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ANALYSIS OF THE DGFEM FOR NONLINEAR CONVECTION-DIFFUSION
PROBLEMS*
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Abstract. The paper is concerned with the analysis of error estimates of the discontinuous Galerkin finite
element method (DGFEM) for the numerical solution of nonstationary nonlinear convection-diffusion problems
equipped with Dirichlet boundary conditions. First, the case of nonlinear diffusion as well as nonlinear convection
is considered. Then, the optimal L°° (L?2)-error estimate is discussed in the case of nonlinear convection and linear
diffusion.
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1. Introduction. In a number of complex problems from science and technology, it is
necessary to approximate nonlinear singularly perturbed systems in domains with a complex
geometry, whose solutions contain internal or boundary layers. A possible numerical method
for an efficient solution of such problems is the discontinuous Galerkin finite element method
(DGFEM). This technique uses piecewise polynomial approximations of the sought solution
on a finite element mesh without any requirement on the continuity between neighbouring
elements. It allows the construction of higher order schemes in a natural way and it is suit-
able for the approximation of discontinuous solutions of conservation laws, or solutions of
singularly perturbed convection-diffusion problems having steep gradients. This method uses
advantages of the finite element method and finite volume schemes with an approximate Rie-
mann solver and can be applied to unstructured grids, of the kind which are generated for
most complex geometries.

The original DGFEM was introduced in [26] for the solution of a neutron transport lin-
ear equation and analyzed theoretically in [24] and later in [23]. Nearly simultaneously the
DGEFE techniques were developed for the numerical solution of elliptic problems in [33] and
for space semidiscretization of parabolic problems in [1] and [16] , using the interior penalty
Galerkin methods. In these papers the symmetric approximation of the diffusion terms is
used, and therefore the method is called SIPG (symmetric interior penalty Galerkin). Quite
popular is the NIPG (nonsymmetric interior penalty Galerkin) method, which was first intro-
duced in [28]. Theoretical analyses of various types of the DGFE method applied to elliptic
problems can be found, e.g., in [1], [2], [3], [21], and [29].

The DGFEM has been used in a number of applications. Let us mention conservation
laws in [7], [14], [22], compressible flow in [4], [5], [8], [10], [12], [18], [20], [32], and
convection-diffusion problems in time-dependent domains in [31]. A survey of DGFE meth-
ods, techniques, and some applications can be found in [6].

In the discretization of nonstationary problems, one often uses the space semidiscretiza-
tion, also called the method of lines. In [9], [11], and [15] the problem with a nonlinear con-
vection and linear diffusion was analyzed. The work in [27] is concerned with the DGFEM
applied to the solution of a parabolic problem with a nonlinear diffusion, equipped with the
Neumann boundary condition prescribed on the whole boundary.
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In this paper, we shall analyze the DGFEM applied to nonstationary convection-diffusion
problems with nonlinear convection as well as diffusion and Dirichlet conditions on noncon-
forming meshes. Further, we discuss here the optimal L (L?)-error estimates.

Let us note that we consider a problem in two space dimensions for simplicity only. All
results presented here can be extended to more space dimensions.

2. Formulations of the problem. First we shall introduce the formulations of the con-
tinuous and discrete problems.

2.1. Continuous problem. Let Q) C R? be a bounded polygonal domain with a Lipschitz-
continuous boundary 02 and T' > 0. We shall deal with the following initial-boundary value
problem: find u : Qr = Q x (0,T) — R, such that

u o= 0fs(u) . .
(2.1) e +3:1 do. = v (B@Vu) +g, in Qr,
(2.2) u|gax(o,1) = uD,
(2.3) u(z,0) =u’(z), =z €.

