition rate matrices can be expressedg,%{fé = en, 161, Wheree; represents thgth
column of the identity matrix| s of order|S)].

WhenK = 2 in this system, we have

Q=Y P oY + 1l R + D. 2.2)

Furthermore, ifh; = ny = 2, then

. -\ A1 0 , —Ag Ao 0
an) = o ~atm) M|, QP = pe —Qetpe) A |,
0 H1 —1 0 2 — 2

0 0 0
QY =% =10 0 0], D=diag0,0,0,0,0,0,0,0,—u),
1 0 0

where diag-) denotes a diagonal matrix which has its vector argumentgaitsndiagonal.
Besides, the state space®@fs given by

§= {(07 0)5 (07 1)’ (07 2)7 (17 O)’ (1’ 1)7 (17 2)7 (21 0)7 (27 1)a (27 2)}7
whereas the state spaces of the subsystems are given by
SW =83 ={0,1,2}.

Now, in order to see that weak interaction between the twesysibms has nothing to do with
near complete decomposability, consider the uniformitectgstic matrixP(«) = I+ Q/«
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corresponding to

[ % X 0N 0 00 0 07 (0,0
e ¢ X0 A 00 0 0| (0,1)
0 o x| 0 0 X|O 0 O (0,2)
;0 0% X 0]x 0 0| (1,0
Q: 0 M1 0 U2 * Ao 0 A1 0 (1,1) s (23)
0 0 pr| 0 pwe = |0 0 N\ (1,2)
0 0 O fmw O O0fx X O (2,0)
0 0 00 m 0lmw = x| (21
L 0 00 0 |0 pw * | (22

wherex denote the negated off-diagonal row sums and [max; |gs 5|, o) for the values

11 = e = A1 = Ay = 1l andp = 0.001. @ is composed of two subsystems, each having
three states that interact with a rate of 0.001; $8.( Hence, they are weakly interacting
with regards to their local evolutions. On the other handnraiter which one of th®!
reorderings of the nine stateséhis used,P(4) cannot be symmetrically permuted to nearly
completely decomposable form with a decomposability patanof 0.001; se€2(3). In fact,

the current ordering of states with the block partitionifig’¢4) having three diagonal blocks

of order three yields a degree of coupling (i.e., maximunckff-diagonal probability mass)

of 0.5. As«a approacheso, P(«) will end up possessing a nearly completely decomposable
partitioning with nine diagonal blocks, each of order one.

In passing, we remark that the subject of this paper is nastieedy-state solution of the
uniformized stochastic matriR («) by a decompositional iterative method using aggregation-
disaggregation based on a block partitioning, but it is tiat®n of the CTMC underlying
a sum of Kronecker products by decomposition into subsystédow, we are in a position
to introduce the proposed method.

3. Decompositional method.Our decompositional solution approach is built upon two
key components: systems of local equations obtained frenhoital transition rate matrices
of subsystems, and a system of global equations for theatmmeof the Kronecker product
of local solutions. In each iteration, the systems of locgiagions are solved first. The right-
hand sides of the systems of local equations depend on thalglolution. After solving
the systems of local equations, the Kronecker product dadllsolutions is computed and
used to find the new correction and, hence, the new globalisnluin summary, the local
solutions are used to improve the global solution, the dlebktion is used to improve the
local solutions, and the systems of local equations and ke of global equations are
solved alternatingly until a stopping criterion is met.

3.1. Local solutions and global correction.We express the global solutionin (1.1)
as the sum of two terms, one of which is the Kronecker prodfith@local solutionsy(¥)

fork =1,2,..., K, and the other is the global correctignas in
K
= ® k) g, (3.1)
k=1

This expression assumes that the local solutions are niazeddi.e.,|7=*)|; = 1); in other
words,7(*) represents the local steady-state vector of subsyktdan k = 1,2, ..., K.

We substitute global state variables in the right-handssafehe systems of local equa-
tions,v®) (), for k = 1,2,..., K, using local state variables and the correction variables,
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without altering the synchronization policy, and obtain
7WQM — o®(x),  subjectto|r® |, =1, fork=1,2,....K. (3.2

Here,v®) (1) are associated with synchronized transitions, throughbtfoms of local vari-
ables, and global correction variables appearing in thenidiefa of = in (3.1). Ther in
parentheses indicates the dependence of the right-haadsithe global solution, that is,
v®) is a function ofr. Specifically, one term is added to (subtracted from)sifte element
of v(¥) for every synchronized transition that moves subsystest of (into) the local state
sk € S®). In contrasty = 0 would be imposed in3.1) if the subsystems were independent,
andv®) () = 0 would be obtained fok = 1,2,..., K.

Now, let us proceed to show how the right-hand side veatdrgér), fork = 1,2, ..., K,
of the systems of local equations are obtained on our runexagnple, and then formalize
our observations. In the following;, refers to the steady-state probability of the global state

s=1(81,82,...,8K) €S, whereaSr(k) refers to the steady-state probability of the local state
s, € S of subsystenk fork=1,2,..., K. Hence,
ﬂ—gt) = Z T (51,82,..,8K)" (33)
I#k,s;€SM)

EXAMPLE 2.3 (CONTINUED). Consider the nine global balance equations

— (A1 + A2)m(0,0) + H2m(0,1) + 1T (1,0) + HT(2,2) = 0
Aam0,0) — (A1 + A2 + p2)m(o,1) + H2T(0,2) + H17(1,1) = 0
Aa0,1) — (A1 + p2)m(0,2) + pam(1,2) = 0

A17(0,0) — (A1 + A2 + p1)m(1,0) + pama,1) + 12,0y = 0

A1T0,1) + Aem(1,0) = (A1 4 A2 + p1 + p2) 711y + pom(1,2) + pam(2,1) =0
A1T(0,2) + Aem,1) — (A1 + pn + p2)m(1,2) + pam(2,2) =0

Ai70) — (A2 + p)m2,0) + p2mz,1) =0

AMT(1,1) + Aem(2,0) — (A2 + 1 + p2)m2,1) + pam(2,2) = 0

A1) + Aem(2,1) — (@4 pi1 + p2)T(2,2) = 0

obtained by usinga.3) in (1.1). Summing up the first three global balance equations yields

=A1(m0,0) + T(0,1) + T(0,2)) + s (T(1,0) + T(1,1) T T1,2)) + pT(2,2) =0,
which is equivalent to

-1 7r( )—&—p 7r( )—+—mr(272) =0,

since, from 8.3), the steady-state probability of subsystem 1 being inlisizdes; € S is
given bywé}) = D aes(» T(s1,s2)- Adding the next three and the last three global balance
equations in a similar manner yields, respectively,

)\177'(()1) — (/\1 + ,u1)7r§1) + ulﬂél) =0,

)\17T§1) — uﬁrél) — pm(2,2) = 0.

