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ALGORITHMS FOR THE MATRIX SECTOR FUNCTION ∗

BEATA LASZKIEWICZ† AND KRYSTYNA ZIȨTAK †

Abstract. In this paper we consider algorithms for the matrix sector function, which is a generalization of the
matrix sign function. We develop algorithms for computing the matrix sector function based on the (real) Schur
decompositions, with and without reordering and the Parlettrecurrence. We prove some results on the convergence
regions for the specialized versions of Newton’s and Halley’s methods applied to the matrix sector function, using
recent results of Iannazzo for the principal matrixpth root. Numerical experiments comparing the properties of
algorithms developed in this paper illustrate the differences in the behaviour of the algorithms. We consider the
conditioning of the matrix sector function and the stabilityof Newton’s and Halley’s methods. We also prove a
characterization of the Fréchet derivative of the matrix sector function, which is a generalization of the result of
Kenney and Laub for the Fréchet derivative of the matrix sign function, and we provide away of computing it by
Newton’s iteration.

Key words. matrix sector function, matrix sign function, matrixpth root, Schur algorithm, Parlett recurrence,
Newton’s method, Halley’s method, stability, conditioning,Fréchet derivative.
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1. Introduction. Matrix functions play an important role in many applications; see, for
example, [7, Chapter 2]. In this paper we are concerned with the matrix sector function,
developed by Shieh, Tsay and Wang [18], as a generalization of the matrix sign function
introduced by Roberts [17]. Let p be a positive integer and let us consider the following
sectors of the complex planeC for l ∈ {0, . . . , p − 1}:

Φl =

{
z ∈ C \ {0} :

2lπ

p
−

π

p
< arg(z) <

2lπ

p
+

π

p

}
. (1.1)

Let λ = |λ|eiϕ ∈ C \ {0}, where

ϕ ∈ [0, 2π), ϕ 6=
2lπ

p
+

π

p
, for l = 0, . . . , p − 1. (1.2)

The scalarp-sector function ofλ ∈ Φl is defined as

sp(λ) = ei2πl/p. (1.3)

Hencesp(λ) is thepth root of unity, which lies in the same sectorΦl in whichλ lies; therefore
it is thepth root of unity nearest toλ. From (1.2) we deduce that the scalarp-sector function
is not defined for thepth roots of nonpositive real numbers.

Let R
− denote the closed negative real axis. The principalpth roota1/p of a ∈ C \ R

−

lies withinΦ0, thereforeRe(a1/p) > 0. As shown in [18], sp(λ) = λ/(λp)1/p. The principal
pth root ofλp exists becauseλ satisfies (1.2).

Any matrix A ∈ C
n×n can be expressed in the Jordan canonical form (see, for exam-

ple, [7, Section 1.2])

W−1AW = J, (1.4)
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whereW is nonsingular andJ is a block diagonal matrix of Jordan blocks of the form



λ 1

λ
. . .
. . . 1

λ




.

Let {λ1, . . . , λn} be the spectrum of a nonsingular matrixA, with not necessarily distinct
eigenvaluesλj , satisfying (see (1.2))

arg(λj) 6=
2lπ

p
+

π

p
, for l = 0, . . . , p − 1, (1.5)

and ordered in such a way that the main diagonal ofJ is (λ1, . . . , λn). Then the matrix sector
function ofA can be defined as (see [13, 18])

sectp(A) = W diag(sp(λ1), . . . , sp(λn))W−1. (1.6)

In principle, we could compute the matrix sector function from the Jordan form (1.4). How-
ever, the use of the Jordan form is avoided since it is computationally unattractive because of
its computational cost and the possible ill-conditioning of W if A is not Hermitian.

The principal matrixpth root ofA, denoted byA1/p, is the unique matrixX such that
Xp = A and the eigenvalues ofX lie within the sectorΦ0; see, for example, [7, Section 7].
If A has no eigenvalue onR−, thenA1/p exists. The matrix sector function can be expressed
in the following way (see [18])

sectp(A) = A(Ap)−1/p, (1.7)

where(Ap)1/p is the principal matrixpth root ofAp. Therefore we can compute the matrix
sector function using algorithms for principal matrixpth roots. However, we would like to
develop algorithms for computing directly the matrix sector function without computing the
matrixpth root. This is a goal of this paper.

In the paper we show how some theoretical results and algorithms, known for the matrix
sign function and the matrixpth root, can be extended to the matrix sector function. The
matrix sector function is interesting for us, because thesegeneralizations are not always easy
and possible. Some basic properties of the matrix sector function are recalled in Section2.

In Section3 we derive an algorithm for computing the matrix sector function based
on the Schur decomposition. We call this algorithm thecomplex Schur algorithm. It is a
generalization of the Schur method by Higham [7, Section 5.2] for computing the matrix sign
function. In the complex Schur algorithm we use also some ideas from the Smith method
for the matrixpth root (see [19, 20]). The complex Schur algorithm is applicable to everyA
for which the matrix sector function exists. We also proposeits modification employing the
reordering of the Schur decomposition.

The real Schur algorithmfor computing the matrix sector function of a real matrix in
real arithmetic is stated in Section3. It employs a real Schur decomposition. The algorithm
is partly similar to the method of Smith [20] for computing some real primary matrixpth
root of a real matrix (see also [7, Section 7.2]). Unfortunately, the real Schur algorithm fails
whenA has multiple complex eigenvalues in the sectorsΦl different fromΦ0 andΦp/2 (if
p is even). The reordered real Schur algorithm is also mentioned. Numerical experiments
comparing the above four versions of the Schur algorithm forthe matrix sector function are
presented in Section6.
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In Section4 we consider Newton’s and Halley’s methods for computing thematrix sector
function. These methods were formulated in [13] and [18], respectively, but without any
information about the regions of convergence. We prove someresults on convergence regions,
using the recent results of Iannazzo [9, 11] for the matrix principalpth root. Our proof is based
on a similar trick, which was used in [2, Section 6]. To our best knowledge the convergence
regions for the specialized versions of Newton’s and Halley’s methods applied to the matrix
sector function were unknown up till now. The results of Iannazzo concern Newton’s and
Halley’s scalar iterations for the principalpth root of a numbera with starting point equal
to 1. For the scalar sector functionsp(λ) we have an opposite situation:a = 1 and the
starting point is equal toλ; see Section4. The stability of Newton’s and Halley’s methods for
the matrix sector function follows from the general result of Iannazzo [10, Section 4.6] for
matrix iterations.

The conditioning of the matrix sector function is considered in Section5. We generalize
to the matrix sector function a characterization of the Fréchet derivative proven by Kenney
and Laub for the matrix sign function. We also show that Newton’s iteration provides a way
of computing the Fŕechet derivative of the matrix sector function. It generalizes the result of
Kenney and Laub for the matrix sign function (see [7, Section 5.3] and [12]) and it is related
to the very recent result of Al-Mohy and Higham [1] for computing the Fŕechet derivative of
a matrix function by iterative methods.

Numerical tests, presented in Section6, illustrate the differences in the behaviour of
all algorithms developed in this paper. We also include results for the matrix sector func-
tion computed directly from (1.6) and from (1.7), whereX1/p is computed by the standard
MATLAB matrix power operator, which uses the eigensystem ofX.

In the whole paper we assume thatA satisfies the conditions (1.5), i.e., that the matrix
sector function exists forA.

2. Properties of the matrix sector function. A research monograph by Higham [7]
presents the theory of matrix functions and numerical methods for computing them, as well
as an overview of applications. Some properties of the matrix sector function are common
for matrix functions.

Let S = sectp(A). The following relations

AS = SA, Sp = I, (2.1)

lead to the algorithms for computing the matrix sector function. The second equality in (2.1)
means thatS is somepth root of the identity matrix. However, it is the principalpth root, i.e.,
the identity matrixI, only when all eigenvalues ofA lie in the sectorΦ0.

Using (1.7), we can expressA in the following way:

A = SN, (2.2)

whereN = S−1A = Sp−1A = (Ap)1/p, becauseS commutes withA and since the spec-
trum of S−1A lies in the sectorΦ0. We call the expression (2.2) the matrix sector decom-
position, and we will use it in Section5 to characterize the Fréchet derivative of the matrix
sector function.

If B = V −1AV , thensectp(B) = V −1 sectp(A)V for arbitrary nonsingularV ∈ C
n×n.

The inverse ofsectp(A) is equal to the matrix sector function ofA−1.
The formula (1.7) is well-known for the matrix sign function (p = 2), and the decompo-

sition (2.2) is a generalization of the matrix sign decomposition, introduced by Higham [6].
Some applications of the matrix sector function are mentioned in [18].
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3. The Schur algorithms. In this section we apply the Schur decompositions to com-
pute the matrix sector function. The Schur decomposition ofA ∈ C

n×n

A = QRQH , Q unitary, R upper triangular, (3.1)

and the real Schur decomposition ofA ∈ R
n×n

A = QRQT , Q orthogonal, R real upper quasi-triangular, (3.2)

are useful tools for matrix functions, because they can be computed with backward stability
by theQR method; see, for example, [4]. HereMT denotes the transpose ofM andMH

denotes the conjugate transpose. In (3.2) the upper quasi-triangular matrixR hasm ≤ n
blocks on the main diagonal of ordersmi equal to either 1 or 2. The blocks of orders2
correspond to complex conjugate eigenvalues pairs. The blocks ofR are denoted byRij . In
the Schur decomposition (3.1) all blocks ofR are1 × 1.

We now show how some ideas of the Schur method by Higham [7, Section 5.2] for com-
puting the matrix sign function, and the Smith method [20] for any primary matrixpth root
can be applied to the matrix sector function. Both methods utilize the Schur decompositions
and a fast Parlett recursion [16].

