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�
Abstract. We present the analysis for the local projection stabilization applied to convection-diffusion problems

with mixed boundary conditions. We concentrate on the enrichment approach of the local projection methods. Op-
timal a-priori error estimates will be proved. Numerical tests confirm the theoretical convergence results. Moreover,
the local projection stabilization leads to numerical schemes which work well for problems with several types of
layers. Away from layers, the solution is captured very well.
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1. Introduction. Convection-diffusionequations occur for instance if physical processes
in chemical engineering are modelled. Depending on the problem, different types of bound-
ary conditions are applied on different parts of the domain boundary. A common feature of
these problems is the small diffusion coefficient, i.e., the process is convection and/or reaction
dominant. Since standard Galerkin discretisations will produce unphysical oscillations for
this type of problems, stabilization techniques have been developed. The streamline-upwind
Petrov–Galerkin method (SUPG) has been successfully applied to convection-diffusion prob-
lems. It was proposed by Hughes and Brooks [19]. One fundamental drawback of SUPG
is that several terms which include second order derivatives have to be added to the stan-
dard Galerkin discretisation in order to ensure consistency. Alternatively, continuous interior
penalty methods [1, 6], residual free bubble methods [10, 11, 12], or subgrid modelling [8, 18]
can be used for stabilizing the discretised convection-diffusion problems.

We will focus in this paper on the local projection stabilization. This method has been
proposed for the Stokes problem in [3]. The extension to the transport problem was given
in [4]. The analysis of the local projection method applied to equal-order interpolation dis-
cretisation of the Oseen problem can be found in [5, 23]. We will apply the local projec-
tion method to convection-diffusion problems. The stabilization term of the local projection
method is based on a projection �����	�
����
�� of the finite element space ��� which ap-
proximates the solution into a discontinuous space 
�� . The standard Galerkin discretisation
is stabilized by adding a term which gives ��� control over the fluctuation ��������� of the
gradient of the solution.

Originally, the local projection technique was proposed as a two-level method where
the projection space 
 � is defined on a coarser grid. The drawback of this approach is an
increased discretisation stencil. The general approach given in [13, 23] allows to construct
local projection methods, such that the discretisation stencil is not increased compared to the
standard Galerkin or the SUPG approach since the approximation space ��� and the projec-
tion space 
�� are defined on the same mesh. In this case, the approximation space ��� is�
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enriched compared to standard finite element spaces. We will concentrate in this paper on the
enrichment approach of the local projection method.

The main objective of this paper is to provide a convergence theory for the local projec-
tion method applied to convection-diffusion problems with mixed boundary conditions. For
sufficiently regular solutions the same a-priori error estimates which are known for SUPG
are proven. Furthermore, several test problems with different types of interior and boundary
layers will be presented. They show that the local projection stabilization allows to obtain
numerical solutions which capture the solution away from layers.

The plan of this paper is as follows. Section 2 introduces the considered problem class,
the weak formulation, and the local projection stabilization. An a-priori error estimate for the
stabilized discrete problem will be given in Section 3. Numerical results for problems with
different type of layers will be presented in Section 4. Conclusions will be given in Section 5.

We use the following notation in this paper. The convection-diffusion problem is consid-
ered in a bounded domain ���� "! , �$#&%('*) , with polygonal or polyhedral boundary +,� . For
a set 
 which is either a � -dimensional measurable subset of � or a -.�/��021 -dimensional mea-
surable subset of +,� , the fractional order spaces 3546-.
�1 , 7$8:9 ;<'>=�1 with norm ?�@A? 4*B C and
seminorm DE@FD 4*B C will be used. For 7G#�HI8KJ/L , the space 3M46-.
�1 is defined as the Sobolev
space 3N4O-.
P1Q�R#�SUTVB � -.
P1 with norm ?,@*? 4*B C #W?,@>? TVB � B C and seminorm D�@*D 4*B C #XD�@>D TVB � B C .
For non-integer 7Y#&H[Z�\ with H]8MJ L and \58�-.;^'_021 , the space 3M4E-.
P1 is defined as the
Sobolev-Slobodeckij space 3 4 -`
P1��R#�S T�a�bcB � -.
P1 , which consists of all functions from the
Sobolev space SdTVB � -`
P1 , such that

