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NUMERICAL STUDY OF A DISCRETE PROJECTION METHOD FOR
ROTATING INCOMPRESSIBLE FLOWS
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�
Abstract. This paper presents a numerical analysis for complex 3D simulations of the Stirred Tank Reactor

(STR) model by a modified discrete projection method (DPM) for rotating incompressible flow. For several proto-
typical configurations of the STR model, we examine the multigrid behavior for momentum and pressure Poisson
subproblems for different values of the time step, the angular velocity, etc., and we give examples of the convergence
behavior of the (outer) DPM scheme. For a prototypical application, we visualize the complex flow behavior by
injecting sources of particle tracers into the obtained flow field to observe their mixing distribution.
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1. Introduction. The considered fluid motion is modelled by the nonstationary incom-
pressible Navier-Stokes equations��������
	 ���������������� � �������� !�"�#�%$�� in &(' 	 $��*),+-�(1.1)

for given force
�

and kinematic viscosity
�/.%$

, with some prescribed boundary values and
an initial condition.

FIG. 1.1. (left) STR geometry; (right) Numerical simulation (cutplane of velocity).

If one wants to solve CFD problems of the numerical simulation for models with moving
boundary parts, one has to think about the proper treatment of the moving object. As an
example of such models, we take the Stirred Tank Reactor shown in Figure 1.1, which is a
nice candidate to examine the efficiency of the proposed discrete projection method [10] for
the simulation of the real-life 3D problems.0

Received November 28, 2007. Accepted for publication March 11, 2008. Published online on December 11,
2008. Recommended by G. Haase. This research was supported by the German Research Foundation and the
Russian Foundation for Basic Research through the grant DFG-RFBR 08-01-91957 and TU 102/21-1.�

Institut für Angewandte Mathematik, TU Dortmund, 44227 Dortmund, Germany
(asokolow@math.uni-dortmund.de, ture@featflow.de).�

Department of Mechanics and Mathematics, Moscow State University, 119899 Moscow, Russia
(maxim.olshanskii@mtu-net.ru).

49



ETNA
Kent State University 
etna@mcs.kent.edu

50 A. SOKOLOV, S. TUREK, AND M. A. OLSHANSKII

All approaches proposed in the literature for treating moving boundary parts have some
drawbacks, which one may wish to avoid during the numerical simulation. For example, the
Arbitrary Lagrangian Eulerian method [3], while ensures mesh alignment along the bound-
aries may perform poorly when large deformations or substantial changes in body position
in space are required. The Fictitious Boundary method [14] allows to simulate an arbitrar-
ily moving object such that snapshots can demonstrate the realistic movement of the time-
dependent tread patterns. Nevertheless, a large amount of CPU time is required to simulate
even 2D benchmark models with acceptable accuracy due to the required large amount of grid
points for high quality. Moreover, the handling of geometry and meshes of the method serves
as a source of additional errors in velocity and pressure fields, since the Fictitious Boundary
approach often uses a fixed mesh and therefore may capture boundaries of a moving object
not sufficiently accurate unless the mesh is very fine; see Figure 1.2 (right). Luckily, there is
a large class of “rotating” models, when the application of the above methods can be avoided
by some modifications of the underlying PDEs and/or by special transformations of the model
that allow considering a static computational domain. We follow this latter approach in this
work for the simulation of the fluid flow in the Stirred Tank Reactor configurations.

FIG. 1.2. (top-left) body-fitted mesh on a coarse level; (top-right) mesh for the fictitious boundary approach
on a coarse level; (bottom-left) body-fitted mesh on a finer level; (bottom-right) finer mesh for the fictitious boundary
approach.