Letg : Qr — R up : 00 x (0,T) = R and u® : © — R be given functions, and
let f; € CY(R), s = 1, 2, be prescribed Lipschitz-continuous fluxes. Without the loss of
generality we suppose that f;(0) = 0,s = 1, 2. We assume that the function 3 satisfies the
conditions

(24) B:R%[ﬂ(]?Bl]’ 0<B0<ﬂ1 < o0,
2.5 |,3('LL1) — B(UQ)' < L|’LL1 — 'LL2|, Vul,uz e R

This problem represents a simplified model of heat and mass transfer problems, where
nonlinear convection as well as diffusion appear. As an example we can mention the system
of compressible Navier-Stokes equations; see, e.g., [17].

The application of techniques from [30] allows to prove the existence and uniqueness of
a weak solution of the above problem.

2.2. Discretization. Let 7}, be a partition of the closure § into a finite number of closed
triangles, whose interiors are mutually disjoint.

For any K € T, we set |K| = measz(K) (two dimensional Lebesgue measure),
hx = diam(K), the diameter of K, and h = maxge7;, hx. We consider an index set
I CcZ*=1{0,1,2,...}, such that all elements of 7 are numbered by indices from I, i.e.,
Tr = {Ki}ier. If two elements K;, K; € Ty, share a common face, which by definition has
to be a linear segment, we call them neighbours and set I';; = 0K; N 0K and d(T';;) =
meas;I';; = length of I';;. For i € I we define s(i) = {j € I; K is a neighbour of K;}.
The boundary 0f2 is formed by a finite number of faces of elements K; adjacent to 0€2. We
denote all these boundary faces by S;, where j € I, C Z~ = {-1,-2,...} and set
v(@) = {j € Iy; Sjis aface of K;},T';; = S for K; € Ty, such that S; C 0K;,j € I.
If K; is not adjacent to 89, we set y(7) = 0. Furthermore we set S(i) = s(i) U y(¢). We can
see that

S(Z) ﬂ’y('l) = @, 0K; = U F,’j, OK; NON = U Fz_]

jes(i) jev(@)

By m;; we denote the unit outer normal to JK; on the face I';;. In our case, n;; is constant
along I';;.
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Over 7Tj, we define the broken Sobolev space
HYQ,Th) = {v;v|x € HF(K) VK € Ty},
equipped with the seminorm
1/2
vl e (@,75) = (ZWﬁﬂ(m)) :
icl
Forv € H'(Q,T,) we set

Vlr;; =

K; On F’ij:

1
(v)r,; = §(v|pi]. + vlr,; ), average of traces of v on I'y;,
[U]Fij =v

Finally, we define the space of discontinuous piecewise polynomial functions

ri; — v|r;;. jump of traces of v on T'y;.

Sp = SP=HQ, Th) = {v;v|k € P,(K) VK € T},

where P,(K) is the space of all polynomials on K of degree < p.
In order to approximate the diffusion terms, we introduce the following forms defined
foru, o € H2(Q, Tp):

r(u, @) Z/ﬂ )WVu - Vpdr

iel

i€l jes(i) F” i€l jes(i) Fu
1<i 3<i
-2 > / Bu)Vu-nijpdS -0 Y- w)p - nijudS
i€l jey(i) i€l jerv(i) Fu

and

()0 = [ of sodw—GZZ/ B()Vep - nijun(t)dS

i€l jev(i)

+ZZ/ oup(t)pdsS.

i€l jevy(i)
Further, we define the interior and boundary penalty

n(u, ) Z Z/ a[u][cp]d5+z 2/ oupdS.

i€l jes(i) i€l jey(i)
7<i

The weight o is defined by

glr;; = CW/d(Fij);

where Cw > 0 is a suitable constant.



ETNA

Kent State University
etna@mcs.kent.edu

36 M. FEISTAUER AND V. KUCERA

Taking © = 1, 0 and —1, we obtain the symmetric (SIPG), incomplete (IIPG) and
nonsymmetric (NIPG) variants of the approximation of the diffusion terms.
Finally, we define the convective form

nue) ==Y [ Y f.w) 5 do

i€l ig=1

+Y /Fﬁmu

i€l jeS(i)

Tij» ulrji ) nij)‘p T;j ds.