The significance of the Schur decompositions is that computing a matrix functionf(A)
reduces to computingf(R), sincef(A) = Qf(R)QH when we use the Schur decomposi-
tion (3.1), andf(A) = Qf(R)QT when we use the real Schur decomposition (3.2). There-
fore we focus on computing the matrix sector function of an upper (quasi) triangular matrix
R determined in (3.1) and (3.2), respectively. We recall that we have assumed thatsectp(A)
exists, hencesectp(R) also exists.

Let U = sectp(R). The main diagonal blocksUii of U are equal tosectp(Rii). The
superdiagonal blocksUij satisfy the following recurrence relation, derived by Parlett [16] for
a matrix function of a block upper triangular matrix,

RiiUij − UijRjj = UiiRij − RijUjj +

j−1∑

k=i+1

(UikRkj − RikUkj), (3.3)

for i < j. This recurrence comes from equating blocks in the commutativity relation UR =
RU (compare (2.1)) and it can be applied to compute superdiagonal blocksUij , provided that
we may evaluate the main diagonal blocksUii, Ujj , and solve the Sylvester equation (3.3) for
Uij . The unique solutionUij of (3.3) exists provided thatRii andRjj have no eigenvalues in
common.

If the blocksRii andRjj have a common eigenvalue, then we have to apply the relation
Up = I (compare the second relation in (2.1)) in order to compute the appropriate remaining
blocks of the matrix sector function ofR. For this purpose we use some ideas from the
method of Smith [20] for computing thepth rootY of R. In the method of Smith [20] the
superdiagonal blocks ofY are evaluated from the recurrence that follows from the equality
Y p = R. A similar recurrence holds also for the matrix sector function U of R, because
Up = I. The only differences between these recurrence relations are in computing the main
diagonal blocks ofY andU , respectively, and in the superdiagonal blocks ofR. In the method
of Smith the main diagonal blocks ofY are the appropriate primarypth roots of the main
diagonal blocks ofR. However, in our algorithm the main diagonal blocks ofU are equal to
the matrix sector functions of the main diagonal blocks ofR. The superdiagonal blocks of
R in the Smith recurrence relation are replaced in our algorithm by superdiagonal blocks of
I, which are zero. Therefore we write the following generalized Sylvester equation forUij
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without details of derivation, because this is the same as inthe proof of Smith [20, Section 4]
for the matrixpth roots; see also [19]. We use the same notations as in the formulation of the
Smith method in [7, Section 7.2]:

p−1∑

k=0

V
(p−2−k)
ii UijV

(k−1)
jj = −

p−2∑

k=0

V
(p−3−k)
ii Bk, (3.4)

where

V
(k)
jj = Uk+1

jj , for k = −1, . . . , p − 2, (3.5)

Bk =

j−1∑

l=i+1

UilV
(k)
lj , for k = 0, . . . , p − 2, (3.6)

V
(k)
ij =

k∑

l=0

V
(k−l−1)
ii UijV

(l−1)
jj +

k−1∑

l=0

V
(k−2−l)
ii Bl, for k = 0, . . . , p − 2. (3.7)

We are now in a position to formulate the complex Schur algorithm for the matrix sector
function. LetA have the Schur decomposition (3.1), whereR = [rij ]. Let U = sectp(R) =
[uij ]. Since now all blocks ofR andU in (3.3) and (3.4) are of order1, we replace the blocks
by the elements of the matricesR andU in the proper way. The matrixU is upper triangular
anduii = sp(rii). If rii 6= rjj , then we can solve (3.3) for uij . If rii = rjj , then the left
hand side in (3.4) has the formαijuij , where

αij =

p−1∑

k=0

v
(p−2−k)
ii v

(k−1)
jj = pup−1

ii

andαij 6= 0 becauseuii is the scalar sector function. Thus we can computeuij from (3.4),
and all the superdiagonal elements ofU can be computed from (3.3) and (3.4), respectively.

Complex Schur algorithm for the matrix sector function
Let A ∈ C

n×n have eigenvalues satisfying (1.5). This algorithm computessectp(A).
Step 1. Compute a Schur decompositionA = QRQH , with R = [rij ] upper triangular, and

check if the eigenvalues ofR satisfy the assumption (1.5).
Step 2. Forj = 1, . . . , n

ujj = sp(rjj)

v
(k)
jj = uk+1

jj , k = −1, . . . , p − 2
for i = j − 1, j − 2, . . . , 1

bk =

j−1∑

l=i+1

uilv
(k)
lj , k = −1, . . . , p − 2

uij =





−
1

p
uii

p−2∑

k=0

v
(p−3−k)
ii bk, for uii = ujj

rij
uii − ujj

rii − rjj
+

∑j−1
k=i+1(uikrkj − rikukj)

rii − rjj
, for uii 6= ujj

v
(k)
ij =

k∑

l=0

v
(k−l−1)
ii uijv

(l−1)
jj +

k−1∑

l=0

v
(k−2−l)
ii bl, k = −1, . . . , p − 2

endi
endj
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Step 3.sectp(A) = QUQH .

Higham has observed that the matrix sign function of an uppertriangular matrix will
usually have some zero elements in the upper triangle; see [7, Section 5.2]. The matrix sector
function has a similar property. This follows from the general Theorem 4.11 on functions
of triangular matrices in [7]. If the diagonal elements ofR are grouped according to the
sectorsΦl, thenUjj = sectp(Rjj) is the identity matrix multiplied by thepth root of unity
lying in the corresponding sectorΦl, including all eigenvalues of the main diagonal block
Rjj of R, and we utilize only the Parlett recurrence (3.3) to computeU = sectp(R). Thus,
computing the main diagonal blocksUjj of U is very cheap and there is no reason to apply
the generalized Sylvester equation (3.4) to computeU . Therefore, we propose the reordered
complex Schur algorithm, formulated below. We underline that now the orders of the blocks
Rjj can be large and each blockRjj has eigenvalues only in one sector.

Reordered complex Schur algorithm for the matrix sector function
Let A ∈ C

n×n have eigenvalues satisfying (1.5). This algorithm computessectp(A).
Step 1. Compute a Schur decompositionA = QRQH , whereR = [rij ] is upper triangular,

and check if the eigenvalues ofR satisfy (1.5).
Step 2. Determine the sequence of indicesl1, l2, . . . , lq (0 ≤ l1 < l2 < · · · < lq ≤ p − 1)

of different sectorsΦlk in which elementsrjj lie. For k = 1, . . . , q compute the
numbertk of the elementsrjj , which belong toΦlk . Determine the vectorw =
[w1, . . . , wn], wherewj = k if rjj is in Φlk .

Step 3. According to the vectorw, compute the reordered Schur decompositionA = Q̃R̃Q̃H

and divide the triangular matrix̃R into blocks so that the block̃Rkk on the main
diagonal istk × tk (k = 1, . . . , q).

Step 4. ComputẽU = sectp(R̃) in the following way: fork = 1, . . . , q computesectp(R̃kk),
which are equal to the identity matrix multiplied by the adequatepth root of unity,
and compute the superdiagonal blocksŨij of Ũ from equation (3.3).

Step 5. Computesectp(A) = Q̃ŨQ̃H .

Computingtk in Step 2 of the reordered complex Schur algorithm can be achieved by
the functionswapping, which is included in the functionfunm in MATLAB 7.6. The re-
ordered Schur decomposition in Step 3 can be computed by the standardMATLAB function
ordschur, which is available inMATLAB 7.6. The vectorw determined in Step 2 corre-
sponds to the vectorCLUSTERS of cluster indices used byordschur, such that all eigen-
values with the sameCLUSTERS value form one cluster and the specified clusters are sorted
in descending order along the diagonal of the triangularR̃ — the cluster with highest index
appears in the upper left corner. The blockR̃kk has eigenvalues only inΦlk , so thatR̃ii and
R̃jj do not have a common eigenvalue, hence equation (3.3) has the unique solutioñUij .
Therefore, the reordered complex Schur algorithm works forall matricesA for which the
matrix sector function exists.

If a real matrixA has the complex Schur decomposition (3.1), then the above methods
require complex arithmetic. We now derive an algorithm for computing the matrix sector
function of a real matrixA in real arithmetic, using the real Schur decomposition (3.2).

Let A ∈ R
n×n have the real Schur decomposition (3.2). A formula forsectp(Rjj), for

Rjj = Z diag(λ, λ̄)Z−1 ∈ R
2×2, Im(λ) 6= 0,

can be obtained by adapting the approach used in [20] for the matrixpth roots; see also [7,
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Section 7.2]. Namely, it is easily seen that

Ujj = sectp(Rjj) = aI +
b

Im(λ)
(Rjj − Re(λ)I),

wheresp(λ) = a + ib. If the blockRjj is 1 × 1, then the only element ofUjj is equal to the
scalar sector function of the only element ofRjj .

The generalized Sylvester equation (3.4) can be transformed into the following linear
system, applying the operatorvec,

p−1∑

k=0

(
V

(p−2−k)
ii ⊗ V

(k−1)
jj

)
vec(Uij) = − vec

(
p−2∑

k=0

V
(p−3−k)
ii Bk

)
, (3.8)

which has dimension 1, 2 or 4. We now check when, fori < j, the blockUij can be computed
from (3.8).

