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THE RCWA METHOD - A CASE STUDY WITH OPEN QUESTIONS AND
PERSPECTIVES OF ALGEBRAIC COMPUTATIONS *

JOHN J. HENCH AND ZDENEK STRAKOS!

Abstract. Diffraction of light on periodic media represents an impottaroblem with numerous physical and
engineering applications. The Rigorous Coupled Wave AsislfRCWA) method assumes a specific form of grat-
ings which enables a straightforward separation of spadebtas. Using Fourier expansions, the solutions of the
resulting systems of ordinary differential equations fag fourier amplitudes can be written, after truncation, in
form of matrix functions, with an elegant formulation of thedar algebraic problem for integrating constants. In
this paper, we present a derivation of the RCWA method, fortaudpen questions which still need to be addressed,
and discuss perspectives of efficient solution of the rdlaighly structured linear algebraic problems. A detailed un
derstanding of the RCWA method for the two-dimensional ggainin our opinion, necessary for the development
of a successful generalization of the method to practicdipros.

Key words. Diffraction of electromagnetic waves, Maxwell's equatippsriodic gratings, RCWA, truncated
Fourier expansions, matrix functions, structured matriseattering amplitude.
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1. Introduction. There are many methods for the numerical modeling of theedtiffon
of electromagnetic waves on periodic gratings. Among thasgpecific role is played by
the so called Rigorous Coupled Wave Analysis (RCWA) methvddich in its most basic
two-dimensional form assumes very simple rectangulairgyat The history of the RCWA
and related methods is given in the standard monographdgether with the description
of fundamentals of the differential theory of gratings amstesal generalizations that can
be applied to solving practical problems, see also the sparding parts and references
in[2,6,7,8].

The simple rectangular form of a grating allows in RCWA anyeseparation of space
variables, and, using Fourier expansions for the spacedierpart of the solution, a trans-
formation of the problem described by the partial differ@néquations into the system of
ordinary differential equations (ODE) for the Fourier aimles. In order to solve the prob-
lem numerically, the infinite dimensional continuous peshimust be discretized. In RCWA
this entails the truncation of the Fourier expansionspfeiid by a derivation of the finite di-
mensional representation of the problem. The solution @fr#sulting ODEs can be written
in the form of elementary matrix functions with an elegantnmaormulation of the linear
algebraic problems for the integrating constants.

Obviously, one should ask whether the solution of the diszd problem approximates
to sufficient accuracy (in an appropriate sense) the solwfahe original problem, which
requires mathematical justification by rigorous analy3ike derivation of RCWA assumes
smooth functions. In order to get a good agreement of the atedpesults with the physical
reality in modeling the idealized surfaces of discontipgee L3, Chapter 9]), it is neces-
sary to use truncation rules whiaithe limitremain valid in the presence of discontinuities.
A step in this direction was taken by L6,[ 7], who proved convergence results for a particular
truncation of the multiplied Fourier expansions, whichiedhe so called fast Fourier meth-
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ods', for their good performance in practical computations. Wéatven more important, Li
proved that the discretizations that led to slow numerioahjgutations are incorrect and the
related discretization errors are responsible for the pesformance of the whole method
observed in practice. This gives an illustrative exampla afathematical theory which not
only justifies the intuitively derived results, but whiclsalshows that intuition can, in an un-
fortunate case, mislead in the derivation of methods anarititgns in scientific computing.
Without proper mathematical proofs to justify the choicedisfcretizations, wrong intuitive
arguments can lead to algorithmic variations which arefigieht and inaccurate, wasting
time and effort. Although the RCWA method has been used iotjga computations for
more than a decade, its mathematical justification has rest hdly completed yet.

In our text, we present a derivation of the RCWA method fomapté two-dimensional
rectangular grating. The simplicity of the grating moddbak us to see more clearly the
interconnections between the physical model with its ag$iams, separation of variables,
discretization, formulation of the algebraic problem afidally, possible approaches to its
efficient numerical solution. This is, in our opinion, nes&y to identify the issues which
have to be resolved in order to develop further efficient gaizations of the RCWA method,
with some directions given, e.g., i2,[9]. The RCWA approach is rich in mathematical
problems from many disciplines, including numerical linelgebra, and building an efficient
RCWA-based solver for practical problems will require a Mmlanced solution of all of
them.

The paper has a simple structure. After application of theicbthheory of planar elec-
tromagnetic waves to our model problem in Sectipmve give in the subsequent structured
Section3 a step by step derivation of the RCWA method. Sectisaviews some remaining
open problems. The paper ends by discussing possible aphyw®#éor the efficient solution
of linear algebraic problems resulting from the RCWA disizagion.

2. Plane electromagnetic wavesWe will start with Maxwell’s equations of electrody-
namics for a material with no free charges (see, €1§,,$ection 21-2, (21-19)-(21-22)])
divD = 0, divB =0,
oB 9D -
- IH=—+1J 2.1
at ) cur 8t + ) ( )

whereD, E, B, H are the vectors of the displacement field, electric fieldyatidn field and
magnetic field, respectively, arldrepresents the free current. Throughout the paper we will
consider linear isotropic materials for which the consitieiequations

D=cE, B=uH

curl E =

hold. Moreover, the material will be considered magnelfjcabmogeneous withy = g,
wherep is the magnetic permeability in vacuum. The electric peivity = will in general
be considered space dependent: ¢yc,, wheree is the electric permittivity in vacuum,
(eopo) ™t = ¢2, andc is the speed of light in vacuum. Under these assumpti@ns), takes
the form (see 13, Exercise 21-7, p. 362]),

N N d N
divE = —E. grag S divA =0,

oH
Mat’

N . E -
curl E = curlH = 5% + oE, (2.2)

1This term is used in the optical engineering and physicelitee. Since there is no relationship between the
Fast Fourier Transform and the fast Fourier methods, therletm being for mathematically oriented community
rather confusing, we will avoid the appellation “fast Feunmethods” altogether.
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wherecE = J accounts for the electric current caused by the electrid frekhe conduc-
tive material with conductivityr in accordance with Ohm’s law. Taking the curl of the last
two equations inZ.2) and using simple vector calculus yields, under standaroogimmess
assumptions,

~ O’E OE ~ grade
AE =en? > o E. 2,
Shgm T ok, grad< E ) ; (2.3)
- °H OH OE -~
AH =¢ep 5 + TH o grad e x o grado x E. (2.4)

REMARK 2.1. Except for the relationship between the space depérdetors of elec-
tric and magnetic fields in Subsectiars, we will consider in the rest of Secti@dnonconduc-
tive materials, i.e.¢ = 0. Then, the index of refraction of the materials is real (aositve),
which simplifies the exposition. For conductive materi&ls terivation is analogous. The
resulting individual equations for the electric and magnie¢lds for lossless nonconductive
materials, as they will be used in the description of the ROwW&thod to follow, ardormally
identical to the materials with losses due to their nonzeractivity. The only difference
is that in the latter case the index of refraction is complé#y positive real and nonnegative
imaginary parts.

In a homogeneous material with losses, the real part of thexionf refraction is used for
the parametric description of propagating waves similaslyn lossless materials. A nonzero
imaginary part describes the damping of the propagating die¢ to losses. Other differences
are unimportant in the context of this text. For an instrectilescription of the theory of
electromagnetic waves, including plane waves in condectiedia and the use of a complex
index of refraction, we refer to the basic textbodld]| in particular to Section 24.3.