Now, observe that the three equations resulting from théiadddf specific mutually exclu-
sive global balance equations, and use of local steadg-stababilities, can be expressed as
a linear system of the form

QMaM = vW(x),  subjectto|r V||, =1
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where

oM () = (—um(2,2), 0, u7(2,2))-

Following the same line of argument, but this time addingglodal balance equations one,
four and seven, two, five and eight, and three, six and nirne pbitains

QPn® =@ (r),  subjectto|r®]|; =1,
where

v (1) = (—pm(a,2), 0, um(2,2))-

The proposed method is related to iterative aggregatisaggiregation (IAD)Z8, Ch. 6]
for stochastic matrices, and algebraic multigrid (AMGJ][ for general systems of equa-
tions. Although there are variations of IAD, all of them cdmdthe solution of the aggre-
gated stochastic matrix, whose elements correspond t&$iaca block partitioning of the
stochastic matrix, with pre- and/or post-iteration stepsrdhe global system of equations.
The solution of the aggregated system distributes the gtstatie probability mass over state
space partitions, whereas for each block the probabilitgsma distributed inside the cor-
responding state space partition. On the other hand, AM@&sa system of equations by
performing iterations on systems of equations of decrgesize, where each system of equa-
tions is obtained by aggregation. We return to this poirdrafte present the algorithm in the
next section. Let us first formalize our observations. Imddhat, we follow the approach
taken in P].

DEFINITION 3.1. Let the surjective (i.e., onto) mappirfg : S — S*), which satisfies

Js € S st fr(s) = s;, foreachs, € S,

represent the transformation of statesSrto states inS*), for k = 1,2, ..., K, during the
decomposition into subsystems.

Since the normalization of the local steady-state vectaamh subsystem can be per-
formed after it is computed, we introduce thérestriction (or aggregation) operators that
are used to transform global steady-state probabilityatées to local steady-state probabil-
ity variables of K different subsystems, as in the next definition.

DEFINITION 3.2. The(|S| x |S¥)|) restriction operatorR(*) for the mapping

fe: S — SH),

k=1,2,...,K, hasits(s, si)th element given by

T(k) _ 1, If fk(s) = Sk,
5.5k 0, otherwise

for s € Sands;, € S®). In Kronecker representatioR(*) is written as

k—1 K
Rk — <®I$(Ue> ®I\8(’C>\ ® < ® Is(z)€> , (3.4)
=1

I=k+1

wheree is the vector of ones of appropriate dimension.
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The postmultiplication by of each identity matrix|sa)|, exceptl = k, in (3.4) corre-
sponds to the aggregation of each dimension, excaptthe decomposition process. Equiv-
alently, @.4) can be interpreted aks)| being pre-Kronecker (post-Kronecker) multiplied
by a vector of ones of lengffi; ' |S®| (IT,%, ., [S®).

PROPOSITION3.3. The restriction operatoR(*), for k = 1,2, ..., K, is nonnegative
(i.e., R® > 0), has only a single nonzero with the value 1 in each row, aedefiore row
sums of 1, i.e.R®e = e. Furthermore, since there is at least one nonzero in eachronlof
R® (i.e.,e” R*) > 0), it is also the case thatink(R*)) = |S*)|,

For each local state, € S(*), the global balance equations that are mapped to the same
states, € S*®), fork = 1,2,..., K, are summed by th& prolongation(or disaggregation)
operators defined next.

DEFINITION 3.4. The(|S™)| x |S|) prolongation operatorP*)(r) for the mapping
fr:S — S® k=1,2,... K, hasits(sy, s)th element given by

) () = {m/wﬁ’z% if fi(s) = si.

Psics 0, otherwise

fors € Sands;, € S*.

Observe the dependency of the prolongation operator of &a#zsystem on the steady-
state vectorr.

PROPOSITION 3.5. The prolongation operatorP(*)(7) is nonnegative (that is,
P¥) (1) > 0), has the same nonzero structure as the transpogdf(i.e., (R*))7), has a
single nonzero in each column (i.e’, P(*)(r) > 0), and has at least one nonzero in each
row, implyingrank(P*) (7)) = |S*)|. Furthermore, each row oP*)(r) is a probability
vector, implying thatP?*) () has row sums of 1 just lik&*).

Now, we state three results that follow from the definitiohshe particular restriction
and prolongation operators.

LEMMA 3.6. The prolongation operatoP*)(r) and the restriction operatoR(*) sat-
isfy

P (m)R®) = Liguwy, fork=12... K.

Proof. The identity follows from Proposition3.3 and3.5, asP®*) () > 0, R*) >
P*) () has the same nonzero structurg B§*))”, P(F)(1)e = ¢, ande” (RF)T = €T,
LEMMA 3.7.The local steady-state vector of subsysteismgiven by

k) =7zR®  fork=1,2,...,K,
and it satisfies

r=7®PE (1), fork=1,2,... K.

M

Proof. The first part of the result follows fron8(3) and Definition3.2, and the second
part follows from (3.3) and Definition3.4. O
LEMMA 3.8.The(|S™)| x |S*)|) matrix
QW (1) = PM(m)QR®, fork=1,2,... K, (3.5)

is the irreducible infinitesimal generator underlying th&aC associated with subsystém
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Proof. The result follows from the assumption th@tis an irreducible CTMCzx > 0,
and similar arguments used in the proof of Lemma 4.Bjp[ 1038].0

Observe the dependency anin (3.5). The next result enables us to form the linear
system of local equations to be solved for each subsystem.

COROLLARY 3.9. The irreducible infinitesimal generator underlying the CTMssoci-
ated with subsystemcan be written as

QW (1) = ng) + P®) (1) Qsynchronized®™,  fork =1,2,... K.
Proof. Observe from Lemma.8and @.1) that
QW (1) = PM(m)Qiocat R™ + P™) (1) Qsynchronizedt™.
Writing

K

K k—1 K
Qlocal = @Qif) - Z <®I$(L)> ®Q§f) ® ( ® I|3(l)|>
k=1 =1

k=1 = l=k+1

and premultiplying?;,c.; by P*) (7) and postmultiplying by?(*) yields the matri>Q§f), of
size(|S™)| x |S®)|), which has row sums of zero from Propositids2. 0
EXAMPLE 2.3 (CONTINUED). Corollary3.9 suggests for our running example that

0 0 0

QW (m) = QM + 0 0 0 :
W o _ (1)

| pm(2,2)/ms UT(2,2)/T5 ]

0 0 0
Q(m) = QY + o 0 0

2 2
| umeny /T8 0 —pmag /s |

Note that althougl®(®) () is irreducible fork = 1,2, ..., K, Qﬁf) need not be.

