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ON THE EQUIVALENCE OF PRIMAL AND DUAL SUBSTRUCTURING
PRECONDITIONERS *

BEDRICH SOUSEDK T AND JAN MANDEL#

Abstract. After a short historical review, we present four popularstulcturing methods: FETI-1, BDD, FETI-
DP, BDDC, and derive the primal versions to the two FETI methodbed P-FETI-1 and P-FETI-DP, as proposed
by Fragakis and Papadrakakis. The formulation of the BDDC ate#fhows that it is the same as P-FETI-DP and
the same as a preconditioner introduced by Cros. We provegtieity of eigenvalues of a particular case of the
FETI-1 method and of the BDD method by applying a recent aklistesalt by Fragakis.
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1. Introduction. Substructuring methods are among the most popular andyvided
methods for the solution of systems of linear algebraic #gna obtained by finite element
discretization of second order elliptic problems. Thisgrgmovides a review of recent results
on the equivalence of several substructuring methods imaremn framework, complemented
by some details not published previously.

In Section2 we give a brief review of the history of these methods. Aftéraducing
the basic concepts of substructuring in Secipwe formulate the dual methods, FETI-1 and
FETI-DP in Sectiord, and derive their primal versions, P-FETI-1 and P-FETI-@Rjinally
introduced in P0]. However the derivation was omitted i2(]. Next, in Section5, we
formulate the primal methods, BDD and BDDC . Finally, we stednnections between the
methods in Sectiol®. We revisit our recent proof that the P-FETI-DP is in fact #zane
method as the BDDC3F] and the preconditioner by Cro8][ Next, we translate some of the
abstract ideas fromlp, 20] into a framework usual in the domain decomposition literat
We recall from PR(] that for a certain variant of FETI-1, the P-FETI-1 methodtie same
algorithm as BDD. Then we derive a recent abstract resultragakis [L9] in this special
case to show that the eigenvalues of BDD and that particelaian of FETI-1 are the same.
It is notable that this is the variant of FETI-1 devised toldeih difficult, heterogeneous
problems L].

2. Historical remarks. In this section, we provide a short overview of iterative sub
structuring, also known as non-overlapping domain decaitipo. Rather than attempting
a complete unbiased survey, our review centers on worksembad to the BDD and FETI
theory by the second author and collaborators.

Consider a second order, selfadjoint, positive definiiptalproblem, such as the Laplace
equation or linearized elasticity, discretized by finitereénts with characteristic element
sizeh. Given sufficient boundary conditions, the global stiffn@satrix is nonsingular, and
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its condition number grows a8(h~2) for h — 0. However, if the domain is divided into
substructures consisting of disjoint unions of elementstha interior degrees of freedom of
each substructure are eliminated, the resulting matrixefbundary degrees of freedom has
a condition number that grows only & H ~'h~!), whereH > h is the characteristic size
of the substructure. This fact has been known early on; sgeKand GroppZ2] and, for

a recent rigorous treatment, Brennd}. [The elimination of the interior degrees of freedom
is also calledstatic condensatigrand the resulting reduced matrix is called 8&hur com-
plement Because of the significant decrease of the condition nunolpercan substantially
accelerate iterative methods by investing some work up frothe Cholesky decomposition
of the stiffness matrix on the interior degrees of freedond, #aen just run back substitution
in each iteration. The finite element matrix is assembledsgply in each substructure. This
process is calledubassembly The elimination of the interior degrees of freedom in each
substructure can be done independently, which is impoftaarallel computing: each sub-
structure can be assigned to an independent processorubsiustures are then treated as
large elements, with the Schur complements playing theafdlee local stiffness matrices of
the substructures; se2Z, 43] for more details.

The process just described is the backgroungrimhal iterative substructuring methods
Here, the condition that the values of degrees of freedonmuamto several substructures co-
incide is enforced strongly, by using a single variable fwesent them. The improvement of
the condition number fror®(h=2) to O(H ~'h~1), straightforward implementation, and the
potential for parallel computing explain the early popitjeof iterative substructuring meth-
ods R2]. However, further preconditioning is needed. Perhapsrtbst basic preconditioner
for the reduced problem is a diagonal one. Preconditionfregroatrix by its diagonal helps
to take out the dependence on scaling and variation of cmeffcand grid sizes. But the
diagonal of the Schur complement is expensive to obtais.usually better to avoid comput-
ing the Schur complement explicitly and only use multigiica by the reduced substructure
matrices, which can be implemented by solvin®iaichlet problem on each substructure.
Probing methods (Chan and Mathe@})[use such matrix-vector multiplication to estimate
the diagonal entries of the Schur complement.