2.1. Time-harmonic fields. We will consider only time-harmonic fields, where any
field vectorV (z, y, z, t) will be represented by its associated space dependent eprgitor
V(z,y, z) such that

~

V(z,y,2,t) = Re[V(z,y, z) exp(—iwt)]; (2.5)

see L3 and [, Section 1.2.1]. Herev = 2xf, fA = v, thereforew = 27v\~!, where
A is the wavelengthf the frequency of light, and is the speed of light corresponding to
the electric permittivity and the magnetic permeability.tHe electric permittivity and the
magnetic permeability are constant and= 0, (2.3)-(2.4) reduce to the wave equations for
the electric and magnetic field in linear lossless isotrtyimogeneous media, which gives

1 1 1 c 1
v = = =—, N= mv c= ’

VEM VErtr \/EoHO n VEOHO
wheren is the index of refraction of the given material.

Here we only consider what is called linear optics, wheretithhe-harmonic setting is
relevant and there are no time-frequency conversions,adtib different wavelengths may
be treated independently of each other. In such a setn®;(2.4) for the space-dependent
vector fields take the form (recatl = 0)

AE = —cjuw’E — grad (E . gride) , (2.6)

1
AH = —cpw?H — ~ grade x curl H. (2.7)
5
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2.2. Plane waves, TE and TM polarization.We will consider a plane wave solution
to Maxwell’s equations. For a plane wave whose wave-fromhawving in directionD the
vectorsE, H andD form a right-handed orthogonal system, wh&eandH form a plane
(wavefront) perpendicular to the directi@h This paper considers planar diffraction on rect-
angular gratings in the-z plane depicted in Figurg.1l, where the incident plane wave is
moving in the directiorD perpendicular to the third Cartesian coordingtevith the angle?
betweerD and the vertical direction.

incident light \/

Superstrate (region I)
ni

wavefront

interface z = Dt

ny N1 grating

interface z = d

P P Substrate (region II)
nir

FIGURE 2.1. Rectangular grating.

The grating is uniformly extended fromoo to +oc in they coordinate; seed]. We will con-
sider three subdomains: the supersteate 0, the grating regiof < z < d, and the substrate
z > d, with two horizontal interfaces = 0 (superstrate/grating interface) and= d (grat-
ing/substrate interface). Equatioris) and @.7) will be solved on each domaseparately
with subsequent matching of the solutionsat 0 andz = d in order to determine the in-
tegrating constants. Both materials which form the supatestthe grooves and the ridges in
the grating region, and the substrate are considered Jiisettopic, anchomogeneouson-
sequently, due to the geometry of the grating it is clear tihatelectric permittivity, which
is constant in the superstrate and in the substrate, is igriteng region a function aof but
not of z, e = (z). This is essential for the RCWA method. It is furthermassumedhat
e(x) is a differentiable function af, i.e., the vertical lines in the grating region in Figiré
do not represent discontinuities but a very thin layer wiimeoth transition from; to ny.
The relevance of this assumption for physical models withdtirfaces of discontinuity, as
the vertical boundaries in the grating region in Figlrg will be discussed later. Since the
geometric structure of the grating is independent ofitttmordinate, the electric and mag-
netic fields depend only on the variablesndz, i.e.,E = E(z,z) andH = H(z, z). As
before, the magnetic permeability= 1 is constant.

In order to describe the general case, it is sufficient toyaeawo special polarizations
when the vector& andH, respectively, are perpendicular to the plane of incideneei.e.,
when the vector®& and H, respectively, are parallel to the direction of the thirdt€sian
coordinatey.

For theTransverse Electric (TE) polarizatip®e = (0, E,, 0) is parallel to they axis
and H stays in thez-z plane. For suclE ande = () the inner produc(E - grade)
vanishes. We stress the point tiharethe geometry of the grating plays a crucial role. The
equation 2.6) for E then reduces (in the superstrate, the grating region ansltbstrate) to
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the wave equation for the single nonzero compodgt
AE, = —epw*E,.

For theTransverse Magnetic (TM) polarizatiopFl = (0, H,,0) is parallel to they axis
andE stays in ther-z plane. Then,

_0H, O@Hy>

9z Oz )’
0s OH, 0Oe¢0H, Oc0H, 0c0H,
Oy Oz 9z 9z Ox Oz Oy 02)
B Oe 0H,
B _(’31" Oz

curlH = (

grade x curl H = (

70) = — (O,grade . gradHyaO)v
and @.7) takes the form
. 1 2
div ggradHy = — uwHy;

see P, equation (1.22)]. In our notation (recall= ¢(z))

AH, — L de(@) 08, = — e(x)puw’H,.

Yo e(x) dx Oz

2.3. Summary. Consideringu,. = 1, u = pg (this assumption is used throughout the
text),e = goe,, ¢ = (o) "2, w =2 f and f\ = ¢, define

2 2 f 2 or\?
k2 = 2 = i = —_— = —_ .
0 EoowW 2 - b\

The electric field in the TE polarization is then describedh®/equation
AE, = — kie,(v)E,,  E,=E.=0, (2.8)

with the magnetic field

H =- curl E,
How
giving
i oF oF
H,,0,H,)= Y0, ——2). 2.9
(Ha, 0, H) How ( 0z (93:) (2:9)

The magnetic field in the TM polarization is described by theation

1 de, I5)
N er(z) OHy, ke, (x)H,, H, =H, =0. (2.10)

Yo oep(z) dx Oz

As explained in RemarR.1, the previous derivation assumed, for the purpose of sfyipdj
the exposition, that = 0. The resulting equation (8)-(2.10 remain valid, with the differ-
ence that the corresponding index of refraction is commegn witho = 0. In determining
the electric field fromZ.10 (cf. (2.2)) o cannot be omitted. Thus we have

1

E = 1H
—igpe, (x)w + o(x) e
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which yields
1 OH, OH.
E. 0,E,) = ——¥0, Y. 2.11
(Ez, 0, E) —ieoer(7)w + o(x) ( 0z 0 Ox > (2.11)

The given description is valid in the superstrate, in thdiggaregion, and in the sub-
strate. In the following we will use equation.8)-(2.9) for the description of the electric
and magnetic fields in the TE polarization, and equatiéh$(f-(2.11) for the description
of the magnetic and electric fields in the TM polarization.the rest of the text the index
of refraction of the substrate is generally complex, ieis presumed to have, in general,
a nonzero value.

3. The RCWA method for a rectangular grating. We will consider the rectangular
grating in thez-z plane described above (see Figré), with its extension from-oco to
+o0 in they coordinate, where; andny; denote the indices of refraction of the superstrate
and substrate materials, respectively. Throughout thewtexassume, consistently with the
applications that motivate our work, that there are no lessethe superstrate, i.en; is
real. The substrate can be conductive, andis generally complex with positive real and
nonnegative imaginary parts.

The incident electric field is in the TE polarization normatiie plane of incidence, i.e.,
it is given by itsy-component

ELHC _ eik:gnl(:z: sin 6+ 2z cos 0)’ (31)

wherez sin 6 + z cos f determines the phase along the directidof the incident wave vec-
tor krp,

ki = ng % (sin 6,0, cosf),

with the wavenumber

w 2m
kj = k = _——= —_—
L=l = ==

see P, relation (1.16)]. Please note that with.f) this gives the time-harmonic field

mine __ i{koni(xsin 0+z cos 0)—wt
E} = Re[e!thom( )mwth)

which corresponds to the wave propagating in the directfonareasingz andz, i.e., down
and to the right. Similarly, in the TM polarization the ineitt magnetic field is normal to the
plane of incidence,

Hi/nc _ elk’onI(m sin 6+ z cos 9). (32)

The RCWA method will first be described assuming TE polaidratand then applied to TM
polarization.

3.1. Planar diffraction: TE polarization. For completeness we will briefly derive
some basics of the differential theory of gratings. A cqmwlence to the standard liter-
ature will be given by referencing the formulas and page remnim P]. An extensive survey
of the literature can be found i6[7, 9].

