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ALGORITHMS FOR THE MATRIX SECTOR FUNCTION *

BEATA LASZKIEWICZT AND KRYSTYNA ZIETAK T

Abstract. In this paper we consider algorithms for the matrix sector fion¢ which is a generalization of the
matrix sign function. We develop algorithms for computing thermasector function based on the (real) Schur
decompositions, with and without reordering and the Pametfirrence. We prove some results on the convergence
regions for the specialized versions of Newton’s and Haleyethods applied to the matrix sector function, using
recent results of lannazzo for the principal maipba root. Numerical experiments comparing the properties of
algorithms developed in this paper illustrate the diffeemnin the behaviour of the algorithms. We consider the
conditioning of the matrix sector function and the stabilifyNewton’s and Halley's methods. We also prove a
characterization of the Echet derivative of the matrix sector function, which is aegafization of the result of
Kenney and Laub for the Echet derivative of the matrix sign function, and we provideay of computing it by
Newton’s iteration.

Key words. matrix sector function, matrix sign function, matgith root, Schur algorithm, Parlett recurrence,
Newton’s method, Halley’s method, stability, conditionifigéchet derivative.
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1. Introduction. Matrix functions play an important role in many applicaosee, for
example, ¥, Chapter 2]. In this paper we are concerned with the matrixosdunction,
developed by Shieh, Tsay and Wari@], as a generalization of the matrix sign function
introduced by Robertsl[/]. Let p be a positive integer and let us consider the following
sectors of the complex plarigfor i € {0,...,p — 1}:

2 2
@l:{zeC\{O}:lﬂ—ﬂ<arg(z)<lﬂ-—|—ﬂ-}. (1.1)
p p p p
Let X = |\e*? € C )\ {0}, where
21
vel0,2m), ¢#2+T fori=0,....p— 1. (1.2)
p p
The scalap-sector function of\ € @, is defined as
sp(N) = e27l/P, (1.3)

Hences, () is thepth root of unity, which lies in the same sectbrin which X lies; therefore
it is thepth root of unity nearest ta. From (L.2) we deduce that the scalpisector function
is not defined for theth roots of nonpositive real numbers.
Let R~ denote the closed negative real axis. The pringipfaroota'/? of a € C\ R~
lies within @, thereforeRe(a'/?) > 0. As shown in L8], s,(\) = A\/(\?)'/P. The principal
pth root of \P exists becausg satisfies {.2).
Any matrix A € C"*™ can be expressed in the Jordan canonical form (see, for exam-
ple, [7, Section 1.2])

WTAW = J, (1.4)
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wherelV is nonsingular and is a block diagonal matrix of Jordan blocks of the form

Al
A
1
A
Let {\1,...,\,} be the spectrum of a nonsingular matrix with not necessarily distinct
eigenvalues\;, satisfying (seel(.2))
20 7w
arg(\;) # —+—, fori=0,...,p—1, (1.5)
p p
and ordered in such a way that the main diagonal f(\1, . .., \,,). Then the matrix sector
function of A can be defined as (se&3 18])
sect,,(A) = W diag(sp(A1), ..., $p(An)) WL (1.6)

In principle, we could compute the matrix sector functioonfrthe Jordan formi(4). How-
ever, the use of the Jordan form is avoided since it is contiputly unattractive because of
its computational cost and the possible ill-conditionifigi6 if A is not Hermitian.

The principal matrixpth root of A, denoted byA!/?, is the unique matrixX such that
XP = A and the eigenvalues df lie within the sector®,; see, for example,7} Section 7].
If A has no eigenvalue dR—, thenA'/? exists. The matrix sector function can be expressed
in the following way (seelq])

sect, (A) = A(AP)~L/P, (1.7)

where(AP)'/? is the principal matrixpth root of A?. Therefore we can compute the matrix
sector function using algorithms for principal matgith roots. However, we would like to
develop algorithms for computing directly the matrix sedtoction without computing the
matrix pth root. This is a goal of this paper.

In the paper we show how some theoretical results and dhgasitknown for the matrix
sign function and the matrixth root, can be extended to the matrix sector function. The
matrix sector function is interesting for us, because tlyeseeralizations are not always easy
and possible. Some basic properties of the matrix sectatiumare recalled in Sectich

In Section3 we derive an algorithm for computing the matrix sector fimctbased
on the Schur decomposition. We call this algorithm doenplex Schur algorithmlt is a
generalization of the Schur method by Higham$ection 5.2] for computing the matrix sign
function. In the complex Schur algorithm we use also somasdeom the Smith method
for the matrixpth root (see 19, 20]). The complex Schur algorithm is applicable to every
for which the matrix sector function exists. We also propigsenodification employing the
reordering of the Schur decomposition.

Thereal Schur algorithmfor computing the matrix sector function of a real matrix in
real arithmetic is stated in Secti@n It employs a real Schur decomposition. The algorithm
is partly similar to the method of Smitt2(] for computing some real primary matrpth
root of a real matrix (see alsd@,[Section 7.2]). Unfortunately, the real Schur algorithiifsfa
when A has multiple complex eigenvalues in the sectbrgifferent from®, and®,, /, (if
p is even). The reordered real Schur algorithm is also meetiorNumerical experiments
comparing the above four versions of the Schur algorithntfermatrix sector function are
presented in Sectiof
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In Sectiord we consider Newton’s and Halley’s methods for computingntiagrix sector
function. These methods were formulated ¥r8][and [18], respectively, but without any
information about the regions of convergence. We prove geswdts on convergence regions,
using the recent results of lannaz2p11] for the matrix principapth root. Our proof is based
on a similar trick, which was used i2,[Section 6]. To our best knowledge the convergence
regions for the specialized versions of Newton's and Halleyethods applied to the matrix
sector function were unknown up till now. The results of lareo concern Newton’s and
Halley’s scalar iterations for the principath root of a number with starting point equal
to 1. For the scalar sector functiof,(\) we have an opposite situatiom: = 1 and the
starting point is equal ta; see Sectiod. The stability of Newton’s and Halley’'s methods for
the matrix sector function follows from the general restiltamnazzo L0, Section 4.6] for
matrix iterations.

The conditioning of the matrix sector function is considkire Sections. We generalize
to the matrix sector function a characterization of thedret derivative proven by Kenney
and Laub for the matrix sign function. We also show that Nevgtiteration provides a way
of computing the Fechet derivative of the matrix sector function. It geneesdithe result of
Kenney and Laub for the matrix sign function (sée$ection 5.3] andl[2]) and it is related
to the very recent result of Al-Mohy and Highari for computing the Fechet derivative of
a matrix function by iterative methods.

Numerical tests, presented in Secti@nillustrate the differences in the behaviour of
all algorithms developed in this paper. We also include Itegar the matrix sector func-
tion computed directly from1(.6) and from (L.7), whereX'/? is computed by the standard
MATLAB matrix power operator, which uses the eigensysteti of

In the whole paper we assume thasatisfies the conditiond (5), i.e., that the matrix
sector function exists foA.

2. Properties of the matrix sector function. A research monograph by Higham] [
presents the theory of matrix functions and numerical meittHor computing them, as well
as an overview of applications. Some properties of the ma#ctor function are common
for matrix functions.

Let S = sect,(A). The following relations

AS =SA, SP=1, (2.1)

lead to the algorithms for computing the matrix sector fiorct The second equality ir2 (1)
means thab' is somepth root of the identity matrix. However, it is the princigah root, i.e.,
the identity matrix/, only when all eigenvalues of lie in the sectory.

Using (L.7), we can expresd in the following way:

A= SN, (2.2)

whereN = S~1A = SP~1A = (AP)'/», becauseS commutes with4 and since the spec-
trum of S~! A lies in the secto®,. We call the expressior2(2) the matrix sector decom-
position and we will use it in SectioB to characterize the Echet derivative of the matrix
sector function.

If B=V 1AV, thensect,(B) = V~!sect,(A)V for arbitrary nonsingula¥’ € C"*".
The inverse ofect, (A) is equal to the matrix sector function df*.

The formula (.7) is well-known for the matrix sign functiorp(= 2), and the decompo-
sition (2.2) is a generalization of the matrix sign decomposition,ddtrced by Highamd].

Some applications of the matrix sector function are memtion [18].
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3. The Schur algorithms. In this section we apply the Schur decompositions to com-
pute the matrix sector function. The Schur decompositioA ef C™*™

A=QRQY, Q unitary, R upper triangular (3.1)
and the real Schur decompositionsfc R™*"
A=QRQT, @ orthogonal R real upper quasi-triangular (3.2)

are useful tools for matrix functions, because they can pepeded with backward stability
by the QR method; see, for example4][ Here M7 denotes the transpose df and M
denotes the conjugate transpose. 3rP) the upper quasi-triangular matri hasm < n
blocks on the main diagonal of ordens; equal to either 1 or 2. The blocks of orders
correspond to complex conjugate eigenvalues pairs. Trek®lof R are denoted by;;. In
the Schur decompositio (1) all blocks of R arel x 1.