Transformation of the system of coordinates from the inertial frame into the noninertial
frame, rotating with the blades, leads to a new velocity 1 �2� �!	43 '65 � , where 3 is the
angular velocity vector and 5 is the radius vector from the center of coordinates. The velocity1 satisfies homogeneous Dirichlet boundary values on the blades of the propeller, while on
the outside wall of the tank one obtains 1 � 3 '/5 . Thus, in the new reference frame the
system (1.1) can be rewritten as

(1.2)
187 �
	 1 �9�� 1 �:��� 1 �<;=3 '>1 �?3 ' 	@3 '>5 � � �� � ���!� 1 � $A� in &
' 	 $��*),+-�

where ;=3 'B1 and 3 ' 	43 'B5 � are the so-called Coriolis and centrifugal forces, respectively.
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For a more detailed derivation of (1.2); see, e.g., [2] or [11]. Using the equality3 ' 	@3 '>5 �C�!�DFE; 	43 '>5 �HG
and setting I �:���
JG 	43 '�K � G in (1.2), we get the following system of equations which will
be treated in this paper:

(1.3)
187 �
	 1 �9L� 1 ����� 1 �F;M3 '�1 �  I � ���!� 1 � $�� in &
' 	 $A�H),+�N

The implicit discretization of (1.3) in time and in space leads to a saddle-point system to be
solved at every time step. The system has the form (

���
is the time step)

(1.4)
OQP ���SRRUT $ V O 1 �WV � OYX $ZV �

where 1 � 	4[ J � [ G � [�\ �ST is the discrete velocity,
�

is the discrete pressure;
R

and
R�T

are
discrete gradient and divergence operators and

P
is a block matrix, which stems from the

discretized velocity operators in the momentum equation. The matrix
P

has the following
block structure

(1.5)
P �^]_a` �cb $b ` $$ $ `

de �
where ` is the block diagonal part of

P
, which stems from the convective and diffusive terms,

and
b

is the off-diagonal part of
P

due to the discretized Coriolis force term ;M3 'f1 . More
details on the structure of the matrices ` and

b
will be given in the next section.

The considered algorithm was implemented in the Pp3d module of the open-source CFD
package Featflow1.

2. Discrete projection method. The original discrete projection method for the time
integration of (1.3) can be written as follows (see [10, 12, 13]): At every time step

�Hgihj�SgMk J
do

1. For given
� g �?� 	 �Sg�� find an auxiliary velocity l1 fromP l1 � X ���U�SRD� g N(2.1)

2. Solve the discrete pressure Poisson problemInm�o �%R Tqpar Js R m � E��� R T l1 �(2.2)

where
p s is the mass matrix of the finite element velocity approximation.
3. Update the pressure and project the velocity via� gMk J �?� g � m �(2.3) 1 gMk J � l1 ���U� P r J R m N(2.4)

The velocity matrix
P

is assumed to be obtained by linearization via a fixed point or Newton-
like method and to be invertible.

We modify the above method so that it takes into account the possibly dominant con-
vective and Coriolis force terms. Some theoretical aspects and the detailed derivation can be
found in [10]. The final form of the modified DPM reads:

1See www.featflow.de.

www.featflow.de


ETNA
Kent State University 
etna@mcs.kent.edu

52 A. SOKOLOV, S. TUREK, AND M. A. OLSHANSKII

1. Solve for l1 the equation P l1 � X �����SRc� g �
with a special multigrid method. This multigrid method involves smoothing iterations with
the special preconditioner t :

(2.5) tuo � tLv�wHxzy{wH| � ]_~}������ 	 ` � � ;=� �U� p s $;=� ��� p s }������ 	 ` � $$ $ }������ 	 ` �
de �

where
p s is a lumped mass matrix. A similar multigrid method was suggested in [7], where

convergence estimates were shown for the 2D model case under certain assumptions on the
discretization. Taking into account the fact that all blocks of t v�wHxzy�wS| are diagonal matrices,
one can explicitly find the inverse t r Jv�w*x*y�wH| , which has again the same structure; see [9].