Since the grating surface is periodic with peripénd infinite, translation in the co-
ordinate fromz to = + p multiplies the incident wave3(1) by the phase factar*?si"? as
depicted in Figurss. L
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wavefront

FIGURE 3.1. Phase determining the periodicity.
In linear optics, the transformation of the incident fieltbithe total field is linear, therefore
the total fieldE, (x, z) satisfies
Ey(x+p,2) = M7 B (,2),

which must hold in the superstrate, in the grating and in thssate; seed] relation (1.27)].
Consequently the functiofi(xz, 2) = e~1 k1zsin0 F (. ») is periodic inz with periodp,

F(.L +p72) _ efikl(erp) sin@Ey(x +p,z) _ efiklwsinOEy(x’Z) _ F(l’,Z)

This periodicity is used foseparation of the space variablesing the following Fourier
expansion

+00 oo
F(x,z) = Z fs(2) eis%‘”, ie, Ey(z,z)= Z fo(z)etkes®, (3.3)

S§=—00 S§=—00

wheref;(z) are the Fourier coefficients independent:of
2
kys = krsinf + s?ﬂ = ko (nlsinﬂ—ks;) , s=0,1,—-1,...; (3.4)

see P, relations (1.3), p. 3, and (1.29"), p. 22]. With; real, k; andk,, are also real. The
relations in 8.4) are called the Floguet conditions. Since the wavenumbéheofeflected
field is preserved,

k= k3 + ki L (3.5)
(3.4) determines the discrete diffraction angles for which

i zsinﬁ—&—si; (3.6)
I np

sinfy =

see Figure3.2and P, relation (1.5)].

Relations 8.4), (3.6) represent the diffraction law for the grating. It replattescommon
Snell’'s law for specular surfaces which simply states thattangential componertt, is
preserved. Herg,; can take different value8(4) for different integers.

It remains to determine the Fourier coefficierfitéz) in (3.3).



ETNA
Kent State University
http://etna.math.kent.edu

338 J. J. HENCH AND Z. STRAKG

incident light scattered light

FIGURE 3.2. Angles between the diffraction orders.

3.2. Solution in the superstrate and in the substrate — TE palrization. In the ho-
mogeneous superstrate and substrate constant, and(8) takes the form of the Helmholtz
equation

AE,=-k} E,, E,=FE,=0, (=11IL (3.7)
Therefore, forz < 0 (superstrate) and > d (substrate) introducing the Fourier expan-
sion 3.3) into (3.7) gives the infinite set ofincoupledordinary differential equations for the
unknown coefficientd(z),

2
sz? + k?} fO)=0, (=11, s=0,1,—1,..., (3.8)

wherek7 ., = k7 — k2,; see 8.5). A general solution can be written as
FOz) = AL e ez 4 BOeihezez, (3.9)

whereAg), Bg) are integrating constants. The physically meaningful tsmiuis bounded
when the waves propagate away from the grating, which médaatstlie unbounded part
of (3.9) is nonphysical and must be excluded.

Since the superstrate is lossless, the refraction ingéxreal, and therefore

kizs =/ kE — k2, (3.10)

is real and positive ik; > k., and zero or purely imaginary with positive imaginary pért i
kr < kgs, k1 = koni. Whenky . is real and positive thetermg)e‘i"’f~zsz corresponds to the
wave propagating in the direction of decreasinge., going up, while the terrﬁ%y)ei’wwZ
corresponds to the wave propagating in the direction ofemsingz, i.e., going down. If
k1.5 1S zero or purely imaginary then there is no wave propagsditinifpe =~ direction, the
corresponding modes are evanescent and they will not beefucbnsidered.

Keeping a single incident wave (with = 0) and considering no incidence from the
substrate, the solution 08(7) in the superstratez(< 0) can finally be written in the form
(R, = A")

+oo
E;:eih(msiné—kzcos&)_’_ Z Rseik“w_ikl‘“z. (311)

s§=—00

Sincek, is real andky; corresponding to the substrate has a positive real and a&genn
ative imaginary part,

2 1.2 2
kH,zs - kH - kzs
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must also have a nonnegative imaginary part, with the redl gzsitive or negative (the
evanescent modes are not considered). Its square rooeisitakhe first quadrant, with posi-
tive real and nonnegative imaginary parts. Then, the riegudblution of 8.7) represented by
the wave propagating in the substrateX d) in the direction of increasing, i.e., travelling

down, is given by (; = B{'")

+o0
Ef = Y Tietheertibuzes, (3.12)

S§=—00

cf. [9, (1.35) respectively (1.38), p. 24]. Please note thgt is bounded wher — +o0,
which complies with the physical requirement. The fact tEbtis bounded when — —oco
follows trivially sinceks . is real or purely imaginary (with no wave propagating in thitdr
case).

Since the imaginary part dfi; . is nonnegative, the real part efi.=<* can be rather
small forz = d, which can cause difficulties imumerical computationsTherefore, it might
be convenient to consider the following scaling

“+oo
EgI;I _ Z TseikmsfﬂJrikn,zs(Z*d)’ (313)

where
T, = Tye Fm=sd, (3.14)

As a consequencé; can be expected to be much smallerin magnitudefbatt should also
be noticed that the scaling is equivalent to moving the oriigithez direction by a distancé.
In the following derivation we will continue with the scaledpansion .13, and we will
comment on the effect of non-scaling on the derived algelzygstem later.

The integrating constanfs; and7’s have to be determined from the boundary conditions
on the top(z = 0) and the bottontz = d) of the grating region.

REMARK 3.1. It should be noted that we use a different orientatiotihet coordinate
than they coordinate in ).

3.3. Infinite set of differential equations for the grating region — TE polarization.
In the grating regions,.(x) represents a periodic (sufficiently smooth) function witkpect
to x with periodp. It can therefore be expressed by its Fourier series

er(x) = Z enelh T (3.15)

Later (for the TM polarization) it will be convenient to cadsr also the subsequent Fourier
expansions

1 =
> ape v (3.16)

8’-($) - h=—o00

If the geometry of the grating is symmetric with respectrtas in Figure2.1, the equality
er(x) = e.(—x) gives

€Ep, = €_p and ap=a_p, h=12,... (317)
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The symmetry of the grating is not substantial here; it affealy the properties of the matrix
blocks in the resulting linear algebraic systems. With therfer expansion3.3), (3.15 leads
again to the separation of theand > variables and to a reduction of the problem to a set of
ordinary differential equations for the Fourier amplitadg(z), s = 0,1,—1,..., which,
unlike (3.8), are coupled. The separation of variables is the key igstieei RCWA method.
When the analytic solution of theuncatedsystem of ODEs is expressed in a form of matrix
functions, the boundary conditions formulated for= 0 andz = d give the linear algebraic
systems for the integrating constants.

Inserting the Fourier expansion3.8) and @.15 into (2.8) then gives (cf. 9, (11.2),

p. 38])

d? R ik 2 ~ ih2x ~ ik
|:d$(]2+d2:2:| Z fs(Z)el wel — 7]'{30 Z Ehel e Z fs(Z)el ws®

S=—00 h=—o0 §=—00

Substituting foik, s in the exponentials, straightforward manipulations lea@e leave a dis-
cussion of some important details to Sectif)

400 42 o 400 400 .
2 {[dﬂ_kif} fj(z)}euﬂ = k5 D { > Ej—sfS(Z)}e”N. (3.18)

j=—00 Jj=—00 §=—00

Equating for the index gives the result

2 f. +oo
% = k2 fi(2) =k D ejsfs(2). (3.19)

Note that for any homogeneous medium in which oajyis nonzero (and,.(z) is con-
stant), 8.19 decouples into the set of independent equatiGr.