The next definition introduces the projector which is usedrave thatr(*) is the local
steady-state vector ¢)*) (r), fork = 1,2, ..., K.

DEFINITION 3.10.The(|S| x |S|) matrix

H®(r) = R® PO (), fork=1,2,..., K,
defines a nonnegative projector (i.€(*)(7) > 0 and (H*)(r))? = H®) (7)) which satis-
fiesH®) (1)e = e.
LEMMA 3.11.The steady-state vectarsatisfies

WH(k)(’ﬂ'):ﬂ', fork=1,2,.... K.

Proof. The result follows from Definition8.2and3.4 and the fact that the restricted and
then prolonged row vector is. O
COROLLARY 3.12.The local steady-state vectaf*) of subsysterk satisfies

QW (r)y =0, fork=1,2,..., K. (3.6)
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Proof. We have

7r(k)Q(k) (7) = (WR(k))(p(k) (ﬂ)QR(k)) — (ﬂR(k)p(k)(ﬂ))QR(k)
= (ﬂ'H(k) (w))QR(k) — (W)QR(I@) _ (WQ)R(k) -0,

from the first part of Lemma&.7, Lemmas3.8, Definition3.10 Lemma3.11, and (L.1). O
THEOREM 3.13. The linear system of local equations to be solved for suesystcan
be written as in 8.2), where

U(k)(ﬂ) = _WstnchronizeeR(k)a for k = 1,2,..., K, (3-7)

andv®) () satisfiesy*) (1)e = 0.
Proof. Writing (3.6) from Corollary3.9as

W(k)ng) = _W(k)P(k)(W)stnchronizeﬁ(m

and using the second part of Lem®\d yields the resultd
In the global solution, numerically significant correctitmthe Kronecker product of
local solutions requires the solution of the system of glelgaations

K
yQ = <® 7r<’“)> Q (3.8)
k=1

for the global correctiony. Note thatQ) is the Kronecker structured generator matrixany
for the non-altered, original Markovian system, and thezeoa right-hand side is the residual
computed by multiplying the Kronecker product of the loaalusions with@. The systems
of local equations in3.2) and the system of global equations $18) together are equivalent
to the original system of equations ferin (1.1); they are linear in the local variables of each
subsystem and if.

In our method, we recompute the local solutions and the glodraection alternatingly
in each iteration starting with initial approximations iatpredetermined stopping criterion
is met. At first sight, there may seem to be no advantage in th@vever, exploiting the
Kronecker structure when solving the systems of local egustand the system of global
equations speeds up the convergence to the global solwiemather methods when the
subsystems are weakly interacting, as we show in the semtiommerical experiments. Now
we present the solution algorithm.

3.2. Algorithm. Let
Q=U-1L

be the forward GS splitting of the generator matrix in Krdtexdorm, wherelJ corresponds
to its upper-triangular part ant contains the rest, as discussedig,[pp. 287-289]. Note
that one can also consider the more general SOR splitting nelaxation parametes —
GS is SOR withw = 1 — from which we refrain in order not to clutter the discussion
The algorithm is stated in Algorithm, for a user-specified stopping toleranee, where
subscripts within square brackets denote iteration nusaber

In step O, the global correction vector is set to zero and thbaj solution vector is
set to the uniform probability distribution. Note that a jpiee initial global solution vector
is sufficient in exact arithmetic for the irreducibility di¢ aggregated matrices in the first
iteration if the local transition rate matrices are redleiln the current implementation, each
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ALGORITHM 1 (Decompositonal iterative method with GS correction step
0. Initial step:
Setit = 0, Y = 0, Ty = eT/n.
1. Compute local solutions and normalize:
If QE is irreducible, solver M”Q(k) = v (),

else solve’r[nH]Q (i) = 0,

subject toH7rltJr1 [f =1,fork=1,2,...,K.
2. Compute global correctlon
Y+ 11U =y L + <®k i zt)+1]) Q-
3. Compute global solution, normalize, and check for teatiom:
K k
Tit+1] = Qg1 77[(“)1;1] Ylit+1), Subjecttd|mq i =1,
exitif [|m;,41)Qlloo < tol, otherwiseit =it + 1 and return to step 1.

system of local equations is solved in step 1 using Gaus$immation (GE), and the local
solution is normalized. The use of GE is justified by the reafty small number of states
in each subsystem arising in practical applications. Theedwo cases. In the former case,
as shown in Theorer®.13 each linear system of local equations to be solved has asmeno
right-hand side vector due to the particular way in whichckyonized transition rate matrices

are specified in the composed modeQﬁf) is a singular negated M-matri,[p. 156] of rank

(|S™)|—1) (this requires the irreducibilitya)‘) ")y, then a unique positive solutmft+1 up
to a multiplicative constant can be computed using the nbzateon condition. In the latter
case, from Lemma.8, the coefficient matrix)™*) (r;;) ) is irreducible ifQ is irreducible and
m > 0. Hence, the existence of a unique positive solution up to kiplicative constant
is guaranteed.

Observe from Definitior2.1that in each term,, ®f:1 Q,Ef) of the global synchronized
transition rate matriX)synchronized the rates of nonzero transitions are obtained by multiglyi

the products of nonzero elementﬂéf) with the rater, . Hence, each global synchronized
transition obtained in this way from some global statg so, ..., sk ) to some global state
(s1,85,...,8%) is due to synchronized transition from local stajeto local states), in

subsystent. Since the synchronized transition rate matri@éié) are in general very sparse,
the enumeration process associated with the nonzeros igidhal synchronized transition
rate matrix to form the right-hand side vectors of the logatems of equations ir8(7), or
the aggregated coefficient matrices in Corollarg, can be handled in a systematic manner.