We now show how some ideas of the Schur method by Highai®dction 5.2] for com-
puting the matrix sign function, and the Smith methad] [for any primary matrixpth root
can be applied to the matrix sector function. Both methodiz@the Schur decompositions
and a fast Parlett recursiofhd].

The significance of the Schur decompositions is that compuimatrix functionf (A)
reduces to computing(R), sincef(A) = Qf(R)QH when we use the Schur decomposi-
tion (3.1), andf(A) = Qf(R)Q™ when we use the real Schur decompositidr2, There-
fore we focus on computing the matrix sector function of apargquasi) triangular matrix
R determined in&.1) and @.2), respectively. We recall that we have assumeddéat, (A)
exists, henceect, (R) also exists.

Let U = sect,(R). The main diagonal block&;; of U are equal taect, (R;;). The
superdiagonal blocks;; satisfy the following recurrence relation, derived by BHiflL6] for
a matrix function of a block upper triangular matrix,

7j—1
R”UU — Uq;jRjj = U“R” — RijUjj + Z (UlkRk] — RikUkj), (33)
k=i+1

for ¢ < j. This recurrence comes from equating blocks in the commvitietelation U R =
RU (compare 2.1)) and it can be applied to compute superdiagonal blégksprovided that
we may evaluate the main diagonal blo¢ks, U;;, and solve the Sylvester equatichg) for
U;;. The unique solutiod/;; of (3.3) exists provided thaR;; andR;; have no eigenvalues in
common.

If the blocksR;; and R;; have a common eigenvalue, then we have to apply the relation
UP = I (compare the second relation i {)) in order to compute the appropriate remaining
blocks of the matrix sector function a®. For this purpose we use some ideas from the
method of Smith 20] for computing thepth rootY of R. In the method of SmithZ0] the
superdiagonal blocks df are evaluated from the recurrence that follows from the kgua
Y? = R. A similar recurrence holds also for the matrix sector fioret/ of R, because
UP = I. The only differences between these recurrence relatiens aomputing the main
diagonal blocks of” andU, respectively, and in the superdiagonal block&ofn the method
of Smith the main diagonal blocks af are the appropriate primapth roots of the main
diagonal blocks of?. However, in our algorithm the main diagonal blockdbare equal to
the matrix sector functions of the main diagonal blockskofThe superdiagonal blocks of
R in the Smith recurrence relation are replaced in our algoriby superdiagonal blocks of
I, which are zero. Therefore we write the following geneediSylvester equation fdr;;
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without details of derivation, because this is the same #seiproof of Smith 20, Section 4]
for the matrixpth roots; see alsd.P]. We use the same notations as in the formulation of the
Smith method in{, Section 7.2]:

1

i

2—k (k—1 3— k
Ve Pyl = Z VT (3.4)
k=0
where
v = U’““, fork=-1,...,p—2, (3.5)
By = Z UaV,yY, fork=0,....p—2,  (3.6)

l=i+1

k—1
ViR = ZV““ v ST vIEYB, fork=0,...,p-2.  (3.7)

We are now in a position to formulate the complex Schur athorifor the matrix sector
function. LetA have the Schur decompositiod.{), whereR = [r;;]. LetU = sect,(R) =
[ui;]. Since now all blocks oR andU in (3.3) and @.4) are of orderl, we replace the blocks
by the elements of the matricé&sandU in the proper way. The matrii is upper triangular
andu;; = sp(ry). If ry; # rj;, then we can solve3(3) for w,;. If r;; = rj;, then the left
hand side in§.4) has the formu;;u;;, where

p—1
= I <
k=0
anda;; # 0 because;; is the scalar sector function. Thus we can compujefrom (3.4),
and all the superdiagonal elementdbtan be computed fron8(3) and @.4), respectively.

Complex Schur algorithm for the matrix sector function
Let A € C™*™ have eigenvalues satisfyinf).f). This algorithm computes:ct,(A).
Step 1. Compute a Schur decompositibe= QRQ™ , with R = [r;;] upper triangular, and
check if the eigenvalues @t satisfy the assumptior (5).
Step2.Forj=1,...,n

uj; = $p(rj5)

B g k1 _
v =ug s, k=-1,...,p—2
forz_j—l j—2,. 1
b, = Zullvlj, k=-1,...,p—2
l=i+1
—fu”va =Ry, ks for u;; = u;;
o S )
Ui; — Ui k:- 1\ Wik Tkj — TikUkj
Tij i EEl + ax R foruii;éujj
Tii = Tjj R
k—1—1 -1 k=2-1),
Zv( )“w j(J )+Zv( w k=—-1,....p—2
endi

endj
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Step 3.sect, (A) = QUQH.

Higham has observed that the matrix sign function of an upengular matrix will
usually have some zero elements in the upper triangle;7/s&Etion 5.2]. The matrix sector
function has a similar property. This follows from the geaiefheorem 4.11 on functions
of triangular matrices in7]. If the diagonal elements of are grouped according to the
sectors®;, thenU;; = sect,(R;;) is the identity matrix multiplied by theth root of unity
lying in the corresponding sectdr;, including all eigenvalues of the main diagonal block
R;; of R, and we utilize only the Parlett recurren&3j to computel/ = sect,(R). Thus,
computing the main diagonal blocks;; of U is very cheap and there is no reason to apply
the generalized Sylvester equati@w) to computel/. Therefore, we propose the reordered
complex Schur algorithm, formulated below. We underlireg tiow the orders of the blocks
R;; can be large and each blogk ; has eigenvalues only in one sector.

Reordered complex Schur algorithm for the matrix sector furction
Let A € C™*™ have eigenvalues satisfying.). This algorithm computes:ct, (A).
Step 1. Compute a Schur decompositibr= QRQ, whereR = [r;;] is upper triangular,
and check if the eigenvalues &f satisfy (L.5).
Step 2. Determine the sequence of indite$,, ..., I, (0 <l <l <--- <y <p—1)

of different sectorsp;, in which elements;; lie. Fork = 1,...,q compute the
numbert, of the elements;;, which belong tod;, . Determine the vectow =
[wi,...,w,], wherew; =k if rj; isin @, .

Step 3. Accordlng to the vectar, compute the reordered Schur decomposition QRQH
and divide the triangular matri® into blocks so that the bIochk on the main
diagonal isty x t, (k. =1,...,q). B

Step 4. Comput® = sect,(R) in the following way: fork = 1,. .., g computesect, (R ),
which are equal to the identity matrix multiplied by the adatgpth root of unity,
and compute the superdiagonal blo¢ks of U from equation §.3).

Step 5. Computeect,(A) = QUQH.

Computingt in Step 2 of the reordered complex Schur algorithm can besaetiby
the functionswappi ng, which is included in the functiohunmin MATLAB 7.6. The re-
ordered Schur decomposition in Step 3 can be computed bytahdasdMATLAB function
or dschur, which is available inVATLAB 7.6. The vectorw determined in Step 2 corre-
sponds to the vectd@L USTERS of cluster indices used byr dschur, such that all eigen-
values with the sam€LUSTERS value form one cluster and the specified clusters are sorted
in descending order along the diagonal of the tnangﬁl&lL the cluster with highest index
appears in the upper left corner. The bldgl, has eigenvalues only i, , so thatR;; and
R]J do not have a common eigenvalue, hence equatd® pas the unique solutlob’,]
Therefore, the reordered complex Schur algorithm worksafomatricesA for which the
matrix sector function exists.

If a real matrixA has the complex Schur decompositiélf, then the above methods
require complex arithmetic. We now derive an algorithm fomputing the matrix sector
function of a real matrix4 in real arithmetic, using the real Schur decompositi®2)(

Let A € R™*™ have the real Schur decompositiéhd). A formula forsect,,(R;;), for

R;;j = Zdiag(\,\)Z~t € R**? Im(\) #£0,

can be obtained by adapting the approach use@@hfpr the matrixpth roots; see alsor|
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Section 7.2]. Namely, it is easily seen that

Ujj = SeCtp(Rjj) = aI + (RJ — Re()\)I),

b
Im(\)
wheres,(\) = a + ib. If the blockR;; is 1 x 1, then the only element df;;; is equal to the
scalar sector function of the only element/®f;.

The generalized Sylvester equatidh4) can be transformed into the following linear
system, applying the operatocsc,

p—1 p—2
Z (Vigp_z_k) ® Vj(jk_l)) vec(U;;) = — vec (Z Vigp_?’_k)Bk> , (3.8)
k=0 k=0
which has dimension 1, 2 or 4. We now check whenjfar j, the blockU;; can be computed
from (3.9).