In dual iterative substructuring methodaso called FETI methods, the condition that the
values of degrees of freedom common to several substrgctoiacide is enforced weakly,
by Lagrange multipliers. The original degrees of freedomthen eliminated, resulting in
a system for the Lagrange multipliers, with the system dper@onsisting essentially of an
assembly of the inverses of the Schur complements. Muépbn by the inverses of the
Schur complements can be implemented by solviNgamanrproblem on each substructure.
The assembly process is modified to ensure that the Neumahteprs are consistent, giving
rise to a natural coarse problem. The system for the Lagramggpliers is solved again
iteratively. This is the essence of the FETI method by Faamat Roux 18], later called
FETI-1. The condition number of the FETI-1 method with diagbpreconditioning grows
asO(h~1) and is bounded independently of the number of substructseesFarhat, Mandel,
and Roux [L7]. For a small number of substructures, the distributiorhefeéigenvalues of the
iteration operator is clustered at zero, resulting in scperergence of conjugate gradients;
however, for more than a handful of substructures, the sopgergence is lost and the speed
of convergence is as predicted by théh~!) growth of the condition numbed.f].

For large problems and large number of substructuasgmptotically optimal precon-
ditionersare needed. These preconditioners result typically in iti@mdnumber bounds of
the formO(log®(1 + H/h)) (the numberl is there only to avoid the valueg1 = 0). In
particular, the condition number is bounded independeauitithe number of substructures
and the bounds grow only slowly with the substructure siaechSpreconditioners require a
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coarse problemandlocal preconditioningthat inverts approximately (but well enough) the
diagonal submatrices associated with segments of thdants between the subtructures or
the substructure matrices themselves. The role of the mealnditioning is to slow down
the growth of the condition number as— 0, while the role of the coarse problem is to pro-
vide global exchange of information in order to bound theditton number independently
of the number of substructures. Many such asymptoticaltyragd primal methods were de-
signed in the 1980s and 1990s; e.g., Bramble, Pasciak, dratzSg, 3], Dryja [11], Dryja,
Smith, and Widlund 13], Dryja and Widlund [L4], and Widlund §6]. However, those algo-
rithms require additional assumptions and information thay not be readily available from
finite element software, such as an explicit assumptionttfesubstructures form a coarse
triangulation and that one can build coarse linear funstfoom its vertices.

Practitioners desire methods that work algebraically \aithitrary substructures, even
if a theory may be available only in special cases (first tesoh extending the theory to
quite arbitrary substructures are given in Dohrmann, Klawand Widlund 10] and Kla-
wonn, Rheinbach, and Widlun@3]). They also prefer methods formulated in terms of the
substructure matrices only, with minimal additional imfation. In addition, the methods
should be robust with respect to various irregularitiesha&f problem. Two such methods
have emerged in early 1990s: the Finite Element Tearing mteddonnecting (FETI) method
by Farhat and Rouxlg], and the Balancing Domain Decomposition (BDD) by Mancd#l| [
Essentially, the FETI method (with the Dirichlet precoruatier) preconditions the assembly
of the inverses of the Schur complements by an assembly &char complements, and the
BDD method preconditions assembly of Schur complementsitasaembly of the inverses,
with a suitable coarse problem added. Of course, the asgevaiijhts and other details play
an essential role.

The BDD method added a coarse problem to the local NeumanmBlien precondi-
tioner by DeRoeck and Le Talled], which consisted of the assembly (with weights) of
pseudoinverses of the local matrices of the substructusseibling the inverses of the local
matrices is an idea similar to the Element-by-Element (EBE)hod by Hughes et al2{].
The method was called Neumann-Neumann because the préopadrequires solution of
Neumann problems on all substructures, in contrast to dieeleumann-Dirichlet method,
which, for a problem with two substructures, required tHetsan of a Neumann problem on
one and a Dirichlet problem on the othd#]. The coarse problem in BDD was constructed
from the natural nullspace of the problem (constant for taplace equation, rigid body mo-
tions for elasticity) and solving the coarse problem gutaaah consistency of local problems
in the preconditioner. The coarse correction was then iegbgariationally, just as the coarse
correction in multigrid methods. Th@(log?(1 + H/h)) bound was then proved{].

In the FETI method, solving the local problems on the sulostines to eliminate the orig-
inal degrees of freedom has likewise required working incttv@aplement of the nullspace of
the substructure matrices, which gave a rise to a naturasegaoblem. Since the operator
employs inverse of the Schur complement (solving a Neumestrigm) an optimal precondi-
tioner employs multiplication by the Schur complement\w a Dirichlet problem), hence
the preconditioner was called the Dirichlet preconditiorihe O(log®(1 + H/h)) bound
was proved by Mandel and Teza@6], and O(log?(1 + H/h)) for a certain variant of the
method by Tezaurd4]; see also Klawonn and Widlun@¥] for further discussion.

