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ON THE ROLE OF BOUNDARY CONDITIONS FOR CIP STABILIZATION OF
HIGHER ORDER FINITE ELEMENTS

�
FRIEDHELM SCHIEWECK

�
Abstract. We investigate the Continuous Interior Penalty (CIP) stabilization method for higher order finite

elements applied to a convection diffusion equation with a small diffusion parameter � . Performing numerical exper-
iments, it turns out that strongly imposed Dirichlet boundary conditions lead to relatively bad numerical solutions.
However, if the Dirichlet boundary conditions are imposed on the inflow part of the boundary in a weak sense and
additionally on the whole boundary in an � -weighted weak sense due to Nitsche then one obtains reasonable numer-
ical results. In many cases, this holds even in the limit case where the parameter of the CIP stabilization is zero, i.e.,
where the standard Galerkin discretization is applied. We present an analysis which explains this effect.
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1. Introduction. We consider as a model problem the convection diffusion reaction
equation and we are interested in stable and accurate discretizations for the case of a small
diffusion parameter � . Such discretizations can be also transferred to other problems like,
for instance, the Navier–Stokes equations in the case of high Reynolds numbers. It is known
that, unless the exact solution has no layers, the standard Galerkin discretization leads to
un-feasible numerical solutions with non-physical oscillations. Therefore, a stabilization is
necessary. Well established stabilization methods are the Streamline Upwind Petrov-Galerkin
(SUPG) method and classical upwind techniques. Among these types, the SUPG method is
capable also for higher order finite elements. Nevertheless, it has some undesirable fea-
tures [7]. To overcome these problems, new types of stabilization methods have been devel-
oped in recent years, see [2, 3, 7, 13].

One popular method is the Continuous Interior Penalty (CIP) stabilization [4, 6, 7, 9, 10].
The idea is to add a penalty term which contains the jump of the gradient of the discrete so-
lution across the inter-element faces. Thus, oscillations in the discrete solution are prohibited
by a penalty which has a stabilizing effect. Moreover, this discretization is consistent since
for a smooth exact solution the penalty term is zero. The method works also in the context of���

-FEM [6]. The additional costs of a CIP stabilization consist in a larger amount of mem-
ory and computational work due to a larger number of matrix entries in the stiffness matrix.
However, the portion of the additional costs can be reduced essentially by taking suitable
basis functions as we will show in a forthcoming paper.

In this paper, we present numerical experiments which show that strongly imposed
Dirichlet boundary conditions within the CIP stabilization method lead to relatively bad nu-
merical solutions. However, if the Dirichlet boundary conditions are imposed on the inflow
part of the boundary in a weak sense and additionally on the whole boundary in an � -weighted
weak sense due to Nitsche [14] then one obtains reasonable numerical results. In many cases,
this holds even in the limit case where the parameter of the CIP stabilization is zero, i.e.,
where the standard Galerkin discretization is applied. Also for the Navier-Stokes equations,
it has been shown in [1] that weakly imposed Dirichlet boundary conditions are effective and
superior to strongly imposed conditions. The aim of this paper is to explain the positive effect�
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of a weak imposition of Dirichlet boundary conditions by a theoretical analysis. We prove
that the discretization error is small uniformly with respect to � in a subregion �
	 of the do-
main � which does not contain any layer. A different technique for proving local estimates
of the discretization error can be found in the recent paper [8].

Another goal of the paper is to prove a global error estimate which justifies the use of
locally adapted meshes. In the literature on CIP methods [4, 6, 7, 9]. it has been shown that,
for small � , the order of the discretization error in the �
� -norm is ��� ��������� ��� where � is the
polynomial degree of the finite element space. However, in all the mentioned papers, the final
estimate is not completely in a locally adaptive fashion where a power of the local mesh size���

of an element � is multiplied with a Sobolev norm of the exact solution on � . In order to
overcome this problem, we have proved as a first step the “nearly” optimal order ��� � � � but
in a completely adaptive fashion. The corresponding estimate gives a reasonable error bound
if the local mesh size

� �
is very small for all elements � located in the boundary layer where

the local norm ! "#! ������$ � is large. Thus, the usage of locally adapted meshes is justified by our
locally adaptive estimate.

This paper is organized as follows. In Section 2, the model problem is described and no-
tations are introduced. The two CIP stabilization methods with strong and weak imposition of
the Dirichlet boundary conditions are presented in Section 3. Then, we show some numerical
experiments in Section 4 which indicate that the weakly imposed boundary conditions yield
much better results. We explain this effect by a theoretical analysis in Section 5. Finally, in
Section 6, we investigate the numerical order of convergence for a test problem and compare
it with the theoretical results.

2. Preliminaries and notations.

2.1. Model problem. Let �&%('*) , +-,/.�,(0 , be a bounded domain with a polygonal
or polyhedral boundary. As a model problem we consider the following convection diffusion
reaction problem for the unknown function "213�546' :

(2.1) 7 �389";:<�>=2?A@B�C"D:FEG" H I in �KJ" H L on MN�KJ
where � is a small positive parameter, =O1P�(4Q' ) a convection field, ER1P�<4S' a positive
reaction coefficient and IT1U�V4W' a source term. For simplicity of the presentation, we
consider only homogeneous Dirichlet boundary conditions but the results can be generalized
to the case of non-homogeneouscase. We assume that the functions = , E and I are sufficiently
smooth. To guarantee existence and uniqueness of the solution, we assume that there exists a
constant E 	 such that

(2.2) EU�YX�� 7 +Z []\_^ =`�>X��baOEc	edOL f�Xhgi�Kj
2.2. Notations. For a domain kl%m� , let !c?N! n $ op$ q and re?srtn $ ou$ q denote the usual

semi-norm and norm in the Sobolev spaces v n $ o �wk-� and �xv n $ o �wk-�y� ) , respectively. For
the Hilbert spaces z n �Yk-� and �Yz n �wk-�y� ) , we omit the index