Here H is the so-called numerical flux with properties specified later.

Now we can introduce the discrete problem (space semidiscretization with continuous
time, also called the method of lines).

DEFINITION 2.1. We say that up, is a DGFE solution of the convection-diffusion prob-
lem (2.1)—(2.3), if

a) up € Cl([O,T];Sh),
b) %(uh(t);wh) + br (un(t), n) + BoJn(un(t), on) + an(un(t), on)
= lh(uh,ﬂoh)(t), V‘Ph € Sha vVt e (OaT)a

C) Uh(O) = u(f]u

(2.6)

where ug is an Sy, approximation of the initial condition u° and By > 0 is a constant from
assumption (2.4).

The discrete problem (2.6) is equivalent to a large system of ordinary differential equa-
tions. If we apply a suitable ODE solver, we get a fully discrete problem. However, this
subject lies outside the framework of this paper. Here we shall be concerned with the analysis
of the semidiscrete problem (2.6).

3. Error analysis.

3.1. Some assumptions. We assume that the numerical flux H has the following prop-
erties:
(H1) H(u,v,n) is defined in R2 x By, where B; = {n € R%;|n| = 1}, and is Lipschitz-
continuous with respect to u, v:
|H(u,v,n) - H(U*7U*7n)| < CL('” - u*| + |U - U*|),

u, v, u*, v* € R, n € By.

(H2) H(u,v,n) is consistent:
d
H(u,u,n) = Zfs(u)ns, u€R n=(ny,...,ng) € By.
s=1

(H3) H(u,v,n) is conservative:
H(u,v,n) = —H(v,u,—n), u,v€R, nebB.
We shall assume that the weak solution u of problem (2.1)—(2.3) is regular, namely

ou

3.1) 5 € (0, 1) H (@),
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where p > 1 denotes the given degree of approximation. Then u € C ([0, T]; HP**()) and
u satisfies (2.1)—(2.3) pointwise. It is possible to show that the regular solution satisfies the
identity

i(u(t), on) + br(u(t), on) + BoJn(u(t), on) + an(u(t), or)

(3.2) =
= lp(u, o) (t), Vep € Sp, fora.a.t € (0,T).

To treat the nonlinear diffusion terms, we need one more regularity assumption on the
solution u of the continuous problem:

(3.3) (IVu(t)|| (@) < Cr fora.a.t e (0,T).

Let us consider a system {74} ne(0,ho)» ho > 0, of partitions of the domain 2 with the
following properties:
(A1) The system {74 }rhe(o,no) is regular: there exists a constant C > 0, such that

Z—KSCT, VK € Th, Vhe (0,ho).
K

(A2) There exists a constant Cp > 0, such that
hi; < Cpd(Ty), Yiel, VjeS(), Yhe (0, ho).

3.2. Some auxiliary results. First we state some results necessary for our analysis; see,

e.g., [9].
LEMMA 3.1 (Multiplicative trace inequality). There exists a constant Cpr > 0 indepen-
dent of h, K, v, such that

[vllZ20) < Cna (0llz2rey ol ) + b 0llZ2 k)

(3.4)
VK € Tp, v € HY(K), h € (0, hy).

LEMMA 3.2 (Inverse inequality). There exists a constant Ct > 0 independent of h, K, v,
such that

(3.5) vl (k) < Crhg vllLaxy, VK € Thy v € Pp(K), h € (0, ho).

Now, for v € L?(2) we denote by ITj,v the L?(Q)-projection of v on Sp,:
Mpv € Spy, (Mpv —w, op) =0 Ve € Sp.

Obviously, if K € Ty, then the function ITpv|k is the L%(K)-projection of v|x on P,(K).
Let k € [1, p] be an integer. It is possible to show, cf., e.g., [19, Lemma 4.1], that the operator
IT;, has the following properties.