Because the interface to the BDD and FETI method requireg thiel multiplication by
the substructure Schur complements, solving systems hétstibstructure Schur comple-
ments, and information about the substructure nullspaesmethods got quite popular and
widely used. In Cowsar, Mandel, and Wheelg}, the multiplications were implemented
as solution of mixed problems on substructures. Howevétherethe BDD nor the FETI
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method worked well for 4th order problems (plate bendind)e Teason was essentially that
both methods involve “tearing” a vector of degrees of freededuced to the interface, and,
for 4th order problems, the “torn” function has energy thaivwgs as negative power af,
unlike for 2nd order problems, where the energy grows onlg pesitive power ofog 1/h.
The solution was to prevent the “tearing” by fixing the funatiat the substructure corners;
then only its derivative along the interface gets “torn”,igthhas energy again only of the
orderlog 1/h. Preventing such “tearing” can be generally accomplishethbreasing the
coarse space, since the method runs in the complement tménsecspace. For the BDD
method, this was relatively straightforward, because thelaa of the BDD method allows
arbitrary enlargement of the coarse space. The coarse #paicdoes the trick contains
additional functions with spikes at corners, defined by fixine value at the corner and min-
imizing the energy. With this improvemeri®,log*(1 + H/h)) condition number bound was
proved and fast convergence was recovered for 4th ordetgmnsh(Le Tallec, Mandel, and
Vidrascu P8, 29)). In the FETI method, unfortunately, the algebra requites the coarse
space is made of exactly the nullspace of the substructutréces so a simple enlargement of
the coarse space is not possible. Therefore, a version of E&lled FETI-2, was developed
by Mandel, Tezaur, and Farh&q], with a second correction by coarse functions concen-
trated at corners, wrapped around the original FETI methavdéhtionally much like BDD,
and theO(log®(1 + H/h)) bound was proved again. However, the BDD and FETI methods
with the modifications for 4th order problems were rather ighdy (especially FETI-2), and,
consequently, not as widely used.

The breakthrough came with the Finite Element Tearing amer¢onnecting - Dual,
Primal (FETI-DP) method by Farhat et allj], which enforced the continuity of the de-
grees of freedom on a substructure corner as in the primataddby representing them
by one common variable, while the remaining continuity dbads between the substruc-
tures are enforced by Lagrange multipliers. The primalaldés are again eliminated and
the iterations run on the Lagrange multipliers. The eliioraprocess can be organized as
solution of sparse system and it gives rise to a natural egansblem, associated with sub-
structure corners. In 2D, the FETI-DP method was provedye bandition number bounded
asO(log®(1 + H/h)) both for 2nd order and 4th order problems by Mandel and Te[Zaiir
However, the method does not converge as well in 3D and aesrager edges or faces of
substructures need to be added as coarse variables foofagrgence (Klawonn, Widlund,
and Dryja p7], Farhat, Lesoinne, and Piersat]), and theO(log®(1 + H/h)) bound can
then be proved?7].

The Balancing Domain Decomposition by Constraints (BDD@pweveloped as a pri-
mal alternative the FETI-DP method by Dohrmar®). [ The BDDC method imposes the
equality of coarse degrees of freedom on corners and of gegfay constraints. In the case
of only corner constraints, the coarse basis functionstaesame as in the BDD method
for 4th order problems from2B, 29). The boundO(log?(1 + H/h)) for BDDC was first
proved by Mandel and Dohrman&3]. The BDDC and the FETI-DP are currently the most
advanced versions of the BDD and FETI families of methods.

The convergence properties of the BDDC and FETI-DP methads guite similar, yet
it came as a surprise when Mandel, Dohrmann, and TeZalipfoved that the spectra of
their preconditioned operators are in fact identical, ostéhe components are same. This
result came at the end of a long chain of ties discovered leetB®D and FETI type method.
Algebraic relations between FETI and BDD methods were pdimut by Rixen et al.40],
Klawonn and Widlund 25], and Fragakis and Papadrakak][ An important common
bound on the condition number of both the FETI and the BDD woetih terms of a single
inequality was given by Klawonn and Widlundd]. Fragakis and Papadrakakia(], who
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derived certain primal versions of FETI and FETI-DP predtoders (called P-FETI-1 and
P-FETI-DP), have also observed that the eigenvalues of BiiDeacertain version of FETI
are identical along with the proof that the primal versiortto$ particular FETI algorithm
gives a method same as BDD. The proof of equality of eigegbf BDD and FETI was
given just recently in more abstract framework by Fragaki.[ Mandel, Dohrmann, and
Tezaur B4] have proved that the eigenvalues of BDDC and FETI-DP aretic& and they
have obtained a simplified and fully algebraic version (iéth no undetermined constants)
of a common condition number estimate for BDDC and FETI-OrRjlar to the estimate by
Klawonn and Widlund25] for BDD and FETI. Simpler proofs of the equality of eigenves
of BDDC and FETI-DP were obtained by Li and WidlurzD], and by Brenner and Sung]|
who also gave an example when BDDC has an eigenvalue equa taud FETI-DP does not.
A primal variant of P-FETI-DP was proposed by Cr8§ piving a conjecture that BDDC and
P-FETI-DP is in fact the same method, which was first shown saraehow more abstract
level in our recent work3g].