Let Λ(X) denote the set of all eigenvalues of a matrixX and let the blockUii have the
ordermi, 1 ≤ mi ≤ 2. The matrix of the linear system (3.8) has the eigenvalues

αr,s =

p−1∑

k=0

νk
r θp−1−k

s =





νp
r − θp

s

νr − θs
, νr 6= θs,

pνp−1
r , νr = θs,

where1 ≤ r ≤ mi, 1 ≤ s ≤ mj , while νr ∈ Λ(Uii) andθs ∈ Λ(Ujj) are eigenvalues
of the blocksUii, Ujj , respectively. Ifνr 6= θs for somer, s, then the matrix of the linear
system (3.8) is singular becauseνp

r = θp
s = 1. Therefore we can compute the blockUij

from (3.8) only if νr = θs for all r, s. This can happen only if all eigenvalues of the blocks
Rii andRjj lie in the same sectorΦl. A pair of conjugate complex eigenvalues belongs to
a common sector only if it isΦ0 or Φp/2 (if p is even), which covers also the case of real
eigenvalues. Therefore we can computeUij from (3.4) only when a common sector is the
sectorΦ0 or Φp/2. This can happen only in the following cases (we denote byλ(X) any
eigenvalue ofX):

(a) mi = mj = 1 andλ(Rii) > 0, λ(Rjj) > 0;
(b) mi = mj = 1 andλ(Rii) < 0, λ(Rjj) < 0 (if p is even);
(c) mi = mj = 2 andλ(Rii), λ(Rjj) ∈ Φ0 or λ(Rii), λ(Rjj) ∈ Φp/2 (if p is even);
(d) mi + mj = 3 and a real eigenvalue and a pair of conjugate complex eigenvalues of

Rii andRjj , respectively, lie in the sectorΦ0 or Φp/2 (if p is even).

Thus, we can apply (3.4) only in very specific cases, and it is necessary to use also the
Sylvester equation (3.3) in order to compute the matrix sector function for more general cases.
We recall that the Sylvester equation (3.3) has the unique solutionUij if and only if Rii and
Rjj have no eigenvalue in common. This holds only whenmi + mj = 3 or if mi = mj and
Λ(Rii) ∩ Λ(Rjj) = ∅. If mi = mj = 2 andΛ(Rii) ∩ Λ(Rjj) 6= ∅, thenΛ(Rii) = Λ(Rjj)
and we cannot use (3.3). However, we recall that if the eigenvalue ofRii lies within the
sectorΦ0 or within the sectorΦp/2, then we can computeUij from (3.4). Otherwise we can
not apply either (3.4) or (3.3), and the real Schur algorithm, formulated below, does not work.
Therefore, we can not apply the real Schur algorithm ifA has multiple complex eigenvalues
in the sectors different fromΦ0 or Φp/2. In some cases, whenmi + mj = 3, it is possible to
apply both equations (3.4) and (3.3). In such a situation we choose the equation (3.3) because
it has a simpler form.

Real Schur algorithm for the matrix sector function
Let A ∈ R

n×n have no multiple complex eigenvalues in the sectors different fromΦ0 or Φp/2

(if p is even) and let all eigenvalues ofA satisfy (1.5). This algorithm computessectp(A).
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Step 1. Compute a real Schur decompositionA = QRQT , whereR is upper quasi-
triangular, that is block upper triangular withm main diagonal blocksRjj , and
check if the eigenvalues of the main diagonal blocks ofR satisfy the assumption (1.5).

Step 2. Forj = 1, . . . ,m
ComputeUjj = sectp(Rjj)

ComputeV (k)
jj = Uk+1

jj in (3.5), for k = −1, . . . , p − 2
for i = j − 1, j − 2, . . . , 1

ComputeBk in (3.6), for k = 0, . . . , p − 2
ComputeUij in the following way

• if mi + mj = 3 or if mi = mj andΛ(Rii) ∩ Λ(Rjj) = ∅, then
solve (3.3) for Uij

• if mi = mj = 1 andΛ(Rii) = Λ(Rjj), then solve (3.4) for Uij

• if mi = mj = 2 andRii andRjj have common eigenvalues inΦ0 or
Φp/2 (if p is even), then solve (3.4) for Uij

• if none of the above cases holds, then exit
ComputeV (k)

ij in (3.7), for k = 0, . . . , p − 2
endi

endj
Step 3.sectp(A) = QUQT .

The idea of reordering can be applied also to the real Schur algorithm. The way of re-
ordering the eigenvalues should be such that each main diagonal blockR̃jj of the reordered
upper quasi-triangular matrix̃R from the reordered real Schur decompositionA = Q̃R̃Q̃T ,
has the eigenvalues lying only in one of the sectorsΦl and the conjugate sector̄Φl = Φp−l

to Φl, or just inΦ0, or in Φp/2 for evenp. The main difference between the real and complex
reordered Schur algorithms is in the first part of Step 4. The real reordered Schur algorithm
uses, for computingsectp(R̃jj), the real Schur algorithm, in which only (3.3) is applied.
Therefore, this step is not as cheap as in the reordered complex Schur algorithm, where
sectp(R̃jj) = ǫlI. Other blocks ofsectp(R̃) are determined in the reordered real Schur algo-
rithm from (3.3), hence similarly as in the reordered complex Schur algorithm by the Parlett
recurrence. With regards to these analogies between algorithms we omit the formulation of
the reordered real Schur algorithm for the matrix sector function. The reordered real Schur
algorithm works under the same assumptions as the real Schuralgorithm.

The complex Schur algorithm for the matrix sector function is a generalization of the
Schur method proposed by Higham [7, Section 5.2] for the matrix sign function of a complex
matrix having no pure imaginary eigenvalues. The complex Schur algorithm with reordering
can be more expensive than the algorithm without reordering, because of the cost of solving
the Sylvester equation (3.3) whenR̃ii andR̃jj are of large size, and because of the cost of
computing the reordered Schur decomposition.

An application of the reordered Schur decomposition to computing the matrix sign func-
tion of a complex matrix is mentioned in [7, Section 5.2], without reporting details or numer-
ical experiments. In the reordered Schur method, the matrixsign function ofR̃ would have
only two main diagonal blocks, equal to±I. Higham writes that the cost of the reordering
may or may not be less than the cost of (redundantly) computing zero elements in the upper
triangle of the matrix sign function ofR; see Algorithm 5.5 in [7]. In the complex Schur
algorithm for the matrix sector function, such a situation corresponds to computing the zero
elementuij from the first expression in Step 2, what would be redundant (compare Step 4 of
the reordered complex Schur algorithm).

The reordering and blocking proposed by Davis and Higham [3] for any matrix function
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are different from those developed in the above algorithms for the matrix sector function.
Their algorithm has a parameterδ that is used to determine the reordering and blocking of
the Schur decomposition to balance the conflicting requirements of producing small diago-
nal blocks and keeping the separations of the blocks large, and it is intended primarily for
functions having a Taylor series.

4. Newton’s and Halley’s methods.Newton’s and Halley’s iterative methods are very
popular tools for computing matrix functions; see [7]. The matrix sector functionsectp(A)
is apth root of the identity matrix (see the definition and (2.1)) which depends on the eigen-
values ofA, and (1.7) holds. Therefore, it is obvious that there are many links between
algorithms for computing the matrixpth root and the matrix sector function.

Computing the matrix sector function ofA requires iterative methods for solving the
matrix equationXp−I = 0 with the starting matrixX0 = A. For this purpose one can apply
Newton’s method [18]

Xk+1 =
1

p
((p − 1)Xk + X1−p

k ), X0 = A, (4.1)

or Halley’s method [13]

Xk+1 = Xk((p − 1)Xp
k + (p + 1)I)((p + 1)Xp

k + (p − 1)I)−1, X0 = A. (4.2)

It should be noticed that the iteration (4.1) coincides with the customary Newton’s method
for the matrix equationXp − B = 0, when the latter is defined, becauseX0 = A commutes
with B = I; see [7, Section 7.3].

Newton’s and Halley’s matrix iterations are related to the following scalar iteration

xk+1 = g(xk), x0 = λ, (4.3)

whereλ satisfies the assumptions (1.2). For Newton’s method

g(x) =
(p − 1)xp + 1

pxp−1
, (4.4)

and for Halley’s method

g(x) = x
(p − 1)xp + (p + 1)

(p + 1)xp + (p − 1)
. (4.5)

Let the sequence (4.3) be convergent tox∗ = sp(λ), whereg is (4.4) or (4.5). It is easy
to verify that x∗ is an attractive fixed point. The scalar functions (4.4) and (4.5) do not
depend onλ, hence the iterations (4.1) and (4.2) are pure rational matrix iterations defined
in [11], because they have the formZk+1 = ϕ(Zk) (k = 0, 1, . . .). Therefore, from [11,
Theorem 2.4] we obtain the following corollary.

COROLLARY 4.1. If for every eigenvalueλj of A, Newton’s (Halley’s) scalar method
is convergent to the scalar sector functionsp(λj), then Newton’s (Halley’s) matrix method is
convergent tosectp(A).