LEMMA 3.3. There exists a constant C 4 > 0 independent of h, K, v, such that

(3.6) ITho — llz2(xy < Cabid 0l esr ()
(3.7) Thv — vl (k) < Cahfelo| g (i),
(3.8) |HhU - U|H2(K) < CAhI;(_1|U|Hk+1(K),

forallv € H*Y(K), K € Ty, and h € (0, ho), where k € [1,p] is an integer.
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In what follows, we shall denote by C' a generic constant independent of h, K, and/or
other quantities attaining different values in different places.
We set n(t) = Tpu(t) —u(t) € HPTH(Q,Tp) fora. a. t € (0,T). Then (3.4)—(3.8) yield
the following estimates.
LEMMA 3.4. There exists a constant C' > 0 independent of h, K, such that for all
h e (0, h())
a) Inllz2e,7) < ChPT ul o+ (o),
b) [l (a,7,) < ChP|ulge+1(q),
C) |77|H2(Q,7'h) < Chp_lllep—H(Q),
ou
t | o1y
e) Ja(n,m) < Ch*P|ul3psr -

on
< p+1
d) H = H < Ch

3.3. Properties of the convective form. We use the following notation:

1 1/2
Iulloe = (5 (1l + Jw) )

It is possible to show that || - || pg is anorm in H(Q, 73,).

Now, we shall be concerned with the properties of the form by. Under assumptions
(H1)-(H3) and (A1)-(A2) the convective form by, is Lipschitz-continuous in the following
sense.

LEMMA 3.5. Let u,@,v € HY(Q,T3) and h € (0,ho). Then there exists a constant
C > 0 independent of u, 4, v, h, such that

b (,0) = ba(@,0)] < € (Ja(0,0)2 + ol e,m))

X (||U —il|r2(0) + (th

icl

1/2
u— ﬂ||%(aK,-)) ) :

From this and results from Section 3.2 we obtain

LEMMA 3.6. Let u be the solution of the continuous problem, wuy, the solution of the
discrete problem and let & = up — HUpu € Sp. Then there exists a constant C > 0,
independent of h € (0, hg), such that

|br (u, &) — b (un, )| < Clléllpa (W ulgrr (@) + 1€llL2@)) -

3.4. Coercivity. An important question is the coercivity of the discrete problem (2.6).
LEMMA 3.7 (Nonsymmetric case). Let Cy > 0. Then for the nonsymmetric diffusion
form ap, and nonsymmetric right hand side l, (i.e., © = —1), we have

ah(uhag) - ah(uag) - lh(ulhg) + lh(uag) =A + B7
where
A 2 ﬂo'&'%{l(Q,Th)a

(3.9) |B| < C((Qﬂl — Bo)h? |u| gro+1(a) + APl o ) + ||€||L2(Q))

X (|§|H1(Q”Th) + Jn (&, 5)1/2)‘
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LEMMA 3.8 (Symmetric case). Let

Cw >4a(B 20
w45 Mm(1+ Cr),

0

where Cy and Cy are the constants from Lemmas 3.1 and 3.2, respectively. Then for the
symmetric diffusion form ap and symmetric right hand side ly, (i.e., © = 1), we have

an(un,§) —an(u,§) — lp(un,§) + ln(u,§) = A+ B,

where

B
A> (1€t @7 — Tn(€,0),
|B| < C{ (281 — Bo)h? |ul gro+1(0) + AP [ulgro+i ) + ||§||L2(Q)>

X (€l @,7) + Tn(€,€)M?).

LEMMA 3.9 (Incomplete case). Let

Cw >2 (2 2c
w = ,B_ M(1+CI),

0

where Cpr and Cr are the constants from Lemmas 3.1 and 3.2, respectively. Then for the
incomplete diffusion form ay, and incomplete right hand side lj,, we have

ah(uhag) - ah(uaé-) - lh(uhaé‘) + lh(’ll/,g) =A+ BJ
where
/80 2
A> 7(|§|H1(9,Th) - Jn(£,6)),

|B| <C (2ﬂ1 — IBO)hp|U|Hp+1(Q) + hp+1|u|Hp+1(Q) + ||§||L2(Q)>

 (|€]e 1) + Tn(€,€)'?).