Let A(X) denote the set of all eigenvalues of a matkixand let the blockU;; have the
orderm;,1 < m; < 2. The matrix of the linear systen3.@) has the eigenvalues

p—1 Vf — 91‘;) 7& 0
N kgp—1—k _ — 0. Vy 55
Qr,s = v, U - Vr 1 s
k=0 pr ) vy =0,

wherel < r < m;,1 < s < mj, whilev, € A(U;) andf; € A(U;;) are eigenvalues
of the blocksU;;, Uj;, respectively. Ifv, # 6, for somer, s, then the matrix of the linear
system 8.8) is singular because? = ¢¢ = 1. Therefore we can compute the blobk;
from (3.8) only if v,. = 6, for all r, s. This can happen only if all eigenvalues of the blocks
R;; and R;; lie in the same sectaP;. A pair of conjugate complex eigenvalues belongs to
a common sector only if it i®, or @, (if p is even), which covers also the case of real
eigenvalues. Therefore we can compUte from (3.4) only when a common sector is the
sector®, or ®,/,. This can happen only in the following cases (we denote\y) any
eigenvalue ofX):

(a) m; =m; = 1 and)\(R”) > 0, /\(R”) > 0;

(b) m; =m; = 1andA(R;;) < 0, A(Rj;) < 0 (if pis even);

(€) m; =m; = 2and(R;;), A(R;;) € Do or A(Ry;), AN(R;;) € B, (if pis even);

(d) m; +m; = 3 and a real eigenvalue and a pair of conjugate complex eigerwaf

R;; andR;;, respectively, lie in the sectdr, or ¢/, (if p is even).

Thus, we can apply3(4) only in very specific cases, and it is necessary to use akso th
Sylvester equatior(3) in order to compute the matrix sector function for more gaheases.
We recall that the Sylvester equatidhd) has the unique solutiotr;; if and only if R;; and
R;; have no eigenvalue in common. This holds only whent- m; = 3 or if m; = m; and
A(Ru) N A(RJ ) =0.If m; = mj; = 2 andA(R“) N A(R“) 7é @, thenA(R“) = A(R] )
and we cannot use3(3). However, we recall that if the eigenvalue Bf; lies within the
sector®, or within the secto®,, /,, then we can compute;; from (3.4). Otherwise we can
not apply either3.4) or (3.3), and the real Schur algorithm, formulated below, does rovkw
Therefore, we can not apply the real Schur algorithm tias multiple complex eigenvalues
in the sectors different fronk, or ®,, /5. In some cases, when; + m; = 3, it is possible to
apply both equations3(4) and 3.3). In such a situation we choose the equati®3)(because
it has a simpler form.

Real Schur algorithm for the matrix sector function
Let A € R™*™ have no multiple complex eigenvalues in the sectors diffirem &, or ¢, /»
(if p is even) and let all eigenvalues dfsatisfy (L.5). This algorithm computes:ct, (A).
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Step 1. Compute a real Schur decompositibn= QRQ”, where R is upper quasi-
triangular, that is block upper triangular with main diagonal blocks?;;, and
check if the eigenvalues of the main diagonal block& shtisfy the assumptiord (5).
Step2.Fori=1,....,m
ComputeU]7 = sect,(R;j)
ComputeV/; k) — =Uk"in(3.9,fork=—1,...,p—2
fOI‘Z—]—lj 2 .1
ComputeBy, in (3.6), fork=0,....p—2
Computel;; in the following way
o if m; +m; = 3orif m; = m; andA(R;;) N A(R;;) = 0, then
solve @.3) for U;;
e if m; =m; =1andA(R;;) = A(R;;), then solve §.4) for U;;
o if m; = m; =2 andR;; andR;; have common eigenvaluesdn, or
®,,/2 (if p is even), then solve3(4) for U;;
o if none of the above cases holds, then exit
ComputeV in(3.7,fork=0,...,p—2
endi
end;
Step 3.sect,(A) = QUQT.

The idea of reordering can be applied also to the real Scigarigim. The way of re-
ordering the eigenvalues should be such that each mainrhhbtock R;; of the reordered

upper quasi-triangular matrik from the reordered real Schur decompositibr= Q RQT,

has the eigenvalues lying only in one of the sectdr&nd the conjugate sectd; = &,

to &y, or justin®y, or in®,,, for evenp. The main difference between the real and complex
reordered Schur algorithms is in the first part of Step 4. Ha reordered Schur algorithm
uses, for computingect,(R;;), the real Schur algorithm, in which onl.Q) is applied.
Therefore, this step is not as cheap as in the reordered esn§ahur algorithm, where
sect (RJJ) = ¢1. Other blocks ofect, (R R) are determined in the reordered real Schur algo-
rithm from (3.3), hence similarly as in the reordered complex Schur algariby the Parlett
recurrence. With regards to these analogies between glgmiwe omit the formulation of
the reordered real Schur algorithm for the matrix sectocfion. The reordered real Schur
algorithm works under the same assumptions as the real Stdarithm.

The complex Schur algorithm for the matrix sector functisraigeneralization of the
Schur method proposed by Higham Section 5.2] for the matrix sign function of a complex
matrix having no pure imaginary eigenvalues. The compléwugalgorithm with reordering
can be more expensive than the algorithm without reordetiegause of the cost of solving
the Sylvester equatior8(3) when R;; and R;; are of large size, and because of the cost of
computing the reordered Schur decomposition.

An application of the reordered Schur decomposition to agimg the matrix sign func-
tion of a complex matrix is mentioned if,[Section 5.2], without reporting details or numer-
ical experiments. In the reordered Schur method, the msigix function of R would have
only two main diagonal blocks, equal tol. Higham writes that the cost of the reordering
may or may not be less than the cost of (redundantly) comguemno elements in the upper
triangle of the matrix sign function aoR; see Algorithm 5.5 inT]. In the complex Schur
algorithm for the matrix sector function, such a situationresponds to computing the zero
elementu,; from the first expression in Step 2, what would be redundahf@are Step 4 of
the reordered complex Schur algorithm).

The reordering and blocking proposed by Davis and Highgjrfof any matrix function
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are different from those developed in the above algorithongife matrix sector function.
Their algorithm has a parametéithat is used to determine the reordering and blocking of
the Schur decomposition to balance the conflicting requergsof producing small diago-
nal blocks and keeping the separations of the blocks lamgtds intended primarily for
functions having a Taylor series.

4. Newton’s and Halley’'s methods.Newton’s and Halley's iterative methods are very
popular tools for computing matrix functions; seg.[The matrix sector functiogect,(A)
is apth root of the identity matrix (see the definition ariil)) which depends on the eigen-
values ofA, and (L.7) holds. Therefore, it is obvious that there are many linksvien
algorithms for computing the matrjpth root and the matrix sector function.

Computing the matrix sector function of requires iterative methods for solving the
matrix equationX” — I = 0 with the starting matrixX, = A. For this purpose one can apply
Newton’s method 18]

1 _
Xpy1 = ];((p — DX, + X, 7P, X, = A, (4.1)

or Halley’s method 13]
X1 = Xe((p—DX2+(p+D)D((p+ X2+ (- DI, Xo=A. (42

It should be noticed that the iteratioA.{) coincides with the customary Newton’s method
for the matrix equationX” — B = 0, when the latter is defined, becausg = A commutes
with B = I; see [/, Section 7.3].

Newton’s and Halley’s matrix iterations are related to thkofving scalar iteration

Th4+1 = g(xk)a To = )\7 (43)

where) satisfies the assumptionk.?). For Newton’s method

_(p— Ta? +1
g(z) = Tl (4.4)
and for Halley’s method
— 1)z + (p+

oD+ (p-1)

Let the sequence4(3) be convergent ta:. = s,(\), whereg is (4.4) or (4.5). Itis easy
to verify thatz, is an attractive fixed point. The scalar functiods4f and @.5 do not
depend on\, hence the iterationgt(1) and @.2) are pure rational matrix iterations defined
in [11], because they have the forff},.1 = ¢(Zx) (k = 0,1,...). Therefore, from 11,
Theorem 2.4] we obtain the following corollary.

COROLLARY 4.1. If for every eigenvalue\; of A, Newton’s (Halley’s) scalar method
is convergent to the scalar sector functigy{;), then Newton’s (Halley’s) matrix method is
convergent taect, (A).