Thanks to Corollary4.1 the problem of the convergence of Newton’s (Halley’s) matrix
iteration to the matrix sector function ofA is reduced to the convergence of the corresponding
scalar sequences to the scalar sector functions of the eigenvalues ofA. Therefore, we can ap-
ply to the methods (4.1) and (4.2) some results proven in [9] and [10] for the matrixpth roots,
to determine sets of matricesA for which Newton’s and Halley’s methods are convergent to
sectp(A).
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We first consider Newton’s method for the scalar sector function sp(λ) (see (1.3), (4.3),
and (4.4))

xk+1 =
1

p

[
(p − 1)xk + x1−p

k

]
, x0 = λ. (4.6)

We assume thatλ satisfies the condition (1.2) given in the definition of the scalar sector
functionsp. Let uk = xk/sp(λ), wherexk is determined in (4.6). Then

uk+1 =
1

p

[
(p − 1)uk + u1−p

k

]
, u0 = (λp)1/p. (4.7)

The iteratesxk converge tosp(λ) if and only if uk is convergent to 1. Let Newton’s method
be applied to the scalar equationyp − a = 0, for a ∈ C \R

−, with the starting point equal to
1:

yk+1 =
1

p

[
(p − 1)yk + ay1−p

k

]
, y0 = 1. (4.8)

The sequence (4.8) converges to the principalpth root ofa if and only if the sequence

zk+1 =
1

p

[
(p − 1)zk + z1−p

k

]
, z0 = a−1/p, (4.9)

converges to1; see [9]. This property follows from the relationzk = yka−1/p. The it-
erations (4.7) and (4.9) differ only at starting points. Therefore, the sequence (4.7) with
u0 = (λp)1/p is convergent to1 if and only if the sequence (4.9) with z0 = a−1/p is conver-
gent to1, for a andλ satisfying the relation

(λp)1/p = a−1/p. (4.10)

Therefore, ifa belongs to a set such that the iteration (4.8) with y0 = 1 is well defined and
converges to the principalpth roota1/p, then the iteration (4.6) with x0 = λ is convergent to
the scalar sector functionsp(λ) for λ satisfying the relation (4.10). If λ satisfies (4.10), then

λ = ǫla
−1/p, (4.11)

where

ǫl = e2lπi/p, l = 0, . . . , p − 1, (4.12)

arepth roots of unity. We have assumed thata /∈ R
−. Thusarg(1/a) 6= π and, consequently,

arg(ǫla
−1/p) satisfies (1.2). Hencesp(λ) exists forλ determined in (4.11).

Halley’s iteration has the form

yk+1 = yk
(p − 1)yp

k + (p + 1)a

(p + 1)yp
k + (p − 1)a

, y0 = 1, (4.13)

for thepth roota1/p with the starting point1, and

xk+1 = xk
(p − 1)xp

k + (p + 1)

(p + 1)xp
k + (p − 1)

, x0 = λ, (4.14)

for the scalar sector functionsp(λ). By similar arguments as above for Newton’s method,
we can show that if the iterates (4.13) converge to thepth root ofa, then the iterates (4.14)
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converge tosp(λ) for λ satisfying (4.11). We omit the details. Thus from the above consid-
erations we obtain the following corollary.

COROLLARY 4.2. Let Newton’s method(4.8) (Halley’s method (4.13)) be convergent to
the principalpth root ofa /∈ R

−. Then Newton’s method(4.6) (Halley’s method (4.14)) is
convergent to the sector functionsp(λ) for λ satisfying(4.11).

Some regions ofa for which the scalar Newton’s and Halley’s iterations, respectively,
are convergent toa1/p with starting point1 are known; see [7, Section 7.3], [9, Theorems 2.1
and 2.3], [10, Theorems 5.3 and 5.20], and [11, Corollary 5.3]. For Newton’s iteration (4.8)
it is the region

a ∈ {z ∈ C : Re(z) > 0 and|z| ≤ 1} ∪ R
+, (4.15)

and for Halley’s iteration (4.13)

{z ∈ C : Re(z) > 0}. (4.16)

Using Corollary4.1and Corollary4.2we obtain the following convergence regions for New-
ton’s and Halley’s iterations, respectively, for the matrix sector function. We omit the proof
because it is enough to show thatλ ∈ B

(Newt)
p or λ ∈ B

(Hal)
p if and only if a satisfying the

relation (4.11) lies in (4.15) or in (4.16), respectively.
THEOREM 4.3. Letαl = 2lπ/p − π/(2p), βl = 2lπ/p + π/(2p), l = 0, . . . , p − 1.

(i) If all eigenvalues ofA lie in the region

B
(Newt)
p =

p−1⋃

l=0

[
{z ∈ C : |z| ≥ 1, αl < arg(z) < βl} ∪ R

+
l

]
, (4.17)

whereR
+
l = {z ∈ C : z = rǫl, r ∈ R

+}, then Newton’s matrix iteration(4.1) is
convergent tosectp(A).

(ii) If all eigenvalues ofA lie in the region

B
(Hal)
p =

p−1⋃

l=0

{z ∈ C : αl < arg(z) < βl}, (4.18)

then Halley’s iteration(4.2) is convergent tosectp(A).
Iannazzo shows in [11, Theorem 6.1] that the immediate basin of attraction for thefixed

point1 of the iteration (4.6) contains the set

{z ∈ C : |z| ≥ 1/21/p, | arg(z)| < π/4}.

From his result we obtain the following corollary for the matrix sector function. The proof of
the corollary follows from similar considerations as thosebefore Theorem4.3, therefore we
omit it.

COROLLARY 4.4. If all eigenvalues ofA lie in the region

C
(Newt)
p =

p−1⋃

l=0

{
z ∈ C :

1

21/p
≤ |z| ≤ 1,

2lπ

p
−

π

4p
< arg(z) <

2lπ

p
+

π

4p

}
,

then Newton’s iteration(4.1) is convergent tosectp(A).
A set of complex numbersz whose principal arguments satisfy the assumption in the

definition of C
(Newt)
p in Corollary 4.4, but |z| ≥ 1, is a subset of the setB(Newt)

p defined in
Theorem4.3.
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Newton’s and Halley’s methods are stable in the sense considered in [7], i.e., the Fŕechet
derivativeLg(X) has bounded powers. This follows from Theorem 4.11 in [10] on stability
of pure matrix iterations. In Section5 we consider the Fréchet derivative of the matrix sector
function.

In [13] an example is provided, which shows that the sequence (4.14) can be noncon-
vergent tosp(λ), and it is mentioned that such a situation mostly occurs for matrices whose
eigenvalues are near the boundaries of the sectorsΦl; see (1.1). The starting point in the
example given in [13] is not in the region of convergence (4.18) of Halley’s method.

In Figure4.1we present the convergence regions, determined experimentally, for New-
ton’s method (4.6) for computingsp(λ), and the regionsB(Newt)

p andC
( Newt)
p for p = 5. More

precisely, each pointx0 = λ in the region is coloured according to thepth root ǫl of unity
(see (4.12)) to which the iteration converges after 100 iterations, i.e., if |x100 − ǫl| < 10−5.
In Figure4.2 we present the convergence regions, determined experimentally, for Halley’s
method (4.14) for p = 4, 5. We also plot the boundaries of the regionsB

(Hal)
p .
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FIGURE 4.1. Regions of convergence for Newton’s method and boundaries of B
(Newt)
p (left) andC

(Newt)
p (right)

for p = 5.
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FIGURE 4.2. Regions of convergence for Halley’s method and boundaries of B
(Hal)
p , p = 4, 5.

The convergence regions are larger for Halley’s method thanfor Newton’s method.
In [14] we discuss properties of the Padé family of iterations for the matrix sector function.
Halley’s method is a particular case of the Padé iterations.
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We now concentrate on the rate of convergence of Newton’s iterates to the matrix sector
function. As mentioned in the Introduction, a generalization to the matrix sector function of
some results, known for the matrix sign function, can be complicated. If either the spectral
radiusρ(A) of A is much larger than 1, orA has an eigenvalue close to the imaginary axis,
then the convergence of Newton’s iteration for the matrix sign function will be slow; see [7,
Theorem 5.6]. For Newton’s iteration for the matrix sector function the situation is even more
complicated, as we now show.

The matricesA andS = sectp(A) commute; see (2.1). Therefore, from (4.1), by the
same arguments as for the matrixpth root in [7, Problem 7.11], we deduce

Xk+1 − S =
1

p
X1−p

k ((p − 1)Xp
k − pSXp−1

k + I) =
1

p
X1−p

k (Xk − S)2Wk,

where

Wk =

p−2∑

j=0

(j + 1)Sp−2−jXj
k. (4.19)

This implies, for any consistent norm, the following inequality for p ≥ 2,

‖Xk+1 − S‖ ≤
1

p
‖X1−p

k ‖ ‖Xk − S‖2 ‖

p−2∑

j=0

(j + 1)Sp−2−jXj
k‖,

and, for sufficiently largek, we have‖Xk+1 − S‖ ≤ c‖Xk − S‖2, with

c = (p − 1)‖S1−p‖ ‖S‖p−2 ≤ (p − 1)[cond(S)]p−1/‖S‖,

under the assumption that Newton’s iteration converges. Thus, the convergence of Newton’s
iteration is asymptotically quadratic. However, the convergence can be slow, as follows from
the well-known properties of the scalar Newton’s iteration, since the convergence of the ma-
trix iteration is essentially reduced to scalar convergence; see [11]. We now examine the
convergence of Newton’s iteration in the regionB

(Newt)
p , determined in Theorem4.3.

Let p be even. Then

Xk+1 + S =
1

p
X1−p

k (Xk + S)2Vk,

where

Vk =

p−2∑

j=0

(−1)j(j + 1)Sp−2−jXj
k. (4.20)

Let all eigenvaluesλj of A lie in the regionB
(Newt)
p . Then the iteratesXk are convergent to

S = sectp(A). The regionB(Newt)
p consists of separate subregionsR

+
l and (see (1.1))

Ψl = {z ∈ C : |z| ≥ 1, αl < arg(z) < βl} ⊂ Φl. (4.21)

Modifying the proof of Lemma 2.5 in [9], we can show that an eigenvalueλ
(k)
j of the Newton

iterateXk stays inΨl, which includes the corresponding eigenvalueλj of A. If λj ∈ R
+
l ,

thenλ
(k)
j ∈ R

+
l . Thereforesectp(Xk) = S. The matrixXk + S is nonsingular because
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−sp(λj) /∈ Ψl, henceλ(k)
j +sp(λj) 6= 0. Analogously as in [7, Theorem 5.6], definingGk =

(Xk −S)(Xk +S)−1 we can prove thatI−Gk is nonsingular,Xk = (I−Gk)−1(I +Gk)S,
and (see (4.19), (4.20))

Gk+1 = G2
kWkV −1

k = G2k+1

0

k∏

j=0

(Wk−jV
−1
k−j)

2j

, k = 0, 1, . . . . (4.22)

For any matrix norm we have

‖G2k

0 ‖ ≥ ρ(G2k

0 ) =

(
max

λ∈Λ(A)

|λ − sp(λ)|

|λ + sp(λ)|

)2k

.