D e�D TQafbOB � B C �g# hidjk l
k m T
n
C
n
C D 
 l e�-.o�1p�q
 l e�-.r(1_D �?so��Mrt? !>a � b �co��crFuvKwyx �{z =}|

The Sobolev-Slobodeckij space S T�a�bcB � -.
�1 is equipped with the norm?~e�? T�a�bcB � B C �R#��>?~e�? �TVB � B C Z&D e�D �TQafbOB � B C�� wyx � |
As usual, we set ?�@(? 4*B C #�?�@<? T�a�bcB � B C and D�@^D 4*B C #�Dc@<D T�a�bcB � B C . The � � inner product
over ���&� and �:��+,� will be denoted by -�@�'�@g1�� and ��@�'�@g��� , respectively. In case ��#X�
the index � will be omitted. For ����; and a � -dimensional subset ����� , let �"�^-.�Y1 denote
the space of polynomials of degree less than or equal to � while ���^-.�Y1 is the space of all
polynomials of degree less than or equal to � in each variable separately.

Throughout this paper, � will denote a generic constant which is independent of the
mesh and the diffusion parameter � . We will use the notation ����  if there are positive
constants � w and � � , such that � w  q¡���¡�� �   holds.

2. Model problem and local projection method.

2.1. Weak formulation. We consider the scalar convection-diffusion problem with
mixed boundary conditions

(2.1) ¢££¤ ££¥
���c¦$§$Z�¨G@2©$§�Z:ª~§�#�« in �¬'§�#�­ C on � C '� +�§+�® #�­c¯ on �f¯°'

where �N±W; is a small constant. The boundary +�� of � consists of two disjoint parts, the
Dirichlet part � C and the Neumann part � ¯ . Let � ¯ be a relatively open � w part of +��
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and � C #�+,��²���¯ . The unit outer normal vector with respect to +�� is denoted by ® . We
are looking for the distribution of concentration § in � . The reaction coefficient ª{8N��³´-`��1
is assumed to be non-negative. Let «X8�� � -`��1 , ­ C 8�3 w�x � -`� C 1 , ­ ¯ 8�3¶µ w�x � -.� ¯ 1 be
given functions. Furthermore, we require that the convection field ¨P8 � S w B ³·-`��1 � ! and the
reaction coefficient ª fulfil for some ª L ±�; the following condition

(2.2) ªO-¸o,1/� 0% ©X@2¨
-¸o�1���ª~LG±�; ¹,o·8 �¬|
We assume also that the inflow boundary is part of the Dirichlet boundary, i.e.,

(2.3) ºco·8·+��}��-»¨G@�®�1�-¸o�1 z ;�¼½��� C |
We define the function spaces�X#�3 w -»��1 and � L #d¾_e�8K�¿�{e,D ��À #�;(Á�|
A weak formulation of (2.1) reads:

Find §N8Â� with §pD � À #�­ C , such that

(2.4) Ã,-¸§Ä'ye(1	#d-»«�'ye(1�Z��Å­c¯$'ye(���AÆ ¹Ve�8K�^LA'
where the bilinear form ÃP�c3 w -`��1�ÇÂ3 w -»��1	�È is defined by

(2.5) Ã,-¸§Ä'ye(1"#É��-»©°§Ä'*©$e(1�Z�-`¨G@2©°§Ä'ye(1�Z�-.ª~§Ä'ye(1~|
The conditions (2.2) and (2.3) guarantee the � L -coercivity of the bilinear form Ã . The exis-
tence and uniqueness of a weak solution of problem (2.4) can be concluded from the Lax–
Milgram lemma. For details, we refer to [15].