It is interesting to note that the choice of assembly weighthe BDD preconditioner
was known at the very start from the work of DeRoeck and Lestdlt1] and before, while
the choice of weights for FETI type method is much more cocapéid. A correct choice of
weights is essential for the robustness of the methods wghearct to scaling the matrix in
each substructure by an arbitrary positive number (thegfy@shdence of the bounds on jumps
in coefficients”). For the BDD method, such convergence bisumnere proved by Mandel
and Brezina 32], using a similar argument as in Sarki&?] for Schwarz methods; see also
Dryja, Sarkis, and Widlund12. For the FETI methods, a proper choice of weights was
discovered only much later; see Rixen and FarBé [Farhat, Lesoinne and Piersatf] for
a special case, Klawonn and Widlurigh] for a more general case and convergence bounds,
and a detailed discussion in Mandel, Dohrmann, and TeZaijir [

3. Substructuring components for a model problem.We first show how the spaces
and operators we will work with arise in the standard sulestiing theory for a model prob-
lem obtained by a discretization of the second order efliptoblem. Consider a bounded
domainQ2 ¢ R¢ decomposed into nonoverlapping subdomains (alterngtbadled substruc-
tures) denoted?;, i = 1,..., N, which form a conforming triangulation of the domdin
Each substructure is a union of a uniformly bounded numbéragfangean”1 or Q1 fi-
nite elements, such that the nodes of the finite elementsleetaubstructures coincide. The
boundary of2; is denoted by)?,. The nodes contained in the intersection of at least two sub-
structures are called boundary nodes. The union of all bamymabdes of all substructures is
called the interfac®', andl’; is the interface of substructufe. The space of vectors of local
degrees of freedom dny; is denoted by, andW = W, x --- x Wy LetS; : W; — W, be
the Schur complement operator obtained by eliminatingedirior degrees of freedom 6f;,
i.e., those that do not belong to interfalce We assume that the matric8sare symmetric
positive semidefinite and consider global vectors and wesrin the block form

w1 Sl
w=| |, wew, S§= . (3.1)

WN SN

The problem we wish to solve is the constrained minimizatibanergy,

%a(u, u) — (r,u) — min,  subjecttou € W, (3.2)
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whereW c W is the space of all vectors of degrees of freedom on the sudtstes that
coincide on the interfaces, and the bilinear form

a(u,v) = (Su,v), Yu,veW,

is assumed to be positive definite Bn In the variational form, problen8(2) can be written
as

weW: a(u,v) = (r,v), Yve w. (3.3)
The global Schur complemeﬁ‘t: W — W' associated with is defined by
a(u,v) = <§u7v), Yu,v € W.
Defining R as the natural embedding of the spﬁe’nto the spacéV/, i.e.,
R:W—W, RiueWr—uecW, (3.4)
we can write 8.3) equivalently as the system of linear algebraic equations
Su=r, whereS=RTSR. (3.5)

The BDDC and FETI-DP, as the two-level preconditioners,cuaracterized by the se-
lection of certaincoarse degrees of freedosuch as values at the corners and averages over
edges or faces of substructures; for their general defingie, e.g.,46]. So, we define
W C W as the subspace of all functions such that the values of aangeaegrees of free-
dom have a common value for all relevant substructures amdlvano(2, and such that

WCWCW

The spaceW has to be selected in the deS|gn of the precondltloner sdhbdiilinear form
a(-,-) is positive definite oV. The operatoS W — W’ associated with is defined by

a(u,v) = (Su,v), Vu,veW.

REMARK 3.1. The idea to restrict the bilinear foraf-, -) from the spacéV into the
subspacéV is closely related to the concept of subassembly, as emgioy&0].

In formulation of dual methods from the FETI family, we intitocce the matrix
B =[By,...,Bn],

which enforces the continuity across substructure intedand it is defined as follows: each
row B corresponds to a degree of freedom common to a pair of sahstes: and;j. The
entries of the row are zero except for oné in the blocki and one-1 in the blocky, so that
the condition

Bu=0<=ue€ W,
and using 8.4), clearly

BR =0. (3.6)
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An important ingredient of substructuring methods is theraging operatoty : W — W
defined as

E =RTDp,

whereDp : W — W is a given weight matrix such that the decomposition of upityperty
holds,

ER=1I. (3.7)

In terms of substructuringy is an averaging operator that maps the substructure logedeg
of freedom to global degrees of freedom.
The last ingredient is the matri®, constructed fronB as

Bp =[Dp1By,...,DpnBn],

where the matrice® p; are determined fronb p; see P7, 34] for details.
Finally, we shall assume (cf3f}, equation (10)]) that

BEB+ RE =1, (3.8)
which easily implies®BEB = E(I — RE) = E — ERE = 0, and so
BTBpET =0. (3.9)

4. P-FETI family of methods. We review the FETI-1 and FETI-DP preconditioners
followed in each case by a formulation of their primal vensialenoted as P-FETI-1 and
P-FETI-DP, respectively.