Therefore, if the spectral radiusρ(A) is large or small, then the convergence ofG2k

0 to the
zero matrix will be slow whenk → ∞. The spectral radius ofA can be small only when all
eigenvalues ofA lie in the setsR+

l , because if the eigenvalues lie inΨl, thenρ(A) ≥ 1 since
we have restricted the eigenvalues ofA to B

(Newt)
p ; see (4.21). Of course, the convergence of

Gk+1 to zero depends also on the behaviour ofWk−jV
−1
k−j in (4.22). For p = 2 we have

Wk−j = Vk−j = I. However, forp > 2 the matrixWk−jV
−1
k−j tends to(p − 1)I, since we

have assumedp is even.

5. Conditioning of the matrix sector function. The sensitivity of the matrix sector
functionS = sectp(A) with respect to perturbations ofA can be determined by the norm of
its Fŕechet derivative. Letf(X) be a matrix function,X ∈ C

n×n. The Fŕechet derivative of
f is a linear mapping such that for allE ∈ C

n×n we have (see [7, Chapter 3])

f(X + E) − f(X) − L(X,E) = o(‖E‖).

The notationL(X,E) should be read as “the Fréchet derivative off atX in the directionE”.
Then, the absolute and relative condition numbers off(X) are given by

condabs(f,X) = lim
ǫ→0

sup
‖E‖≤ǫ

‖f(X + E) − f(X)‖

ǫ
= ‖L(X)‖,

condrel(f,X) = condabs(f,X)
‖X‖

‖f(X)‖
=

‖L(X)‖ ‖X‖

‖f(X)‖
,

where

‖L(X)‖ := max
Z 6=O

‖L(X,Z)‖

‖Z‖

is the norm ofL(X).
The Fŕechet derivative may not exist, but if it does it is unique. Let S +∆S = sectp(A+

∆A), where we assume that the sector function is defined on a ball of radius‖∆A‖ and center
A. The definition of the Fŕechet derivative implies that

∆S − L(A,∆A) = o(‖∆A)‖). (5.1)

Following the ideas from [12] and [7, Section 5.1] for the matrix sign function, applying the
relations (2.1) for the matrix sector function and

(A + ∆A)(S + ∆S) = (S + ∆S)(A + ∆A),
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we obtain

A∆S − ∆SA = S∆A − ∆AS + o(‖∆A‖), (5.2)

since∆S = O(‖∆A‖). Moreover,(S + ∆S)p = I gives

Sp−1∆S + ∆SSp−1 +

p−2∑

k=1

Sk∆SS−k−1 + o(‖A‖) = 0. (5.3)

Pre-multiplying (5.2) by Sp−1 = S−1, using (5.3) and (2.2), gives

N∆S +

(
p−2∑

k=0

Sk∆SS−k

)
N = ∆A − S−1∆AS + o(‖∆A‖). (5.4)

This leads to the following theorem.
THEOREM 5.1. The Fŕechet derivativeL = L(A,∆A) of the matrix sector function is

the unique solution of the equation

NL +

p−2∑

k=0

SkLS−kN = ∆A − S−1∆AS, (5.5)

whereA = SN is the matrix sector decomposition (2.2).
Proof. The idea of the proof of the theorem is the same as of the proofof an analogous

theorem for the matrix sign function; see [7, Section 5.1] and [12].
Applying the operatorvec to the equation (5.5) we obtain the equation

M vec(L) = vec(∆A − S−1∆AS). (5.6)

Applying the well-known properties of the Kronecker product ⊗ to the equation (5.5), we
obtain the following expression for the matrixM in (5.6)

M = I ⊗ N +

p−2∑

k=0

(S−kN)T ⊗ Sk = I ⊗ N + (NT ⊗ I)

(
p−2∑

k=0

(S−k)T ⊗ Sk

)
.

The matrixA has the Jordan form (1.4). From the definition of the matrix sector function
we obtainS = WDW−1, N = WD−1JW−1, where (see (1.6) and (1.7)) D = diag(dj)
anddj = sp(λj). ThusV = W−T ⊗ W triangularizes both sides of the sum definingM .
Therefore,

M̃ = V −1MV = I ⊗ (D−1J) + ((JT D−1) ⊗ I)

p−2∑

k=0

Gk,

whereI⊗D−1J = diag(D−1J, . . . , D−1J), Gk = D−k⊗Dk = diag
(

1
dk
1

Dk, . . . , 1
dk

n
Dk
)

,

and(JT D−1) ⊗ I is the block bidiagonal lower triangular matrix withn × n main diagonal
blocks equal to(λp

j )
1/pI for j = 1, . . . , n. ThusM̃ is block bidiagonal lower triangular. The

main diagonal block

Mjj = D−1J + (λp
j )

1/p

p−2∑

k=0

1

dk
j

Dk, j = 1, . . . , n,
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has diagonal elementsm(j)
ll equal to

m
(j)
ll = (λp

l )
1/p + (λp

j )
1/p

p−2∑

k=0

(
dl

dj

)k

, l = 1, . . . , n.

Therefore,

m
(j)
ll =

{
(λp

l )
1/p + (p − 1)(λp

j )
1/p, if l = j or p = 2 or dl = dj ,

(λp
l )

1/p(1 − λj

λl
), otherwise.

In the first casem(j)
ll has positive real part, because the principalpth roots have positive real

parts. In the second casem(j)
ll 6= 0, becausedj 6= dl impliesλj 6= λl. ThusM̃ andM are

nonsingular and the equation (5.5) has the unique solutionL.
The solutionL is a linear function of∆A and, by (5.4), it differs from

∆S = sectp(A + ∆A) − S

by o(‖∆A‖). Thus (5.1) implies thatL = L(A,∆A). This completes the proof.
Theorem 3.15 in [7] is applicable to the matrix sector function for diagonalizable ma-

tricesA, hence it gives an upper bound for the absolute condition number condabs(A) with
respect to the Frobenius norm. In particular, ifA is normal then Corollary 3.16 from Theorem
3.15 in [7] implies the following corollary for the matrix sector function.

COROLLARY 5.2. LetA be normal with the spectral decompositionA = Qdiag(λj)Q
H ,

whereQ is unitary. If all of the eigenvaluesλj of A lie in the same sector, then‖L‖F = 0.
Otherwise,

condabs(A) = ‖L‖F = max
|sp(λi) − sp(λj)|

|λi − λj |
,

where the maximum is taken over all indicesi andj such thatλi 6= λj .
We now apply Newton’s iterations to computing the Fréchet derivative of the matrix

sector function.
THEOREM 5.3. LetA ∈ C

n×n be such thatsectp(A) exists and Newton’s iteratesXk in
(4.1) are convergent tosectp(A). Let

Yk+1 =
1

p

(
(p − 1)Yk − X1−p

k

(
p−2∑

j=0

Xp−2−j
k YkXj

k

)
X1−p

k

)
, Y0 = ∆A. (5.7)

Then the sequenceYk tends to the Fŕechet derivativeL(A,∆A) of sectp(A), i.e.,

lim
k→∞

Yk = L(A,∆A).

Proof. Analogously to the proof of [7, Theorem 5.7], we denote byZk Newton’s iter-

ates (4.1) for the matrixB =

[
A ∆A

0 A

]
. It is easy to show by induction that

Zk =

[
Xk Yk

0 Xk

]
,

because
([

Xk Yk

0 Xk

]p−1
)−1

=

[
X1−p

k −X1−p
k

(∑p−2
j=0 Xp−2−j

k YkXj
k

)
X1−p

k

0 X1−p
k

]
.
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We have assumed that Newton’s iteration is convergent forA, hence also forB, because the
eigenvalues ofB lie in the same region asA. Thus

lim
k→∞

Zk = sectp(B) =

[
sectp(A) L(A,∆A)

0 sectp(A)

]
,

because of Theorem 3.6 of Mathias in [7]; see also [15]. This completes the proof.
The convergence of the sequence (5.7) to the Fŕechet derivative ofsectp(A) can be de-

rived also from the recent more general result by Al-Mohy andHigham; see [1, Theorem 2.2].
Kenney and Laub [12] applied Newton’s method to the characterization of the Fréchet

derivative of the matrix sign function (p = 2), which provides a way of computing the Fréchet
derivative; see also [7, Theorem 5.7]. The above Theorem5.3 is a generalization of their
result.

Theorem5.1generalizes to the matrix sector function Theorem 5.3 of Kenney and Laub
in [7] for the Fŕechet derivative of the matrix sign function; see also [12]. For p = 2 equa-
tion (5.5) reduces to the Sylvester equation.

6. Numerical experiments. We now present numerical experiments performed with the
algorithms considered in the previous sections. The computations were done on a personal
computer equipped with an IntelR© 1.5 GHz processor and 512 MB memory, using MATLAB
7.6.0 (R2008a). The machine precision isu = 2.2 · 10−16. To examine the behaviour of the
algorithms we have performed tests for several values ofp and test matricesA of different
orders.