Thanks to Corollaryt.1the problem of the convergence of Newton’s (Halley’s) mxatri
iteration to the matrix sector function g is reduced to the convergence of the corresponding
scalar sequences to the scalar sector functions of thevailge:s ofA. Therefore, we can ap-
ply to the methods4.1) and @.2) some results proven i®] and [L0] for the matrixpth roots,
to determine sets of matricesfor which Newton’s and Halley’s methods are convergent to
sect,(A).
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We first consider Newton’s method for the scalar sector fonct, () (see (.3), (4.3),
and ¢.4)

1 _
Tpt1 = » [(P — Dag + p} ) o = A (4.6)

We assume thak satisfies the conditionl(2) given in the definition of the scalar sector
functions,,. Letuy, = z1/s,()), wherezy, is determined in4.6). Then

1

p

Ukt1 = [(p — Dug + ui_p} , Uy = ()\p)l/p. 4.7)

The iterates:;, converge tos, () if and only if u;, is convergent to 1. Let Newton’s method
be applied to the scalar equatigh— a = 0, fora € C\ R, with the starting point equal to
1:

1 —
Yrt1 = o [(p — Dyx + ay; p} ;=1 (4.8)
The sequencel(8) converges to the principath root ofa if and only if the sequence
_ 1 _ 1-p — g /P
a1l = ) (p—1Dzr+ 2 , Z0=a , (4.9)

converges tal; see P]. This property follows from the relation, = yra~'/?. The it-
erations {.7) and @.9) differ only at starting points. Therefore, the sequentg)(with
up = (\?)/? is convergent td if and only if the sequencet(9) with z, = a~/? is conver-
gent tol, for a and\ satisfying the relation

(APYL/P = =1/, (4.10)

Therefore, ifa belongs to a set such that the iteratidr8|{ with yo = 1 is well defined and
converges to the principath roota'/?, then the iteration4.6) with 2o = X is convergent to
the scalar sector functiof),(\) for A satisfying the relation4.10). If X satisfies 4.10), then

A= ea /P, (4.11)
where
¢ = e2lmi/p, 1=0,....p—1, (4.12)

arepth roots of unity. We have assumed tha¢ R~. Thusarg(1/a) # = and, consequently,
arg(e;a1/?) satisfies {.2). Hences, () exists for\ determined in4.11).
Halley’s iteration has the form

(P—Dy,+(+1a
= .oy =1, 4.13
Yt = U T (= T)a’ (4.13)
for the pth roota!/? with the starting point, and
—1)2? 1
p=Drtlotl) ) (4.14)

Tk+1 = Tk )
(p+Lazp+(—1)

for the scalar sector functios),(A\). By similar arguments as above for Newton's method,
we can show that if the iterated.( 3 converge to theth root of ¢, then the iteratesi(14)
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converge tos, () for A satisfying @.11). We omit the details. Thus from the above consid-
erations we obtain the following corollary.

COROLLARY 4.2. Let Newton’s metho(.8) (Halley’s method4.13) be convergent to
the principalpth root ofa ¢ R~. Then Newton’s metho@h.6) (Halley's method 4.19) is
convergent to the sector functiep(\) for A satisfying(4.11).

Some regions of, for which the scalar Newton’s and Halley’s iterations, edjvely,
are convergent ta'/? with starting pointl are known; see7 Section 7.3],9, Theorems 2.1
and 2.3], L0, Theorems 5.3 and 5.20], antllf Corollary 5.3]. For Newton’s iteratior4(8)
it is the region

a € {z€C:Re(z) >0and|z| <1} URT, (4.15)
and for Halley’s iteration4.13
{z € C: Re(z) > 0}. (4.16)

Using Corollary4.1and Corollary4.2we obtain the following convergence regions for New-
ton’s and Halley’s iterations, respectively, for the masector function. We omit the proof
because it is enough to show thate B or A € B if and only if a satisfying the
relation @.17) lies in (4.15 or in (4.16), respectively.
THEOREM4.3. Letay = 2iw/p — /(2p), By =2lx/p+7/(2p), 1 =0,...,p— 1.
(i) If all eigenvalues ofA lie in the region

p—1
BN = | J [{z €C: 2| 21,01 < arg(z) < B} UR}], (4.17)
=0

whereR;" = {z € C : z = re;,r € RT}, then Newton’s matrix iteratio4.1) is
convergent t@ect, (A).
(i) If all eigenvalues ofA lie in the region

p—1
IEB](DHal) = U {zeC:q <arg(z) < G}, (4.18)
1=0

then Halley’s iteration4.2) is convergent teect,, (A).
lannazzo shows inlfl, Theorem 6.1] that the immediate basin of attraction forfitked
point 1 of the iteration 4.6) contains the set

{zeC:|z| >1/2"7, |arg(z)| < n/4}.

From his result we obtain the following corollary for the miasector function. The proof of
the corollary follows from similar considerations as thbséore Theorem.3, therefore we
omit it.

COROLLARY 4.4. If all eigenvalues ofA lie in the region

p—1

1 21 T 2l T
(Newt) __ . _

C, —ll_ol{,ze(C.QI/p§|z|§17 » 4p<a },

then Newton'’s iteratiori4.1) is convergent teect,, (A).

A set of complex numbers whose principal arguments satisfy the assumption in the
definition of C{¥*" in Corollary 4.4, but |z| > 1, is a subset of the s@&{*"V defined in
Theoremd.3.
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Newton’s and Halley’s methods are stable in the sense ceregldn [7], i.e., the Féchet
derivativeL,(X') has bounded powers. This follows from Theorem 4.111i1} pn stability
of pure matrix iterations. In Sectidhwe consider the Echet derivative of the matrix sector
function.

In [13] an example is provided, which shows that the sequeace)(can be noncon-
vergent tos, (A), and it is mentioned that such a situation mostly occurs fairices whose
eigenvalues are near the boundaries of the sedigrsee (.1). The starting point in the
example given in13] is not in the region of convergencé.(d of Halley’s method.

In Figure4.1we present the convergence regions, determined expeatiyefdr New-
ton’s method 4.6) for computings,, (1), and the region8{("**) and C{Ne"" for p = 5. More
precisely, each point, = X in the region is coloured according to thth roote; of unity
(see ¢.12) to which the iteration converges after 100 iterations, if [z100 — €| < 107°.
In Figure4.2 we present the convergence regions, determined expeaiherior Halley’s
method ¢.14) for p = 4, 5. We also plot the boundaries of the regid@{s®).

im(z)

G i 3
08 06 04 02 0 -02 -04 -06 -08 -10

3
-16 -12 -08 -04 0 04 08 12 16 20
real(z) real(z)

FIGURE 4.1. Regions of convergence for Newton’s method and bounddriE%\‘?)W‘) (left) and(CéNe‘”t) (right)
forp = 5.

im(z)
im(z)

-6 -12 -08 -04 0 04 08 12 16 20 -16 -12 -08 -04 0 04 08 12 16 20
real(z) real(z)

FIGURE 4.2. Regions of convergence for Halley’s method and boundafi%*@'), p=4,5.

The convergence regions are larger for Halley’'s method foarNewton’s method.
In [14] we discuss properties of the Rathmily of iterations for the matrix sector function.
Halley’s method is a particular case of the Pé@rations.
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We now concentrate on the rate of convergence of Newtonatée to the matrix sector
function. As mentioned in the Introduction, a generalimatio the matrix sector function of
some results, known for the matrix sign function, can be dwaged. If either the spectral
radiusp(A) of A is much larger than 1, aft has an eigenvalue close to the imaginary axis,
then the convergence of Newton'’s iteration for the matrpndiinction will be slow; seef,
Theorem 5.6]. For Newton'’s iteration for the matrix sectordtion the situation is even more
complicated, as we now show.

The matricesd andS = sect,(A) commute; seeX1). Therefore, from4.1), by the
same arguments as for the matptk root in [7, Problem 7.11], we deduce

14 , . 14
Xpy1 — S = EX; P((p—1)XP —pSXP~' 4 1) = ;X; P(Xy — 8)2 Wy,
where
p—2 .
W, = Z(j +1)8P7279 XY, (4.19)
j=0

This implies, for any consistent norm, the following inelityefor p > 2,

-2
1,1 = . o
[ Xk1 =Sl < ;HXli PIHIXe = SI2 16+ 1D)sP2 X

=0
and, for sufficiently largé:, we havel| X5 — S|| < || X — S]|?, with
c=@-DISPIISIP72 < (p = Dleond(S)]P~/IIS]),

under the assumption that Newton’s iteration convergess;the convergence of Newton’s
iteration is asymptotically quadratic. However, the cageace can be slow, as follows from
the well-known properties of the scalar Newton’s iteratisince the convergence of the ma-
trix iteration is essentially reduced to scalar convergersee 11]. We now examine the
convergence of Newton'’s iteration in the regﬂBﬁ‘e‘”O, determined in Theorem.3.