It is common to use the scaling = zk(. Using the new scaled variable (3.19 takes
the form

A2 fi(w k2. = .
deU(Z ) = ?;fj(w) - Z Ej—sfs(w)7 J = 071371727*23““ (320)
0 §=—00

We emphasize the fact that under standard assumptions oarttiergence of the Fourier
expansions above3 (20 represents one particular form, out of many mathemagiegjliv-
alent forms, of writing the infinite set of differential edioms for the Fourier amplitudes
fi(w), 5 =0,1,-1,2,-2,.... After truncation, such mathematically equivalent forras c
produce truncated finite dimensional problems which hdifferent approximation errors
and convergence propertieShe next two subsections discuss the method of truncated u
in the standard RCWA method. Open questions related to timedtion of the Fourier ex-
pansions and the infinite system of differential equatiamsrgabove will be discussed later
in Section4.

3.4. Truncation — TE polarization. For numerical computations, it is necessary to
truncate the infinite Fourier expansions. From this poimiveod, we will consider that the
computed fields are described with sufficient accuracy by #h€ + 1 Fourier components.
The choice ofN depends on the problem; the corresponding truncation shaould be in
balance with the accuracy of subsequent numerical compnsatin particular with the ac-
curacy of solving the system of ODEs (approximation of nxdinctions) and the accuracy
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of solving the final system of linear algebraic equationsifibegrating constants described
below.
In the superstrate and in the substrate (8e&lf and 3.13)

E; :eikl(wsin0+zcose)+ i Rseikmsax—ikl,zsz
s=—N
N
— eilﬂzcosﬁ eilﬂmsin@ + Z (Rse_ikl’zsz) eikmsx
s=—N
N
= > w2t (3.21)
s=—N
N
EyIJI _ Z T, eikesttikino(z=d) _ Z (Tseikuyzs(zfd)) RIS
s=—N s=—N
N
= Yl (2)eftee, (3.22)
s=—N

We use here for simplicity the same notation fdf and E}' as in .12 and @.13, i.e., we
omit in (3.21) and @.22 the index N denoting the truncation order of the Fourier modes.
Denoting

R_n T N

Pop = P;O e CHNFL ¢, = T:0 € ¢+ (3.23)
R:N T:N

Vi = diag(kr.s/ko) € (C(2N+1)><(2N+1)7 (3.24)

Vi1 = diag(kir .o/ ko) € CENFIXENFD (3.25)

the parts in the truncated Fourier expansiahi®l) and @.22 dependent on the variable
can be written, using vector notation, as

- (N)'

uL; R_ye tFrz-m2 0
I _ (0) _ —.ikl 0z iklz.cosé
Uy = upy, = Rye 1¥1= + e
(N) Rye thr=nz 0
L Ury
_N .
UEI y ) T_Nelknvz(_l\”(zid)
11 _
Uy = . - : )
(N) ik117zN(Zfd)
Ury,y Tne
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wherek,o = kisin#, k.o = ki cos0; see 8.4) and @.10. With the scalingw = zko, and
using matrix exponentials,

’U,; _ e—lYIerE + elYIw

ULI — iVu(w—dko)y

€o, (3.26)
- (3.27)

where the last term in3(26), eo = [0,...,0,1,0,...,0]7, corresponds to the incident plane
wave given above (with the single nonzero spectral mode).
Similarly to (3.21)-(3.22 we consider in the grating region the truncated expansion

(see 8.3)
f-n(w)
Z fs(w)eikes uf(w) = . (3.28)
fn(w)

The 2N + 1 differential equations for the parts of the Fourier expansiependent on
in (3.20,j = —N, ..., N, can be written in matrix form

d*uy G 2 2N 2N
5 = —Cuj, C=T-Yie CEN+D)x(@N+1) (3.29)
where
YG = diag(kzm/k’o)

. . A . . A
= dlag(m sinf+ N—,...,nysin6,..., nysinf — N—), (3.30)

p p
(T)jszéj,& j7S:—N7...,07...,N. (331)

HereY represents a Toeplitz matrix with the entries determinedhleyFourier expansion
of the relative permittivity in the grating region. Since the simple geometry of the grat-
ing (3.17) holds,Y and, consequently, are complex symmetric. A general solution 89
is then given in matrix form by
uy = lfwg'},—ls + e_lfqu\;lsv (332)

whereg . andg,, represent the corresponding vectors of the integratingteois.

Assume, for a moment, thatC' is a single complex number with gositive realand
a nonzero imaginary parts. Then, the first tern3r89 corresponds to the downward and the
second part to the upward wave in the grating regibst (w < dkg). The fact that the signal
can only be damped, not amplified, which means that the ergrthe signal cannot grow
in the direction of its propagation, requires in both casegpbsitive imaginary part of the
square rootcf. [13, Section 24.3, relations (24.37), (24.38), (24.51) andg24. It should be
realized, however, that only if the real part of the squant i®positive then with our choice
in (2.5) the first part in 8.32 corresponds to the downward and the second part to the dpwar
wave in the grating region. With the positive imaginary piri/C the wave corresponding
to e‘f“’gTE is then damped with increasing while the wave corresponding w‘\ﬁngE
is damped withdecreasingo, which is in agreement with the waves propagating downwards
and upwards, respectively.

If, however, the real part of the square rad€ is negative, then with our choice i.6)
the second part in3(32 corresponds to the downward and the first part to the upwaregw
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in the grating region. Then the requirement of non-amplificaof the signal (which is
frequently in the engineering literature identified witlsitity) implies that the imaginary
part of v/C must be negative.

It should be noted that the non-amplification of the signguies the real and imagi-
nary parts ofy/C to have the same signf C is in the upper half plane, then the principal
square root of” lies in the first quadrant, and the solution of the discretigeblem 8.32
has a straightforward physical interpretation. If, howe¢éis in the lower half part of the
complex plane, i.e., it has a negative imaginary part, therréal and imaginary parts of the
square root,/C cannot have the same sigm matter which branch of the complex square
root is consideredin such a case the physical meaning of the discretizedigoligt unclear,
since the signal is inevitably amplified in one of the direns of its propagation.

In the RCWA method(”' is amatrix, and the considerations above apply to every indi-
vidual eigenvalue of’; cf. [4] and [5, Section 6.2]. Indeed, denoting loy = UJU ! the
Jordan canonical form af', (3.32 in fact means

u§ = UV U gt 4 Ue VU Tg (3.33)

If all eigenvalues ofC' lie in the upper half plane, then the principal value of thenptex
square root will be in the first quadrant falt eigenvalues, and it make sense to state that the
square root in3.32 corresponds to the branch with the positive imaginary.part

Herewe assum¢hat C' indeed has all its eigenvalues in the upper half plane. Whethe
such an assumption restricts the applicability of the RCWéthmad is yet to be found (see the
discussion below) and we pose it as an open problem.

REMARK 3.2. Discussions of the choice of a branch of the complexregueot lacks
completeness in the literature on RCWA known to us. In paldic the consequences of the
fact that non-amplification of the signal in the directiorpodpagation links together the signs
of bothreal and imaginary parts of the eigenvaluesdr8@, with its consequences farC,
are not clearly explained. Sometimes the signs ofrétaé parts of the eigenvalues of/C
are ignored, and the positive imaginary parts of the eigergaof/C are identified with
damping, independently of the direction in which the sigmalpagates. Such an approach
is not correct. For example, the negative real part of thersiglue ofv/C' corresponds
in ei‘/a“’g;i'E to the wave propagating in the direction of decreasingand therefore the
positive imaginary part of the eigenvalue ¢ means in such a case an amplification, not
damping, of the signal in the direction of propagation. $anhy, the negative real part of
of the eigenvalue of/C corresponds iraa—i\/a”@T—E to the wave going in the direction of
increasingw, and the positive imaginary part of the eigenvalue/@f means in this case an
amplification, not damping, of the signal in the directiorpobpagation.

Positive imaginary parts of the eigenvalues\&f’ can cause numerical difficulties; cf.
Section3.2. We will therefore use, as above, the following scaling

uf e ng;rx-: + e—iﬁ(w—dko)gT—B (3.34)

where, comparing with3(32),
Gy = VO g (3.35)

In the following derivation we will continue with the scalestpansion $.34), and we will
comment on the effect of non-scaling to the derived algetsgstem later.