4.1. P-FETI-1. In the case of the FETI-1 method, the proble®) is formulated as
minimization of total subdomain energy subject to the curity condition

%a(w,w) — (f,w) — min, subjecttow € W, Bw =0, 4.1)

which is equivalent to a saddle point system: fijnd A\) € W x A such that

Sw+BTAN = f,

Bw = 0. (4.2)

First, note thatS is invertible onnull B and\ is unique up to a component imll B”, soA
is selected to beange B. Let Z be matrix with linearly independent columns, such that
range Z = null S. 4.3)
SincesS is semi-definite, it must hold for the first equation to be able that
f — BT\ € range S = (null S)l = (range Z)" = null 27,

so, equivalently, we require that

ZT(f —BTX) =0. (4.4)
Eliminatingw from the first equation of4.2) as

w= ST (f — BT\ + Za, (4.5)
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substituting in the second equation éf2) and rewriting ¢.4), we get
BSYBT\—BZa = BS*f,
—ZTBT ) = —ZTf.
DenotingG = BZ andF = BS* BT this system becomes
FA\—Ga = BS'f,
- T (4.6)
—-G* )\ = —Zf.

Multiplying the first equation byGT QG)~1GTQ, whereQ is some symmetric and positive
definite scaling matrix, we can computes

a=(GTQG)'GTQ(F\ — BSTf). 4.7)
The first equation in4.6) thus becomes
FA\—G(GTQG) 'GTQ(F\— BS*Tf)=BS*f. (4.8)
Introducing
P=1-QGGTQG)'GT,

as theQ-orthogonal projection ontaull GT, we get that4.8) corresponds to the first equa-
tion in (4.6) multiplied by P”. So, the system¥(6) can be written in the decoupled form
as

PTFN=PTBS*f,

Gt'hx=27"¢.
The initial value ofX is chosen to satisfy the second equationdirby, so
o = QGGTQG)1ZTf. (4.9)
Substituting)\g into (4.7) gives initial value ofz as
ao = (GTQG)'GTQ(F)\ — BSTf). (4.10)

Since we are looking foh € null G, the FETI-1 method is a preconditioned conjugate
gradient method applied to the system

PTFPXN=PTBSTf. (4.11)
In the primal version of the FETI-1 preconditioner, the aslsled and averaged solutians
obtained from4.5), using equations4(10 and @.9), as
u= Fw

E[S*(f—B"Xo

E[S*(f—B"Xo) + Z(GTQG) 'GTQ(FXy — BSTf)]
[ST(f = B"X\o) + Z(GTQG)'G"Q(BSTB"\g — BST f)]
[
[(

~—

+ Zao]

NN

I-Z(G"QG)'GTQB] ST (f — B"\)
I-Z(G"QG)'GTQB)ST(I - BTQG(GTQG) ' Zz")| ETr
= EHTSTHETr

= Mp.FeTrr,

\_/

E
E
E
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where we have denoted by
H=1-B"QG(GTQG) 27, (4.12)
and so
Mp.reri= FHTSTHET, (4.13)
is the associated primal preconditioner P-FETI-1, sam@@sfuation (79)].

4.2. P-FETI-DP. In the case of the FETI-DP, the proble®3) is formulated as mini-
mization of total subdomain energy subject to the contjnciéindition

1 _ .
ia(w, w) — (f,w) — min, subjecttow € W, Bw =0. (4.14)
Compared to the formulation of FETI-1 id.(), we have now used the subspdtec W

such that the operatdf associated withu(-, -) on the spacéV is positive-definite. In this
case, 4.14) is equivalent to setting up a saddle point system: find\) € W x A such that

Sw+ BTN = f,

4.15
Bw = 0. ( )

Since S is invertible oniV, solving forw from the first and substituting into the second
equation of 4.15, we get

BS'BT) = BS™f,

which is the dual system to be solved by preconditioned gatgigradients, with the Dirich-
let preconditioner defined by

Mgemiop = BpSBY.

Next, we will derive the P-FETI-DP preconditioner using trainal paper by Farhat et.
al. [15] in order to verify the P-FETI-DP algorithm given ia(, equation (90)] for the corner
constraints. We split the global vector of degrees of freedanto the vector of global coarse
degrees of freedom, denoted fy, and the vector of remaining degrees of freedom, denoted
by u,.. We note that we could perform a change of basis @f, 26, 30]) to make all primal
constraint (such as averages over edges or faces) exipdicieach coarse degrees of freedom
would correspond to an explicit degree of freedom in thearegct. Thus, we decompose the
spac@ as (cf. B4, Remark 5])

W=W.oW,, (4.16)

where the spacl/, consists of functions that are continuous across intesfdwae a nonzero
value at one coarse degree of freedom at a time, and zeroestantarse degrees of freedom,

and the spac@r consists of functions with coarse degrees of freedom equaéto. The
solution splits into the solution of the global coarse peobiin the spac@C and the solution
of independent subdomain problems on the srﬁpe

Let R be a map of global coarse variables to its subdomain compgaren

R

RPuc=ul,  R.=1| 1 |,
R
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let B,- be an operator enforcing the interface continuity:pby
B, =0,  B,=[B" ... B,

and let the mappingg” andE! distribute the primal residualto the subdomain forces and
to the global coarse problem right-hand side, respectively