Letp be even. Then

1 -
Xe1+ 5= 5X; p(Xk + S)2Vk,

where

p—2
Vi=> (=1)/(j +1)SP 279 X{. (4.20)

=0
Let all eigenvalues\; of A lie in the regionIBégNeW‘). Then the iterateX(;, are convergent to
S = sect,(A). The regionB(N*") consists of separate subregidts and (see.1))

U, ={z€C:|z] > 1,q < arg(z) < B} C ;. (4.21)

Modifying the proof of Lemma 2.5 ind], we can show that an eigenvalufff) of the Newton
iterate X, stays in¥;, which includes the corresponding eigenvalyeof A. If \; € R},
then Agk) € Rl*. Thereforesect, (X;) = S. The matrixX;, + S is nonsingular because
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—sp(Aj) € ¥y, hencek§k) +5,(A;) # 0. Analogously as in7, Theorem 5.6], defining+;, =
(X —9)(Xk +S)~! we can prove that — G, is nonsingularXy, = (I —Gy) (I +Gy)S,
and (see4.19), (4.20)

2k+1

k
Gk-‘rl = GszVk_l = GO H(Wk—jvkilj)Qja k= 0,1,.... (422)
j=0

For any matrix norm we have

. . A —sp(N)] ok
16811 > (63 = (B30 )

Therefore, if the spectral radiyg A) is large or small, then the convergence@ﬁ‘k to the
zero matrix will be slow wher: — oco. The spectral radius ol can be small only when all
eigenvalues ofd lie in the setR,", because if the eigenvalues liedn, thenp(A) > 1 since
we have restricted the eigenvaluessbfo ]B;Ne‘”t); see ¢.21). Of course, the convergence of
G411 to zero depends also on the behaviouﬂ/bj,jka_lj in (4.22. Forp = 2 we have

Wi—; = Vi—; = I. However, forp > 2 the matrika,jV,;_lj tends to(p — 1)1, since we

have assumeglis even.

5. Conditioning of the matrix sector function. The sensitivity of the matrix sector
function S = sect, (A) with respect to perturbations of can be determined by the norm of
its Fréchet derivative. Lef(X) be a matrix functionX € C"*". The Féchet derivative of
fis alinear mapping such that for &ll € C"*™ we have (see7], Chapter 3])

f(X +E) = f(X) = L(X, E) = o(|| E]]).

The notationZ(X, ') should be read as “the &ehet derivative of at X in the directionk”.
Then, the absolute and relative condition numberg(df) are given by

If(X +E) = F(X)]l

condapd f, X) = lim sup = L,
=0 E|<e €
X LX) X
dre 7X - da 7X = 5
condalf: ) = condand L O T = 0
where
IL(X)| = max |L(X,Z)|
z#0 || Z||

is the norm ofL(X).

The Fchet derivative may not exist, but if it does it is uniquet Be- Ag = sect, (A +
A 4), where we assume that the sector function is defined on afvalfimis|| A 4 || and center
A. The definition of the Fechet derivative implies that

As— L(4,A4) = o(|AL)]). (5.2)

Following the ideas from12] and [7, Section 5.1] for the matrix sign function, applying the
relations @.1) for the matrix sector function and

(A+A4)(S+As) = (S+ As)(A+ Ay),
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we obtain
AAg — AgA =SA  — AaS+o(]|Aall), (5.2)
sinceAs = O(||A4]|). Moreover,(S + Ag)P = I gives
p—2

SPTI A+ AgSPT 4 T SFAGSTH 4 o(]|All) = 0. (5.3)
k=1

Pre-multiplying 6.2) by SP~! = S—1, using 6.3 and @.2), gives

p—2
NAg + (ZSkA55k>N=AA—S1AAS+O(”AA). (54)

k=0

This leads to the following theorem.
THEOREM5.1. The Féchet derivative. = L(A, A 4) of the matrix sector function is
the unigue solution of the equation

p—2
NL+> S*LS™*N = Ay — S7'A4S, (5.5)
k=0

whereA = SN is the matrix sector decompositiod. ).

Proof. The idea of the proof of the theorem is the same as of the jfoaf analogous
theorem for the matrix sign function; seg Bection 5.1] and12].

Applying the operatorec to the equation.5) we obtain the equation

M vec(L) = vec(Aa — STTALS). (5.6)

Applying the well-known properties of the Kronecker protlgcto the equationg.5), we
obtain the following expression for the matiy in (5.6)

p—2 p—2
M=IaN+) (S*N)'@Sf=IeN+(N"®1I) <Z(5—’f)T ® S’“) .
k=0 k=0
The matrix A has the Jordan forml(4). From the definition of the matrix sector function
we obtainS = WDW =1, N = WD~1JW !, where (seel(.6) and (L.7)) D = diag(d,)
andd; = s,();). ThusV = W~T @ W triangularizes both sides of the sum definihg
Therefore,

p—2
M=V'MV=Ie[D ' )+((J'DeIl)> G,
k=0

wherel@D~1J = diag(D~J,..., D~1J), G}, = D-*®@D" = diag (deD’f, . ﬁD’“),

1 n
and(JTD~1) ® I is the block bidiagonal lower triangular matrix withx n main diagonal
blocks equal toi/\é.’)l/f’l forj =1,...,n. ThusM is block bidiagonal lower triangular. The

main diagonal block

p—2
1
ij:D‘1J+(/\§)1/”Z%D’“, j=1,...,n,
k=0 "J
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has diagonal elementsglj) equal to

() SIZAY
ARG ORENCARED) Y ) IR S R

k=0 7

Therefore,

Gy _ JODYP+ (o= 1)(N)YP, i 1= jorp=20rd = d;,
m = ) .
! (ANV/P(1 - 32), otherwise

In the first casenl(lj ) has positive real part, because the princjghlroots have positive real

parts. In the second casel(lj) # 0, becausel; # d; implies\; # ;. ThusM and M are
nonsingular and the equatioB.) has the unique solutioh.
The solutionL is a linear function ofA 4 and, by 6.4), it differs from

Ag =sect,(A+A4) - S

by o(||A 4]|). Thus 6.1) implies thatL. = L(A, A ). This completes the proof. 0O

Theorem 3.15 in7] is applicable to the matrix sector function for diagonabe ma-
trices A, hence it gives an upper bound for the absolute conditionbeugondapg A) with
respect to the Frobenius norm. In particulardifs normal then Corollary 3.16 from Theorem
3.15in [7] implies the following corollary for the matrix sector futian.

COROLLARY 5.2. Let A be normal with the spectral decompositidn= Q diag();)Q",
where(@ is unitary. If all of the eigenvalues; of A lie in the same sector, thefL||» = 0.
Otherwise,

Isp(Ai) — sp(A;)]

dans(A) = | L||lF =
condand 4) = |11 = max PP,

where the maximum is taken over all indigend j such that\; # A;.

We now apply Newton'’s iterations to computing thec€tmet derivative of the matrix
sector function.

THEOREMS.3. Let A € C™*" be such thasect, (A) exists and Newton’s iterate’s;, in
(4.1) are convergent teect, (A). Let

p—2

1 . .
Yig1 = , ((p — 1)V, - X7 (Z X,f‘Q‘JYkX,@> X,i"’) . Yo=Au. (5.7)

j=0
Then the sequend§, tends to the Rechet derivativel (A, A 4) of sect, (A), i.e.,
klim Yie=L(A,Ay).

Proof. Analogously to the proof of7, Theorem 5.7], we denote ¥, Newton'’s iter-
A Ay

ates ¢.1) for the matrixB = 0 A

} . Itis easy to show by induction that

Xk Y
Z’“_{o Xk}’
because

1 . X
<[ Xr Y ]p1> - [Xlip -X, " (thg leizﬂkaljJ X;pl :
1—
0 Xk 0 Xk p
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We have assumed that Newton'’s iteration is convergentifdrence also foi3, because the
eigenvalues of3 lie in the same region ad4. Thus

sectp(A) L(A,A4)

klinolo 2y, = secty(B) = 0 sect,(A) |’

because of Theorem 3.6 of Mathias ifj;[see also 15]. This completes the proof. 0O

The convergence of the sequenBer) to the Fechet derivative ofect, (A) can be de-
rived also from the recent more general result by Al-Mohy Higham; see, Theorem 2.2].

Kenney and Laubl2] applied Newton’s method to the characterization of thecket
derivative of the matrix sign functiom(= 2), which provides a way of computing thedehet
derivative; see also/[ Theorem 5.7]. The above TheorénB is a generalization of their
result.

Theoremb.1generalizes to the matrix sector function Theorem 5.3 ofriégrand Laub
in [7] for the Fiechet derivative of the matrix sign function; see al$g|[ For p = 2 equa-
tion (5.5) reduces to the Sylvester equation.

6. Numerical experiments. We now present numerical experiments performed with the
algorithms considered in the previous sections. The coatiouis were done on a personal
computer equipped with an Int@ 1.5 GHz processor and 512 MB memory, using MATLAB
7.6.0 (R2008a). The machine precisionis- 2.2 - 10716, To examine the behaviour of the
algorithms we have performed tests for several valugs arfid test matrices! of different
orders.