Summarizing, 8.26), (3.27), and @3.34) describe thev (or z) dependen2N + 1 Fourier
coefficients of the truncated Fourier expansion (in thealdez) of the electric fieldE, in
the superstrate, substrate, and in the grating regionecésply.



ETNA
Kent State University
http://etna.math.kent.edu

344 J. J. HENCH AND Z. STRAKG

3.5. Matching on the boundaries and formulation of the algebaic problem — TE
polarization. In order to determine the integrating constants, whichasgnt the vectors
Top, bre, 91 @Ndgr,, €ach of lengti2 N + 1, we have two sets N + 1 equations for
matching the electric field at = 0 andz = d (top and bottom of the grating region). Two
missing sets o2 NV + 1 equations can be obtained by matching the tangential coemieH .
of the magnetic fieldq, pp. 39—-40] given by (se(9)

_ i 0B, _ (e 2 9E,
T pow 0z \ o ow

Unlike in some other methods for computing the diffractidight on gratings, the RCWA
method deals with the grating regiomthematicallyas a single region with the electric per-
mittivity dependent on:. Consequently, there are no other boundary conditionsrisider.
Using the truncated Fourier expansions gy, (see 8.21), (3.22), and @.29), and dif-
ferentiating the Fourier coefficient8.@6), (3.27), and (3.34) gives
ow
II
Oy _ jynyeivutu-drory (3.37)
ow
ou’ . . o
o= VOO gt §\/CemiVO(w—dko) o (3.38)

Finally, writing the boundary matching conditions

—E}(2,0) + ES(2,0) =0, —Hi(2,0) + HS(2,0) =0

= —iYie Yy L 4+ iYiel Y TVe, (3.36)

atz =0, and
+EJ (x,d) — EfN(x,d) =0, +HZ(x,d)— H(x,d) =0

atz = d into one matrix equations for the unknown integrating cantstr.;, g1, grp» Lre
gives the largel(2N + 1) x 4(2N + 1) linear algebraic system (the second and the fourth
block equations have been multiplied by)

.y I ei\/édko 0 g eo

Y, VC —\/CeiVCiko 0 gis| _ |nicosfeg (3.39)
0  elV0dko I I | 9| 0 ’ '

0 V/CelVCiko e — Yy | Ltre 0

denoted in the following as

ATE&TE = bTE-

It should be noted that in most practical measurements oas dot actually need the full
solutioné&..,. Typically, only the zeroth order mode of;,, which can be expressed as

To,te = (eoT»O)fTE = engE’

is required.

If we use the unscaled blocks of unknow#is, and ., (see 8.14 and (.39), the
matrix of the linear algebraic systerd.89 will have the last two columns multiplied by the
corresponding factors, which will increase its conditiammber and make it less suitable for
numerical computations.
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3.6. Subtleties of the discretization.Now we describe in more detail the steps which
lead to the system of the linear algebraic equatiéh39. Using Maxwell’s equations and
assuming a plane time-harmonic wave, we have derived tlomdarder equation

AE, = —kje,(7)E, (3.40)

for the electric field componeri,. Then we have considered Fourier expansions

o0

By(w,2) = 3 f()e(rmieie @)= 37 el B, (342

s§=—00 h=—o00

where the second reflects the dependeneeg oh x in the grating region. Sincs. is constant
in the superstrate and in the substrate, substitutioffdnto (3.40) yields decoupled second

order differential equations for the unknown coefficierfits s = 0,—1,1,...; see 8.8).
Writing down the solution for dinite subset
f*Nw"aan"waa

which meansruncationof the first expansion ir3(41), gives finally the truncated approxima-
tion £, andE; to the solution in the superstrate and in the substrate cegply; see B.21)-
(3.27).

In the grating region the situation is more complicated duthé fact that,. (x) is not
constant there, and. £, represents the product of two Fourier seriggl{),

+oo +oo
_3 ; ih 2™ is 2™
e ikix sin 057-Ey _ 2 : Ghelh oL 2 : fs(z)els T

h=—o00 §=—00
I I .. 0
= Z (Z ejsfs(z)> S
j=—00 \s=—00
N M ,
= lim lim €i_sfs(2) | VP, 3.42

where the last line represents the precise formulation. sidening the particulasimulta-
neous truncatiorwith a fixed M = N, we obtain the truncated approximatiﬂl’f to the
solution in the grating region. Matching;, ES' andE,', H., HS and H' on the bound-
aries gives the algebraic systeth39) for the integrating constants.

The last line of the identity3.42) represents one of the crucial points of the whole deriva-
tion. The two functions,.(z) ande~*1=sinl  (z 2) are periodic in the: direction with pe-
riod p; these are expanded into Fourier series and then multiplieelir product is expressed
as a Fourier series and then approximatethigysimultaneous truncation

N
—ikizx sin . ij 27 4
e ine (2) By (0,2) = lim Y gy (2)e T (3.43)
j=—N
where

N

M@y = eosfil2)

s=—N
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is also a truncated approximatioof the true Fourier amplitude

—+o0

wl,j(z): Z €jfsfs<z)7

S§=—00

known in the literature as Laurent’s rulg, [p. 240], B, 7], [9, Chapter 1V], though the prin-
ciple can be connected to Cauchy’s summation rule; 3ep.[227]. Here everything relies
upon the convergence of the limit of the simultaneouslydated expansion ir8(43.

In general, when the multiplied functions are piecewise @iméounded periodic func-
tions which have no common discontinuities, which is satisfh (3.43 using our assump-
tion thate, (x) and E,(z, z) are sufficiently smooth, the series convergésTheorem 1,
p. 1872], [/, Theorem 4.3, p. 122]. Then the infinite set of differentiquations 8.20
is truncated into the set &fNV + 1 differential equations foRN + 1 unknown functions
(see B.29) and the solutiomg’ is expressed in matrix form by3(34). In other words, the
ODE problem 8.20 for an infinite number of unknown functiong (w) is approximated
using thetruncated Laurent’s rulédy the set o2V + 1 ordinary differential equations for
ug(w) = [f-n(w),..., fn(w)]". The whole solution process is justified by the conver-
gence of the limit on the right hand side & .43 to the function on the left hand side of
that identity. Without convergence and equality 814@3, the truncation would lead to an
incorrect result, since the solution of the truncated mrobivould in general not converge for
N — oo to the solution of the original problem. Here the convergeisameant point-wise,
not in a norm which ignores sets of measure zero; ge8dction 4.4.2].

The considerations above may seem obvious, but it is usefihdlude them here.
Though the matter is explained in some mathematically teteipapersq, 7], and also,
using less rigorous arguments, in a more practically fodumsmok P, Chapter V], the con-
sequences do not seem fully realized by the community oftiticaeers. In particular, if we
have two piecewise smooth bounded periodic functions whéste common jump disconti-
nuities, then the truncated Laurent’s rule cannot be agptiee §, Theorem 2, p. 1872],7]
Theorem 4.4, pp. 122-123]. If, however, thductof the two functions is continuous at
the points of their common discontinuities, then, under smmnsingularity assumptions, it
can be expressed as a Fourier expansion usingraheated inverse multiplication rulgs,
Theorem 3, p. 1872, relation (22)]7,[Theorem 4.5, p. 123, relation (4.32) and the exam-
ples in Section 4.4.4]. In the derivation &f.¢)-(2.7) we have assumeziooth functionand
therefore the discussion of discontinuities may seemeveeit. In physics, however, one has
to deal with modelling of the idealized surfaces of discauity; see 3, Chapter 9]. In order
to get a good match of the computed results with physicaityedlis therefore necessary to
use truncation rules whiadh the limitremain valid in the presence of discontinuities.