2. Solve the discrete pressure problemI�m � E��� R T l1 �(2.6)

where I can be interpreted as a special preconditioner to the pressure Schur complement
operator

R�T P r J R
. We assume that the matrix I takes the form

RLTq� r J�4� � R , with
� �4� � as

an approximation of the velocity matrix
P

. This particular form of I ensures that the update
of the velocity in (2.11) is actually a projection into the subspace of discretely divergence-free
functions. To take into account convection and the Coriolis force term we suggest to use:

(2.7)
� �@� � o �
� � diag+coriol

� � ]_�}������ 	 ` � � ;=� �U� p s $;�� ��� p s }������ 	 ` � $$ $ }��-��� 	 ` �
de N

In our numerical experiments we also test other choices for
� r J�4� � :

� �
mass+coriol

� � ]_ p s � ;=� ��� p s $;�� ��� p s p s $$ $ p s
de �

(2.8)

� �
diag
� �^]_ }������ 	 ` � $ $$ }������ 	 ` � $$ $ }��-��� 	 ` �

de �
(2.9)

� �
diagXY+coriol

� � ]_�}������ 	 ` � � ;=� ��� p s $;�� ��� p s }������ 	 ` � $$ $ p s
de N

(2.10)

3. Calculate the pressure and the velocity approximations as (
p��

is the pressure mass
matrix) ���?� g � m �F� p r J� R T l1 �1 � l1 �:���H� r J�4� � R m �(2.11)

with � ��$ or � ��� . We set
� g�k J ���

, 1 g�k J � 1 . One can also perform several loops of
steps 1.–3. to recover the fully coupled solution at time

� g�k J .
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3. Numerical experiments. In this section we analyze the numerical properties of the
modified DPM for the system of the Stokes and Navier-Stokes equations with the Coriolis
force term. We constructed two configurations of the STR model (see Table 3.1 and Fig-
ure 3.1) to test the multigrid behavior for the momentum and Pressure Poisson equations and
to examine the overall convergence behavior of this discrete projection method. In Table 3.1
we adopt the following notation: NEL is the number of elements, NAT is the number of
faces, NVT and NEQ are the number of vertices and the total number of unknowns (degrees
of freedoms) on different grid levels.

TABLE 3.1
Characteristics of STR meshes.

level NVT NAT NEL NEQ
One-propeller STR configuration
1st level 510 1,216 352 4,000
2d level 3,450 9,088 2,816 30,080
3d level 25,074 70,144 22,528 232,960
4th level 190,434 550,912 180,224 1,832,960
Three-propellers STR configuration
1st level 1,406 3,528 1,048 11,632
2d level 9,864 26,688 8,384 88,448
3d level 73,100 207,360 67,072 689,152
4th level 560,916 1,634,304 536,576 5,439,488

3.1. Multigrid with smoother t for velocity problems. Discretizing the system of
Navier-Stokes equations with the Coriolis force term (1.3) in time and space, we obtain the
linearized momentum equation of the following form with similar structure as in (1.5)

(3.1)
P 1 � X 	 1 g ��� g ��� gMk J ��� g ��N

We test three preconditioning approaches for solving (3.1). The first two include standard
pointwise SOR methods with the following preconditioners:

t������ � ]_ lower part 	 ` � $ $$
lower part 	 ` � $$ $

lower part 	 ` �
de

and

t������ v�w*xzy{wH| � ]_ lower part 	 ` � $ $;�� ��� p s lower part 	 ` � $$ $
lower part 	 ` �

de N
The third variant is block-diagonal preconditioner t�v�wHxzy�wS| from (2.5). Both t ����� v�w*xzy{wH|

and tLv�wHxzy{wH| matrices take into account convective and Coriolis force terms. However, onlyt�v�w*xzy{wH| uses the full Coriolis force terms and, at the same time, we can explicitly construct its
inverse. Table 3.2 shows the typical number of multigrid iterations for the momentum equa-
tion for several problem parameters for the above preconditioners. The STR configuration 1
was used.
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FIG. 3.1. (top-left) Configuration 1 of the STR, 2d level; (top-right) velocity for configuration 1;
(bottom-left) Configuration 2 of the STR, 2d level; (bottom-right) velocity for configuration 2.