The equations of equilibrium can now be written (6f5] equation (9)—(10)]) as

SWuf) + SORYw, FBOTA = 49,
N N
SOROTSETUY 43 ROTSO RS, _—
1=1 1=1

B = 0,

-

Il
-

K2

where the first equation corresponds to independent subdopnablems, second corre-
sponds to the global coarse problem and the third enforeesdhtinuity of local problems.
This system can be re-written as

S Srele B';T U fr
(SpeR)” See O ue | =\ fe |, (4.17)
B, 0 0 A 0

wheref,. = EI'r, f. = ET'r, and the blocks are defined as

1 1 1
. sty SR
Scc = Z R£Z>TS£Z)REI)7 Srr = ) STCRC =
s SR
REMARK 4.1. Note that the system.(L7) is just the expanded syster. (5.
Expressing:,. from the first equation in4.17), we get
ur = S;,t (fr = SpeReue — BEA)

Substituting foru,. into the second equation id.(L7) gives

§:cuc - (ST‘CRC)T Sr:quT)\ = fc - (ST‘CRC)T S;rlfra

whereS*, = S.. — RTST.S-1S, . R,. Inverting S*

rceorr cec?

we get that
ue =82 [ fo— (SreR)T ST+ (SreRe)T SZIBT AL

After initialization with A = 0, not mentioned in19, 20], but which can be used (cf4§,
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Section 6.4]), the assembled and averaged solution is
u = FEyu, + E.u,.
= B8y { o = S1cReSL (o= (SreRTSSM) }
+ B8t (fo = (SreRe) S fy)
= B.S; fr = S SreReS),
+ EpSS e RSt (SreRe)T S5 fr
+ BeSi. fo = ESi (SreRe)TSSH
= E.S e
+(Be = E,S.' SrcR)SE (fe = (SrcRe)T S5 fr)
= Mp_FeTI-DF,
where
Mp.getiop= E,. S, EF (4.18)
+(B. = E,S,,' S, R.)S;, (Bl = RES]S, ET)
is the associated preconditioner P-FETI-DP, a2 ¢quation (90)].

5. BDD family of methods. We recall two primal preconditioners from the Balancing
Domain Decomposition (BDD) family by Mandel ir8]], namely the original BDD and
Balancing Domain Decomposition by Constraints (BDDC)adticed by Dohrmanrg].

5.1. BDD. The BDD is a Neumann-Neumann algorithm (&f4]) with a simple coarse
grid correction, introduced by Mande?]]. The name of the preconditioner comes from an

idea tobalancethe residual. We say thatc W is balanced if
ZT'ETv = 0.
Let us denote the “balancing” operator as
C=EZ, (5.1)

so the columns of” are equal to the weighted sum of traces of the subdomain remye
modes. Next, let us denote By S the S-orthogonalprojection onto the range @f, so that

Se=C (CT§C>_1 o
and by P the complementary projection -5, defined as
Po=1-Sc68. (5.2)
The BDD preconditionerdl, Lemma 3.1] can be written in our settings as
Mepp = [(1 — Se8)ESTETS(I - Sc8) + Scﬂ 51
- [(1 — Sc8)ESTET(SS — §505571) + SC§§‘1}
= PcESTETPL + 5S¢, (5.3)

whereS¢ serves as the coarse grid correction; sde 32] and [20] for detalils.
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5.2. BDDC. Following a similar path as Li and Widlun@()], we will assume that each
constraint can be represented by an explicit degree of dreezhd that we can decompose
the spac@ as in ¢.16. We note that the original BDDC in9[ 33] is mathematically
equivalent, but algorithmically it treats the corner ceadlegrees of freedom and edge in the
definition of W in different ways. The BDDC is the method of preconditionemjogate
gradients for the assembled systedrb| with the preconditioned/gppc defined by (cf. BO,
equation (27)])

Mpgppc = Tsup+ To,

whereTyy, = E,.S;'ET is the subdomain correction obtained by solving indepenplerb-
lems on subdomains, afg = EV (W7 SV)~1WTET is the coarse grid correction. Hete
are the coarse basis functions defined by energy minimizatio

tr 7' ST — min.

Since we assume that each constraint corresponds to aniedptiree of freedom, the coarse
basis function® can be easily determined via the analogy to the discretedr@ofunctions,
discussed, e.g., iMp, Section 4.4]; the function¥ are equal tol in the coarse degrees
of freedom and have energy minimal extension with respethé¢oremaining degrees of
freedomu,., so they are precisely given as

R,
\Il N |:_Sr_r15rcRc:| ’

Then, we can compute
S.. ST R
T _ T _pT QT ¢-—-1 cc rc c
Ut ST = [Rc Rc SrcS7.r ] |:S'r'c Srr:| |:_Sm~ISTCRC:|
=R'S..R. — R'S! S1S,.R,
= See— RTST S5, R, = S,

followed by
EV[w’ sy~ g pT
R,
n E |:SM1STCRC
= (Ec - ETS;1S7CRC)§:C_1(E? - R?S?;SilEZﬂ)

rr

] § ' [RT —RTSTS] BT

So, the BDDC preconditioner takes the form
Mpgppc = E75;1E7T+ (54)
+ (B, — E.S;1S,0R.)SE, (ET — RTST 52 ET).

reerr

6. Connections of the preconditioners.We review from R0, Section 8] that a certain
version of P-FETI-1 gives exactly the same algorithm as BRE&Xxt, we state the equivalence
of P-FETI-DP and BDDC preconditioners. Finally, we tratsithe abstract proof relating
the spectra of primal and dual preconditionet8, [Theorem 4] in the case of FETI-1 and
BDD.