�
and denote the semi-norm

and norm by !�?�! n $ q and r#?ur{n $ q . The inner product in �|�}�wk-� and �Y�`�}�Yk-��� ) will be denoted
by �~?_Jt?�� q , whereas for a sufficiently smooth �Y. 7 +u� -dimensional face � of k , the inner
product in �`�}�w��� is denoted by �]?_Jt?��y� . By � � �Y��� we denote the space of all polynomials
on the domain �m%('#� , +�,��R,<. , with total degree less than or equal to � and by � � �Y���
the space of those polynomials where the maximum power in each coordinate is less than or
equal to � . For a set kQ%V' ) , we denote by int �wk-� and k the interior and closure of k ,
respectively. If � is a �Y. 7 +�� -dimensional manifold we denote by ! ��! the �w. 7 +�� -measure
of � .
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The domain � is decomposed into elements ��g���� which are assumed to be open
quadrilaterals or hexahedra. We denote by

� �
the diameter of the element �lg���� and by� 1�H�����X �K�3���}��� the mesh-size. In the following, we introduce some notation to describe

the element faces of the mesh. For an element ��g�� � , we denote by ���w��� the set of all�Y. 7 +�� -dimensional faces of � . Let � � 1�H<� �K�3��� ���Y� � be the set of all element faces of the
grid �P� . We split �P� as �P�DHT� 	�¢¡ ��£� where � 	� denotes the set of all inner faces and �#£� the
set of all faces located at the boundary of � . For each inner face �¤g2� 	� , there exist exactly
two different elements denoted by ���Y�;� and � ¥x�Y��� such that � is one of their faces. For
the boundary faces �¦g2�#£� , there is only one element denoted by �§�Y��� which has � as one
of its faces and we set formally � ¥ �w���b1�H&¨ . For an element �©gi�c� and a face �ªg2���Y� � ,
we denote by � �� the unit normal on � pointing outward with respect to � . We assign to
each face �«gO� � the unit normal � � 1�Hª� �K¬ ��­� and the mesh size

� � 1�H � �K¬ ��­ . For an
element-wise given function ® and an inner face �¯gF� 	� , we denote by ° ®}±>� the jump of ®
across � defined as° ®}�p± � �>XG�
1�H�®}� ²² �K¬ � ­ �>XG� 7 ®}� ²² �b³>¬ � ­ �>XG� f�Xhg2�Dj

Throughout this paper, ´ will denote a generic constant which may have different values
at different places. All these constants occurring inside of any estimate will be independent
of � and the local and global mesh parameters

�G�
and

�
.

3. Two discretizations with CIP stabilization. The weak formulation of problem (2.1)
reads: Find "2ghz �	 �w�b� such that

(3.1) �G�>"µJy®]�*H¶�xI�Jy®]�y· f�®�ghz �	 �w�b��J
where �G�>"µJy®]�|1�H��P�w@;"�J�@;®¸� · :(�Y=2?�@;"�J�®¸� · :(�wEG"�J�®¸� · j
Let �9a/+ denote a fixed polynomial degree. Then, we define the finite element space ¹ � as

(3.2) ¹ � 1�HTº�®�g2z � �x�b�|1U® ²² �O»|¼ � gh� � �]½�¾�¿fG�«g2� �]À J
where ½�ÁHÂ� 7 +}JA+�� ) denotes the reference element and ¼ � 1F½�Á4Ã� the multilinear
reference mapping of the element �6gh��� .

In the following, we describe two discretizations of problem (3.1) which differ in the
treatment of the boundary conditions.

3.1. Strong Dirichlet boundary conditions. Here, the Dirichlet boundary conditions
are contained in the finite element space in a strong sense, i.e., we will work with the space¹-Ä� 1�H<¹��ÆÅ�z �	 �w�b�
and the discrete problem reads : Find " Ä � gi¹ Ä� such that

(3.3) �G�Y"GÄ� Jy® � � :�Ç � �>"GÄ� Jy® � ��H��xI�Jy® � �~· f�® � g2¹-Ä� j
The bilinear form Ç � �y?ÈJA? � acts as a stabilization term and is defined asÇ � �YÉ-Jy®]�
1�HËÊ� �}Ì�Í�GÎ � �� �P° @;Éb±>�hJA° @;®}±>��� � fDÉ�Jy®�ghz � �w�b� :§¹ � J
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where Î is a non-negative stabilization parameter which is independent of
�

and � . The caseÎ H(L corresponds to the standard Galerkin discretization of (3.1).
The stabilization method (3.3) is called continuous interior penalty (CIP) method since

it penalizes if the solution " Ä � has large jumps in the gradient across the element faces. In
particular, functions which have oscillations on a relatively large subdomain will get a large
penalty. Conversely, if the gradient of a function É is smooth enough, as for instance for a
smooth solution " of (3.1), then there is no penalty, i.e.,

(3.4) Ç � �>É-J�® � �`H�L f�É&g�z � �w�b�{J*® � g2¹ � j
This implies the consistency of the discretization (3.3).

3.2. Nitsche type boundary conditions. In the second discretization of (3.1), the
Dirichlet boundary conditions are imposed in a weak sense due to Nitsche [14]. Using the
finite element space ¹�Ï� 1�H/¹ � , the discrete problem reads: Find "NÏ� g2¹-Ï� such that

(3.5) �G�>" Ï � Jy®}��� :�Çu���>" Ï � J�®}�3��:R� ���>" Ï � J�®}�3��H¶�wI�J�®}��� · f�®}�Bgi¹ Ï� J
where the bilinear form �����~?_Jt?�� is defined as

(3.6)

� ���>É-J�®¸�
1�H
��Ê� �}Ì}Ð� Ñ 7�Ò M�ÉM�� � Jy®KÓ � 7(Ò É-J M�®M�� � Ó � : Î Ï� � �pÉ-J�®
�y�¢Ô
:ÕÊ� �}Ì¸Ö� ��! =2?{� � ! É-J�®
�y�

for all É-Jy®5g/¹���:(zi�3�w�b� . The parameter Î Ï is independent of � and
� � and has to be

chosen sufficiently large; see Sections 4 and 5. The set �*×� consists of all boundary faces �
that are contained in the so-called inflow boundary part Ø × , i.e.,� ×� 1�H�º��Ùg9� £� 13��%5Ø × À with Ø × 1�H�ºAX2ghMN�(1¢=��YX��*?{�*�>XG�
ÚOL À J
where � denotes the unit normal on MN� pointing outward with respect to � . Let us assume
that Ø × is completely represented by the faces �Û%V� ×� , i.e., Ø × H �;�*Ü Ì Ö� � . In the
1D-case, a face E corresponds to a nodal point X � and the boundary integral is defined as�p"µJy®
�~�O1�H("#�>X � �C®G�>X � � .