TABLE 3.2
Number of multigrid iterations of the momentum equation.

Preconditioner � ��� Meshing level

2 3 4t ����� 0.6 2 2 2t ����� v�w*x*y�wS| 0.6 2 2 2tLv�wHxzy�wS| 0.6 2 2 2tL����� 6 2 2 2tL����� v�w*x*y�wS| 6 2 2 2tLv�wHxzy�wS| 6 2 2 2t ����� 60 div div divt ����� v�w*x*y�wS| 60 3 4 4tLv�wHxzy�wS| 60 2 2 2tL����� 600 div div divt ����� v�w*x*y�wS| 600
.

100
.

100
.

100tLv�wHxzy�wS| 600 2 2 2



ETNA
Kent State University 
etna@mcs.kent.edu

A DISCRETE PROJECTION METHOD FOR ROTATING INCOMPRESSIBLE FLOWS 55

For small values of � ��� , the explicit construction of t v�w*x*y�wS| might not be advantageous.
However, for larger values of � ��� , the approximation of the velocity matrix by the precon-
ditioner tLv�w*x*y�wH| , with its upper and lower parts of the Coriolis force term on the off-diagonal
matrices, shows more advantages. Moreover, the diagonal nature of tiv�w*xzy{wH| makes it possible
to find its inverse explicitly and thus, avoids further loss of efficiency.

3.2. Multigrid solver for the modified pressure equation (2.6). We solve both the ve-
locity problem in step 1 of the DPM and the modified pressure equation in step 2 by multigrid
methods. Numerical results of Section 3.1 show that the geometric multigrid method with
special smoothing is very effective for solving the velocity problem. However, the overall ef-
ficiency of the DPM also depends on whether a fast solver is available for (2.6). In the paper
[10], we show that the matrix I ��R�T�� r J�4� � R with

� r J�@� � from (2.8)–(2.10) is sparse, sym-
metric, positive definite, and corresponds to a mixed discretization of an elliptic problem with
symmetric diffusion tensor. Thus, one expects that standard multigrid techniques work well
in this case. Numerical tests however show that the standard geometric multigrid method with
SOR smoother does not provide a satisfactory solver for this problem in all practical cases.
Therefore, we also test ‘stronger’ smoothers such as ILU(k) and BiCGStab(ILU(k)).

TABLE 3.3
Multigrid convergence rates for different preconditioners ����� �¢¡�£�¤¥�¦ § � with 4 smoothing steps, resp., 2

smoothing steps for BiCGStab, 3d level.

Smoother ;�� ���
0.05 0.5 5.0 50.0p �

mass
�

SOR 0.50+00 0.50+00 0.50+00 0.50+00
ILU(1) 0.17-01 0.17-01 0.17-01 0.17-01
ILU(3) 0.75-03 0.75-03 0.75-03 0.75-03
BiCGStab(ILU(1)) 0.19-02 0.19-02 0.19-02 0.19-02
BiCGStab(ILU(3)) 0.47-03 0.47-03 0.47-03 0.47-03p �

mass+coriol
�

SOR 0.50+00 0.51+00 0.81+00 div
ILU(1) 0.17-01 0.19-01 0.59-01 0.26-01
ILU(3) 0.75-03 0.75-03 0.48-02 0.28-02
BiCGStab(ILU(1)) 0.18-02 0.18-02 0.61-02 0.30-02
BiCGStab(ILU(3)) 0.47-03 0.36-03 0.21-02 0.18-02p �

diag
�

SOR 0.46+00 0.31+00 0.41+00 0.49+00
ILU(1) 0.13-01 0.32-01 0.20+00 0.35+00
ILU(3) 0.23-02 0.76-02 0.81-01 0.19+00
BiCGStab(ILU(1)) 0.31-02 0.83-02 0.45-01 0.88-01
BiCGStab(ILU(3)) 0.96-03 0.18-02 0.20-02 0.43-02p �

diag+coriol
�

SOR 0.46+00 0.34+00 0.56+00 0.68+00
ILU(1) 0.13-01 0.34-01 0.14+00 0.16+00
ILU(3) 0.23-02 0.79-02 0.38-01 0.40-01
BiCGStab(ILU(1)) 0.31-02 0.85-02 0.23-01 0.28-01
BiCGStab(ILU(3)) 0.96-03 0.17-02 0.13-02 0.19-02