It is well-known that for pure Dirichlet boundary data, the weak solution of a two-
dimensional problem belongs to 3 � -`��1 provided that the domain is convex; see [16, 17].
However, in general, we can not expect that the weak solution of the problem (2.1) is in3 � -`��1 . Indeed, in the two-dimensional case, the solution of the Poisson equation ( �·#I0 ,Ê #Wª°#W; ) with homogenuous Dirichlet data behaves in the neighbourhoood of a vertex of
the boundary with inner angle � like § w �R#�ËEÌ x

l,Í -.Îp1 and with mixed Dirichlet-Neumann
data like § � �g#�Ë Ì x�Ï � lcÐ Í -.Îp1 . Here, -.ËE'�Îp1 denotes a local system of polar coordinates whereË is the distance to the boundary vertex, Î�8�9 ;^'���Ñ , and

Í -�@g1 is a smooth function. From
[16, Theorem 1.4.5.3] we conclude that § w 8�3M4 locally if and only if 7 z �fÒE�MZX0 pro-
vided that �fÒE�¿Ó8�J . Analogously, for �fÒ(-»%O�/1PÓ8�J we get § � 8�3M4 locally if and only if7 z �fÒ(-»%O�/1tZÉ0 .

2.2. Local projection method. For the finite element discretisation of (2.4), we are
given a shape regular family ¾6Ô<�^Á of decomposition of � into � -simplices, quadrilaterals,
or hexahedra. The diameter of Õ will be denoted by Ö,× and the mesh size parameter Ö is
defined by Ö&�g#}Ø½ÙOÚ^×¬Û�Ü2Ý"Ö
× . For Ô^� , let Þ^� B ¯ denote the set of all edges/faces of cellsÕÈ8ÂÔ^� which belong to � ¯ .

Let �����ß� be a finite element space of continuous elements of order Ë½�&0 . We fix the
polynomial order Ë and the dependence of constants on Ë will not be elaborated in this paper.
Let � L B ��#�¾2eà8Â�����{ec��D �AÀ #�;(Á
be the discrete test space.
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Since the standard Galerkin discretisation of (2.4) lacks generally stability in the convec-
tion dominated regime �Gáâ0 , unphysical oscillations will appear in the discrete solution. To
circumvent this problem, we consider the stabilization by the local projection method. Let
��<-`ÕM1 , Õã8�Ô^� , be finite dimensional spaces and �,×ä�"� � -`ÕM1��å
��<-`ÕM1 the local � �
projections into 
à�^-.Õ51 . The projection space 
à� is given by
 � �g#çæ×¬Û�Ü_Ý 
 � -.Õ51~|
We define the global projection operator � � ��� � -»��1��è
 � by -¸� ��é 1�D × #d� × - é D × 1 . The
fluctuation operator ê � �c� � -»��1	�È� � -`��1 is given byê � �R#����Y�5� � '
where ������� � -»��1	�È� � -`��1 is the identity mapping in � � -`��1 . Note that all operators will be
applied componentwise to vector-valued functions.

We define the stabilizing term

(2.6) ët�
-¸§��<'yec�A1Q�g# j
×¬Û�Ü_Ý�ì × � ê��
-`©$§,�A1~'>ê
�
-`©$ec�A1 � × '

where ì × , Õí8dÔ � , denote user-defined parameters. Their choice will be discussed later
on. Note that the stabilization term ëf� gives control over the fluctuation of the gradient. An
alternative way is to control byj

×¬Û�Ü_Ý ì × � ê��
-`¨G@2©°§��A1~'*ê��
-`¨G@6©$ec��1 � × '
which represents the fluctuation of the derivative in streamline direction. The proof of the
convergence result in the next section shows that we need the assumption ª2LG±�; while using
the stabilizing term (2.6). For the alternative choice, we can allow ª�Lq#I; but additional
regularity of ¨ has to be assumed; see [23].

We can now state the local projection stabilization of the discretisation of (2.4) as follows:
Find § � 8·� � with § � D � À #�­ C�B � , such that

(2.7) Ã�-.§ � '�e � 1fZ:ë � -¸§ � '�e � 1"#X-»«�'ye � 1�Zß�¸­c¯°'�e � ����Æ ¹Ve � 8·�<L B � '
where ­ C�B � denotes a suitable approximation of ­ C which will be discussed in the next sec-
tion.