It should be emphasized that the truncated inverse mualspdin rule, which will be
applied in the following section, cannot be viewed as a meicka&rule derived simply by
the truncation on both sides of the rearranged identitissyguLaurent’s rule followed by
the inversion of the matrix of truncated coefficients, acmeately interpreted in9 Sec-
tion 1V.2.1, p. 82, relation (IV.10) and its derivation givehere]; see alsolfl]. Though
such derivation may give the correct result, it is neithanptete nor mathematically correct.
It does not provehe convergencef the resulting approximation of the Fourier expansion;
see [, proof of Theorem 4.5, Appendix A, pp. 136—-137].

The common subtle mistake, which has led to incorrectlyrdisted formulations used

in practice, is caused by overlooking the following factt [[_Ié]](N) denote the Toeplitz matrix

MY =~ 5, j,s=—-N,...,0,...,N, (3.44)

Js
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generated by the Fourier coefficients of some given function

+o00 L,
I'(x) = Z vs€ P E.

S§=—00

Assume that'~! has no singularities and its Fourier expansion is given by

—+oo
F_l(x): Z 6Sei52?”z7

S§=—00

with the corresponding Toeplitz matrix defined analogotsiB.44),

[I:l—\—lﬂ (N) — 6.

js j—s»

J,8s=—N,...,0,...,N.

Then, in general,

(HFH(N)>71 ] [[F—l]] Ny

There are various mathematically well justified identiteesd formulas containingnfinite
matriceswhich can be useful here; seg [Theorems 4.1 and 4.2, Section 3.3]. Classical
treatment of the spectral theory of infinite matrices reldatethe mathematical foundations of
the matrix formulation of quantum mechanics can be found.#, fogether with extensive
comments on historical developments and literature. Favrapcehensive introduction to
infinite Toeplitz matrices, with very valuable comments be existing literature, seel
Chapter 1].

Without a mathematically rigorous justification, iderggivalid for infinite matrices can-
not (in general) be “truncated”, and then freely manipwlatefurther derivations, with the
ambiguous argument that the obtained results hold “in thé@"li The papers by Li ¢, 7]
are invaluable in demonstration of possible consequerfoestadaking into account the fact
that numerical approximations do not solve the originabem [6, p. 1876], [/, Summary,
p. 133]. Arigorous clarification of the relationship betwehbe solution of the original prob-
lem and its numerically computed approximation is an imp@ezanot an option which may
be left aside.

We end this section rewriting(29 using the notation analogous t8.44),

2, G
duy

dw?

= _ [[ETH(N) — Yé} u?, [[5r]](N) =7.

3.7. TM polarization. Here we will briefly summarize the derivation of the linear al
gebraic system analogous @39 for the TM polarization, while pointing out subtle differ-
ences between both cases. Since TE and TM polarizationseated separately, we can use,
where appropriate, similar notations for the magnetic fielthe TM polarization as for the
electric field in the TE polarization without confusion.

In the superstrate and in the substrate the electric pérityitis constant. Therefore the
equation 2.10 for the magnetic field?,, in the superstrate and in the substrate is in the TM
polarization fully analogous to the equatich§) for the electric field in the TE polarization.
With the incident magnetic fielﬂ{L“C given by @.2) and the Fourier expansion féf, (z, z)
analogous t03.3), the solutionH, in the superstrate anH' in the substrate is given by
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the right hand sides of the identitie3.{1) and @.13. After truncation (similarly to §.21)
and @.22 we omit the indexV)

N
HY = 3" uf)(z)etter (3.45)

s=—N

N

H'= 37 ufp), ()=, (3.46)

s=—N

where

u; = [U{ZN)? o u%Z)]T — e_iYIwTTM + eiYI’wem (347)
ULI — [U%*;V)) L ug\’U)]T — Vin(w—dko)y (3.48)

Y1 andYi; are given by 8.24) and (.25, respectively, and

Trm = [R—Na"'aRO7--.,RN]T c C2N+1,
brn = [T_N""aTOa"-’TN]T S C2N+17

which are, in general, different from the vectorg andt., given by 8.23. We use in 8.49
the same scaling as iB.(L3.

In order to derive the truncated approximate solution ingitaing, we rewrite the equa-
tion (2.10 for Hy(x, z) in the form

O°H, o 1 oH,] .,
5.2 —e,(2) {8:5 LT(I) B } + kOHy}. (3.49)

Now we need to substitute fd,, andoH, /0x the Fourier expansions

+oo
Hy(w,2) = > f(z)ebrmoesm, (3.50)
3H1 = i(kysin @ 27

and fore,.(x) and1/e,.(z) the expansions3(15 and (.16 respectively. We observe that,
in the idealized sensgsee [L3, Chapter 9] and the discussion in Section 3.63,.(x) and
0H, /0x are piecewise continuous with common discontinuities.iffireduct is continuous.
From [6, Theorem 3, p. 1872]7] Theorem 4.5, p. 123] (the nonsingularity assumptionsen th
statements of the theorems frol) [] are satisfied from the physics of the problem), under
our smoothness assumptions as well as in the idealized,skaggoduct can be written using
thetruncated inverse multiplication rule

: : 1 0H ih 27
—ikrx sin @ Yy 9 (N) ihira
e er(x) Ox = Z Vo (2)e ’

where

=13 (1Y) : kosfs(2). (3.51)
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Consequently,
1 0H 1k, T
Er(x) :ngnoo Z w2h . ’
which gives
opsing O 1 OH
—ikizsing Y vyl _ 1 (N) hfﬂﬂ 3.52
¢ Ox Lr(z) Ox ] i T Z Vo (2)kane (3.52)

The product of (the idealized discontinuousjx) with the rest of the right hand side .49
is again continuous, because the left hand sid8dfd is continuous inz. It therefore can
be handled by the truncated inverse multiplication rule.relidhowever, theérue Fourier

amplitudesfor the function% [E }w) 85”] are not available, and we replace them by their

truncated inverse multiplication rule approximaticméﬁ) (2)kzp, from (3.52), which depend
on the truncation limitV,

2

—ik:mcsin@8 H( _ w—:c

e — lim ws ,
022 N—oo

where
N (N)\ —
MOESDY (H ) (G55 (Vkon + K3 fu(2):
h=—N " vh

Substituting forf, the expansion3.50 and forwg\,? the expansion3.51), we obtain after
truncation

Ty (ﬂ;ﬂ(m>jh { > (151),, Koo fs<z>—k3fh<z>},

h=—N s=—N
j=-N,...,0,...,N. (3.53)

With the scalingw = zky and the matrix-vector notation for the truncated expansion

N . N
= 2 Swetn= 3 g (weter,
ul (w) = u; ;V) (w), .. U(GN;( VT = [ n(w), ... ()T

the2N + 1 differential equations in3.53, j = —N,...,0,..., N, can be written as
dzug

dw?

G
= _Quy )

where

Q

<|[1]| UV)) - [[ - Yo ([[ezr]](N))*1 YG} =7\ - YaY 'Yy, (3.54)

Er
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while

(1)~ = ([[Er]](N))_l and 77! = (H;ﬂ (N)>_l (3.55)

represent, respectively, the inverse of the Toeplitz mé&#i31), and the inverse of the Toeplitz
matrix whose entries are determined by the Fourier expargdfithe inverse of the relative
permittivity in the grating region; see(1L6. Analogously toY, the matrixZ is complex
symmetric. It should be noted that the inverse of a Toeplitrixis generally not Toeplitz.
A solution to .54 may be given in matrix form by
uy _ elfw + _|_ e —iv/Q(w— dko) —

where we use in the second term the same scaling a.34)( The square root function
corresponds to the branch with the positive imaginary pHrall eigenvalues ofQ) are in
the upper half plane, then the signal is not amplified in thredtion of propagation; see
the discussion in Subsectidh4. In some experiments, however, we have observed some
eigenvalues of) also in the third quadrant, which can be considered as diceitioss of
passivity due to the discretization. A full analysis of tblaservation is yet to be undertaken.