THEOREM 6.1 ([20, Section 8]).If Q is chosen to be the Dirichlet preconditioner, the
P-FETI-1 and the BDD preconditioners are the same.
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Proof. We will show that the P-FETI-1 in4(13 with Q = BpSBY is the same as the
BDD in (5.3). So, similarly as in20, pp. 3819-3820], from4(12 we get

H=1-BTQG(GTQG)*zT
=1-B"BpSBLBZ(Z"B"BpSBHBZ) ' Z"
=1 - Ap(Z"Ap)~'Z",

where
Ar =BTBpSBEBZ.
Using (3.8), definitions ofC'in (5.1), S in (3.5), and becaus8Z = 0 by (4.3,
Ar = (I —ETRT)S(I - RE)Z
=87~ SREZ - E'R"SZ + ETR"SREZ
= SZ—SRC — ETRTSZ + ETSC
= (ETS — SR)C,
and, similarly,
ZTAp = ZT(ETS — SR)C = CTS8C — ZTSREZ = CT5C.
Using the two previous results.¢), and symmetries of andsS,, we get
HE" = (I — Ap(Z"AR)~'Z") E”
= E" — Ap(Z"AR)'Z"E"
=T —(ETS - SR)c(cTs5C)~cT
= ET — (ETS - SR)S¢
— ET — ET8S¢ + SRSe
= ET(I - 8S¢) + SRSc
= ETPL + SRSc.
Next, the matrixS- satisfies the relation

ScRTSSTSRSe = Se RTSRSe = Sc5S¢
—c(cTse)teTsecrse) e
= c(CcTse) T = Se.

Since, by definitionP-C' = 0, using @.7) we get for somé&” that
PcES+SRSC = PcE(I + ZY)RSC
= PcERSc + PoEZY RS
= PoSc + PoCYRSc
= PCSC
= (I - Sc8)Se
=S¢ —Sc =0,
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and the same is true for the transposeSsd” SSTET PL = 0.
Using these results, the P-FETI-1 preconditioner frdmi§ becomes
Mp.rei= EH'STHET
= (ScRTS + PoE)ST(ETPL + SRS¢)
= ScRTSSTETPL + ScRTSSTSRSe
+ PcESTETPL + PcESTSRSc
= PcESTETPL + S¢, (6.1)
and we see that(1) is the same as the definition of BDD if.f). a
THEOREM6.2. The P-FETI-DP and the BDDC preconditioners are the same.
Proof. The claim follows directly comparing the definitions of bagtheconditioners,
P-FETI-DP in equation4.18 and BDDC in equationH.4). a
COROLLARY 6.3. Comparing the preconditioner proposed by Cr8s ¢quation (4.8)]
with the definitions4.18 and (6.4), it follows that this preconditioner can be interpreted as
either P-FETI-DP or BDDC.
In the remaining, we will show the equality of eigenvalue88D and FETI-1, being)
the Dirichlet preconditioner.
LEMMA 6.4. The two preconditioned operators can be written as
MgenF = (BpSBY)(BS*BT),
MgppS = (ESTET)(RTSR),
where
St =HTS*H.
Proof. First, Mrery = BpSBY, which is the Dirichlet preconditioner. From.(L1),
using the definition off by (4.12), we get
F=P'FP
=P'BStBTP
=(I-GG"RG)'GTQ") BSTBT (I - QG(GTQG)'G™)
= (B-BZ(G"QG)'GTQ"B) 5T (BT - BTQG(GTQG)'Z"B")
=B(I-2(G"QG)'G"QB) St (I - BTQG(G"QG)'Z") BT
— BHTS*HBT = BS*BT.
Next, S is defined by 8.5). By Theoremb.1, we can use4.13 for Mppp to get
Mgpp = EHT"STHET = ES*ET. 0O

Before proceeding to the main result, we need to prove twrieal Lemmas relating
the operators andS™. The first Lemma establishesd, Assumptions (13) and (22)] as well
as [19, Lemma 3] for FETI-1 and BDD.

LEMMA 6.5. The operatorss, ST defined by$.1) and Theorens.4, respectively, satisfy

STSR =R, (6.2)
SteSt = 5t (6.3)
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Moreover, the following relations are valid

BStSR =0, (6.4)
STBTBpSSTET = 0. (6.5)
Proof. First, from @.3) and symmetry ofs it follows that

HS = (I-B"QG(G"QG)'Z") S
=S - BTQG(GTQG)"'2TSs = 5.