The procedure to measure the multigrid convergence rates was chosen as follows: for
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given � , we calculate until some prescribed stopping criteria are satisfied. Then, the obtained
steady state solution 	 l1 � l�¨� is used as an initial solution so that }��-��� 	 ` �8� }������ 	 ` 	 l1 �H� , and
we solve only the Pressure Poisson equation for various preconditioners and the values of� ��� ; see Table 3.3. Again, we used the STR configuration 1 to calculate values presented in
the table. The multigrid convergence for the STR configuration 2 shows similar behavior.

TABLE 3.4
Multigrid convergence rates for the preconditioner ����� � ¡ £¨¤¥ª©z«¬�®z¯�°�±H²H«±H³§ � for different levels with 4

smoothing steps, resp., 2 smoothing steps for BiCGStab.

level ;�� ���
0.05 0.5 5.0 50.0

SOR
level 2 0.35+00 0.35+00 0.57+00 0.65+00
level 3 0.46+00 0.34+00 0.56+00 0.68+00
level 4 0.40+00 0.40+00 0.60+00 0.65+00
BiCGStab(ILU(1))
level 2 0.85-03 0.91-03 0.45-02 0.76-02
level 3 0.31-02 0.85-02 0.23-01 0.28-01
level 4 0.53-02 0.98-01 0.23-01 0.38-01

3.3. Numerical analysis of the new DPM. For the numerical analysis of the computa-
tional performance of the new DPM we consider two different cases. First, we start testing
the algorithm by solving a quasi-stationary problem and calculate until the steady state is
achieved by pseudo-time-stepping with DPM. Then, in the next section, the DPM is used to
compute the fully unsteady case for the STR problem. In order to monitor the convergence
to the steady solution, we compute values of ´�1 7 ´ |¶µ�· ´�1¸´ |¶µ . Values of ´ � 7 ´ |¹µ�· ´ � ´ |¹µ behave
in a very similar way. In the ideal case (when the preconditioner is exact) we expect the
convergence of the solution to the steady case to be very fast. However, the inversion of
the exact pressure Schur complement as preconditioner is prohibitively expensive and there-
fore it cannot be used in practice. The constructed approximating preconditioners of the
form I �%R�Tq� r J�4� � R with

p r J�4� � equals
� �

mass+coriolis
� , � � diag

� and
� �

diag+coriol
� might give

slower convergence, compared with the exact one, but should deliver faster convergence com-
pared with the original unmodified preconditioner

� �
mass
� . Moreover, convergence is faster,

when larger values � �U� are used. In the following, we perform tests for each of the discussed
choices. The following graphs are for the unit cube geometry; see [10] for details. For the
STR configurations the convergence of the DPM has similar behavior as for the unit cube
geometry, though due to the higher mesh complexity of the STR the relevant upper bound of
the � ��� value is smaller than in the case of the unit cube.

3.3.1. The Stokes case with Coriolis force. Let us consider the Stokes system of equa-
tions:

(3.2)
1 7 ����� 1 �<;=3 '>1 �  I � ����� 1 � $A� in &
' 	 $��*),+ºN

Pressure operators of the form I �%RLT p r J�4� � R are examined with the following choices
of
p �4� � :� �
mass
� � ]_ p s $ $$ p s $$ $ p s

de
and
� �

mass+coriol
� � ]_ p s � ;=� ��� p s $;�� ��� p s p s $$ $ p s

de N
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It is natural to expect that as soon as the parameter � �U� increases (either
���

gets larger, � or
both), the off-diagonal block of the matrix

� �
mass+coriol

� , which is due to the Coriolis force,
plays a more important role and the solution converges to a steady state in a smaller number
of time steps. Conversely, if � �U� decreases, the iterative behavior of the DPM as a solver
with the matrix I �»R T � r J� mass+coriol

� R in step 2 is similar to the performance of the standard
Chorin-like scheme with the matrix I �%R T � r J� mass

� R . We illustrate this in Figure 3.2.