We also need to find the tangential component of the electid fi,,. Using .11),

b 1 OH, _ . <MO>1/Q 1 oH,
* €0 (z) +io(z)/(sow) Ow

—igpe (2w + o(x) 0z

Sinceyu, = 1, in the superstrate and in the substrate, apart from thetansition regions
(see L3, Chapter 9))¢, +io/(cow) = nf/p, = n¥ ande, + io/(cow) = n¥/pr = n¥; re-
spectively. Then we can immediately write the truncated@gmation for ., using ¢.45
and @.46),

s N
N2 1 Mo ﬁ)
EH — - - Y Jikgsz
! ' (50> i 5;]\; Ow

where the derivative8u,, /0w anddu! /0w are given by 8.36) and 8.37), respectively.
In the grating region the derivation requires more carec&ithe idealizedy)H, /0w is
continuous, substituting the Fourier expansichd® and @.50 gives

er(x) Ow

“+o0 +o0
efikwsine 1 aHy § : appe 1h2—"x 2 : afs( )eis%x

h=—00 s=—00

where
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Consequently, after truncation,

)
1 i i v H —i v— —
uy = Lﬂ {iVQeV@ugh, —iy/Qe VAot g L, (3.56)
o 1/2 N o
B =i (2] 3 et
s=—N

Finally, writing (similarly as in the TE polarization abgvihe boundary matching con-
ditions

—H}(z,0)+ H{ (,0) =0, —EL(z,0)+ ES(z,0)=0
atz =0, and
+H (x,d) — Hj'(x,d) =0, +EZ(x,d) — E}(z,d) =0

atz = d, into one matrix equation for the unknown integrating canttr. ., g5, G
andtr,, gives thet(2N + 1) x 4(2N + 1) linear algebraic system similar t8.39, which,

N
recalling [[Ei]] = Z and multiplying the second and the fourth equation-dy can be
written as

—I I etvQdko 0
1 iv/Qdko 0 Tau ?3
,TI2YI Z\Q —Z+\/Qe gt | C(:I €o (3.57)
0 eiVQdko I -1 g | 0 T
0 Z/QeVQiko -ZJQ — Ly | Lt 0
11

and will be denoted in the following as

ATMgTM = bTM .

As in the T E polarization, in practical measurements one typicallydseenly the zeroth
order mode of 1,

T T
To,rm = (60 70)§TM = €9 Trm-
If we use the unscaled blocks of unknowns

—iYirdko torag ~— ivQdko ,—

trm =€ y  Yru — € Grurs

the last two columns of the matrix of the linear algebraideys@3.57) must be scaled ac-
cordingly.

3.8. Numerical experiments. In this section we present some of the results obtained
with the RCWA method. Our aim is to illustrate the numericahavior of the method using
a representative example, and not necessarily to preseneaview of the efficiency of the
method. Nevertheless, the importance of the issue of gffigief the numerical computations
will be apparent, and will motivate the following sectionkieh will close the paper.

In our experiment, we apply RCWA to the problem of computihg zeroth order re-
flection coefficient from a rectangular grating, such as the depicted in Figur@.1 This
experiment has its basis in the semiconductor industryrevbptical instruments measure
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Index of Refraction and Extinction for Silicon
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FIGURE 3.3. Indices of refraction and extinction for silicon.
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FIGURE 3.4. Approximation error as a function of the number of Fourierdes.

the reflection coefficients from periodic structures orceiti wafers, and through an inverse
problem, determine the geometry of the measured feature.

In this simple example, the substrate is silicon and therstiage is air. The material for
the substrate is chosen not merely because of its imporiartbe semiconductor industry,
but also because the material exhibits a number of integgtioperties. First, it has a very
high index of refraction relative to most materials; for exde, at a wavelength of 500 nm
the index of refraction is over 4. Compare this to the indese@faction of glass, which is ap-
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proximately 1.5. Second, at wavelengths in the ultravi@gion (below 280 nm) the index of
extinction (the imaginary part of the complex index of refran) dominates, with the material
behaving more like a conductor than a dielectric. To illatgithe behavior of the electromag-
netic fields for these two different regimes, we compute atsmi to Maxwell’s equation via
RCWA at two wavelengths, 250 and 500 nm. For these wavelsptith complex indices of
refraction for silicon have been determined experimeptalith n;; = 1.580 + 3.632i and
ni = 4.2975 + 0.07297i at wavelengths of 250 and 500 nm, respectively. For referenc
a plot of the indices of refraction and extinction for silicas a function of wavelength is
depicted in Figurss.3.
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FIGURE 3.5. Eigenvalues of the matrice&s and Q.

The values of the parameters used to describe the rectargraling are as follows:
the periodp = 400, space fractiony = p;/p = 125/400, and the height/ = 300. All
geometrical distances are inn. As it happens, these values are also representative of the
measurement targets one might find in the semiconductosindurlhe incidence angle for
all experiments in this paper 5= 70 degrees.

Figure 3.4 compares the convergence of the zeroth order reflectiofficeet R, for
the TE and TM modes of both wavelengths as a function of thebeuraf Fourier modes
used to compute the fields. The approximation error is coatpas the modulus of the
difference between the zeroth order reflection coefficiadttaat which is computed for 100
Fourier modes. Note that the convergence is faster for théh@k the TM modes for both
wavelengths, that the convergence of the TE method is flmstsiticon in its dielectric regime
( A = 500 nm) than in its more metallic regime\(= 250 nm), and that the convergence
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TE, Electric Field, A =250 nm TM, Magnetic Field, A =250 nm
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FIGURE 3.6. Contour plots of the electric and magnetic fields.

of the TM method is more monotonic for silicon in its dieléctregime than in its more
metallic regime. Finally, note that the solution convergaikly to the relative accuracy of
about10—3-10~* for relatively few Fourier modes. This property is of pautir interest in
the semiconductor industry, due to the importance of thedjoé the solution. Any greater
accuracy of the solution is superfluous due to the measutgmnegision of its instruments.

Figure 3.5 plots the complex eigenvalues of the system matrices anthdtr wave-
lengths. We note that, as expected, the eigenvalues are upfer half plane. It has been
observed, however, that for cases with materials with lardex of extinction, some of the
eigenvalues of) can drift into the third quadrant of the complex plane, whictuses dif-
ficulties in physical interpretation of the computed salntdescribed above. Interestingly,
we have not yet encountered a situation in which the eigapgadfC fall outside the upper
half-plane, or when any eigenvalue@ffalls within the fourth quadrant.

Finally, we plot in Figure3.6a contour map of the transverse electric and magnetic fields
for the wavelengths. = 250 nm and\ = 500 nm. The fields are computed with the field
expansion truncated to 10 Fourier modes. Let us point owvdefatures in these plots. First,
note that the fields hardly penetrate the silicon structarthe wavelengthhA = 250 nm,
which demonstrates the property of finite skin-depth forcranive materialsJ3]. Second,
note that at wavelength = 500 nm, the magnitude of the magnetic field in the dielectric
region is much higher than that of the surrounding air. Thas¢onsequence of the high index
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of refraction of silicon at this wavelength. Third, notettttae contour lines in the TE mode
are smooth across the material boundaries (shown in ligdyt) gwhile for the TM mode the
contour lines are almost discontinuous. This is due to timéirmoity properties of the TE and
TM fields across material boundaries, with the TE field beimgath and the TM field being
almost discontinuous. Finally, note the wavy nature of thetaur line for the TM field at
coordinate position: ~ 150 andz =~ 50 for the wavelength\ = 500 nm. This is an artifact
of the Fourier decomposition. This feature gradually digsgrs as the number of Fourier
modes kept in the field expansion grows larger.