We compare experimentally the accuracy of the matrix sectorfunction computed by
the real Schur algorithm (rSch), the complex Schur algorithm (cSch), the real Schur al-
gorithm with reordering (rSch-ord) and the complex Schur algorithm with reordering
(cSch-ord), with the accuracy obtained by iterative methods: Newton’s method (Newt)
and two versions of Halley’s method. We use the standardMATLAB functionsschur and
ordschur for computing the Schur and reordered Schur decompositions, respectively.

The cost of algorithms is measured in flops. The flop denotes any of the four elementary
scalar operations+,−, ∗, / performed on real or complex numbers (see [7, Appendix C]). In
the number of flops, we give only the leading term as it is, for example, in [7, Table C.1]. The
number of flops in the complex and real Schur algorithms for computing the matrix sector
function equals(28 + (p− 1)/3)n3. The cost of the reordered Schur algorithms may or may
not be less than the cost of Schur algorithms without reordering (compare [7, Section 5.2]).
Some test matrices are given in the (real) Schur form. Thus the cost of performing the Schur
algorithms is less than in the general case.

In Newton’s method we have to computeX1−p
k . We first compute the inverse ofXk and

then we form the (p − 1)th power of the computed matrixX−1
k . The cost of computing one

iterate in Newton’s method mainly consists of inverting andpowering a matrix and it is equal
to 2 (η⌊log2(p − 1)⌋ + 1)n3 flops, whereη ∈ [1, 2], assuming thepth power is computed by
binary powering; see Algorithm 4.1 in [7].

The first version of Halley’s method (Hal1) was performed according to (4.2). In the
second version (Hal2) one computes

Xk+1 =
p − 1

p + 1
Xk +

4p

p + 1
Xk ((p + 1)Xp

k + (p − 1)I)
−1

, X0 = A. (6.1)

This version was inspired by Halley’s iteration proposed for the polar decomposition in [8,
Section3, formula (3.2)]. ComputingXk+1 by Halley’s iteration performed according to (4.2)
costs2(η⌊log2(p−1)⌋+3)n3 flops,η ∈ [1, 2]. In the second version of Halley’s iteration (6.1)
the cost is reduced to2(η⌊log2(p − 1)⌋ + 4

3 )n3 flops.
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We also compute the matrix sector directly from the formula (2.2): sectp(A) = AN−1,
whereN = (Ap)1/p was computed by the standardMATLAB matrix powerX1/p involving
eigensystem. In the tables below this method of computingsectp(A) is denoted byNroot.
The results obtained byNroot can be incorrect ifA is not diagonalizable. However, in all
our testsA was chosen to be diagonalizable. The method of computingsectp(A) directly
from (1.6) is denoted byDef in the tables. The scalarp-sector functionsp(λ) was computed
from (1.3).

The standardMATLAB functioninv was used to compute the inverse of the matrix in
the methodsDef, Nroot, Newt andHal1. In Hal2 the formula (6.1) was realized in a
different way. Namely, instead of using the inverse directly, the appropriate right-hand-side
linear system was solved in each iteration.

In the iterative methods we have applied a simple stopping criterion (for more advanced
termination criteria see [7, Section 4.9]), i.e.,

‖Xk − Xk−1‖ ≤ 100nu‖Xk‖,

wheren is the order of the matrixX0 = A and‖ · ‖ is the spectral norm. Then,̂X = Xk is
the computed matrix sector function.

Let X̂ denote the computed matrix sector function ofA by a given method. For all
methods we compute‖X̂‖ and

res(X̂) =
‖I − X̂p‖

‖X̂‖‖
∑p−1

i=0 (X̂p−1−i)T ⊗ X̂i‖
,

called the relative residual. We also compute

‖X̂p − I‖, ‖AX̂ − X̂A‖,
‖AX̂ − X̂A‖

‖A‖ ‖X̂‖
. (6.2)

The relative residual was proposed for the matrixpth root in [5]. Guo and Higham have
explained why the relative residual is a more appropriate criterion than the scaled residual
for the interpretation of the numerical results. Their arguments are valid also for the matrix
sector function. The last two quantities in (6.2) check if the iterations preserve commutativity
of A andsectp(A). We emphasize that these quantities do not measure the accuracy of the
computed matrix sector function.

In the examples presented below, we also includecond(A) for the spectral norm, the
numbers of performed iterations and theCPU timings. The functioncputime was used
for computing the execution time for each algorithm. The presented execution times are the
averages obtained by repeating one hundred computations for every test matrixA.

We used the standardMATLAB rand function to generate uniformly distributed random
elements of the real or complex matrices or their eigenvalues. The functiontriuwas used to
obtain the upper triangular part of the random matrix. While generating the test matrices, we
took care that the eigenvalues fell into the regions of convergence for Newton’s and Halley’s
methods. In Examples6.2–6.4 the eigenvalues ofA fall into the regionsB(Newt)

p andB
(Hal)
p ;

see Theorem4.3. In Examples6.1, 6.5–6.8 the eigenvalues of the matrices lie in the exper-
imentally determined regions of convergence of Newton’s and Halley’s methods, which are
larger thanB(Newt)

p andB
(Hal)
p , respectively.
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Let Y = A1/p and let us consider the following block companion matrix

C =




0 I
0 I

. . .
.. .
.. . I

A 0



∈ C

pn×pn. (6.3)

Then, (see [2])

sectp(C) =




0 Y −1 0
... 0

. . .

0
.. .

. . . Y −1

AY −1 0 · · · 0




.

In [2] the authors write:It would be interesting to know how the available methods forcom-
puting the matrix sector function behave if applied to the block companion matrixC with
randomA. Therefore, we perform numerical experiments also forC. The results are given
in Examples6.7 and6.8. The eigenvalues ofC are thepth roots of the eigenvalues ofA.
Therefore,C has several eigenvalues of the same modulus.

EXAMPLE 6.1. Letp = 4 andA be in real Schur form:

A =




1 2 0 0
−2 1 −450 0

0 0 1 3
0 0 −3 1


 .

The matrixA has the following eigenvalues:1 ± 2i, 1 ± 3i. The matrix sector function
S = sectp(A) is equal to

S =




0 1 0 −90
−1 0 −90 0

0 0 0 1
0 0 −1 0


 .

The results are given in Table6.1. In the first column we include the norms‖X̂ − S‖. All
results are satisfactory.

EXAMPLE 6.2. LetA = [aij ] be an8×8 matrix in real Schur form with complex eigen-

values−k2

10 ± ik, k = 1, 2, 3, 4, and elementsa23, a45, a67 equal to−450; see [5]. The other
elements in the upper triangle are zero. The spectral norm ofA is equal to‖A‖ = 4.5× 102.
The matrixA is ill-conditioned. Whenp < 21, only for p = 3, 4, 7 the eigenvalues ofA
lie in the convergence regionsB(Newt)

p andB
(Hal)
p . The results are summarized in Table6.2.

For p = 7 the commutativity condition is not well satisfied by the matrix sector function
computed byHal2, because‖X̂A − AX̂‖ is not small; see the first condition in (2.1). We
observed this also in some other examples, especially for largerp or n. On the other hand,
there are some examples where the situation is the opposite —the first version of Halley’s
method gives worse results than the second one with respect to the commutativity; see Ta-
bles6.3and6.4.
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TABLE 6.1
Results forA of ordern = 4 (in real Schur form) from Example6.1, cond(A) = 2.86 × 104.

p = 4, ‖X̂‖ = 90, iterNewt = 10, iterHal1 = 7, iterHal2 = 7

alg. ‖X̂ − S‖ ‖X̂p − I‖ res(X̂) ‖X̂A − AX̂‖
‖X̂A−AX̂‖

‖X̂‖‖A‖

Newt 1.57e − 14 5.68e − 14 2.48e − 18 6.86e − 14 1.69e − 18
Hal1 5.81e − 14 1.92e − 30 8.40e − 35 2.74e − 13 6.78e − 18
Hal2 4.38e − 14 2.84e − 14 1.24e − 18 1.27e − 13 3.14e − 18
cSch 2.01e − 14 8.74e − 14 3.81e − 18 1.76e − 13 4.35e − 18

cSch− ord 1.11e − 16 2.84e − 14 1.24e − 18 5.68e − 14 1.40e − 18
rSch 6.12e − 17 2.20e − 14 9.62e − 19 0 0

rSch− ord 6.12e − 17 2.20e − 14 9.62e − 19 0 0
Nroot 6.65e − 14 9.63e − 14 4.20e − 18 2.95e − 13 7.29e − 18
Def 1.03e − 13 2.30e − 13 1.00e − 17 2.50e − 13 6.16e − 18

TABLE 6.2
Results forA of ordern = 8 (in real Schur form) from Example6.2, cond(A) = 1.4 × 109.