The local projection norm

(2.8) D ?~e��
D ?��R#�î��<D ec��D � w Z�ª L ?~ec��? �L Z 0%�ïï D ¨Y@s®YD w�x � ec� ïï �L B � Æ Z�ët�<-.ec�
'yec�A16ð w�x
�

will be used for our analysis.
The key point in the analysis of local projection methods is the existence of an inter-

polation operator ñ6� which provides the usual approximation properties and ensures that the
interpolation error is orthogonal to 
à� . In order to obtain error estimates in the most local
form, we are interested in Lagrange interpolation which is defined on continuous functions
only. We assume that the solution § of convection-diffusion problem with mixed boundary
conditions (2.4) belongs to the Sobolev–Slobodeckij space 3 w a�b
-`��1 with 0QZ:\N± !� which
ensures the continuity of § . Let ñ � �c3 w a�b
-`��1	�ò� � be an interpolation operator with

(2.9) ? é �Âñ6� é ? L B ×�Z:Ö
×�D é �·ñ6� é D w B ×W¡É�GÖ w a�b× ? é ? w afbOB × ¹ é 8Â3 w afb -»��1,'
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and the following orthogonality relation

(2.10) - é �·ñ ��é '�ó � 1ô#É;õ¹,ó � 8´
 � ¹ é 8Â3 w afb -»��1~|
We assume that -�ñ �cé 1�D � À depends only on é D � À . Let� � -.ÕM1Q�R# ºOé�� D × � é�� 8·� �¬¼�ö 3 wL -`ÕM1
denote the local bubble part of the finite element space � � on Õ .

A sufficient condition for existence of an interpolation operator fulfilling (2.9) and (2.10)
provides the following lemma.

LEMMA 2.1 (Local inf-sup condition). Let ���¶�p3 w a�b<-»��1������ , 0VZ&\ß± !� , be an
interpolation operator which provides for all ÕÈ8´Ô�� the estimate

(2.11) ? é �5��� é ? L B ×ÉZ�Ö<×�D é �M��� é D w B ×W¡É�GÖ w a�b× ? é ? w a�bcB × ¹ é 8·3 w a�b -`��1~|
Furthermore, let the local inf-sup condition

(2.12) ÷F  w ±�;V¹tÖ´±�;�¹,Õ]8ÂÔ^��� øúù(ûü ÝcÛ C Ý Ï × Ð ý�þ^ÿ� Ý Û�� Ý Ï × Ð
-¸ec�
'*ó_�A1�×?se � ?sL B × ?só � ?~L B × ��  w ±�;

be satisfied. Then, there exists an interpolation operator ñO���c3 w a�b<-»��1	�ò��� possessing the
approximation property (2.9) and the orthogonality property (2.10).

Proof. The construction of the interpolation operator ñc� follows the way presented in the
proof of Theorem 2.2 in [23].

The assumed estimate (2.11) holds true for the Lagrangian interpolator ��� on simplices;
see [9]. Combining the ideas of [9] with results given in [24, 22] yields the above estimate on
quadrilaterals and hexahedra. Moreover, we obtain? é �Âñ �cé ?~L B × Z�Ö × D é �·ñ �cé D w B × ¡��GÖ ��� � Ï 4*B �

Ð a w× ? é ? ��� � Ï 4*B � Ð a w B × for é 8·3 4�a w -»��1~|
If � � µ w -`ÕM1��É
 � -.ÕM1 holds true for some Ë��U0 , then the property of the local � � pro-

jection � × and interpolation theory in Sobolev–Slobodeckij spaces give the approximation
property

(2.13) ?�ê��Oó^? L B ×X¡��GÖ ��� � Ï 4*B � Ð× ?só^? ��� � Ï 4*B � Ð B × ¹�ó°8Â3 4 -`ÕM1~|
In order to satisfy the local inf-sup condition (2.12), the local bubble space �,�
-.Õ51 has to

be sufficiently large compared to the local projection space 
P�<-.ÕM1 . However, the minimal
dimension of 
��<-.ÕM1 is determined indirectly by (2.13).