The proofs of Lemmas 3.7-3.9 are rather technical. Therefore, we shall give here only a
sketch of the proof of Lemma 3.7.
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Proof of Lemma 3.7. We break down ay, (u, &) — I, (u, §) into individual terms by setting

ol (u, ) = Z/B )WVu - VEdz,

i€l

=-2 3 [ 6eve -l as

i€l jes(i)
i<i

Z Z / -n5u] dS,

i€l jes(i)
i<i

==Y Z/ B(u)Vu - n;;éds,

i€l jey (i)

o (u,§) = ZZ/ B(u)VE - nijudS —

i€l jev(i)

-> Z/ B(u)VE - nijup dS.

i€l jery(i)

Therefore
an(un,§) — an(u, &) — tn(un, §) + ln(u, §) = Z(Ui(Uh, £) —o'(uf))

and we shall treat these terms separately:
1) First term:

(uh, —o! (u, &) = Z/ (up)Vuy —ﬂ(u)Vu) -Védx

i€l

_ Z/ ( (up)Vup — ﬂ(uh)VHhu) + (B(uh)VHhu — B(u)VHhu)

iel
+(B(u) VI u — ﬁ(u)Vu)) -Védz = o] + 03 + 03
and, using (2.4), we estimate

ol = Z/ Bup)VE - V€d$>ﬂ0|§|H1(Q Th)*

i€l
Further, by (2.4), (2.5), the Cauchy inequality, (3.3) and Lemma 3.4, we get

Z/ ( B(w))Vn + (Blu )—5(u))VU)-V§dx

< (((51 — Bo) + LCrh)CRP|u| gro+1(q) + LCRII&IIL%Q)) €] 1 (0, 75,)-

|‘72| =

Finally, (2.4), the Cauchy inequality and Lemma 3.4 imply that
Z/ Bu) (VIThu — Vu) - VEdz
el

<y / 51|Vl VE| dz < BrCR?ful o |El a1 073

iel

|‘73| =
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2) Second term:
2(/u‘ha €) - UZ(U E)

_Z Z/ ((B(un)Vun — B(up)VIIzu)

i€l jes(i)
i<i

+(B(un) VIpu — B(u) VI ,u)
+(B(w) VI — B(u)Vu)) - nyl€]dS = of + 03 + o3,
where

==y Z/ (un)VE) - misle] dS

i€l jes(i)
j<i

We do not estimate o2, since it will cancel out a similar term in the following. After applying
(2.4) and (2.5), we get

P3O / < — Bw) Vr + (Blun) - 5(U))Vu>-n,~,-[§]ds‘

|‘72| =
i€l jes(i)
i<i
(ﬂl - 0 2 1/2 1/2
<Tow (ZhKiHV’?Hw(aK,-)) (6,6
w i€l
L||Vul| g 1/2
+07;(Q) (Z hic|lun — “”%Z(BK,-)) Tn(€,6)"/?
i€l

The multiplicative trace inequality implies that

03] < c((wl ~ Bo) + LRI WP ul o1 +L0R||£||Lz(m)Jh(£,§)1/2
and

|U§| < BlChp|u|HP+l(Q)Jh(§a€)1/2
3) Third term:

o* (un, &) — 0° (u, €)

_Z Z/ (un)VE) - mijlun] — (Bw)VE) - nj[u] dS

i€l jes(i)
j<i

= Z Z / <ﬂ Up, V§ nz][uh _Hhu]

i€l jes 1,)
Jj<i

+((Bun) = B(w))VE) - s [Myu] + (B(u)VE) - nys[Myu — u] dS
=0} + 03 +03.
By (3.4), we get
Z Z / (un)VE) - ’n”[f] dS = —0’%.

i€l jes(i)
Jj<i
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Due to the regularity condition (3.3), the function v is continuous and, thus, [u] = 0 and
[ITpu] = [n]. We get the estimate:

> / < B(u ))V£>-n,~j[n]ds‘

i€l jes(i)
j<i

< (B1 = Bo)ClE| (o, 77) P [u| Ho+1 () -

Finally, we have

|‘72| =

|Ug| < ﬂlclﬂHl(Q,Th)hp|u|Hp+1(Q).
4) Fourth term:

)~ = =3 3 [ (B Vun —)Vu) e d

i€l jery(i)

Y / (un) V€ + (Bwn) = B(w)) VIl + B(u) V) - mii€ dS

1€l jery(i)
= 0'1 + 0’2 + 0'3
and these terms can be treated similarly as 07, 02 and 03 to obtain

:_Z Z/ B(up)VE - ny;€ dS,

i€l jevy(i)

oy < C(((ﬂl — Bo) + LCrh) WP |u| g1 () + LCR||5||L2(Q)> Jn(£,6)'2,

log| < 51Chp|U|Hp+1(Q)Jh(§a5)1/2

5) Fifth term:
o (uns€) — 0¥, = 3 3 / (un)VE - mgun
i€l jery(i)
—B(w)VE - niju — (B(un) — B(u)) VE - nijup) dS
_22/ Blun)VE - misé
i€l jev(i)
+(Bun) — B(w))VE - ni;(IIhu — up) + B(u)VE - nijn) dS
= Uf + Jg + Ug.
We have 0 = —of and
Ba=> / B(u)) VE - min dS,
i€l jevy(i)

since u = up on Of). This, the Cauchy inequality and the multiplicative trace inequality
yield

|O'g| S (ﬁl - ﬂO)C|E|H1(Q7n)hp|u|Hp+1(Q)’
and
|Ug| S ﬂ10|£|H1(Q,Th)hp|u|HP+l(Q).

The use of the derived inequalities gives us the sought estimates (3.9). d
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3.5. Main result. On the basis of the above analysis, we get the apriori error estimate
for the problem with the nonlinear convection and diffusion.

THEOREM 3.10. Let assumptions (H1)-(H3) and (A1)—(A2) be satisfied and let the
constant Cyy satisfy the assumption from Lemmas 3.7, 3.8 and 3.9 corresponding to the
NIPG, SIPG and IIPG version, respectively. Let u be the exact solution of problem (2.1)—(2.3)
satisfying the regularity conditions (3.1) and (3.3) and let uy, be the approximate solution
defined by (2.6)with u% = I1,uC. Then the error e, = u — uy, satisfies the estimate

Bo

t
mae en(OFz(o) + 5 | (0o, + Talen(®). en(0))) a9

(3.10) t€[0,T7]
< Ch?,

with a constant C' > 0 independent of h.
Proof. From (2.6), (3.2) and estimates in Sections 3.2-3.4 it follows that

10
5&”5(75)”?,2(9) + %(Kﬁ{l(g,n) + Jn(€,€))

< C{ (Tn(&E)Y2 + 1€l mra,7) (B |ul gorra) + 1€l p2(o))
+hP T Au /0t s o) ||l 2y + BolP |ul o1 ) Tn (€, €)M

+ ((251 — Bo)hP|ulmr+1 (@)

+1P T ul o) + ||€||L2(Q)) ([l @,7) + IR (&, E))}-

The application of Young’s inequality gives us

0
a”f(t)”%z’(g) + Bo(|€3r1 0,7y + Tn(6,6))

% (6. + el ) + Of (14 el

1 . . .
+% (h2p+2 + /th2p + (251 — ﬂ0)2h2p + h2p+2) |U|2Hp+1(Q)

<

+h2p+2 |6U/6t|%{p+1(9) } .