FIG. 3.2. Stokes equations (top) ¼z½¨¾�¿A��À9Á Â ; (bottom) ¼z½�¾8¿��#ÃHÀ9Á À .
3.3.2. Schur complement preconditioners for the Navier-Stokes case. When consid-

ering the system of the Navier-Stokes equations (1.3), we can expect to gain a substantial
improvement in the convergence rates by applying the pressure operator I with the matrix� �

mass+coriol
� . However, in this case we also have to care about the effect of convective terms

on the choice of I . As it was proposed in the previous section, the convective term will be
treated by means of the preconditioning matrix I �
RLT p r J�4� � R with

p �4� � as follows:

� �
diag
� �Ä]_ }��-��� 	 ` � $ $$ }������ 	 ` � $$ $ }������ 	 ` �

de �
or
� �

diagXY
� � ]_�}������ 	 ` � $ $$ }������ 	 ` � $$ $ p s

de N
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FIG. 3.3. Navier-Stokes equations (top) ¼z½¨¾�¿¨�/Ã�Á Â ; (bottom) ¼z½¨¾�¿¨�>¼9Á Â .
From the results in Figure 3.3, we can conclude that, on the one hand, using the matrixp �

diagXY
� improves the convergence rates compared with those for

p �
mass
� and, on the other

hand,
p �

diagXY
� makes the iterative process more robust compared to

p �
diag
� . Our numerical

tests show that the pressure Schur complement preconditioner
R�T p r J�

diagXY
� R can be suc-

cessfully used for the flow simulations with small velocity values in the Å -direction. In this
case the convergence history of ´�1�7�´�| µ�· ´�1¸´�| µ for simulations using

� �
diag
� and
� �

diagXY
�

are quite close to each other. For the flow simulations with significant velocity values in theÅ -direction, the case
p �

diagXY
� is not applicable.

Finally, in Figure 3.4, we perform the corresponding tests for the Navier-Stokes equation
with the pressure operator I inside the DPM, where convection and Coriolis force terms are
included: � �

diag+coriol
� � ]_ }������ 	 ` � � ;=� �U� p s $;=� ��� p s }������ 	 ` � $$ $ }������ 	 ` �

de �
or
� �

diagXY+coriol
� � ]_~}������ 	 ` � � ;�� ��� p s $;=� �U� p s }������ 	 ` � $$ $ p s

de N
For the last test case, we perform computations with the convective term being of the
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FIG. 3.4. Navier-Stokes equations (top) ¼z½�¾8¿A�6Ã�Á Â ; (bottom) ¼z½¨¾�¿¨�>¼9Á Â .
modified form Æ �¹ 1 . To choose an appropriate Æ , we first perform the numerical simulation
for the Navier-Stokes equations until steady state. Then we set Æ � 1 and solve this linear
problem with the DPM, which now allows much higher values of � ��� , since the convection
part is linear. The purpose is to demonstrate that in this case the matrix

� �
diag+coriol

� in the
operator I delivers significantly better convergence rates than

� �
diag
� . As expected, the

matrix
� �

diag+coriol
� gives better convergence rates than any other choice. Results are shown

in Figure 3.5.