Note that there are differences from a computational pdiniew between using3.2)
versus 8.6) in step 1 of the proposed iterative method. In the formeec#se local tran-
sition rate matrix is constant and already available in sp&ormat, meaning it can be fac-
torized once at the outset. In the latter case, the aggikgatefficient matrix needs to be
reconstructed and factorized at each iteration. Furtheenio the former case, it is the right-
hand side vector that is dependent on the current globalisola;,;, whereas, in the latter
case, it is the coefficient matrix that is dependentmgp. The two approaches for obtain-
ing the new local steady-state vector are therefore novabpt except at steady-state (i.e.,
T = Te+1) = ), Since the former case uses only the new local steady-gtater,
whereas the latter case uses both the new and the currehtteady-state vector in the left-
hand side. The new local steady-state vector premultipliesaggregated matrix, but the
elements of the aggregated matrix are computed using theeats of the current global and
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local steady-state vectors (see Definiti#).

In step 2, the global correction is computed by solving anggidar linear system in
Kronecker form. The situation in this step is somewhat betenpared to that in step 1, in
thatQ is already a singular M-matrix of rarfkS| — 1) since it is an irreducible infinitesimal
generator matrix by assumption. Hence, the global cooeefj;,; ) is obtained through
a GS relaxation o) with a zero sum (see3(8)), but nonzero right-hand side as long as the
method has not converged. Step 3 subtracts the global tomexbtained in step 2 from the
Kronecker product of local solutions obtained in step 1,dmpute the new global solution
vector. Steps 1 through 3 are repeated until the infinity noffthe residual falls belowiol.

Two of the earlier papers which analyze iterative methodst@n aggregation-disaggre-
gation for linear systems with nonsingular coefficient ricas, using successive substitution
together with restriction and prolongation operators,[a& and [21]. The latter provides
a local convergence proof. Convergence analysis of a twa-lAD method for Markov
chains and its equivalence to AMG is provided &0]. Another paper that investigates the
convergence of a two-level IAD method for Markov chains gstoncepts from multigrid
is [22]. Recently, in R3], the results from 22] have been improved, and an asymptotic
convergence result is provided for a two-level IAD methodahituses post-smoothings of
the power iteration type. However, fast convergence cabpaguaranteed in a general setting
even when there are only two-levels3[ p. 340].

Now, we take a look at what goes on during one iteration of ttep@sed method in
more detail, and remark that the situation is different fittvat of the ML method9] in two
ways. First, the proposed method works in two levels, wisetka ML method utilizeg<
levels. Second, the proposed method soldesystems of local equations at the second level
and these systems are obtained from a well-defined decotigposi a Kronecker structured
Markov chain, whereas the ML method solves only one aggeegsystem of equations at
each level and the aggregated system does not have to arnsea #Kronecker decomposition.

Let

n[(k) and Tgg = LU ™!

it+1]
1

K
ﬁ[it«kl] =
k=

represent the GS iteration matrix. Then, after some algebmanipulation on the equation
in step 2 usingy = U — L and the definition of ¢, we have

Yiit+1] = YigTas + eI — Tas), forit=0,1,....
Substituting this in the equation of step 3, we obtain
Tit41] = (Tae+1) — Yrag) Tas, forit =0,1,....
Usingyjg) = 0, yields
Ty = T les-
Continuing in this manner, we obtain
) = 7z Tas — mp)(I — Tas),
and eventually,

it

Tlit+1] = Tlat+11Les — (Z W[i]) (I —=Tgs), forit=0,1,...,

i=1
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which implies
Tit1] = T las + (Trag1) — T ) Tas,  forit =0,1,... (3.9)

(assuming thafrq = o). Equation 8.9) reveals that the proposed method computes the
new global solution vector by summing two terms, the first bfck is the GS iterated current
global solution vector and the second of which is the GS tieeralifference between the
current and the previous Kronecker products of local sotutiectors. The method will be
advantageous only if the second term brings the new globatiso vector closer tor than
the first term alone.

Now, let us write@Q = A + B, whereA = er (that is, A is the stochastic matrix having
the steady-state vector along its rows). Then, we have

A>0, A=A, Ae=e, nA=n, w(B+1)=0, AB+I)=(B+1)A=0,

H® (rp)A=A and =)

i PO (i) A =, for 7% | >0, g > 0.

lit+1

These results follow from the definition of, Q = A + B, Definition 3.10, and Proposi-
tion 3.5. Observing thatd is a positive projector and using proof by contradictionraf2B,
p. 330], it is possible to show th&™" (r(;;; ) BR™*) is nonsingular.

Let us consider the homogeneous linear systems with caeffionatrices)*) (7)) tO
be solved in step 2 of Algorithrh. Then, from@ = A + B, the kth linear system can be
reformulated as

( ) k k) (k) E .
[n+1]P( (i) ARY) = Tr[it-i—l]P( (i) BR™,

which implies

k
aR®) = 7(k) — —ﬂ[(itlrl]P(k) (W[it])BR(k)a

from x|\ P®) () A = 7 and the first part of Lemma.7; thus,

[it+1]
) k k k)y—
M1 = - )(p( )(W[it])BR( )) 1
and, consequently,
K
#irpr) = Q) =7 (P® () BRI~

k=1

From the compatibility of the Kronecker product with matmaltiplication and matrix in-
version 31, pp. 85—-86], this can be rewritten as

-1
Mit+1] = — ( (7)) <®B> > ) (3.10)

K K K
r=Qr®, Pl =@ P (), and R= )R
k=1 k=1

k=1

where
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We remark that
H(m3) = RP (7))

is a nonnegative projector, and.{0 expresses the Kronecker product of the new local so-
lution vectors in terms of the global solution vector, @nx n’) prolongation operator
associated with the current global solution vector, #dold Kronecker product of part of
the generator matrix, and @n’® x n) restriction operator. It follows from PropositioBs3
and3.5that R and P(7;)) are restriction and prolongation operators, respectively

After substituting 3 1() in (3.9), we obtain

-1

—1
Tlit+1] = Tlt) Las —m ( (7)) <®B> > —( (Tit—1] <®B> ) Tcs,

which may be rewritten, using = @ — er and .1), as

K
X -1
Tat) — ™ ® (Qgi) +P® (W[it])stnchronizeﬁ(k) - €7TR(k))
k=1

Tlit4+1] =

+ ® ( P(k) ztfl])stnchronizeeR(k) - eTl'R(k))

Tas-

Observe that the new solution vector depends on both therduand the previous solution
vectors.

In the next section, we present results of numerical exparismfor some benchmark
problems, larger versions of the running example with vagyiumber and rates of synchro-
nized transitions, and some randomly generated problems.

4. Numerical experiments. Experiments are performed on a PC with an Intel Core2
Duo 1.83GHz processor having 4 Gigabytes of main memorypingnLinux. The large
main memory is necessary to store the large number of veatdesgth|S| used in some of
the benchmark solvers in the APNN toolbox. The existencevofdores in the CPU is not
exploited for parallel computing in the implementation.ride, only one of the two cores is
busy running solvers in the experiments.