After integrating from 0 to ¢ € [0, 7] and noticing that £(0) = u$ — II,u® = 0, we obtain

t
1E@OIZ2(q) +Bo/0 (IE@)Fr 0,7 + Tn((9), £(9))) dY

1 t 1 t
< c{(1+ %) | VO ey a0+ 5 [0+ 55

t
+(21 = ” + 1) u(0) sy 0 + 1772 [ 00/0tl 0 a0}
0
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Now the application of Gronwall’s lemma implies that

IEONZ20) +5o/0 (@) F @7 + Tn(E(9), £(9))) d¥

1/1
< opePotl (— (W2 + B2 + (261 — o) + 1?)
0 Bo
S ——— h2||6u/at||%z(o,T;Hp+l(9)))
1
X exp (Cﬂo + t), t€[0,T].
%

Finally, since e, = £ + 7, the above estimate and estimates from Lemma 3.4 yield the sought
result. O

4. Optimal error estimates. The error estimate (3.10) is optimal in the L? (H')-norm,
but suboptimal in the L (L?)-norm. Our goal is to derive an optimal error estimate in the
L>®(L?)-norm. It was carried out in [13] under the following assumptions.

Assumptions (B):
e diffusion is linear, i.e., 8(u) =€ > 0,
o the discrete diffusion form ay, is symmetric (i.e., we consider the SIPG version of
the discrete problem),
e the polygonal domain {2 is convex,
e the meshes Ty, h € (0, ho), are conforming with standard properties from the finite
element method (i.e., without hanging nodes),
e the exact solution u of problem (2.1)—(2.3) satisfies the regularity condition (3.1),
e conditions (H1)—(H3) and (A1) are satisfied.
The derivation of the L°°(L?)-optimal error estimate was carried out with the aid of the
Aubin-Nitsche technique based on the use of the elliptic dual problem considered for each
z € L*(Q):

@.1) —Ap=z inQ, psn=0.

Then the weak solution ¢ € H?({2) and there exists a constant C' > 0, independent of z,
such that

42) 1] 20y < Cllzll2(e)-
We shall give here a sketch of the proof of the optimal error estimate. Let us set
Ap(w,v) = ap(w,v) + edp(w,v), w,v € H*(Q,Tp).

Now, for each h € (0,ho) and ¢ € [0,T] we define the function w*(t) (= wj},(¢)) as the
“Ap-projection” of u(t) on Sy, i. e. a function satifying the conditions

4.3) u*(t) € Sh, Ap(u*(t), on) = An(u(t), on) Vn € Sh,

and set x = u — u*. The use of the coercivity of the form A, and estimates from sections
3.2-3.4 allow us to prove the estimates

4.4) lIxllpe < ChPlulgr+r(q)y, lIxtllpe < ChP|ut| gr+1(q),
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forall h € (0, ho).
It is necessary to derive optimal L?(f2)-estimates of x and ;.
LEMMA 4.1. There exists a constant C' > O such that for all h € (0, ho)

(45) ”X”L2(Q) S Chp+1|u‘Hp+1(Q), and ||Xt||L2(Q) S Chp+1|Ut|Hp+1(Q).
Proof. We have

y 2
Iz = sup 207
zer2@) 2]z

Let ¢ € H?(f) be the solution of problem (4.1) for z € L?(Q2) satisfying (4.2) and let ¢, be
the piecewise linear Lagrange interpolant of the function ). Obviously ¢, € C(Q) NSy, and
¥n]aq = 0. Thus, we have

1
Y — ¥nllpe = §|¢ —¥ulto,m) < Ch?[WlEe0)-
The assumption that 1) € H?(Q) implies that
[w]ri_j =0= [V,(p]rij Vi € I: .7 € 8(2)
Now, using (4.1) and Green’s theorem, we find after some calculations that
1
(Xa Z) = g Ah(¢JX)

Further, the symmetry of Ay, and (4.3) give
An(Wn, x) = An(X;¥n) = An(u —u*, ¢Pn) =0,

and thus
1
(06 2) = An( = ¥n, X)-
Moreover, due to the properties of ¥ and vy,

(Y —n)

r,; =0  Viel, jen(),
and

[ —¢plr, =0 Viel, jes(i).
After some calculation, we get

(62) =3 [ V=) Vxda

i€l

_Z Z) /1"1 (%)1/2 (V(¢ — n)) - mij (CKCTVZ)YM [x]dS

i€l jes(i
i<i

_Z Z /F,-]- (dg;/j))lm V() —r) - nij (%)1/2xd5

i€l jery(i)