Several families of pairs -`�,�
'�
��c1 of approximation spaces �,� and projection spaces 
à�
which provide the properties (2.9) and (2.10) were given in [23]. We recall here one family on
quadrilaterals which was used for our calculations presented in Section 4. Let

� × � 	ÕI�äÕ
be the multilinear mapping from the reference hyper-cube

	ÕÈ#�-��G0c'_021�! onto the mesh cellÕÈ8ÂÔ � . The projection space 
 � is chosen to be the mapped space� disc� µ w B � �R# º e�8´� � -`��1��pe�D ×�
 � × 8·� � µ w -
	Õ51,¹�ÕI8·Ô ��¼ |

Let �Ê - �o,1"# !
� m w
-y0�� �o �� 1s' �o�#W- �o w '_|�|_|s' �o ! 1�8

	Õ�'
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be the � � bubble function defined on
	Õ . The usual local space � � - 	Õ51 is enriched to� bubble� - 	ÕM1��g#�� � - 	ÕN1�� span - �Ê��o � µ w� 'p�p#U0c'_|�|_|�'��F1~|

The approximation space � � is set to� bubble� B � �g#Wº�eà8·3 w -»��1P�Ve,D × 
 � ×W8Â� bubble� - 	ÕM1�¹,Õ]8ÂÔ^�
¼
|
For Ë��È0 , the finite element pair -`� � '�
 � 1´#ä-»� bubble� B � '*� disc� µ w B � 1 satisfies the inf-sup con-
dition (2.12) of Lemma 2.1 and provides the interpolation error estimate from Lemma 2.1.
Hence, there exists an interpolation operator ñ � satisfying (2.9) and (2.10). For details, see
Lemma 4.2 in [23].

Note that we have � � µ w -`ÕM1�Ó�d� disc� µ w B � -.Õ51 for non-affine mappings
� ×�� 	Õ � Õ but

the approximation property (2.13) holds for successively refined meshes, see [2, 21, 22].

3. Error analysis. Let us first discuss the choice of the discrete Dirichlet boundary
condition ­ C�B �ß8�¾2ec�
D ��À �´ec�&8W�
�<Á . We use an interpolation of ­ C which fits to the
interpolation ñE� , such that ­ C�B �°#X-úñ6��§,1_D ��À for the solution § of (2.4). This is possible since
the restriction of the standard nodal interpolation onto � C depends only on nodal values at� C . For example, ­ C�B � for the � bubble� B � discretisation is defined as the � � B � interpolation of­ C on the boundary � C .

We continue with solvability of the stabilized discrete problem (2.7).
LEMMA 3.1 (Solvability). Let ­ C�B � #�-�ñ � §�1�D � À . The stabilized discrete problem (2.7)

possesses a unique solution.
Proof. Since ­ C 8�3 wyx � -.� C 1 and ­ C�B � 8�¾_e � D � À ��e � 8W� � Á , we can find some

extension �­ C�B � , such that �­ C�B � �¶§ � 8��<L B � . Indeed, �­ C�B � #�ñ � § is a possible choice. The
key argument for showing the solvability of (2.7) is the proof of the coercivity of the stabilized
bilinear form Ã�Z�ë � with respect to the local projection norm D ?<@�D ? . Using the conditions (2.2)
and (2.3), we obtain for all test functions eA�½8K� L B �
(3.1) Ã,-¸ec�<'yec�F1tZ�ët�
-¸ec�
'yec�A1#É��D ec��D � w Z 0%

n� ¨G@2©$e �� ��o�Z n� ª~e �� �co�Z�ët�
-¸ec�
'yec�A1#É�<D e � D � w Z 0%
n� Æ -`¨Y@�®�1Fe �� �A7�Z n� � ªQ� 0% ©d@6¨��Ue �� ��o�Z�ë � -¸e � 'ye � 1�dD ?~e � D ? � |

Hence, the existence and uniqueness of the discrete solution can be concluded from the Lax–
Milgram lemma.

We will investigate the consistency error which is caused by adding the stabilizing term ë/�
to the weak formulation.