UsingH? =T — Z(GTQG)'GTQB, we get

HT'STS=H"(I+2Y)=H" + H'ZY
=H"+[I-2(G"QG)"'G"QB| zY
=H"+2Y - Z(GTQG)"'GTQGY
=H' +2Y -7y =HT,

o)
StS=HTSTHS = H'S*S = H”.
Finally, from the previous equation angl.§), we get 6.2) as
S*SR=H"R=(I-2Z(GTQG)"'GTQB) R = R,
and, sincel " is a projection, we immediately get als®.) as
St8S§t = H'S* = HTHTS*H = S+.

Next, noting 8.6), (6.4) follows directly from €.2).
Using 6.2—(6.3) and 3.8)—(3.9), we get 6.5) as

STBTBpSSTET = §t(1 — ETRT)SSTET
= STSSTET — StETRTSSTET
= STET — StETRTET
=St - ETRT)ET
=StBTBpET =0. O

The next Lemma is a particular version @B Theorem 4] for FETI-1 and BDD.
LEMMA 6.6. The following identities are valid:

Tp(MeeniF) = (MgppS)Tp, Tp = ES*BT,
TP(MBDD§) = (MreniF)Tp, Tp = (MreniF)BpSR.
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Proof. Using the transpose o6(5) and ©.4), we derive the first identity as
Tp(MeenF) = ESTBTBpSBLBSt BT
— EST(I— ETR")S(I — RE)S*TBT
= EStS(I — RE)STBT — ESTETRT S5+ BT
+ ESTETRTSREST BT
— ESTSBLBSTBT — ESTETRTSSt BT
+ (ESTET)(RTSR)Tp
= (MgppS)Tp.
Similarly, using 6.5) and 6.4), we derive the second identity as
Tp(MpppS) = (MeenF)BpSRESTETRTSR
= (MgenF)BpS(I — BEB)SH (I — BT Bp)SR
= (MgenF)BpSSt(I — BTBp)SR
— (MpenF)BpSBELBSTSR
+ (MeenF)BpSBEBSTBTBpSR
= MeenBSTBTBpSSTETRTSR
— (MpenF)BpSBELBSTSR
+ (MpeniF)(BpSBh)(BS*BT)Bp SR
= (MreniF)(MrenF)BpSR.
= (MeenF)Tp. O

THEOREM 6.7. Under the assumption of Lemrfi, the spectra of the preconditioned
operatorsMpgppS and Mget.1 F satisfy the relation

o(MeppS) \ {1} = o(MeenaF) \ {0, 1}.

Moreover, the multiplicity of any common eigenvalueZ 0, 1 is identical for the two pre-
conditioned operators.

Proof. Let up be a (nonzero) eigenvector of the preconditioned FETI-Yaipe corre-
sponding to the eigenvalue,. Then, by Lemma&.6, we have

Tp(Mret14F )up = (MBDDg)TDUD,

soTpup is an eigenvector of the preconditioned BDD operator cpoading to the eigen-
value \p, provided thatl'rup # 0. So, we assume thdt,up = 0, but then it is also true
that

0 = BpSR(Tpup) = BpSRESTB up
= BpS(I — BEB)STBTup = BpSStB up — BpSBLBST B up
= BpSStBTup — (Meen/F)up = BpSSTBTup — Apup,
so that

BDS§+BTUD = )\D’LLD.
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Note that, by 6.2) and @.6), we get
(BpSSTBT)? = BpSSTBTBpSStBT

= BpSSt(I — ETRT)sSt BT
= BpSStSStBT — BpSStETRTSST BT
= BpSSTBT — BpSStETRT BT
= BpSS*TRT,

soBpSSTBT isa projection, and therefore, = 0, 1.

Next, Letup be a (nonzero) eigenvector of the preconditioned BDD operedrre-
sponding to the eigenvalue-. Then, by Lemm&.6, we have

TP(MBDD§) = (MrenF)Tp,

soTpup is an eigenvector of the preconditioned FETI-1 operatorasponding to the eigen-
value A p, provided thatl'pup # 0. So, we assume thdtbup = 0, but then, usingq.2)
and @.7), we also get

0 = Tp(Tpup) = Tp(MrenF)BpSRup
= (MgppS)TpBpSRup = (MappS)EST BT BpSRup
= MgppSESH(I — ETRT)SRup
= MpopSESTSRup — MappSESTETRT SRup
= MgppSup — MeppSESTET RTSRup
— MgppSup — (MBDD§)2UP,

which is the same as
)\pUp — )\QP’LLP = )\p(l — /\p)Up = 0,

and therefore\p = 0, 1.

Finally, let X # 0,1 be an eigenvalue of the operaMBDD§ with multiplicity m. From
the previous arguments, the eigenspace correspondingganapped by the operatdrp
into an eigenspace df/re1i.1F and since this mapping is one-to-one, the multiplicity\of
corresponding taV/ge7.1 F isn > m. By the same argument, we can prove the opposite
inequality and the conclusion follows. 0O
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