The proposed decompositional method (D) is compared wighfolowing iterative
solvers: Jacobi (J), GS, block GS (BGS), generalized mimnmasidual with a Krylov
subspace size of 20 (GMRES(20)), transpose-free quasimairresidual (TFQMR), bi-
conjugate gradient stabilized (BICGSTAB), BGS precondidd GMRES(20), TFQMR,
BICGSTAB (that is, BGSGMRES(20), BGSTFQMR, BGSBICGSTAB), multilevel with
one pre- and one post-smoothing using GS, W-cycle, andccgetler of aggregating sub-
systems in each cycle (MGS(W,C)). More information can be obtained on these methods
in [27] except MLGS(W,C) for which P] can be consulted. In passing, we remark that
BGS preconditioned projection methods and multilevel rdshare state-of-the-art iterative
solvers for Kronecker based Markovian representati@hs [

The solvers are compared in terms of number of iterationstwearge to a user-specified
stopping tolerance, elapsed CPU time, and amount of a#daain memory. In the tables,
the columns labelled as Iteration, Residual, Time, and Mgnteport the number of iter-
ations to converge, the infinity norm of the residual upompgiog, the CPU time taken in
seconds, and the amount of memory, in megabytes, allocgtéblsolvers, respectively. An
asterisk superscript over an iteration number indicatasdbnvergence has not taken place
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TABLE 4.1
Numerical results for the Overflavarge problem withk = 6, |S1)| = 6, |S@)| = |G| = ... =
‘8(6)| =11,7 = {tl,tz,...,tgo},rtl =T, = =T = L
Method Iteration Residual Time  Memory
J 1,120 9.7¢e—09 1,440 37
GS 500 9.3e—09 1,563 37
BGS 340 9.1e —09 699 1,685
GMRES(20) 160 6.9¢ — 09 214 184
TFQMR 224  3.2¢—10 257 88
BICGSTAB 126  8.6e — 09 145 74
BGS.GMRES(20) 60 5.8 —09 237 1,869
BGS TFQMR 66  5.8¢—09 237 1,773
BGSBICGSTAB 50 1.4e-—08 194 1,758
ML _GS(W,C) 1,894 8.2¢—03 10,010 70
D 330 88 —09 1,339 52

for the particular solver in the allotted CPU time. Bold fantthe Time column indicates
the fastest solver. In all solvers, the maximum number oéftens is set to 5,000, maximum
CPU time is set to 10,000 seconds, antl= 10~% is enforced on the infinity norm of the
residual. We remark that the stopping test is executed el@riyerations in the proposed
solver just like in the J, GS, and BGS solvers. This explaihg all numbers of iterations to
converge are multiples of 10 with these solvers, unlessaheisstops due to the CPU time
limit. Now, we turn to the numerical experiments.

4.1. Some benchmark problems.We have run experiments with the proposed solver
on some benchmark problems suchkanmbanmediumand Kanbanlarge [8], arising in
a manufacturing system with Kanban contiailability [9], arising in a system availabil-
ity model with subsystems working at different time scabes]Overflowlarge [1], arising
in an overflow queueing network. We must remark that all ldaisition rate matrices in
the Kanbanproblems are triangular, meaning they are reducible. Thogee Availability
problem are reducible, and those in theerflowlarge problem are tridiagonal and therefore
irreducible.

Nonzero values in the local transition rate matrices oitaebanproblems are 1, whereas
those in theAvailability problem are in{1} U 10'~%{0.01,0.02,0.09, 0.18} for subsystems
k =1,2,...,6, and those irDverflowlarge are in{1, 1.5} for subsystem 1 and ifil1} U
{1.1 — 0.1k} for subsystem& = 2,3,...,6. Hence, the nonzero values in the local transi-
tion matrices are about the same order inKlambanand Overflowlarge problems, but not
in the Availability problem. On the other hand, nonzero values in the transiittnmatrices
of the Kanbanproblems are i1, 10} for subsystem& = 1,2,4 and 1 for subsystem 3,
whereas those in thavailability problem are 1, and those @verflowlarge are in{1,1.5}
for subsystem 1 and ifil} U {1.1 — 0.1k} for subsystem& = 2,3,...,6.

Table 4.1 shows the performance of the proposed solver and the othearsdor one
of these four problems, name@verflowlarge. In the set of experiments reported, the di-
agonal blocks associated with the BGS solvers and the BG®pdéioners for projection
methods at level 3 are LU factorizef] using the column approximate minimum degree (CO-
LAMD) ordering [14, 15]. The number of nonzeros generated during the LU factadmat
with the COLAMD ordering of the 726 diagonal blocks of ordgd31 forOverflowlarge is
132,500,082. The equivalent of these numbers in megaly/scounted for in the memory
consumed by solvers utilizing BGS.
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TABLE 4.2
Effect of near independence on the decompositional metirdtié Fail-Repair problem with = 2, ny =
ng =19, A1 =04, u1 =0.3,\2 =0.5,u2 =04,7 = {tl, tg}.

ry, =1, Iteration  Residual

1.0 270 9.1e—09
0.7 260 8.3e—09
0.6 250 9.0e —09
0.5 240 9.4e —09
0.1 90 1.0e—09
0.05 80 8.4e—09
0.01 60 8.7¢ — 09
0.005 50 8.8¢ —09
0.001 10 6.3e —09

The memory requirement of the proposed solver is the smalfes J and GS solvers in
the two problems. Observe that the rates of synchronizeitrans in theOverflowlarge
problem are 1. We also remark that tBgerflowlarge problem uses the local transition rate
matrices as coefficient matrices in the systems of local ttansa  However, the behavior
of the proposed method does not change for@kerflowlarge problem even if aggregated
transition rate matrices are used. It is interesting to toée the decompositional iterative
solver is not timewise competitive with the fastest soléraugh its number of iterations to
converge can be smaller than that of the respective retaxaiethod. This is not surprising
since the interactions among the subsystems in this proatemelatively strong. Now we
turn to a problem in which it is advantageous to use the deositipnal method.