Note that the first sum in (3.6) has been proposed by Nitsche [14] for the Laplace equa-
tion. Whereas the first two terms in this sum are chosen due to consistency and symmetry
of the method the third term penalizes the case if the solution " Ï� of (3.5) does not satisfy
the Dirichlet boundary condition " Ï � H�L . However, we have to take into account that there
is the factor � in front of the sum which means that for small values �9Ý � � the penalty is
small. This implies that for the solution "NÏ� of (3.5), the fulfillment of the boundary condition
is neglected as long as � is small compared to the local mesh sizes

� � of element faces at
the boundary MN� . If we would have (by some appropriate adaptive refinement strategy) a
fine mesh along the boundary, the penalty would take effect yielding a good fulfillment of the
boundary condition. This makes sense along the boundary part MN��Þ Ø × since in general the
solution would have boundary layers there. However, at the inflow part Ø × of the boundary,
there are no boundary layers in general such that a mesh refinement would make no sense.
Therefore, the second sum is added in (3.6) which penalizes (also for small � ) the case if
the solution would violate the Dirichlet boundary condition at Ø × . This term has already
been proposed in the literature for problems with ��H¯L , see for instance the textbook of
Johnson [12, Sect. 9.5].
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4. Numerical comparison of strong and weak Dirichlet conditions. In this section,
we present some numerical experiments that compare the strong imposition of the Dirichlet
boundary conditions in discretization (3.3) with the weak imposition in discretization (3.5).
In order to simplify the graphical output of the exact and numerical solution, we restrict our-
selves to a one-dimensional test problem which contains the typical difficulty of a convection
dominated convection diffusion problem, namely a small � and the presence of a boundary
layer. We consider the problem

(4.1)
��ß�"i1�H 7 �p"�¥ ¥}:F"�¥¸:R" H I in �OHà�YLcJt+��{J" H L on MN�KJ

where I is chosen such that the exact solution is:

"#�>XG�*H(áuâÆ:FX 7 + 7 �Yá 7 +u�CXã ä�å æç ¬ â ­ 7 á ¬ â × � ­ � ß 7 á × ��� ß+ 7 á × ��� ßã ä{å æè ¬ â ­
j
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FIG. 4.1. Exact solution é]êÈë}ì for �µí¾îyïuð¸ñ and solution òAê_ë}ì of the reduced problem (4.2).

The inflow part of the boundary is Ø × HóºuL À and the boundary layer is located at the
boundary point X2H¦+ . The exact solution can be decomposed as "#�>X��
HTô]�>XG� 7 Ç��>XG� , see
Figure 4.1, where ô is the solution of the so-called reduced problem

(4.2)
�*	Aô;1�H5=2?u@;ôb:�EGôÃH I in �KJôõH L on Ø × J

and Ç is the boundary layer correction. Note that Ç is small almost everywhere except in a
very small subregion of XhH�+ . In particular, it holdsrtÇ¸r 	 $ ·2Hàr{" 7 ôPr 	 $ ·ö,�´÷� ��� � j
Therefore, in the case of small � , the discrete solution " � should also be a good �`� -approxim-
ation of ô , i.e., the finite element space ¹ Ä� or ¹-Ï� of discretization (3.3) or (3.5), respectively,
should be capable for a good approximation of ô . Since, in general, ô is not zero at MN��Þ`Ø × ,
the space ¹ Ä� is not a good candidate whereas ¹;Ï� is well suited to approximate ô . From this
point of view, we would expect that discretization (3.5) yields better results than (3.3). This
will be confirmed by the following numerical experiments.

For the computations, we have used the value �hHø+�L ×Gù and an equidistant mesh with� H¿+pú Z L . In Figure 4.2, we show for each discretization the exact solution " of (4.1)
(dashed line) and the corresponding discrete solution " � H�" Ä� of problem (3.3) or " � H�"�Ï�
of problem (3.5) (solid line) with the polynomial degree �FHm+ or �FH¤0 , respectively. In
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strong Dirichlet conditions, �BH¶+ , Î H(LcjÈ+ , X�û#H¶+ 7�ü �µý_þs�ÿ�}� :

0 0.194474 0.388948 0.583421 0.777895 0.972369 0.977895 0.983421 0.988948 0.994474 1
−0.5

0

0.5
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ε =  1.0e−03      level =  1        NEL =  20      L∞ =  5.13e−01      H1
ε  =  7.39e−02      L

2
 =  6.71e−02

x
t

Nitsche type boundary conditions, �BH�+ , Î H�LcjÈ+ :

0 0.194474 0.388948 0.583421 0.777895 0.972369 0.977895 0.983421 0.988948 0.994474 1
−0.5
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1

1.5

ε =  1.0e−03      level =  1        NEL =  20      L∞ =  8.03e−01      H1
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2
 =  1.09e−02

strong Dirichlet conditions, �DH(0 , Î H<LPj LP+ :
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−0.5
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ε =  1.0e−03      level =  1        NEL =  20      L∞ =  2.16e−01      H1
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 =  3.51e−02

Nitsche type boundary conditions, �DH�0 , Î H(Lcj Lc+ :

0 0.194474 0.388948 0.583421 0.777895 0.972369 0.977895 0.983421 0.988948 0.994474 1
−0.5

0
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2
 =  1.03e−03

FIG. 4.2. Comparison between strong and Nitsche type Dirichlet boundary conditions for ��í�îyï�ð¸ñ ; the
exact solution é is plotted by a dashed line and the numerical solution é�� by a solid line.

the discretization (3.5), we have used the parameter Î Ï H�+�L . The boundary integrals in the
discretization are defined for the 1D-case as �p"µJy®`���O1�H�"µ�YX � �C®G�>X � � , where X � denotes the
point associated with the element face � of the grid. In order to see what happens in the
small boundary layer region, we have stretched in all pictures the layer interval �>XNû�JA+�� to the
interval �wLPj � Jt+u� where the transition point X�û is defined by X�û`1�H¶+ 7
ü �c!Cý_þG�>�}�t! . The remaining
interval �wLPJyX�ûy� is compressed to the interval �wLPJ LPj � � . In the pictures, we have also presented
some discretely computed error norms measured on the non-layer region � 	 1�H¶�wLPJ LPj � � � . By��� we denote the error norm r�" 7 " � r 	 $ � $ · Í , by z �ß the term � ��� �3! " 7 " � ! ��$ � $ · Í and by � �
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the error r{" 7 "N�cr�	 $ � $ · Í . We clearly see that, for both polynomial degrees �DHà+ and �DH/0 ,
the discretization (3.5) with Nitsche type boundary conditions gives much better results than
discretization (3.3) with strong imposition of the Dirichlet boundary conditions. This holds
not only in the non-layer region � 	 but also in the region �wLPj � � JA+�� containing the boundary
layer.