We compare experimentally the accuracy of the matrix seftioction computed by
the real Schur algorithnr Sch), the complex Schur algorithnt &ch), the real Schur al-
gorithm with reordering (Sch- or d) and the complex Schur algorithm with reordering
(cSch- or d), with the accuracy obtained by iterative methods: Nevaanéthod Rewt )
and two versions of Halley’'s method. We use the stand#@LAB functionsschur and
or dschur for computing the Schur and reordered Schur decomposijtieapectively.

The cost of algorithms is measured in flops. The flop denotgefitie four elementary
scalar operations-, —, %, / performed on real or complex numbers (séefppendix C]). In
the number of flops, we give only the leading term as it is, k@maple, in [/, Table C.1]. The
number of flops in the complex and real Schur algorithms fenmating the matrix sector
function equalg28 + (p — 1)/3)n3. The cost of the reordered Schur algorithms may or may
not be less than the cost of Schur algorithms without rearddcompare T, Section 5.2]).
Some test matrices are given in the (real) Schur form. Theisadist of performing the Schur
algorithms is less than in the general case.

In Newton’s method we have to compu@”’. We first compute the inverse &f, and
then we form they{ — 1)th power of the computed matriX,;l. The cost of computing one
iterate in Newton’s method mainly consists of inverting aogvering a matrix and it is equal
to 2 (n|logy(p — 1)| + 1) n® flops, wherey € [1, 2], assuming theth power is computed by
binary powering; see Algorithm 4.1 in].

The first version of Halley’s methodHal 1) was performed according td.Q). In the
second versionHal 2) one computes

p—1 4p

:pHXHpHXk((pH)Xi’Hp—1)!)‘1, Xo=A.  (6.2)

Xit1

This version was inspired by Halley’s iteration proposedtfe polar decomposition i8]
Section3, formula (3.2)]. Computind(,,; by Halley’s iteration performed according t.9)
cost2(n|log, (p—1) |+3)n? flops,n € [1,2]. Inthe second version of Halley's iteratioh {)
the cost is reduced @(n|log, (p — 1)] + 5 )n? flops.
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We also compute the matrix sector directly from the form@l&) sect,(A) = AN !,
where N = (AP)!/P was computed by the standavATLAB matrix powerX '/? involving
eigensystem. In the tables below this method of compuging,(A) is denoted byNr oot .
The results obtained biyr oot can be incorrect ifd is not diagonalizable. However, in all
our testsA was chosen to be diagonalizable. The method of computieg,(A) directly
from (1.6) is denoted byef in the tables. The scalarsector functiors, (\) was computed
from (1.3).

The standard/ATLAB functioni nv was used to compute the inverse of the matrix in
the method®ef , Nr oot , Newt andHal 1. In Hal 2 the formula 6.1) was realized in a
different way. Namely, instead of using the inverse diggedtie appropriate right-hand-side
linear system was solved in each iteration.

In the iterative methods we have applied a simple stoppiitgrimn (for more advanced
termination criteria se€e/[ Section 4.9)), i.e.,

1 X5 — Xl < 100 X

wheren is the order of the matri¥, = A and|| - || is the spectral norm. Thel = X is
the computed matrix sector function.

Let X denote the computed matrix sector functionAfy a given method. For all
methods we computeX || and

I - X7|
IX1 32525 (XP=1-9)T @ X

res(X) =

called the relative residual. We also compute

JAX — X4

X7 =11, [[AX = XA, -
LA {1-XT]

(6.2)

The relative residual was proposed for the matiitt root in [5]. Guo and Higham have
explained why the relative residual is a more appropriatergon than the scaled residual
for the interpretation of the numerical results. Their angats are valid also for the matrix
sector function. The last two quantities %) check if the iterations preserve commutativity
of A andsect,(A). We emphasize that these quantities do not measure theaagairthe
computed matrix sector function.

In the examples presented below, we also incluaiel(A) for the spectral norm, the
numbers of performed iterations and t8BU timings. The functioncput i ne was used
for computing the execution time for each algorithm. Thesprged execution times are the
averages obtained by repeating one hundred computatioesdoy test matrixA.

We used the standaMATLAB r and function to generate uniformly distributed random
elements of the real or complex matrices or their eigengallibe functiort r i u was used to
obtain the upper triangular part of the random matrix. Whéaeeyating the test matrices, we
took care that the eigenvalues fell into the regions of cayesece for Newton’s and Halley’s
methods. In Example8.2-6.4 the eigenvalues ofl fall into the regionsB{N*" and B{2);
see Theorerd.3. In Examples.1, 6.5-6.8 the eigenvalues of the matrices lie in the exper-
imentally determined regions of convergence of Newton Halley’'s methods, which are
larger tharB{M") andB(a), respectively.
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LetY = A'/? and let us consider the following block companion matrix

0 I
0 I
C = e ¢, (6.3)
' I
A 0
Then, (seed])
0 y-! 0
sect,(C) = 0
0 Y—l
Ayt 0 0

In [2] the authors writeit would be interesting to know how the available methodscton-
puting the matrix sector function behave if applied to thecklcompanion matrixC' with
randomA. Therefore, we perform numerical experiments alsodorThe results are given
in Examples6.7 and6.8. The eigenvalues of are thepth roots of the eigenvalues of.
ThereforeC' has several eigenvalues of the same modulus.

ExXAMPLE 6.1. Letp = 4 and A be in real Schur form:

2 0
1 —450
0 1
0 -3

A:

O O N =
_w o o

The matrix A has the following eigenvaluest + 2i,1 + 3i. The matrix sector function
S = sect,(A) is equal to

0 1 0 -90

-1 0 =90 0

5= 0 0 0 1
00 -1 0

The results are given in Tab1 In the first column we include the nornfis — S||. All
results are satisfactory.

EXAMPLE 6.2. LetA = [a,;] be an8 x 8 matrix in real Schur form with complex eigen-
valuesfl—’(“)2 +ik,k =1,2,3,4, and elementsys, ays, agy equal to—450; see p]. The other
elements in the upper triangle are zero. The spectral normisequal to]| A|| = 4.5 x 102,
The matrix A is ill-conditioned. Wherp < 21, only for p = 3,4, 7 the eigenvalues oft
lie in the convergence regio'®* and B¢?). The results are summarized in Talsie.
For p = 7 the commutativity condition is not well satisfied by the masector function
computed byHal 2, becausédl X A — AX || is not small; see the first condition if.(). We
observed this also in some other examples, especially fgelda or n. On the other hand,
there are some examples where the situation is the opposttee-first version of Halley’s
method gives worse results than the second one with respéice tcommutativity; see Ta-
bles6.3and6.4.
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TABLE 6.1
Results forA of ordern = 4 (in real Schur form) from Example.1, cond(A) = 2.86 x 10%.

p=4, | X|| =90, iternewt = 10, iterpqr =7, iterya =7

alg. IX sl X7 -1 res(X) |IXA-AX| AT
Newt 1.57e — 14 5.68¢ — 14 2.48¢ — 18 6.86e — 14 1.69¢ — 18
Halil 5.8le — 14 1.92e¢ — 30 8.40e — 35 2.74e — 13 6.78¢ — 18

Hal2 4.38¢ — 14 2.84e—14 1.24e—18 1.27e — 13 3.14e — 18
cSch 2.0le —14 8.74e—14 3.8le —18 1.76e — 13 4.35e — 18
cSch—ord | 1.1le—16 2.84e—14 1.24e—18 5.68e — 14 1.40e — 18

rSch 6.12¢ — 17  2.20e — 14 9.62e — 19 0 0
rSch —ord | 6.12¢ — 17 2.20e — 14 9.62e¢ — 19 0 0
Nroot 6.65e — 14 9.63e — 14 4.20e — 18 2.95e — 13 7.29e — 18
Def 1.03¢ — 13 2.30e — 13 1.00e — 17 2.50e — 13 6.16e — 18
TABLE 6.2

Results forA of ordern = 8 (in real Schur form) from Exampl@.2, cond(A) = 1.4 x 10°.