< Y = Ynla @)Xl (2,7)

1/2
1
toi (Z hic, ||V (¥ —wh)||%2(aK,.)> (JE06x)' 2
w

iel
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According to the multiplicative trace inequality, (4.2) and (4.4), we can write

1/2
1
i/ (Z hi IV — "ph)”%ﬁ(f)lﬂ)) (Ja O, x0)'?
Cw” \ier
1/2
< Clixllpe (Z h, 1/"%12(K,-)> < C WP ul g @) |12l 20 -
iel

Moreover,

[V = Ynlue)xler@,m) < ChlYluze lxllpe
< C P ul o (@ ll2] 20y -

Combining the previous estimates, we find that
(x> 2) < C WP u| g (|2l L2(0) -

Hence,

)2
Il = swp D < O s,

2€L2(Q) ||Z||L2(Q)
which completes the proof of the first estimate in (4.5).
In the derivation of the estimate of the norm ||x¢||z>(q) We proceed similarly as above,
using the differentiation of identity (4.3) with respect to ¢. O
Finally, we come to the optimal L (L?)-error estimate.
THEOREM 4.2. Let assumptions (B) be fulfilled. Then the error e, = u — uy, satisfies
the estimate

llenllLe 0,122(2)) < ChPH,

with a constant C' > 0 independent of h.
Proof. Let u* be defined by (4.3) and x = u — u*, ¥ = u* — up. Thenep, = u —up =
X + ¥. Let us subtract (3.2) from (2.6, b), substitute ¥ € Sy, for ¢y, and use the relation

ad(t 1d 2
(%52, 00) = 5 5 POl

Then, we get

9020 + An(D(0), 9(0)
= Dau(®), 9(6) ~ bu(un(®), 9(O)] - (), ),

because Ap(u(t) — u*(t), 3(t)) = 0. The first right-hand side term can be estimated by
Lemma 3.6 and Young’s inequality (we omit the argument £):

c

3

(4.6)

€ .
br(u,¥) = br(un, V) < 5||19||2DG + (h2(p+1)|u|§{p+1(9) + ||19||i2(9)) .

For the second term of the right-hand side of (4.6), by the Cauchy and Young’s inequalities
and Lemma 4.1, we have

1069 < 5 (C R D e s ) + 19132 -

N | =
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Finally, the coercivity of A, following from Lemma 3.8 gives the estimate of the left-hand
side of (4.6).
Hence, we find that

“.7) 91720y + elldle

Y

dt
1 1

< Cprth (g |ulFrp+1. () + |Ut|fm+1(g)> +C (1 + g) 1911720 -

Now the proof is concluded in a standard way by the integration of (4.7) from 0 to ¢ € [0, 77,
the estimate of [[/}(0)|| 12(¢), and the application of Gronwall’s lemma. O

5. Conclusion. In the paper we derived error estimates for the NIPG, SIPG and IIPG
versions of the DGFEM applied to the numerical solution of nonstationary convection-diffusion
problems with nonlinear convection as well as diffusion, equipped with Dirichlet boundary
condition. The computational grids can be nonconforming with hanging nodes. Further, we
discussed optimal L (L?)-error estimates of the SIPG method in the case of a linear diffu-
sion and nonlinear convection, with the Dirichlet boundary condition on the whole boundary,
over conforming meshes.

There are still some open problems:

e optimal L (L?)-error estimates in the case of a nonlinear diffusion,

e derivation of optimal L (L?)-error estimates over nonconforming meshes,

e the analysis of optimal error estimates in the case of a nonconvex polygonal domain
Q and mixed Dirichlet-Neumann boundary conditions under a realistic regularity
of the exact solutions of the nonstationary initial-boundary value problem and the
elliptic dual problem.
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