5. Analysis for Nitsche type boundary conditions. For a subdomain k6%ª� , let us
define the following semi-norm

(5.1) ! ! ! ®N! ! ! q 1�H�� �y� � ! ®N! ��$ q :<r{®Gr{	 $ q :/r*! =h?A��! ��� � ®Kr{	 $ � Ö :�Çu���>®�Jy®]� ��� � j
Then, we can prove the following local estimates of the discretization error.

THEOREM 5.1 (Local estimate). Let ¹-Ï� be the space ¹ � defined in (3.2) with the poly-
nomial degree �ha¶+ and "s�BH/"�Ï� the solution of the discrete problem (3.5). Assume (2.2),Î a�L , ôBgiz ����� �w�b� for the solution ô of the reduced problem (4.2) and "�gizi�3�w�b� for the
solution " of (2.1). Furthermore, let �
	;%(� be a subdomain excluding all boundary layers
in the sense that there exists a constant ´ independent of � such that

(5.2) � �y� � ! " 7 ôP! ��$ · Í :<r{" 7 ôPr{	 $ · Í ,5´÷�]j
Then, for sufficiently large Î Ï , ��, �

and �¯1�H Z 7 .¸ú Z , it holds with
� 1�H�� \ þ �K�3���U�c�

(5.3) ! ! ! " 7 "N��! ! ! · Í ,�´
	 �� n : � ��� r�ôPr �{����$ · j
Moreover, if in addition it holds that

(5.4) ! " 7 ô]! ��$ · Í ,5´÷�
with a constant ´ independent of � , then we have

(5.5) ! " 7 "N��! ��$ · Í � ,�´ � × �	 	 �� n : � �
� r�ôPr ���µ��$ · J
where

� 	 1�H�� \ þ �K�3���p¬ · Í ­ � � with �P���w�|	p�51�H�º�� g �P�¦1�� % �|	 À , and �|	��¦1�H\ þ�� 	 � �K�3� � ¬ · Í ­ � �
.

Proof. Step 1. At first we prove the estimate

(5.6) � � �Yô 7 "µJy® � �|,O´ �� n r�ôPr � $ ·�! ! ! ® � ! ! ! · f�® � g2¹ Ï� J
where � � �~?_Jt?�� is defined as

(5.7) � � �YÉ-Jy® � �
1�H(�G�YÉ-Jy® � ��:-Ç � �>É-J�® � ��:e� � �YÉ-Jy® � �{JËf�É&g�z � �w�b��:�¹ Ï� JËf�® � g2¹ Ï� j
Setting É�1�H�ô 7 " and using (2.1), (4.2) and (3.4), we get

� � �YÉ-Jy® � ��Hø�]�x@;ôpJ @;® � �~·(:Ù��Ê� �}Ì}Ð� Ñ 7 Ò M�ôM�� � Jy® �ÆÓ � 7 Ò ôpJ M�® �M�� � Ó �
: Î Ï� � �pôpJy® � � � Ô

H 7 �]� 89ôpJy®}�3� · :Ù� Ê� �}Ì}Ð��� Ì¸Ö� Ñ 7�Ò ôpJ M�®}�M�� � Ó � : Î Ï� � �pôpJy®}�`�~�¢Ô9j
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The first term is estimated as 7 �P� 89ôpJy®}�}� · ,5´÷�cr�ôPr � $ · ! ! ! ®}��! ! ! · j
By standard arguments (transformation to the reference element ½� , trace theorem on ½� ,
transformation back and inverse inequalities) we can prove for all boundary faces �Ùgh�*£� the
estimates

(5.8) r M�®}�M�� � r{	 $ � ,5´ � � × �y� �� ! ®}��! ��$ �K¬ ��­ ,5´ � ×Gù � �� r�®}�cr 	 $ �K¬ � ­ fG®}��gh¹ Ï� J
and

(5.9) r�®3�cr{	 $ � ,O´ � × ��� �� r{®}��r 	 $ �K¬ � ­ f�®}��gi¹ Ï� j
From the continuous embedding z��}�x�b��� 4Q´B� �b� , we getr�ôPr 	 $ � ,�´D! ��! ��� � r�ôPr � $ ·ö,O´ � ¬ ) × � ­ � �� r�ôPr � $ · fN�àgh� £� j
Summarizing all these estimates, we obtain (5.6).
Step 2. We show that there exists a constant ´ � d5L independent of

�
and � such that

(5.10) ´ � ! ! ! ® � ! ! ! �· ,5� � �>® � Jy® � � f�® � g2¹ Ï� j
Partial integration and (2.2) yield

(5.11)
�G�>®}��Jy®}���*H��P! ®}��! � ��$ � $ · : �wE 7 +Z []\È^ =*J�® �� � · : +Z�� =h?t�UJy® ������ ·a§�P! ®}��! � ��$ � $ · : Ec	|r{®}��r �	 $ · 7 +Z r3! =h?A��! ��� � ®}��r �	 $ � Ö j

For � � �~?_Jt?�� defined in (3.6), we get� � �>® � Jy® � �*H Ê� �}Ì3Ð� Ñ 7 Z � Ò M�® �M�� � J�® �
Ó � : � Î Ï� � r�® � r �	 $ � Ô :<r3! =h?A��! ��� � ® � r �	 $ � Ö j
Using (5.8), the first term on the right hand side can be estimated as²²²²²² Ê� �}Ì}Ð�|Ò M�®}�M�� � Jy®}�ÆÓ � ²²²²²² , Ê� �}Ì3Ð� ´ � � × ��� �� ! ®}��! ��$ �K¬ � ­ r{®}��r{	 $ �

,lÊ� �}Ì3Ð� Ñ +ü ! ®}��! � ��$ �K¬ ��­ : ´¢��� � r�®}��r �	 $ � Ô�j
If we choose Î Ï large enough such that Î Ï a ü ´¢�� , we get� � �Y® � Jy® � �|a 7 +Z �c! ® � ! � ��$ · :SÊ� �}Ì}Ð� � Î ÏZ � � r{® � r �	 $ � :/r}! =�?t��! ��� � ® � r �	 $ � Ö j
Together with (5.11) and (5.7) this implies

(5.12)

�]�c�>®}��Jy®}���
a +Z �c! ®}��! � ��$ · :§EP	`r{®}��r �	 $ · : +Z r3! =2?t��! ��� � ®}�Gr �	 $ � Ö: Ê� �}Ì}Ð� � Î ÏZ � � r{® � r �	 $ � :ªÇ � �>® � Jy® � �
aO´ � ! ! ! ® � ! ! ! �· j
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Step 3. Let �~�}ô�gV¹-Ï� be the standard finite element interpolate of the reduced solutionô;ghz ���µ� �x�b� . We prove that

(5.13) �]�����~�}ô 7 ôpJy®}�¸�|,�´���� � � × � : � � � ! ô]! ������$ · ! ! ! ®}�G! ! ! · fG®}��gi¹ Ï� j
For the interpolation error !91�H"� � ô 7 ô , we have the well-known local estimates

(5.14)
! !N! n $ � , ´ � �{��� × n� ! ôP! ������$ � J �øH<LPJA+}J �6g�� � J! !s! n $ � , ´ � �{���y� � × n� ! ô]! ������$ �K¬ ��­ J¯�øH<LPJA+}J �¦g9� � j

Now we estimate �P�c�y?ÈJA? � term by term:�G��!GJy® � �|,§�c! !s! ��$ ·�! ® � ! ��$ ·�: � r{=`r 	 $ � $ ·�! !s! ��$ ·�:<rtE*r 	 $ � $ ·*r#!sr 	 $ · � r�® � r 	 $ ·,$�3´÷� � � × � :�´ � � :�´ � ����� � ! ôP! ������$ · r{®}��r{	 $ ·,�´��}� � � × � : � �%� ! ôP! ������$ ·|! ! ! ® � ! ! ! ·�J
further using (5.8), (5.9)� �c��!GJy®}�¸�H Ê� �}Ì}Ð� � Ñ 7�Ò M&!M�� � Jy® � Ó � 7�Ò !�J M�® �M�� � Ó � : Î Ï� � �
!�J�® � � � Ô�:WÊ� �}Ì Ö� �c! =2?{� � ! !�J�® � � �,2´('��)	 � � ×+*, � ×-*, : � ��� *, � ×-., : Î Ï � × � � �{� *, � ×�*, � : � ��� *, � ×+*,&/ ! ôP! �{����$ · r�®}��r�	 $ ·,2´ � � � � × � : � � � ! ô]! ������$ ·
! ! ! ® � ! ! ! ·*J
and finallyÇu����!GJy®}�¸�DH Ê� �}Ì}Í� Î � �� �P° @0!�± �hJ�° @;®}�}± ��� �, Ê� �}Ì�Í� ´ � �� � � × *,� ! ôP! �{����$ �K¬ � ­21 �b³Y¬ � ­ � × .,� r�®}��r 	 $ �K¬ � ­31 �b³ ¬ � ­ ,O´ � � ! ôP! ���µ��$ · ! ! ! ®}�G! ! ! · j
Summarizing these estimates, we can conclude (5.13). Note that (5.13) holds also for a locally
refined grid, where � \ þ �K�3�A���c� Ý �

, since the negative powers of the local mesh size
�G�

will be cancelled by positive powers.
Step 4. We prove the Galerkin orthogonality

(5.15) � � �Y" 7 " � Jy® � �*H(L f�® � g2¹ Ï� j
Let ® � g�¹�Ï� be a given arbitrary function. Multiplying the first equation of (2.1) by ® � and
applying partial integration yields

�]�x@;"�J�@�® � �~·�:/�Y=2?A@;"�:FEG"µJy® � �~· 7 � Ò M�"M�� Jy® �
Ó � · H��wI�J�® � �~·*j
If we use the fact that "9H<L in � � �YMN�b� , we get

��Ê� �}Ì3Ð� Ñ 7 Ò "µJ M�®}�M�� � Ó � : Î Ï� � �p"µJy® � �~� Ô :¯�c! =2?{��! "µJy® � � � Ö H(Lcj
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Due to (3.4) we have Çu�c�Y"�J�®}�3�-H¤L since "�gOz¾�}�w�b� . Summation of all three equations
implies �]�c�Y"�J�®}�3�`H��wI�J�®}�¸� · j
Together with (3.5) for "N�-H�"GÏ� we obtain the Galerkin orthogonality.
Step 5. Let ®3�D1�H"�~��ô 7 "N� . Then, (5.10), (5.13), (5.6) and the Galerkin orthogonality (5.15)
yield ´ � ! ! ! ® � ! ! ! �· ,¤� � �Y® � Jy® � �*H(� � ��� � ô 7 ôpJy® � � :F� � �>ô 7 "µJy® � �,V´ � � � � × � : � � : �� n � r{ôPr ������$ ·`! ! ! ® � ! ! ! ·*J
which gives a bound for ! ! ! ® � ! ! ! · . Hence, from the triangle inequality we obtain

(5.16) ! ! ! ô 7 " � ! ! ! ·F,T! ! ! ô 7 � � ôP! ! ! ·9:/! ! ! � � ô 7 " � ! ! ! ·ö,�´�� �� n :R� � � × � : � �4� r�ôPr ������$ ·UJ
where the estimate for the interpolation error !DH5� � ô 7 ô directly follows from (5.1), (5.14),�;,5´ , !DH(L on Ø × ,

� ,�´ and the estimate

Ç � ��!GJ6!P��H Ê� �}Ì�Í� Î � �� rU° @0!3±>�2r �	 $ � , Ê� �}Ì}Í� ´ � �� � � ¬ � ×7*, ­� ! ôP! �������$ �K¬ � ­21 �b³Y¬ ��­
,5´ � � ����� ! ô]! �������$ · j