p=3, || X||=1.8x10%, iternewt =9, iteryar =6, iteryaz =6

alg. CPU [XP -1 res(X) [ XA— AX]|| %
Newt 6.41c —03 9.86c — 10 1.80c—28 3.67c —09  4.60c — 18
Hall 6.41e — 03 9.44e — 10 1.72e — 28 6.58¢ — 09 8.25e — 18
Hal2 5.00e —03 5.85¢—10 1.07e—28 4.99¢ —08  6.26e — 17

cSch 6.56e — 03 3.78¢ — 09 2.7le — 28 3.21e — 09 4.02e — 18
cSch —ord | 4.84e — 03 2.10e — 09 3.82e¢ — 28 4.99¢ — 09 6.26e — 18
rSch 1.13¢e — 02 3.0le — 09 5.49e¢ — 28 6.64e — 10 8.34e — 19
rSch —ord | 7.81e — 03 3.0le — 09 5.49¢ — 28 6.64e — 10 8.34e — 19
Nroot 4.69¢ — 04 8.14e —09 1.48e — 27 1.61e — 08 2.02e — 17
Def 2.50e — 03 9.65e — 09 1.76e — 27 1.33e — 08 1.66e — 17

p=71, HXH =1.99 x 109, iter newt = 15, iterpar =9, iter Hap = 10

alg. cPU X — 1| res(X) |JAX — XA %
Newt 8.91e — 03 2.06e — 09 3.21e — 28 4.39¢ — 09 4.89¢ — 18
Hall | L.lde — 02 1.75e—09 2.72—28 6.72¢— 09  7.49 — 18
Hal2 7.19¢ — 03 1.30e — 09 2.03e¢ — 28 6.65e — 05 7.41e — 14

cSch 8.44e — 03 6.95e — 09 1.08e — 27 2.55e — 09 2.85e — 18
cSch —ord | 7.97e — 03 2.38¢ — 09 3.7le — 28 5.28¢ — 09 5.88e — 18
rSch 1.58¢ — 02 6.21le—09 9.68e — 28 7.26e — 10 8.09¢ — 19
rSch —ord | 1.77e — 02 6.21e — 09 9.68e — 28 7.26e — 10 8.09¢ — 19
Nroot 4.69e¢ — 04 2.35¢ — 08 3.67e — 27 2.23e — 08 2.49e — 17
Def 1.41e — 03 2.40e — 08 3.74e — 27 1.39e¢ — 08 1.55e — 17

EXAMPLE 6.3. LetnowA = D + T be complex upper triangular, wheie= diag(\;)
is complex,\; = x; + iy, for z;,y; € [-100,100], andT is a real random upper triangular
matrix with zero elements on the main diagonal. The nonzeEnments ofI’ are generated
by r and from the interval—1, 1]. In Table6.3we present the results fpr= 5 andn = 40.
The matrixA is well conditioned andl A|| = 1.27¢ + 02.

EXAMPLE 6.4. Let the matrixd € C'°*19 be generated as in Examies. In Table6.4
we present the results obtained for= 4 andp = 10. The results obtained fgr = 4 by
the reordered complex Schur algorithm are worse than wittemsdering. Newton’s method
works very well.

EXAMPLE 6.5. LetA € C!%*%19 pe the Grcar matrix, a Toeplitz matrix with sensitive
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TABLE 6.3
Results for complex upper triangulat of ordern = 40 from Examplés.3 cond(A) = 9.8.

p=>5, || X||=1.1, iternem = 28, iterpar = 16, iterpap = 16

alg. CPU IXP — 1| res(X)  |JAX — XA %
Newt 4.11le— 01 7.23e—16 1.36e — 16 5.05e — 15 3.75e — 17
Halil 5.41e — 01 1.79¢ — 15 3.36e — 16 2.43e — 11 1.80e — 13
Hal2 | 2.3le— 01 8.26e— 16 1.55¢— 16 3.58¢ — 15  2.66e — 17
cSch 1.42¢e —01 1.11le—15 2.09¢ — 16 1.89¢ — 15 1.40e — 17
cSch—ord | 3.08¢—02 898 —15 1.69e —15 895¢ —15  6.64e — 17
Nroot 5.47¢ — 03 5.34e — 15 1.00e — 15 4.59¢ — 15 3.41le — 17
Def 3.75¢ —02 1.64e —15 3.08¢—16 3.27e—15  243e — 17
TABLE 6.4

Results for complex upper triangular of ordern = 10 from Examples.4.

p=4, cond(A) =28, || X| =1.01, iter newt = 22, iterpas = 13, iterpap = 13

alg. CPU |XP — 1| res(X) ||AX — XA| m;‘l’;ﬁ‘“
Newt 3.1le — 02 4.44e — 16 1.10e — 16 1.70e — 15 1.76e — 17
Halt 3.94e—02 8.8%¢—16 219e—16 520e—15 5.38¢—17
Hal2 1.80e — 02 5.21e — 18 1.29e — 18 1.22e — 15 1.26e — 17

cSch 8.28¢ — 03 5.20e — 18 1.28¢ — 18 4.66e — 16 4.82e — 18
cSch —ord | 5.63e — 03 2.22¢ — 15 5.48¢ — 16 1.90e — 15 1.97e — 17
Nroot 1.09¢ — 03 3.12¢ — 15 7.70e — 16 8.31le — 16 8.59¢ — 18
Def 1.56e — 03 9.28e — 16 2.29e¢ — 16 1.09¢ — 15 1.13e — 17

p =10, cond(A) = 6.4, || X|| =1.02, iternewt = 51, iterpar = 28, iterpaz = 28

alg. CPU |XP— 1|  res(X) ||AX — XA| %
Newt 5.23e — 02 1.3le—15 1.28¢—16 2.00e — 15 1.67e — 17
Hall 5.25e — 02 2.09¢ — 15 2.04e — 16 6.04e — 08 5.07e — 10
Hal2 2.88¢ — 02 8.90e — 16 8.70e —17  1.45e —15  1.2le — 17
cSch 1.20e — 02 1.28¢e —15 1.25e—16 4.68¢ — 16 3.93e — 18

cSch —ord | 3.44e — 03 7.12e —15 6.96e — 16 1.91e — 15 1.60e — 17
Nroot 1.56e — 04 5.36e — 15 5.24e — 16 1.09¢ — 15 9.15e — 18
Def 2.66e — 03 2.17e — 15 2.12e — 16 8.0le — 16 6.72e — 18

eigenvalues generated by thATLAB commandjal | ery(’ grcar’, 10) . The matrixA
is well conditioned andl A|| = 3.11. The results are presented in Tabl&. The accuracy of
the computed matrix sector is similar for all methods.

EXAMPLE 6.6. LetA € R™*™ be in real Schur form. Each block on the main diagonal
is eitherl x 1 with real eigenvalues generated from the interfve®, 2], or 2 x 2 having
complex conjugate eigenvalues = x; + iy;, z;,y; € [—2,2]. The nonzero elements
of A are randomly generated from the interyall, 1]. The number of pairs of complex
eigenvalues was also randomly generated. All eigenvalelesg to the regiomg*a') and to
the numerically determined convergence region of Newtorgshod. The results for = 20
are presented in Tab&6. The complex eigenvalues lie near the boundaries of themsgi
of convergence; see Figuéel. The matrixA has 16 real eigenvalues: four of them satisfy
0.2 < |A] < 0.5 and four of them satisfy\| < 0.2. The matrixV" of eigenvectors of
A =V diag(\;)V ~!isill-conditioned:cond (V') = 2.91 x 10°. Therefore, the matrix sector
function computed biXr oot andDef is less accurate than by other methods. The real Schur
algorithm with reordering gives a little better resultsrtiveithout reordering.
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TABLE 6.5
Results for Grcar complex matrig of ordern = 10 from Examplé5.5, cond(A) = 2.89.

p=09, |X|| =237, iternem=13, iterpai=7, iterqaz="7

alg. cPU X — 1| res(X) |JAX — XA %
Newt 1.48¢ — 02 4.24e — 15 1.39¢ — 17 2.03e — 15 2.76e — 16
Halil 2.50e — 02 4.05e —15 1.32¢ — 17 3.44e — 14 4.67e — 15

Hal2 8.28¢ — 03 2.53e —15 8.28¢ — 18 2.28¢ — 15 3.10e — 16
cSch 3.08¢ — 02 3.70e — 14 1.21e — 16 1.05e — 14 1.42e — 15
cSch —ord | 1.8le — 02 3.7le—14 1.21e — 16 1.02e — 14 1.38¢ — 15
rSch 1.73¢ — 02 3.57e—14 1.17e — 16 1.04e — 14 1.41e — 15
rSch —ord | 1.31le — 02 2.95¢ — 14 9.64e — 17 1.10e — 14 1.49¢ — 15
Nroot 1.56e — 03 1.63e — 14 5.33¢e — 17 6.53e — 15 8.85e — 16
Def 2.03e — 03 1.56e—14 5.12e — 17 4.07e — 14 5.52e — 15

TABLE 6.6
Results forA of ordern = 20 (in real Schur form) from Exampl&.6, cond(A) = 6.8 x 10°.

p=4, ||X|| = 4.35 x 102, iternewt = 43, iternar = 12, iteryan = 12

alg. CPU [XP =1 res(X) [ XA— AX]|| W
Newt 7.98¢ — 02 2.6le—13 7.25e—24 3.38e — 08 2.14e — 11
Hall 4.67¢e — 02 5.00e —13 1.39e¢ — 23 1.50e — 12 9.51e — 16