3.4. Simulation for the full STR configurations. We now present more realistic exam-
ples for unsteady numerical simulations for two configurations of the Stirred Tank Reactor;
see Figure 3.1 (left). The main characteristics are as follows (all measures are given in non-
dimensional form):

1. Configuration 1: Number of propellers = 1, height of the tank Ç 7@È g�É/�2Ê , radius
of the tank Ë 7@È g�ÉZ� E $ , length of each blade ÌÎÍ |¶È�Ï�Ð �ÒÑ , width of each bladeÓ Í |¶È"Ï�Ð � E , �%�Ô$�N E , 1�y g�Õ |{wHÖ �×Ê�Ø , � � ;MÙ , ÚUÛ%Ü $�N $�$�$MÊ , where Ú�Û�o �� · 	4� Ì G Í |¶È�Ï�Ð � is the Ekman number. In the case of mixers, the Ekman number is such
that ÚUÛ � E · ËYÝ , where ËYÝ is the Reynolds number.

2. Configuration 2: Number of propellers = 3, Ç�7@È g�É � ;�; , Ë�7@È g�É � E $ , Ì Í |{È�Ï�Ð �ÞÑ ,Ó Í |¶È"Ï�Ð � ; , ���
$�N E , 1�y g�Õ |{wHÖ �»ÊßØ , � � ;MÙ , ÚUÛ�Ü $AN $�$�$MÊ .
In every case fluid enters the tank through an inlet near the bottom, then it is ‘mixed’ by the ro-
tating propeller and leaves the stirred tank through an outlet located on the top; see Figure 3.1
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FIG. 3.5. Navier-Stokes equations with àFáHâ8ã , ¼z½¨¾�¿A�6ÃHÀ9Á À .
(right). The coordinate transformation made it possible to preserve the mesh aligned with the
boundaries of the propeller, such that even the small-scale flow features are resolved. At the
end of the simulation, in the postprocessing phase, the backward coordinate transformation
(from the noninertial to the inertial one) is performed and the velocity field is changed corre-
spondingly to provide the user with the ‘standard’ motion of the propeller in the stirred tank
reactor. For the methods discussed here, the movies can be found in the supplement of this pa-
per,
http://etna.math.kent.edu/vol.32.2008/pp49-62.dir/particle.html

It is usually a difficult task to make concluding remarks about the flow field in the 3D
geometry. Moreover, very often the main interest of the simulation is not the flow field itself,
but a mixture of some sources/species inside of the reactor. Injection of the particle tracer into
the geometry of the STR helps to evaluate both the propagation of the velocity field and the
mixture of the particles. We used an explicit time-stepping particle tracing tool GMVPT [1].
Near the inlet we prescribed three sources of particles, which can be distinguished by their
colors: green, yellow and red, respectively; see Figure 4.1. Snapshots at six consecutive
time steps give a realistic understanding of the flow motion and the good mixture of the
particles. As a remark, we would like to point out that the simulated STR configurations
can be significantly more complex (curvature and number of blades, shape of the tank, etc.)
without any degradation of the numerical behavior of the proposed DPM.

The discrete projection method, considered in this article, shows a very robust and ac-
curate behavior for such complex unsteady problems. The developed code also exploits
such advanced CFD techniques as stable non-conforming finite elements [8], robust high-
resolution stabilization of the convective term [5], multigrid solvers [13], etc. Furthermore,
the approach can be extended to population balance models or turbulent flows ( Û - ä turbulence
model) which is our current research; see [4, 6].

4. Conclusions. In this article we tested the numerical efficiency of a new Discrete Pro-
jection Method for the incompressible Navier-Stokes equations with Coriolis force due to a
rotating system. As a test model we took a complex 3D geometry of the Stirred Tank Reactor.
We examined the multigrid behavior for the momentum and pressure Poisson equations. We
showed that the speedup in the convergence to the steady state solution for time-independent
problems depends on the choice of the matrix I in the ‘pressure Poisson’ step of the method.
This matrix should account for convection and Coriolis force terms. Finally, we performed
nonsteady simulations for the two configurations of the STR model. In the obtained flow
field, we injected virtual particle sources and observed their distribution and mixture. All

http://etna.math.kent.edu/vol.32.2008/pp49-62.dir/particle.html
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FIG. 4.1. Distribution of particles at consecutive time steps.
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numerical results show that the modified DPM is more efficient and robust with respect to the
variation in problem parameters than standard projection schemes.
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