The estimate (5.16) implies! ! ! ô 7 "N�c! ! ! · Í ,O´�� �� n :ö� � � × � : � �4� r�ôPr ���µ��$ ·
for each subdomain � 	 %¶� . Using the assumption (5.2), the fact that, for ®�1�H�" 7 ô , we
have ®�H(L on Ø × and Ç � �Y®�J�®¸��H(L due to ®�ghz¾�}�w�b� , we get! ! ! " 7 ôP! ! ! · Í H5� �y� � ! " 7 ôP! ��$ · Í :<r{" 7 ôPr 	 $ · Í ,�´÷�]j
Now, the estimate (5.3) follows by the triangle inequality, �;, �

and +¢,�´ � × n .
Step 6. We will prove now the estimate (5.5). From (5.16) we obtain with ��, �

the estimate

r�ô 7 " � r 	 $ · Í � ,5´
	 �� n : � �
� r�ôPr ���µ��$ ·�j
This yieldsr8� � ô 7 " � r 	 $ · Í � ,«r#� � ô 7 ô]r 	 $ · Í � :<r{ô 7 " � r 	 $ · Í � ,ó´ 	 �� n : � � � r�ôPr ������$ ·*j
Using an inverse inequality we get! ô 7 " � ! ��$ · Í � , ! ô 7 � � ôP! ��$ · Í � :<! � � ô 7 " � ! ��$ · Í �,ø´ � � ! ôP! ������$ · :§´ � × �	 r#�~��ô 7 "N�cr�	 $ · Í �,ø´ � × �	 	 �� n : � �
� r�ôPr �{����$ · j
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Finally, the triangle inequality and the assumption (5.4) imply! " 7 " � ! ��$ · Í � , ! " 7 ôP! ��$ · Í � :/! ô 7 " � ! ��$ · Í �,ø´¾�h:¤´ � × �	 	 �� n : � � � r�ôPr ���µ��$ ·�J
which proves (5.5) due to +e,5´ � × �	 � × n .

REMARK 5.2. Note that the result of Theorem 5.1 includes also the case of the Galerkin
discretization, i.e., the discretization (3.5) with Î H¿L . However, in this case, it holdsÇu�c�y?ÈJA? �-HªL such that the norm ! ! !�?�! ! ! · Í is weaker than in the case of CIP stabilization withÎ d§L .

REMARK 5.3. Of course the error bounds in (5.3) and (5.5) blow up for
� 4 L

and we should apply the error bound of Theorem 5.5 in (5.17). However, since the semi-
norm ! "U! �{����$ · � · Í of the exact solution in the layer region ��Þe� 	 in general behaves like���>� × � × �y� �u� , the error bound in (5.17) gets reasonable not before the local mesh size in the
layer region is small compared to � . As long as ��Ý �

, i.e., as long as the boundary layers
have not been resolved by small local mesh sizes

�G�:9<�
in the layers, the error estimate (5.3)

yields a reasonable error bound. The estimate (5.5) gives a valuable error bound if addition-
ally the mesh � � �x� 	 � in the subdomain � 	 is quasi uniform, i.e., if

� × �	 ,(´ � × � . Note that,
for �eÝ � 	 , the z �

-estimate (5.5) is much better than the one which follows if we divide (5.3)
by � ��� � .

REMARK 5.4. Estimates of the error " 7 ô , which are needed for the assumptions
(5.2) and (5.4), can be obtained in the following way. We create an asymptotic expansion"<;>=*H�ô
:�Ç of the exact solution " such thatr�" 7 "&;?=tr 	 $ · ,�´÷� and ! " 7 "&;?=t! ��$ · ,�´÷�A@NJ
where B/H¯+uú Z for assumption (5.2) and B/H¯+ for assumption (5.4). The part Ç contains
all boundary layer terms. For the technique to derive such an asymptotic expansion, we
refer to [15]. Estimates of the error " 7 "C;?= in the maximum norm can be found in [11].
In order to obtain estimates of " 7 "C;>= in the � � - and z � -norm we can apply the techique
for the proof of Lemma 4.6 in [16] using the estimate r{" 7 "C;?=tr 	 $ � $ · ,m´÷� from [11].
Depending on the layer part Ç of the asymptotic expansion "D;>= , the subdomain � 	 is chosen
such that rtÇ¸r 	 $ · Í ,�´÷� and ! Ç¸! ��$ · Í ,�´÷� @ . If we assume that there are no interior layers,
the subdomain � 	 can be represented as � 	 H&�RÞb� � Þb��E where � � is a small vicinity of
the outflow boundary Ø � 1�H¤º�X§g§MG� 1�=`�>X��|?u�*�YX��;dàL À with the thickness ���ÿ�
!Cý_þ �>���A! �
and ��E is a small vicinity of the characteristic boundary Ø�	;1�Hàº�X¾g¾MN�T1�=��>XG�*?A�*�>XG�|HTL À
with the thickness ���GF �b!~ýÈþ��ÿ�}�t! � .

In order to prove the convergence of the method for fixed � and
� 4©L we introduce the

following global “energy” norm

r�®Nr�H-1�H�� �y� � ! ®N! ��$ ·B:(r�®Nr 	 $ ·�:5r*! =�?���! �y� � ®Kr 	 $ � Ö : ' Ê� �}Ì3Ð� � Î ÏZ � � r�®Nr �	 $ � / ��� � :RÇ � �>®�Jy®]� ��� � j
THEOREM 5.5 (Global estimate). Let ¹;Ï� be the space ¹ � defined in (3.2) with the poly-

nomial degree �ha¶+ and " � H/"�Ï� the solution of the discrete problem (3.5). Assume (2.2),Î a(L , �D,<´ and "�giz ����� �w�b� for the solution " of (2.1). Then, for sufficiently large Î Ï ,
it holds

(5.17) r�" 7 " � r�He,�´JIOÊ�K�3��� � � �� ! "U! ��{����$ �LK ��� � j
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Proof. As in the proof of Theorem 5.1 we get the Galerkin orthogonality (see (5.15))�]���>" 7 "N�]J�®}�3��H(L fG®}��gi¹ Ï�
and the estimate (see (5.12))´ � r�® � r � H ,O� � �>® � Jy® � � f�® � gi¹ Ï� j

Let � � "§g�¹-Ï� be a standard finite element interpolate of the solution " which satisfies
the boundary condition � � "�H(L on MG� and let !�1�H"� � " 7 " be the interpolation error. If we
apply the local estimates (5.14), where ô is replaced by " , we obtain�G��!GJ�® � �
,�� �y� � ! !s! ��$ ·K� ��� � ! ® � ! ��$ ·�:M�Gr�=`r 	 $ � $ ·*! !s! ��$ ·9:/r{E*r 	 $ � $ ·*r8!sr 	 $ · � r{® � r 	 $ ·,5´(' Ê�K�3�A� 	>� � � �� : � � �� : � � ��� �� � ! "#! �������$ � / �y� � r�®}��r H