4.2. Fail-Repair problem. First, we investigate the effect of changing the rates of syn
chronized transitions. We do this on an instance of theréghir problem discussed ear-
lier as an example. The particular system has two subsys¢ecis with 20 states, i.e.,
n1 = ny = 19. Hence, we have a system of 400 states. There are two symoéadnansi-
tions, the first which takes the system into global stat®) with rater;, when subsystems
1 and 2 are each in their local stateand the second which takes the system into global
state(5, 5) with rater,, when subsystems 1 and 2 are in their local stat&hese synchro-
nized transitions can be considered corresponding to befedirs of four failed redundant
components in each subsystem. We remark that the two sebsystre not identical since
their local fail and repair rates are different.

Table4.2 shows the number of iterations to converge to the solutigh thie proposed
solver for various values of the two synchronized transitates, which are taken to be identi-
cal. When the synchronized transition rates are small, cgenee becomes very fast because
the subsystems are nearly independent and the Kronecldrrgiraf the local solutions yields
a very good approximation to the global solution early initeeation.

In the next set of experiments, we consider a larger versidheofail-repair problem
with five subsystems each having 20 states, resulting intarsysf 3,200,000 states. There
are four synchronized transitions in this system, the fakes$ the system into global state
(0,0,0,0,0) with rater;, when all subsystems are in their local statehe second takes
the system into global staté, 5, 5, 5, 5) with rater;, when all subsystems are in their local
state9, the third takes the system into global stété, 10, 10, 10, 10) with rater,, when
all subsystems are in their local stat¢, and the fourth takes the system into global state
(15,15,15, 15, 15) with rater,, when all subsystems are in their local stie Local failure
and repair rates of subsystems are not identical.
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TABLE 4.3
Numerical results for the Fail-Repair problem witi = 5, n, = 19fork = 1,2,...,K, A1 = 0.4,
w1 = 0.3, A2 = 0.5, u2 = 04, A3 = 0.6, u3 = 0.5, \g = 0.7, g = 0.6, A5 = 0.8, us = 0.7,
T = {t1,t2,t3,ta}, 14y =14y =145 =144 = 0.5.
Method Iteration Residual Time
J 1,890 9.8¢ —09 1,722
GS 910 9.4e—-09 1,237
BGS 244  1.6e—07 10,060
GMRES(20) 580 1.8¢—-109 677
TFQMR 242 4.3e— 10 219
BICGSTAB 117 8.3e — 09 104
BGS. GMRES(20) 60 4.2¢—09 2,647
BGSTFQMR 112 23e—10 4,662
BGSBICGSTAB 46 1.2e — 08 1,969
ML _GS(W,C) 36  9.3¢ — 09 142
D 60 9.1e — 09 142
TABLE 4.4
Numerical results for the Fail-Repair problem witi = 5, np, = 19 fork = 1,2,..., K, A\ = 0.4,
w1 = 0.3, A2 = 0.5, u2 = 04, A3 = 0.6, u3 = 0.5, \q = 0.7, ug = 0.6, A5 = 0.8, us = 0.7,

T = {tl,tz,tgg,t4}, Tty = Tty = Ttg = Tty = 0.05.

Method Iteration Residual Time
J 1,910 9.8¢—09 1,734
GS 910 9.9¢ —09 1,254
BGS 244 1.7¢—07 10,060
GMRES(20) 800 4.7¢—09 928
TFQMR 258 1.5e—10 231
BICGSTAB 153 3.1e —09 135
BGS GMRES(20) 60 4.3¢—-09 2,645
BGS.TFQMR 112 2.7¢e—10 4,658
BGS BICGSTAB 55 3.5e—-08 2,342
ML _GS(W,C) 34  8.6e — 09 135
D 30 5.1e — 09 72

This problem is solved for three different values of the $ypoized transition rates,
which are taken to be identical in a given instance of the lerab The results are reported in
Tables4.3, 4.4, and4.5. The rates of the four synchronized transitions are deetegiadually
from 0.5 to 0.05 and then to 0.005. In this set of experimehesdiagonal blocks associated
with the BGS solver, as well as and the BGS preconditionepifojection methods at level 3
(meaning 8,000 diagonal blocks of order 400) are LU factatizsing the COLAMD ordering
as in the benchmark problems. We remark that the number afenos generated during the
LU factorization of the 8,000 diagonal blocks of order 40@hathe COLAMD ordering is
77,184,000. The equivalent of this number in megabytes éswated for in the memory
consumed by solvers utilizing BGS.

In none of the instances of the fail-repair problem congdeGMRES(20), BICGSTAB,
and TFQMR benefit from BGS preconditioning. Although thedten counts of the precon-
ditioned projection methods decrease over those of theegnpditioned ones, the decrease
is not offset by the increase in time per iteration. The pennces of the J, GS, and BGS
solvers are insensitive to the rates of synchronized tiiansi BGS performs very poorly



ETNA
Kent State University
http://etna.math.kent.edu

288 Y. BAO, I. N. BOZKURT, T. DAYAR, X. SUN AND K. S. TRIVEDI

TABLE 4.5
Numerical results for the Fail-Repair problem witi = 5, np, = 19fork = 1,2,..., K, Ay = 04,
pn1 = 0.3, Aa = 0.5, u2 = 04, A3 = 0.6, u3 = 0.5, Ay = 0.7, ug = 0.6, A5 = 0.8, us5 = 0.7,
T = {t1,ta,t3,ta}, 7ty =Tty =715 = rey = 0.005.

Method lteration Residual Time
J 1,910 9.9e¢-09 1,733
GS 920 9.4e—-09 1,255
BGS 244 1.7¢ —07 10,060
GMRES(20) 800 8.8¢—09 929
TFQMR 322 92e-11 289
BICGSTAB 143  2.9¢ — 09 127
BGS GMRES(20) 60 4.3e¢—-09 2,647
BGSTFQMR 116 8.8 — 10 4,828
BGSBICGSTAB 71  2.7¢—08 3,002
ML_GS(W,C) 24  9.5¢—-09 99
D 10 4.0e — 09 25

TABLE 4.6

Memory requirements of solvers in megabytes for the FailaiRgroblem withK = 5, ny, = 19 for k =
1,2,...,K,7 = {t1,t2,t3,ta}.

Method Memory
J 122
GS 122
BGS 717
GMRES(20) 610
BICGSTAB 244
TFQMR 293
BGS.GMRES(20) 1,327
BGSTFQMR 961
BGS BICGSTAB 1,010
ML _GS(W,C) 232
D 171

due to the large time per iteration and M&S(W,C) is the fastest solver when compared to J,
GS, and BGS, and improves slightly as the synchronizeditiamsates become smaller. In
Table 4.3, BICGSTAB is the fastest solver. However, when the ratesoaf synchronized
transitions decrease to 0.05 in Tallg!, the proposed solver becomes the fastest. In Ta-
ble 4.5, the proposed solver exhibits the smallest number of itaratto converge and is also
the fastest solver. The time per iteration taken by the pegaolver is larger than that of
GS but less than twice that of GS. As the rates of the synchedrtransitions decrease, we
see that the number of iterations taken by the proposedrdoleenverge decreases similarly
as in Table4.2. The problem seems to become easier to solve for the propobest as the
subsystems become nearly independent.