Hal2 3.00e — 02 2.04e — 13 5.68¢ —24 3.59e — 12 2.27e — 15
cSch 2.92¢ — 02 2.62¢ — 13 7.30e — 24 6.90e — 14 4.36e — 17
cSch —ord | 1.52¢e — 01 6.75e — 13 1.88e — 23 1.05e — 13 5.89e — 17
rSch 2.28¢ — 02 2.07e — 11 5.76e — 22 8.25¢ — 14 5.22¢ — 17
rSch —ord | 7.17e — 02 1.05e¢ — 12 2.93e — 23 9.30e — 14 5.89e — 17
Nroot 4.84e — 03 5.94e —09 1.65e — 19 1.46e — 10 9.25e — 14
Def 5.94e — 03 4.23e — 10 1.18e — 20 4.99¢ — 11 3.16e — 14

EXAMPLE 6.7. LetA € R®*® be generated as in Exam@e2 and letC € R3P*®P be
determined asg(3). The matrixC'is very ill-conditioned. The results far' are summarized
in Table6.7. Now X denotes the computedct,(C). The matrixA has 4 pairs of conju-
gate complex eigenvalues. The eigenvalue§'afre thepth roots of the eigenvalues of.
ThereforeC' has 4 groups of eigenvalues with eigenvalues with the same modulus in each
group. Forp = 3 andp = 6 they are marked in Figuré.2, see also Figuré.1 In order
to evaluate the accuracy of the computed real Schur decangposf C' by the MATLAB
functionschur we computed the eigenvalues@fin the following three ways:

)\E.Eig): eigenvalues of’ computed by means @f g,
AW: eigenvalues of” computed as theth roots of the exact eigenvalues.éf

AgSch): eigenvalues of” computed directly from the diagonal blocks Bffrom the real
Schur decomposition af'.

We obtained, fop = 3,

max AP — AW| = 3.62¢ — 11, min A — A®| = 8 46¢ — 13,
J J
max NS _ 2D = 4 .41¢ - 11, min NS A\E9] = 1 88¢ — 12,

max A& — A9 — 1 44¢ — 11, min [A® — X&) = 7 45¢ — 16,
j J J j J J
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and, forp = 6,
max AP — AW| = 1.54¢ — 10, min A — A® | = 5.90e - 12,
J J

max [ASM - A9 = 146 — 10, min A - A9 = 2.95¢ — 12,
J J

max AW — A9 = 2.83¢ — 11, min A\® — A9 = 6.13¢ — 13,
J J

The inaccuracy in the computed Schur decompositiord$ cduses the matrix sector function
computed by the Schur algorithms to be less accurate; sealiles ofres in Table6.7. We
notice that the norm of the matrix sector function(ofs large. Fom = 48 andp = 6 the
matrix V of the eigenvectors of is very ill-conditioned:cond(V') = 4.7 x 107. Higham [7,
Section 4.5] writes that since the conditioning of a mattirdtion f(A) is not necessarily
related tocond(V'), computing a matrix functiorf(A) via the spectral decomposition df
may be numerically unstable; see the result{ef .

TABLE 6.7
Results for real”’ from Example5.7, cond(C) = 1.4 x 10°.

n=24, p=3, ||X|| =1.71 x 108, iternewmt = 8, iterHal = 5, iterHap = 6

alg. cPU IXP — 1) res(X) ||CX - XO %
Newt 1.80e — 02 9.39e — 10 1.87e¢ — 28 2.32e — 09 2.99¢ — 18
Hall | 2.97e — 02 4.07c —09 8.09c—28 6.1le—09  7.89¢ — 18
Hal2 2.00e — 02 1.05e—09 2.10e — 28 7.49¢ — 06 9.68e — 15

cSch 4.22¢ — 02 1.34e — 06 2.67e — 25 9.98¢ — 08 1.29¢ — 16
cSch —ord | 1.53e — 02 1.12e — 06 2.23e — 25 9.92¢ — 08 1.28e — 16
rSch 7.23¢ — 02 1.35¢e — 06 2.68e — 25 9.98e — 08 1.29¢ — 16
rSch —ord | 7.30e — 02 1.34e — 06 2.66e — 25 9.97e — 08 1.29¢ — 16
Nroot 2.8le — 03 1.34e —08 2.67e — 27 5.44e — 09 7.03e — 18
Def 1.28e — 02 6.60e — 08 1.3le — 26 2.44e — 07 3.15e — 16

n=48, p=6, ||X| =876 x 10°, iternewt =9, iteryas =5, iteryaz =5

alg. CPU |XP—1||  res(X) [|[CX —XC| %
Newt 7.39¢ — 02 2.99¢ — 09 3.16e —28  3.29¢ —09  8.30c — I8
Hall 8.84e — 02 3.21e —09 3.40e — 28 1.36e — 09 3.44e — 18
Hal2 5.50e — 02 2.2le—09 2.34e—28 845¢—07  2.14e— 15
cSch 2.55e — 01 6.29¢ — 04 6.65e — 23 3.70e — 08 9.34e — 17

cSch —ord | 5.70e — 02 4.87e —03 5.15e — 22 3.63e — 08 9.17e — 17
rSch 5.33e — 01 9.43e—04 9.98e — 23 3.57e — 08 9.02e — 17
rSch —ord | 2.54e —01 9.52¢ — 04 1.0le —22 3.81e — 08 9.62e — 17
Nroot 1.00e — 02 2.15e — 08 2.27e — 27 2.86e — 09 7.22e — 18
Def 3.81le — 02 1.26e — 03 1.33e —22 5.88¢ — 03 1.49e — 11

EXAMPLE 6.8. LetA € C®*8, A = D + T, whereT is generated as in Exampie3,
D = diag();) is complex and\; are generated such that (compatel())

I\l > 1, —7/(2p) < arg(\;) < 7/(2p).

The eigenvalues oft have different moduli. The results faf € C®*87, determined as

in (6.3, are summarized in Tablg.8 The matrixC' is well-conditioned. The computed
matrix sector functionX has small norm and is computed accurately by all methoddisn t
example the Schur decomposition@fwas computed with good accuracy. The differences
between the eigenvalues 6f computed by the three methods mentioned in the previous
example were of the ordéd—1'° or less.
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FIGURE 6.1. Location of the eigenvalues of from Example5.6 and the convergence regions for Newton'’s
method forp = 4 (left); location of the eigenvalues 6f from Examples.7 and the convergence regions for Halley’s
method forp = 6 (right).

TABLE 6.8
Results forC' from Examples.8, cond(C) = 5.55.

n =48, p=6, ||X|| =4.17, iternewt =7, iterHa1 =5, iterHap =5

alg. cPU [XP—1I||  res(X) |[CX —XC| %
Newt 1.05e — 01 9.06e — 16 1.14e — 17 1.53e — 15 6.63e — 17
Hall 1.83¢e — 01 1.24e —15 1.57e— 17 2.32e — 15 1.00e — 16
Hal2 8.14e — 02 6.68¢ — 16 8.44e — 18 1.00e — 15 4.33e — 17
cSch 2.66e — 01 3.99¢ — 14 5.04e — 16 2.96e — 14 1.28e — 15
cSch —ord | 6.56e — 02 4.28¢ — 14 5.41e — 16 3.10e — 14 1.34e — 15
Nroot 1.25e — 02 2.99¢ — 15 3.78¢ — 17 3.98¢ — 16 1.72e — 17
Def 5.50e — 02 1.42¢e —14 1.79e — 16 2.27e — 14 9.82¢ — 16

In the above numerical experiments the matrix sector fonctvas computed directly
from (1.7) using the standard matrix powering MATLAB for X'/? which can be applied
only to diagonalizable matrices. 114] we present experiments obtained by another ap-
proach for computingl(.7), in which we use the method of Guo and Highashfpr the prin-
cipal matrixpth root of a real matrixd. Their algorithm is in the Matrix Function Toolbox
nf t ool box in [7]. The method of Guo and Higham involves the real Schur deositipn,
and in our numerical experiments the accuracyeot,(A) computed from 1.7) using their
method for the matriyth root was not better than the accuracyatt, (A) computed by the
real and complex Schur algorithms.

7. Conclusions. In this paper we have investigated the properties of somarithigns
for computing the matrix sector function. We derived the ptar Schur algorithms with and
without reordering and blocking. The complex Schur aldponitis applicable to all matrices
for which the matrix sector function exists. The developeal Schur algorithm can be ap-
plied only to real matrices having no multiple complex eigg@ues in the sectors different
from ®y and®,, 5.

We have determined the regions of convergence for NewtardsHalley’s iterations
applied to the matrix sector function. From the results kmawthe general theory of matrix
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im(z)
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FIGURE 6.2. Location of the eigenvalues &f from Example5.7 and the convergence regions for Newton'’s
methodp = 3 andp = 6.

functions, we have deduced the stability of Newton’s anddy& methods for computing

the matrix sector function in the sense considered’jrSection 4.9]. Experimental results
indicate that these iterative methods compute the matdtosdéunction with the same or

better accuracy than other methods considered in this paper
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