,5´(' Ê�K�3�A� � � �� ! "#! �������$ � / �y� � r�® � r�H�J
where the last inequality follows from ��,T´ and

� ,&´ . Furthermore, by means of !�H�L
on MG� and (5.14) it follows� � ��!GJy® � ��H Ê� �}Ì}Ð� 7 � Ò M&!M�� � Jy® �ÆÓ � , Ê� �}Ì}Ð� ´÷� � � × ��� �� ! "#! ������$ �K¬ ��­ r�® � r 	 $ �

,V´(' Ê� �}Ì}Ð� � � � �� ! "U! ����µ��$ �K¬ ��­ / �y� � r�®}��r H ,ø´(' Ê�K�3�A� � � �� ! "#! �������$ � / �y� � r�®}��r H j
Finally, we haveÇ � �2!�J�® � �*H Ê� �}Ì�Í�NÎ � �� �P° @0!3±ÿ�hJA° @;® � ± ��� �,õÊ� �}Ì�Í� ´ � �� � � ×7*,� ! "U! ���µ��$ �K¬ ��­21 �b³ÿ¬ � ­ � ×N.,� r{®}��r 	 $ �K¬ � ­21 �b³ ¬ � ­

,V´(' Ê�K�3�A� � � �� ! "#! �������$ � / �y� � r�®}��r H j
Summarizing these estimates, we can conclude�]�c�2�~��" 7 "µJy®}�}�b,O´(' Ê�K�3��� � � �� ! "#! �������$ � / ��� � r�®}��r H fG®}�Bgh¹ Ï� J
which yields for É � 1�H5� � " 7 " � by means of the Galerkin orthogonality´ � r�É � r � H ,V� � �>É � JyÉ � ��H�� � ��� � " 7 "µJyÉ � �|,ø´(' Ê�K�3��� � � �� ! "U! ����µ��$ � / ��� � r�É � r�H3j
For the interpolation error !BH"� � " 7 " we haveÇ � ��!GJ?!]�`H Ê� �}Ì�Í� Î � �� rU° @0!3±ÿ�ir �	 $ � ,õÊ� �}Ì}Í� ´ � �� � � ¬ � × *, ­� ! "U! ��{����$ �K¬ � ­21 �b³>¬ � ­

,O´ Ê�K�3��� � � ������ ! "#! �������$ � J
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andr#!sr H HV� ��� � ! !N! ��$ · :<r8!Nr{	 $ · :§Çu�c�2!�J?!P� ��� �,V´ ' Ê�K�3��� 	 � � � �� : � � �{� �� : � � ������ � ! "U! ����µ��$ � / ��� � ,ø´ ' Ê�K�3�A� � � �� ! "#! �������$ � / �y� � j
This implies r�" 7 " � r�H�,&r8!sr�H
:<r{É � r�H-,5´(' Ê�K�3��� � � �� ! "U! ��{����$ � / ��� � j

REMARK 5.6. The estimate (5.17) gives a reasonable error bound if the local mesh
size

� �
is very small for all elements � located in the boundary layer where the local norm! "U! ������$ � is large. On the other hand, the global error estimate (5.17) makes no sense in the

case �RÝ �
for a quasi uniform mesh, where

� � aø´ � for all � g&�P� , since the exact
solution " in genral (if boundary layers occur) has the property that ! "U! ������$ · behaves like´÷� × ¬ ���µ�y� � ­ when � tends to zero. However, in this situation, the estimate (5.3) in Theo-
rem 5.1 guarantees that the error is small in the subdomain � 	 outside the boundary layer.

REMARK 5.7. In the literature on CIP methods [9, 4, 7, 6], it has been proven that, for
small � , the optimal order of the discretization error in the �
� -norm is ��� ��������� �u� where �
is the polynomial degree of the finite element space. However, in all the mentioned papers
[9, 4, 7, 6], the final estimate is not in the locally adaptive fashion like in (5.17) where a
power of the local mesh size

���
of an element � is multiplied with a Sobolev norm of the

exact solution on � . Even in [7], which seems to be in a locally adaptive fashion, a look
into the estimate of Theorem 4.9 shows that the error bound contains a term where a power
of the maximum mesh size

�
is multiplied with a Sobolev norm of the solution on the global

domain. Thus, the application of locally adapted meshes is not justified by this estimate.
However, in the case of a near constant flow field = , the analysis in [7] is completely local
and therefore sharper than the analysis of Theorem 5.5 in this paper since it proves the optimal
order. In order to overcome the problem to justify the use of locally adapted meshes in the
case of a genral flow field = , we have proved as a first step in this paper the “nearly” optimal
order ��� ��� � but in a complete locally adaptive fashion. A method to prove the optimal order��� ���{���y� �u� in a completely local form can be found in [5] although the estimates are not
written in this way. Here the use of a global �
� -projection is avoided in the analysis which
has been the main problem so far.

At the end of this section, we will draw from Theorem 5.5 some conclusions about the
error " 7 " � at the boundary. For a sufficiently small constant ´ ù dOL , we define the following
subset of the inflow boundary Ø ×Ø × �x´ ù �
1�H&º�X2g�Ø × 1Æ! =��YX��U?t�*�>X��A!]a�´ ù À j
Then, we get from (5.17) the estimater{" 7 "G��r 	 $ � Ö ¬PO . ­ ,�´ × ��� �ù ´ I Ê�K�3�A� � � �� ! "#! �������$ � K �y� � J
which says that the discretization error at the inflow boundary is of the order ��� �s� � uniformly
in � if the mesh � � is locally adapted in such a way that

(5.18) Ê�K�3�A�RQ � ��MS � � ! "#! �������$ � ,5´�T3J
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with an �>�¸J � � -uniformly bounded constant ´ T . Let us denote by Ø 	 � 1�HàMN�FÞbØ × the non-
inflow boundary. Under the assumption that the inflow boundary Ø × is completely resolved
by the mesh, i.e., Ø × H � � �}Ì¸Ö� � , we get the estimate

r�" 7 "G��r�	 $ � ÍGU ,�´ Q Z4V� 	 �� Î Ï S �y� � I Ê�K�3��� � � �� ! "U! ����µ��$ � K �y� � J
where

V� 	 � 1�HW��X�Y � �}Ì}Ð�Z� Ì¸Ö� � � is the maximum mesh size at the non-inflow boundary.
This says that the discretization error at the non-inflow boundary Ø 	 � is of the order ��� ��� �
if the local mesh size of the elements at Ø 	 � is in the range of � and the mesh � � is locally
adapted such that (5.18) is satisfied with an �>�¸J � � -uniformly bounded constant ´-T .