As it is shown in Tablet.6, BGS and BGS preconditioned projection methods require
considerably more memory than the other methods, becaube oieed to store factors of
diagonal blocks and, in the latter case, also a larger numieectors. Memorywise, the
proposed solver requires about 1.5 times that of J and GSe&sithan MLGS(W,C), and
therefore can be considered to be memory efficient.

In Table4.7, we investigate the scalability of the proposed solverieréasing number
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TABLE 4.7
Performance of the decompositional iterative solver on Faé-Repair problem for increasing number of
subsystemd# withn, = 19fork = 1,2,..., K, A1 = 0.4, u1 = 0.3, A2 = 0.5, ug = 0.4, A3 = 0.6,
w3 =05, =07, 04 =06, A5 =08, u5 =0.7,7 = {tl, t2, t3,t4}, Tt; = Tty = Tty = ¢, = 0.005.

K lteration Residual Time
2 70 9.3¢ — 09 0

3 70 7.1le — 09 0
4
5

30 7.4e — 09 2
10 4.0e—09 25

TABLE 4.8
Performance of the decompositional iterative solver on Faé-Repair problem for increasing number of
synchronized transitions if with K = 5, np = 19, fork = 1,2,..., K, A1 = 0.4, u1 = 0.3, Ao = 0.5,
2 =0.4,A3 =0.6,u3 =0.5,24 =0.7, pg = 0.6, \5 = 0.8, ug = 0.7, 7¢; = r¢, = 1r¢5 = 1¢, = 0.005.

T Iteration Residual Time
{t1} 10 3.3¢ — 14 15
{t1,t2} 10 2.7e — 14 18
{tl,tQ,f;;} 10 2.0e — 12 21

{tl,tg,tg,M} 10 4.0e — 09 25

of subsystems when the four synchronized transition ratesedatively small compared to
those in the local transition rate matrices. We see that tineber of iterations to converge
decreases as subsystems are added to the system at hands dinsto the decrease in
the throughputs of synchronized transitions for a largeniner of subsystems (because the
steady-state probabilities of global states in which symcized transitions can be trigged
become smaller), leading to more independent subsystemsisidifferent from the behavior
of the multilevel method, which takes more or less the sannetrau of iterations to converge
as the number of subsystems increases.

In Table4.8, we investigate the scalability of the proposed solverifiaréasing number
of synchronized transitions when there are 5 subsystemthandtes of synchronized transi-
tions are relatively small compared to those in the localditéion rate matrices. As expected,
the results indicate that the time the proposed solver takesnverge is affected linearly by
an increase in the number of synchronized transitions.

In Table4.9, we investigate the effects of using a larger number of ssorghations and
smaller local failure rates, meaning that the redundantpmorents in each subsystem are
more reliable and therefore fail less often. The sixteerclyomized transitions are from
global state(i, i,4,4) to (i —4,1—4,i—4,i—4), fori = 4,5,...,19. It seems that the asym-
metry created among the nonzeros of the generator matrijodihe one order of magnitude
difference between local repair and failure rates does ae¢ la noticeable effect on the pro-
posed solver (other than the fact that convergence takes pileone iteration but cannot be
witnessed from the results due to the residual norm tesyéveiterations), but improves the
situation with the J, GS, BGS, and MGS(W,C) solvers, and worsens the performance of
others.

4.3. Some randomly generated problemsWe consider randomly generated test cases,
which have sparse transition rate matrices with nonzenmees following either the stan-
dard uniform distribution (i.e., nonzero values are chasaiformly from the interval (0,1))
or the folded unit normal distribution (i.e., nonzero vaaee absolute values of samples cho-
sen normally with mean 0 and standard deviation 1) and ysesifged degrees of sparsity.
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TABLE 4.9
Numerical results for the Fail-Repair problem witk = 5, n,, = 19fork = 1,2,..., K, \1 = 0.04,
pn1 = 0.3, A2 = 0.05, u2 = 0.4, A3 = 0.06, u3 = 0.5, A\s = 0.07, ug = 0.6, A5 = 0.08, u5 = 0.7,

T ={t1,t2,...,t16},Tt; = Tty = -+ = ;5 = 0.005.

Method Iteration Residual Time
J 230 7.8¢—09 265
GS 160 2.1e—09 499
BGS 100 6.0e—09 4,138
GMRES(20) 5,000 1.8—-05 6,951
TFQMR 5,006 19e¢—-05 5,706
BICGSTAB 241  1.7e — 09 271
BGS GMRES(20) 240 6.2¢ —05 10,560
BGS.TFQMR 152 1.1e—09 6,391
BGSBICGSTAB 240 9.9¢—06 10,030
ML _GS(W,C) 12 5.9e—09 84
D 10 1.2e — 09 64

To this end, we have written a Matlab script, which generdtesAPNN toolbox input files
randomly for user-specified test cases composel @omponents having, ns, ..., nx
states|7 | synchronized transition rates, and sparse transitionmateices with prescribed
degrees of sparsity. We have run many experiments, but hemisguss the results of just
a few that are indicative of the performance of the propost#es We remark that due to
randomness, the sparsity patterns of local and synchmniaasition rate matrices in the
experiments are arbitrary. In the following]-] is the expectation operator, aﬂdnz(QEf))]

and E[nz(ng))] denote the average number of nonzero entries in local antheynized
transition rate matrices, respectively.

In the first set of experiments, we consider a randomly géeénaroblem with six sub-
systems each having 10 states resulting in a system of D@D6tates and four synchronized
transitions. The values of the synchronized transitioasat, = r,, = r;, = r, are cho-
sen from the sef0.1, 0.01, 0.001, 0.0001}; thus, we experimented with four versions of the
problem. The local and synchronized transition rate megticespectively, have an average of
43.5 (excluding the diagonal) and 8.3 nonzero elementsoratydgenerated using the stan-
dard uniform distribution. Hence, the local transitioneratatrices are about 54% full and
the synchronized transition rate matrices are about 8% folthis set of experiments, the
diagonal blocks associated with the BGS solver and the B@8opuitioner for projection
methods at level 4 (meaning 10,000 diagonal blocks of or86) are LU factorized using
the COLAMD ordering as before. It was not possible to constde block partitioning at
level 3 due to memory limitations. The number of nonzeroiestgenerated during the LU
factorization of the 10,000 diagonal blocks of order 1009%650,000.