p = 3, ‖X̂‖ = 1.8 × 106, iterNewt = 9, iterHal1 = 6, iterHal2 = 6

alg. CPU ‖X̂p − I‖ res(X̂) ‖X̂A − AX̂‖
‖X̂A−AX̂‖

‖X̂‖‖A‖

Newt 6.41e − 03 9.86e − 10 1.80e − 28 3.67e − 09 4.60e − 18
Hal1 6.41e − 03 9.44e − 10 1.72e − 28 6.58e − 09 8.25e − 18
Hal2 5.00e − 03 5.85e − 10 1.07e − 28 4.99e − 08 6.26e − 17
cSch 6.56e − 03 3.78e − 09 2.71e − 28 3.21e − 09 4.02e − 18

cSch− ord 4.84e − 03 2.10e − 09 3.82e − 28 4.99e − 09 6.26e − 18
rSch 1.13e − 02 3.01e − 09 5.49e − 28 6.64e − 10 8.34e − 19

rSch− ord 7.81e − 03 3.01e − 09 5.49e − 28 6.64e − 10 8.34e − 19
Nroot 4.69e − 04 8.14e − 09 1.48e − 27 1.61e − 08 2.02e − 17
Def 2.50e − 03 9.65e − 09 1.76e − 27 1.33e − 08 1.66e − 17

p = 7, ‖X̂‖ = 1.99 × 106, iter Newt = 15, iterHal1 = 9, iter Hal2 = 10

alg. CPU ‖X̂p − I‖ res(X̂) ‖AX̂ − X̂A‖
‖AX̂−X̂A‖

‖X̂‖‖A‖

Newt 8.91e − 03 2.06e − 09 3.21e − 28 4.39e − 09 4.89e − 18
Hal1 1.14e − 02 1.75e − 09 2.72e − 28 6.72e − 09 7.49e − 18
Hal2 7.19e − 03 1.30e − 09 2.03e − 28 6.65e − 05 7.41e − 14
cSch 8.44e − 03 6.95e − 09 1.08e − 27 2.55e − 09 2.85e − 18

cSch− ord 7.97e − 03 2.38e − 09 3.71e − 28 5.28e − 09 5.88e − 18
rSch 1.58e − 02 6.21e − 09 9.68e − 28 7.26e − 10 8.09e − 19

rSch− ord 1.77e − 02 6.21e − 09 9.68e − 28 7.26e − 10 8.09e − 19
Nroot 4.69e − 04 2.35e − 08 3.67e − 27 2.23e − 08 2.49e − 17
Def 1.41e − 03 2.40e − 08 3.74e − 27 1.39e − 08 1.55e − 17

EXAMPLE 6.3. Let nowA = D + T be complex upper triangular, whereD = diag(λj)
is complex,λj = xj + iyj for xj , yj ∈ [−100, 100], andT is a real random upper triangular
matrix with zero elements on the main diagonal. The nonzero elements ofT are generated
by rand from the interval[−1, 1]. In Table6.3we present the results forp = 5 andn = 40.
The matrixA is well conditioned and‖A‖ = 1.27e + 02.

EXAMPLE 6.4. Let the matrixA ∈ C
10×10 be generated as in Example6.3. In Table6.4

we present the results obtained forp = 4 andp = 10. The results obtained forp = 4 by
the reordered complex Schur algorithm are worse than without reordering. Newton’s method
works very well.

EXAMPLE 6.5. LetA ∈ C
10×10 be the Grcar matrix, a Toeplitz matrix with sensitive
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TABLE 6.3
Results for complex upper triangularA of ordern = 40 from Example6.3, cond(A) = 9.8.

p = 5, ‖X̂‖ = 1.1, iterNewt = 28, iterHal1 = 16, iterHal2 = 16

alg. CPU ‖X̂p − I‖ res(X̂) ‖AX̂ − X̂A‖
‖AX̂−X̂A‖

‖X̂‖‖A‖

Newt 4.11e − 01 7.23e − 16 1.36e − 16 5.05e − 15 3.75e − 17
Hal1 5.41e − 01 1.79e − 15 3.36e − 16 2.43e − 11 1.80e − 13
Hal2 2.31e − 01 8.26e − 16 1.55e − 16 3.58e − 15 2.66e − 17
cSch 1.42e − 01 1.11e − 15 2.09e − 16 1.89e − 15 1.40e − 17

cSch− ord 3.08e − 02 8.98e − 15 1.69e − 15 8.95e − 15 6.64e − 17
Nroot 5.47e − 03 5.34e − 15 1.00e − 15 4.59e − 15 3.41e − 17
Def 3.75e − 02 1.64e − 15 3.08e − 16 3.27e − 15 2.43e − 17

TABLE 6.4
Results for complex upper triangularA of ordern = 10 from Example6.4.

p = 4, cond(A) = 2.8, ‖X̂‖ = 1.01, iter Newt = 22, iterHal1 = 13, iterHal2 = 13

alg. CPU ‖X̂p − I‖ res(X̂) ‖AX̂ − X̂A‖
‖AX̂−X̂A‖

‖X̂‖‖A‖

Newt 3.11e − 02 4.44e − 16 1.10e − 16 1.70e − 15 1.76e − 17
Hal1 3.94e − 02 8.88e − 16 2.19e − 16 5.20e − 15 5.38e − 17
Hal2 1.80e − 02 5.21e − 18 1.29e − 18 1.22e − 15 1.26e − 17
cSch 8.28e − 03 5.20e − 18 1.28e − 18 4.66e − 16 4.82e − 18

cSch− ord 5.63e − 03 2.22e − 15 5.48e − 16 1.90e − 15 1.97e − 17
Nroot 1.09e − 03 3.12e − 15 7.70e − 16 8.31e − 16 8.59e − 18
Def 1.56e − 03 9.28e − 16 2.29e − 16 1.09e − 15 1.13e − 17

p = 10, cond(A) = 6.4, ‖X̂‖ = 1.02, iter Newt = 51, iterHal1 = 28, iterHal2 = 28

alg. CPU ‖X̂p − I‖ res(X̂) ‖AX̂ − X̂A‖
‖AX̂−X̂A‖

‖X̂‖‖A‖

Newt 5.23e − 02 1.31e − 15 1.28e − 16 2.00e − 15 1.67e − 17
Hal1 5.25e − 02 2.09e − 15 2.04e − 16 6.04e − 08 5.07e − 10
Hal2 2.88e − 02 8.90e − 16 8.70e − 17 1.45e − 15 1.21e − 17
cSch 1.20e − 02 1.28e − 15 1.25e − 16 4.68e − 16 3.93e − 18

cSch− ord 3.44e − 03 7.12e − 15 6.96e − 16 1.91e − 15 1.60e − 17
Nroot 1.56e − 04 5.36e − 15 5.24e − 16 1.09e − 15 9.15e − 18
Def 2.66e − 03 2.17e − 15 2.12e − 16 8.01e − 16 6.72e − 18

eigenvalues generated by theMATLAB commandgallery(’grcar’,10). The matrixA
is well conditioned and‖A‖ = 3.11. The results are presented in Table6.5. The accuracy of
the computed matrix sector is similar for all methods.

EXAMPLE 6.6. LetA ∈ R
n×n be in real Schur form. Each block on the main diagonal

is either1 × 1 with real eigenvalues generated from the interval[−2, 2], or 2 × 2 having
complex conjugate eigenvaluesλj = xj ± iyj , xj , yj ∈ [−2, 2]. The nonzero elements
of A are randomly generated from the interval[−1, 1]. The number of pairs of complex
eigenvalues was also randomly generated. All eigenvalues belong to the regionB(Hal)

p and to
the numerically determined convergence region of Newton’smethod. The results forn = 20
are presented in Table6.6. The complex eigenvalues lie near the boundaries of the regions
of convergence; see Figure6.1. The matrixA has 16 real eigenvalues: four of them satisfy
0.2 < |λ| < 0.5 and four of them satisfy|λ| < 0.2. The matrixV of eigenvectors of
A = V diag(λj)V

−1 is ill-conditioned:cond(V ) = 2.91×105. Therefore, the matrix sector
function computed byNroot andDef is less accurate than by other methods. The real Schur
algorithm with reordering gives a little better results than without reordering.
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TABLE 6.5
Results for Grcar complex matrixA of ordern = 10 from Example6.5, cond(A) = 2.89.

p = 9, ‖X̂‖ = 2.37, iterNewt = 13, iterHal1 = 7, iterHal2 = 7

alg. CPU ‖X̂p − I‖ res(X̂) ‖AX̂ − X̂A‖
‖AX̂−X̂A‖

‖X̂‖‖A‖

Newt 1.48e − 02 4.24e − 15 1.39e − 17 2.03e − 15 2.76e − 16
Hal1 2.50e − 02 4.05e − 15 1.32e − 17 3.44e − 14 4.67e − 15
Hal2 8.28e − 03 2.53e − 15 8.28e − 18 2.28e − 15 3.10e − 16
cSch 3.08e − 02 3.70e − 14 1.21e − 16 1.05e − 14 1.42e − 15

cSch− ord 1.81e − 02 3.71e − 14 1.21e − 16 1.02e − 14 1.38e − 15
rSch 1.73e − 02 3.57e − 14 1.17e − 16 1.04e − 14 1.41e − 15

rSch− ord 1.31e − 02 2.95e − 14 9.64e − 17 1.10e − 14 1.49e − 15
Nroot 1.56e − 03 1.63e − 14 5.33e − 17 6.53e − 15 8.85e − 16
Def 2.03e − 03 1.56e − 14 5.12e − 17 4.07e − 14 5.52e − 15

TABLE 6.6
Results forA of ordern = 20 (in real Schur form) from Example6.6, cond(A) = 6.8 × 105.

p = 4, ‖X̂‖ = 4.35 × 102, iterNewt = 43, iterHal1 = 12, iterHal2 = 12

alg. CPU ‖X̂p − I‖ res(X̂) ‖X̂A − AX̂‖
‖X̂A−AX̂‖

‖X̂‖‖A‖

Newt 7.98e − 02 2.61e − 13 7.25e − 24 3.38e − 08 2.14e − 11
Hal1 4.67e − 02 5.00e − 13 1.39e − 23 1.50e − 12 9.51e − 16
Hal2 3.00e − 02 2.04e − 13 5.68e − 24 3.59e − 12 2.27e − 15
cSch 2.92e − 02 2.62e − 13 7.30e − 24 6.90e − 14 4.36e − 17

cSch− ord 1.52e − 01 6.75e − 13 1.88e − 23 1.05e − 13 5.89e − 17
rSch 2.28e − 02 2.07e − 11 5.76e − 22 8.25e − 14 5.22e − 17

rSch− ord 7.17e − 02 1.05e − 12 2.93e − 23 9.30e − 14 5.89e − 17
Nroot 4.84e − 03 5.94e − 09 1.65e − 19 1.46e − 10 9.25e − 14
Def 5.94e − 03 4.23e − 10 1.18e − 20 4.99e − 11 3.16e − 14