4. Open problems in the analysis of the RCWA method As is stated in§], the pro-
cess of discretization in RCWA presented here can lead t@ smmtrivial ambiguities. Some
of the approaches found in the literature are not welljigstimathematically, and have the
potential of yielding incorrect results without proper bisés. While we have dealt with many
of these issues here, a number of issues remain open, whitistwelow.

One issue is that of the smoothness of the permittivity flonatvithin the grating region.
As mentioned, we have presumed for the sake of the derivéttamit is smooth; however,
in the literature it is given an idealized mathematical dipsion as discontinuous at the in-
terface between two distinct materials. The discontinidialization has been treated in the
physics literature by referring to the integral form of Maetlis equation and taking appro-
priate limits; cf. [L3, Chapter 9]. Other means might be through the periodic datiea of
the permittivity function with a distribution which in an pppriate limit becomes the Dirac
delta function. A more detailed treatment of the discontinaf the fields and permittivities
is left, however, as an open problem.

The reduction of the problem from a countably infinite setfiwary differential equa-
tion to a finite set yields the problem of how to formally mpli the two series and take
their truncations. Hardy3, Chapter X] provides a set of formal rules, and discusseis the
convergence properties. The applicability of these rlddBEWA remains an open problem.

Another issue that is not addressed is the issue of the pessiditional truncations. In
standard RCWA, if the fields are truncated to ordéKconsisting of2NV + 1 components),
Fourier modes up to ord&V (consisting of4N + 1 components) are used in the matrices
T andZ. As is pointed out inT1, Appendix A], this inconsistency between the number of
components for the fields and for the permittivity functisraiconsequence of the represen-
tation of the truncated problem. It is clear, for examplef fiewer modes for the permittivity
could be used, reducing the matricésand Z to banded matrices. Taking a cue from signal
processing literature, it might be advantageous for remsbnonvergence or conditioning to
multiply the Fourier components of the permittivity furartiby a suitable windowing func-
tion. Again, such approaches and their analysis remain.open

We have not addressed here the systematic treatment of figessivity that one can
observe in the solution of the truncated problem, e.g., tke bf passivity associated with
the eigenvalues of the matricés and @ that lie in the third quadrant. The standard ap-
proach in RCWA enforces a type of passivity with the eigemsalof\/C' and+/Q@ lying in
the upper half-plane. While this ensures that the matrix pgptals in 8.38 and @.56
remain bounded as becomes large, it has the consequence of mixing waves wifdretit
propagation directions, as those eigenmodes associatedhiid quadrant eigenvalues of
C and@ have a different propagation direction than those assetiaith first and second
guadrant eigenvalues 6f and@. While this seems to produce an acceptable solution of the
numerical problem, a complete analysis of this issue anghiysical interpretation is yet to
be undertaken.

5. Perspectives of algebraic computations within RCWA.The paper presents, within
our abilities, a mathematically justified derivation of REWA discretized approximation to
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the problem of light diffraction on a simple rectangulartgrg. Without a mathematically
correct derivation of the truncated approximation thera gossibility that the discretized
problem may not be formed correctly. From a practical pointiew, the message is that
although the discretization can be motivated intuitivelgmpirically, its justification requires
mathematical rigor. Indeed, it has been observed in peathtiat an intuitive derivation can
fail. Therefore a step-by-step detailed mathematical éxation of methods used in practical
computations is useful.

The solution of Maxwell’s equation by the RCWA method on agmrectangular grat-
ing given here forms the basis for computing the solutiomfiore complicated shape3o
extend RCWA to these shapes, it is necessary to approximeateriginal shape by a set of
vertical regions, or slabs, within which the permittivisydonstant as a function of height. For
example, a trapezoid is approximated by a shape in the fomzafgurat. This approxima-
tion requires the solution of boundary conditions at theriisice of each slab, which results
in a system matrix akin ta3(39 or (3.57), i.e., block tridiagonal with the number of diagonal
blocks proportional to the number of slabs; see, e}., Tiypically, a trade-off must be made
in the approximation of the shape by slabs. A good geométjmaroximation of the shape
of the grating may be obtained with many slabs of small hei@htthe other hand, using such
a large number of slabs makes the computation of integratingtants more demanding.

The dominance of RCWA in the field of scatterometry has be&ibated to two fac-
tors. First, RCWA has been shown to be remarkably robust:able to reliably compute the
reflection coefficients for the wide range of wavelengths giditrary shapes and incidence
angles. Second, itis able to compute the reflection codftigi® a relative accuracy of about
10~* in a reasonably short time. This is crucial as the indusagglication is that of an
inverse problem, whereby the reflection coefficients astfans of the wavelengths (called
the reflection spectra) computed for a parameterized sieielre matched to the measured
information. The time allotted for the solution of the inserproblem is determined by the
hardware, typically between 2 and 10 seconds. In one inateamt of the problem, the match-
ing is performed by an on-line optimization algorithm, whi@kes many steps to converge
and requires in input not only the measured and computecttieflespectra, but also its Ja-
cobian, i.e., the derivative of the computed reflection speas a function of the parameter
vector. The Jacobian is typically approximated using fidifeerences. Since the number
of optimization parameters is usually between 5 and 10, timber of wavelengths used in
the reflection spectra computation is approximately 106,tha number of steps for conver-
gence is between 10 and 20, the solution of the inverse prabilequires the computation of
a number of individual reflection coefficient of the order 6{d00. Even when one accounts
for the parallelizability of the problem, the need for cortagional efficiency is clear.

From this setting a number of interesting problems in nucattinear algebra arise:

e One problem is computing the solution of the linear systentkviields the Fourier
components of the fields. Two general approaches can be. t@kenis the solution
a linear system consisting of the block tridiagonal matexsawritten in this paper,
another uses a method of scattering matrix propagafio8dction I11.6]. Typically,
the latter method is used in industry and is equivalent tajaesetial block elimina-
tion algorithm.

e Another problem is the issue of efficiently computing thedtion of matrices, such
as the matrix exponential or square root, which is necegsdil the blocks in the
system matrix. Since the matrix functions are computed thedomain of highly
structured matrices, there is the possibility of computirese matrix functions more
efficiently than for an arbitrary dense matrix.

e A third issue is that of providing an a priori estimate for thenber of slabs and/or
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number of Fourier modes required to achieve a given accuréhjs remains an
open problem. Also, the issue of the convergence of the eédees of the matrices
C and @, (3.29 and (.54, respectively, as a function of the number of Fourier
modes is also not well understood.

Another issue that arises is related to the computationlafieas for gratings with
highly conductive materials. In such as case the matficasd~7, (3.31) and (3.559),
respectively, can be ill-conditioned with respect to isien. Recently this phe-
nomenon was studied and attributed to spurious eigenvaliiesmall magnitudes;
see [LQ]. A suitable regularization method has yet to be devised.

The most pressing problem facing the industrial use of RC8\théspeed of the so-
lution for three-dimensional (doubly periodic) structures. legh structures an arbi-
trary two dimensional shape is tiled on the plane, and requires a two-dimensional
Fourier decomposition of the permittivity and the fields.slrch a case, the system
matrices become much larger, as the dimensionality of theb\Vectors scale as the
product of the number of retained Fourier components andy. Thus, techniques
for improving the speed of the solution for the two-dimensibo(singly periodic)
problems become essential for three-dimensional problems

We close our discussion with the note that approximatiorhefdolution of the linear
systemsA &y = brp aNd A&y = by has in RCWA a very particular meaning. We
need to approximate only one element of the solution ventonely, the one which is asso-
ciated with the zeroth diffraction order. This indicateattthere may be a number of suitable
fast iterative methods to find that element with sufficierdumacy. Recent resultd ] indi-
cate that this quantity can be computed to a given level ofiraoy considerably faster by
a moment-matching method, than by explicitly computinggbleition of the linear system.
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