In Table4.10, we present the results of experiments with synchronizauaisttion rate
values of 0.001, and remark that the number of iterationstiane to convergence for the
other solvers do not change except for TFQMR, which takeg$eddtions and 69 seconds to
converge for rate values of 0.1, and BICGSTAB, which take&éyétions and 40 seconds to
converge for rate values of 0.1 and 0.01, and 59 iteratiodgl8rseconds to converge for rate
values of 0.0001. However, the proposed solver takes 4QgPdtions and 68, 35 seconds to
converge for rate values of 0.1, 0.01, respectively.

In the second set of experiments, we consider the same rapndemnerated problem as in
the first set of experiments, but with nonzero elements itrévesition rate matrices following
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TABLE 4.10
Numerical results folX' = 6, ny, = 10fork = 1,2,..., K, T = {t1,t2,t3,t4}, Tt; = Tty = T3 =
r¢, = 0.001, standard uniformE[nz(Q(k>)} = 53.5, and E[nz( ,E’j))} =8.3.

to

Method Iteration Residual Time
J 220 T7.1le—09 168
GS 110 6.8¢ —09 99
BGS 70 88c—09 4,474
GMRES(20) 60 5.7¢ —09 51
TFQMR 5,000 3.0e—-08 3,611
BICGSTAB 60 1.1e—09 44
BGS GMRES(20) 19 3.0e—09 1,356
BGSTFQMR 26 1.5e—-09 1,741
BGS BICGSTAB 18 2.1e—08 1,228
ML_GS(W,C) 12 2.3e—09 33
D 10 1.7¢ — 09 18
TABLE 4.11

Numerical results folX' = 6, n, = 10fork = 1,2,..., K, T = {t1,to,t3,ta}, Tt; = Tty = Tt; =
r¢, = 0.0001, folded unit normalE[nz(Qi’;))] = 53.8, andE[nz(ng))] =8.7.

Method Iteration Residual Time
J 450 8.3e—-09 360
GS 230 6.6e —09 228
BGS 160 5.5¢—09 9,762
GMRES(20) 140 2.8¢ —09 122
TFQMR 5,000 54e—05 3,774
BICGSTAB 75  7.8¢—09 58
BGS GMRES(20) 24  55¢—09 1,664
BGS.TFQMR 30 6.4e—09 1,848
BGSBICGSTAB 25 12e-09 1,602
ML _GS(W,C) 12 5.3e—09 33
D 10 3.3e — 09 19

the folded unit normal distribution. The local and synclized transition rate matrices re-
spectively have an average of 43.8 (excluding the diagamal8.7 nonzero elements. Hence,
the local transition rate matrices are about 54% full andsthrehronized transition rate ma-
trices are about 9% full. The number of nonzeros generatedglthe LU factorization of
the 10,000 diagonal blocks of order 100 with COLAMD orderie$9,190,000.

In Table4.11, we present the results of experiments with synchronizaaisttion rate
values of 0.0001, and remark that the number of iteratiowistiame to convergence for the
other solvers either do not change or do change slightly dkerfirst set of experiments
except for TFQMR, which took 116 iterations and 89 secondsotoverge for rate values
of 0.1. However, the proposed solver takes 60, 40, 20 itaratand 109, 73, 36 seconds to
converge for rate values of 0.1, 0.01, 0.001, respectively.

In the first two sets of experiments in which standard unifgramd folded unit normally
distributed nonzero elements are used in the transiti@matrices, we see that the proposed
solver performs better as the synchronized transition valiges become smaller. Further-
more, in both sets of experiments there is a value of syndedriransition rates for which
the proposed solver becomes the fastest solver.
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TABLE 4.12
Numerical results folX = 6, ny, = 10fork = 1,2,..., K, T = {t1,t2,t3,t4}, T¢; = Tty = T3 =
r¢, = 0.001, standard uniform, 3 sets of 30 test matrices each.

E[nz(Qik))] Enz( Ef))] Ellteration] FE[Residual] E[Time]

0

53.2 4.4 14 3.9e — 10 20
53.1 8.7 36 4.0e — 09 63
53.1 12.6 103 6.8¢ — 09 285
TABLE 4.13
Numerical results fotrK' = 6, n, = 10fork = 1,2,..., K, T = {t1,t2,t3,t4}, 1t; = rip = Tty =

r¢, = 0.001, folded unit normal, 3 sets of 30 test matrices each.

Enz(Q)]  Enz(Q")] Eltteration] E[Residual] E[Time]

53.1 4.4 57 2.6e — 09 79
53.2 8.6 83 5.8e — 09 143
53.0 12.6 104 6.4e — 09 292

In the next two sets of experiments, we investigate the efitchanging the sparsity
of the synchronized transition rate matrices on the prapesdver for the same problem
considered in the first two sets of experiments. To increaseconfidence in the results,
the experiments are performed on 30 randomly generatedcesmtor each degree of spar-
sity, and average results are presented for those 30 nstri¢ence, 180 test matrices are
considered in these sets of experiments.

The results in Table$.12and4.13indicate that indeed the performance of the proposed
solver is adversely affected by an increasing average nuafls@nzeros in the synchronized
transition rate matrices. The situation with standardarnify distributed nonzero elements is
better compared to the situation with folded unit normalltributed nonzero elements when
the synchronized transition rate matrices are relativelyser. But, as the sparsity decreases,
there seems to be a point beyond which the distribution doemake much difference. Per-
haps, this can be explained by an effective weaking of intemas among subsystems, as
sparsity of synchronized transition rate matrices in@dasa constant synchronized transi-
tion rate.

5. Conclusion. A decompositional iterative method for obtaining the steathte solu-
tion of Kronecker structured Markov chains is presentedgislisaggregation and aggrega-
tion operators. Currently, the method is applicable toeystthat do not have unreachable
states, but have state spaces equal to the cross produuntssbéte spaces of their subsystems.
The interactions among subsystems are not assumed to be lvgdke method works par-
ticularly well when there are weak interactions among satesys. Numerical experiments
show that as the interactions among subsystems weakenjlibgstéems become nearly in-
dependent and the method benefits considerably from thisiméspendence. Future work
should concentrate on extending the method to Kroneckectstied Markov systems with
state spaces smaller than the cross products of the statesspietheir subsystems.
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