EXAMPLE 6.7. LetA ∈ R
8×8 be generated as in Example6.2 and letC ∈ R

8p×8p be
determined as (6.3). The matrixC is very ill-conditioned. The results forC are summarized
in Table6.7. Now X̂ denotes the computedsectp(C). The matrixA has 4 pairs of conju-
gate complex eigenvalues. The eigenvalues ofC are thepth roots of the eigenvalues ofA.
Therefore,C has 4 groups of eigenvalues with2p eigenvalues with the same modulus in each
group. Forp = 3 andp = 6 they are marked in Figure6.2; see also Figure6.1. In order
to evaluate the accuracy of the computed real Schur decomposition of C by theMATLAB
functionschur we computed the eigenvalues ofC in the following three ways:

λ(eig)
j : eigenvalues ofC computed by means ofeig,

λ(A)
j : eigenvalues ofC computed as thepth roots of the exact eigenvalues ofA,

λ(Sch)
j : eigenvalues ofC computed directly from the diagonal blocks ofR from the real

Schur decomposition ofC.

We obtained, forp = 3,

max
j

|λ(Sch)
j − λ(A)

j | = 3.62e − 11, min
j

|λ(Sch)
j − λ(A)

j | = 8.46e − 13,

max
j

|λ(Sch)
j − λ(eig)

j | = 4.41e − 11, min
j

|λ(Sch)
j − λ(eig)

j | = 1.88e − 12,

max
j

|λ(A)
j − λ(eig)

j | = 1.44e − 11, min
j

|λ(A)
j − λ(eig)

j | = 7.45e − 16,
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and, forp = 6,

max
j

|λ(Sch)
j − λ(A)

j | = 1.54e − 10, min
j

|λ(Sch)
j − λ(A)

j | = 5.90e − 12,

max
j

|λ(Sch)
j − λ(eig)

j | = 1.46e − 10, min
j

|λ(Sch)
j − λ(eig)

j | = 2.95e − 12,

max
j

|λ(A)
j − λ(eig)

j | = 2.83e − 11, min
j

|λ(A)
j − λ(eig)

j | = 6.13e − 13.

The inaccuracy in the computed Schur decompositions ofC causes the matrix sector function
computed by the Schur algorithms to be less accurate; see thevalues ofres in Table6.7. We
notice that the norm of the matrix sector function ofC is large. Forn = 48 andp = 6 the
matrixV of the eigenvectors ofC is very ill-conditioned:cond(V ) = 4.7× 107. Higham [7,
Section 4.5] writes that since the conditioning of a matrix functionf(A) is not necessarily
related tocond(V ), computing a matrix functionf(A) via the spectral decomposition ofA
may be numerically unstable; see the results forDef.

TABLE 6.7
Results for realC from Example6.7, cond(C) = 1.4 × 109.

n = 24, p = 3, ‖X̂‖ = 1.71 × 106, iterNewt = 8, iterHal1 = 5, iterHal2 = 6

alg. CPU ‖X̂p − I‖ res(X̂) ‖CX̂ − X̂C‖
‖CX̂−X̂C‖

‖X̂‖‖C‖

Newt 1.80e − 02 9.39e − 10 1.87e − 28 2.32e − 09 2.99e − 18
Hal1 2.97e − 02 4.07e − 09 8.09e − 28 6.11e − 09 7.89e − 18
Hal2 2.00e − 02 1.05e − 09 2.10e − 28 7.49e − 06 9.68e − 15
cSch 4.22e − 02 1.34e − 06 2.67e − 25 9.98e − 08 1.29e − 16

cSch− ord 1.53e − 02 1.12e − 06 2.23e − 25 9.92e − 08 1.28e − 16
rSch 7.23e − 02 1.35e − 06 2.68e − 25 9.98e − 08 1.29e − 16

rSch− ord 7.30e − 02 1.34e − 06 2.66e − 25 9.97e − 08 1.29e − 16
Nroot 2.81e − 03 1.34e − 08 2.67e − 27 5.44e − 09 7.03e − 18
Def 1.28e − 02 6.60e − 08 1.31e − 26 2.44e − 07 3.15e − 16

n = 48, p = 6, ‖X̂‖ = 8.76 × 105, iterNewt = 9, iterHal1 = 5, iterHal2 = 5

alg. CPU ‖X̂p − I‖ res(X̂) ‖CX̂ − X̂C‖
‖CX̂−X̂C‖

‖X̂‖‖C‖

Newt 7.39e − 02 2.99e − 09 3.16e − 28 3.29e − 09 8.30e − 18
Hal1 8.84e − 02 3.21e − 09 3.40e − 28 1.36e − 09 3.44e − 18
Hal2 5.50e − 02 2.21e − 09 2.34e − 28 8.45e − 07 2.14e − 15
cSch 2.55e − 01 6.29e − 04 6.65e − 23 3.70e − 08 9.34e − 17

cSch− ord 5.70e − 02 4.87e − 03 5.15e − 22 3.63e − 08 9.17e − 17
rSch 5.33e − 01 9.43e − 04 9.98e − 23 3.57e − 08 9.02e − 17

rSch− ord 2.54e − 01 9.52e − 04 1.01e − 22 3.81e − 08 9.62e − 17
Nroot 1.00e − 02 2.15e − 08 2.27e − 27 2.86e − 09 7.22e − 18
Def 3.81e − 02 1.26e − 03 1.33e − 22 5.88e − 03 1.49e − 11

EXAMPLE 6.8. LetA ∈ C
8×8, A = D + T , whereT is generated as in Example6.3,

D = diag(λj) is complex andλj are generated such that (compare (4.17))

|λj | ≥ 1, −π/(2p) < arg(λj) < π/(2p).

The eigenvalues ofA have different moduli. The results forC ∈ C
8p×8p, determined as

in (6.3), are summarized in Table6.8. The matrixC is well-conditioned. The computed
matrix sector functionX̂ has small norm and is computed accurately by all methods. In this
example the Schur decomposition ofC was computed with good accuracy. The differences
between the eigenvalues ofC computed by the three methods mentioned in the previous
example were of the order10−15 or less.
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FIGURE 6.1. Location of the eigenvalues ofA from Example6.6 and the convergence regions for Newton’s
method forp = 4 (left); location of the eigenvalues ofC from Example6.7and the convergence regions for Halley’s
method forp = 6 (right).

TABLE 6.8
Results forC from Example6.8, cond(C) = 5.55.

n = 48, p = 6, ‖X̂‖ = 4.17, iterNewt = 7, iterHal1 = 5, iterHal2 = 5

alg. CPU ‖X̂p − I‖ res(X̂) ‖CX̂ − X̂C‖
‖CX̂−X̂C‖

‖X̂‖‖C‖

Newt 1.05e − 01 9.06e − 16 1.14e − 17 1.53e − 15 6.63e − 17
Hal1 1.83e − 01 1.24e − 15 1.57e − 17 2.32e − 15 1.00e − 16
Hal2 8.14e − 02 6.68e − 16 8.44e − 18 1.00e − 15 4.33e − 17
cSch 2.66e − 01 3.99e − 14 5.04e − 16 2.96e − 14 1.28e − 15

cSch− ord 6.56e − 02 4.28e − 14 5.41e − 16 3.10e − 14 1.34e − 15
Nroot 1.25e − 02 2.99e − 15 3.78e − 17 3.98e − 16 1.72e − 17
Def 5.50e − 02 1.42e − 14 1.79e − 16 2.27e − 14 9.82e − 16

In the above numerical experiments the matrix sector function was computed directly
from (1.7) using the standard matrix powering inMATLAB for X1/p, which can be applied
only to diagonalizable matrices. In [14] we present experiments obtained by another ap-
proach for computing (1.7), in which we use the method of Guo and Higham [5] for the prin-
cipal matrixpth root of a real matrixA. Their algorithm is in the Matrix Function Toolbox
mftoolbox in [7]. The method of Guo and Higham involves the real Schur decomposition,
and in our numerical experiments the accuracy ofsectp(A) computed from (1.7) using their
method for the matrixpth root was not better than the accuracy ofsectp(A) computed by the
real and complex Schur algorithms.

7. Conclusions. In this paper we have investigated the properties of some algorithms
for computing the matrix sector function. We derived the complex Schur algorithms with and
without reordering and blocking. The complex Schur algorithm is applicable to all matrices
for which the matrix sector function exists. The developed real Schur algorithm can be ap-
plied only to real matrices having no multiple complex eigenvalues in the sectors different
from Φ0 andΦp/2.

We have determined the regions of convergence for Newton’s and Halley’s iterations
applied to the matrix sector function. From the results known in the general theory of matrix
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FIGURE 6.2. Location of the eigenvalues ofC from Example6.7 and the convergence regions for Newton’s
method,p = 3 andp = 6.

functions, we have deduced the stability of Newton’s and Halley’s methods for computing
the matrix sector function in the sense considered in [7, Section 4.9]. Experimental results
indicate that these iterative methods compute the matrix sector function with the same or
better accuracy than other methods considered in this paper.
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