6. Numerical study of the order of convergence. In this section, we consider again
the test problem (4.1) and investigate the numerical order of convergence for the discretiza-
tion (3.5) with the weak imposition of the Dirichlet boundary conditions. We consider both,
the case of a very small � and the case of the “moderate” value �hH +AL ×�ù . For all compu-
tations, we use an equidistant mesh with the mesh size

�
, the polynomial degree �2Hà0 , the

parameter Î Ï Hó+�L and the subdomain � 	 H¯�YLcJyXcû~� with X�û�1�Hø+ 7Fü �c!~ýÈþ �>�}�t! . The error" 7 " � is measured on the discrete subdomain � 	�� Hª�wLPJ�Xcû � �¢%&� 	 with Xcû � 1�Hª+ 7 � 	 � ,
where, for a given

�
, � 	 denotes the smallest integer �9aT+ such that � � a<+ 7 X�û*H ü �c!Cý_þs�ÿ�}�t! .The parameter Î for the CIP stabilization has been chosen as Î HÙLcj Lc+ which was the best

one in some numerical experiments with different values.

TABLE 6.1�µí�îyï ð&[2\ , ] \ í�ê ïZ^yî�_
ïZ` a#b cwîyï ð%d ì , ] \ � í¾ê ïZ^wë
e � ì , top table: CIP ( f÷íhïZ` ï�î ), bottom table: Galerkin
( f÷í�ï ). � Xcû � r{" 7 " � r 	 $ · Í � order ! " 7 " � ! ��$ · Í � order

1/10 0.90000 1.54e-07 1.20e-05
1/20 0.95000 1.03e-08 3.90 1.58e-06 2.93
1/40 0.97500 6.98e-10 3.88 2.06e-07 2.94
1/80 0.98750 2.50e-10 1.48 1.21e-07 0.76

1/160 0.99375 3.46e-10 -0.47 3.36e-07 -1.47

1/10 0.90000 5.45e-08 9.26e-06
1/20 0.95000 4.85e-09 3.49 1.49e-06 2.64
1/40 0.97500 3.01e-09 0.69 1.57e-06 -0.08
1/80 0.98750 5.63e-09 -0.90 5.84e-06 -1.90

1/160 0.99375 1.13e-08 -1.00 2.33e-05 -2.00

In Table 6.1 we show, for the case of the very small parameter �2H¯+AL × � 	 , the results
for the CIP stabilization and the standard Galerkin discretization ( Î H/L ). The CIP stabiliza-
tion shows a nearly optimal order of convergence in the �
� - and the z �

-norm in the range� aT+uú ü L whereas the error stagnates for
� ,<+uú
g}L . This is in agreement with estimate (5.3)

in Theorem 5.1 which says that for small
�

the error term �3ú � n becomes dominant. The
standard Galerkin discretization, in principle shows the same qualitative behavior. However,
it is less accurate for smaller mesh sizes.

In Table 6.2, we present the results for the case � Hm+AL ×�ù . Here, already for the first
mesh size

� H¶+uú]+AL , the �`� -error is in the range of � such that the error estimate (5.3) cannot
give a realistic error bound anymore. However, when

�
gets smaller the �
� -error decreases,
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initially with a small order but then very rapidly. We conjecture that for very small mesh sizes� Ú<+pú�h ü L , when the boundary layer will be resolved, the optimal order of 4 for the �b� -norm
and 3 for the z �

-norm will show up. Again the standard Galerkin discretization, in principle
shows the same qualitative behavior. However, we observe that the CIP stabilization is more
accurate for larger mesh sizes

� a<+pú ü L but less accurate for small mesh sizes
� ,T+uú�g3L .

TABLE 6.2�#í¾îyï ð¸ñ , ] \ í¾ê_ïZ^ ïZ` a8ijbjktì , ] \ � í�ê ïZ^wë
e � ì , top table: CIP ( f÷íhïZ` ï�î ), bottom table: Galerkin ( f÷í�ï ).� X�û � r�" 7 " � r 	 $ · Í � order ! " 7 " � ! ��$ · Í � order

1/10 0.90000 7.99e-04 4.43e-02
1/20 0.95000 1.03e-03 -0.36 1.07e-01 -1.28
1/40 0.95000 2.30e-04 2.16 4.42e-02 1.28
1/80 0.96250 5.55e-05 2.05 2.31e-02 0.94

1/160 0.96875 4.31e-07 7.01 3.84e-04 5.91
1/320 0.97187 3.60e-13 20.19 5.07e-10 19.53
1/640 0.97187 3.92e-15 6.52 2.16e-11 4.55

1/10 0.90000 2.86e-03 3.69e-01
1/20 0.95000 2.51e-03 0.19 6.37e-01 -0.79
1/40 0.95000 7.29e-04 1.78 3.50e-01 0.87
1/80 0.96250 2.62e-05 4.80 2.05e-02 4.09

1/160 0.96875 1.95e-10 17.04 1.88e-07 16.74
1/320 0.97187 4.32e-14 12.14 1.72e-10 10.09
1/640 0.97187 3.37e-15 3.68 2.11e-11 3.03

As a summary we can say that these numerical experiments confirm the theoretical results
of Theorem 5.1 and Theorem 5.5. Moreover, they indicate that the estimates are one order
suboptimal with respect to the power of

�
. Although the results for the standard Galerkin

discretization in case of weakly imposed Dirichlet boundary conditions look quite nice let us
mention that we do not recommend to use this method since it is not robust in cases where
the solution ô of the reduced problem is not smooth. What we recommend is the CIP method
in combination with adaptive grid refinement. Numerical experiments with an error indicator
based on gradient recovery have shown that the CIP method works very well in practice for
locally refined grids.
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