LEMMA 3.2 (Consistency error). Let § and §�� be solutions of the problems (2.4)
and (2.7), respectively. Then, the approximated Galerkin orthogonality

(3.2) -.ÃGZ:ë � 1s-¸§P�M§ � ' é�� 1"#&ë � -¸§Ä' é�� 1 ¹ é�� 8Â�<L B �
holds true. Let ì ×d�ßÖ
× and §K8´3 w afb
-»��1 . Then, the estimate

(3.3) D ë��
-¸§Ä'yec�A1�D(¡���� j×¬Û�Ü_Ý Ö � b2a w× ?s§/? � w afbOB ×�� w�x
� D ?~ec��D ?ç¹�ec�½8·���



ETNA
Kent State University 
etna@mcs.kent.edu

96 G. MATTHIES, P. SKRZYPACZ, AND L. TOBISKA

is satisfied. In the case §K8Â3M4�a w -`��1 , 7{��0 , the estimate

(3.4) D ë��<-.§f'�ec��1_D(¡���� j×¬Û�Ü Ý Ö � ��� � Ï 4*B � Ð a w× ?~§p? ���� � Ï 4*B � Ð a w B × � wyx
� D ?sec�
D ?ã¹,ec��8Â���

is obtained.
Proof. The relation (3.2) follows by subtracting (2.4) from (2.7). The Cauchy–Schwarz

inequality implies D ë � -.§f'�e � 1�D^¡�ë � -¸§Ä'y§�1 w�x � ë � -¸e � 'ye � 1 w�x �
where the definition (2.6) of ë � was used. For §U8&3 w a�b -»��1 , it follows from (2.13) andì × ��Ö × that ët�
-¸§Ä'y§�1p# j

×¬Û�Ü2Ý ì ×à?_ê
�<-`©$§,1_? �L B × ¡��
j
×¬Û�Ü_Ý Ö � b_a w× ?~§p? � w a�bcB × |

Hence, we have

D ët�
-¸§Ä'yec�A1�D^¡�� � j×¬Û�Ü2Ý Ö � b2a w× ?~§p? � w a�bcB × � w�x
� D ?~ec�
D ?

and the second assertion is proved. The last statement of this lemma follows analogously.

Using the previous estimates, we are now able to formulate and prove our main conver-
gence result.

THEOREM 3.3 (A-priori error estimate). Assume ì ×]� Ö<× . Let §�8�3 w a�b
-`��1 and§ � 8:� � be the solutions of problems (2.4) and (2.7), respectively. Then, the a-priori error
estimate

(3.5) D ?~§��5§���D ?V¡�� � j×¬Û�Ü2Ý -¸��Z�Ö<×G1�Ö � b× ?s§/? � w a�bcB × � w�x
�

holds true. If in addition §K8´354�a w -`��1 , 7G��0 , then the estimate

(3.6) D ?~§��5§ � D ?V¡É� � j×¬Û�Ü_Ý -Å��Z:Ö × 1yÖ � ��� � Ï 4*B � Ð× ?s§/? ���� � Ï 4*B � Ð a w B × � w�x
�

is fulfilled.
Proof. First, the triangle inequality implies

(3.7) D ?s§à�M§��
D ?¬¡dD ?~§��·ñ6�O§pD ?"Z&D ?yñ6�E§P�M§��
D ?E|
In order to proceed with the estimate of the interpolation error in the local projection norm,
we provide some auxiliary results concerning the interpolation error on edges/faces and the
fluctuation operator. We note the following trace estimate on any edge/face �í� +,Õ ,ÕÈ8ÂÔ^� ,
(3.8) ?~e�? L B � ¡��GÖ wyx �× D e�D w B ×�Z:�GÖ µ w�x �× ?se,? L B × ¹,e�8·3 w -`ÕM1~'
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which gives immediately the local interpolation error estimate

(3.9) ?yñ � §à�5§/?sL B � ¡��GÖ b2a w�x �× ?~§p? w a�bcB ×
on an edge/face �¿��+�Õ . Furthermore, one can show for ¨½8&�»S w B ³Â-.Õ51 � ! the estimate

(3.10)
?�ê��<-»¨G@_©$ec�F1�? L B ×d¡É��D ¨�D w B ³�B ×�?sec�
? L B ×�Z�?_¨
? L B ³½B ×�?_ê
�<-`©$ec�F1�? L B ×¡É� � ?~e � ?~L B × Z&?�ê � -`©$e � 1�?sL B × ���

see the proof of Corollary 2.14 in [23].

Using the interpolation error estimates (2.9) and (3.9), the fact ¨¶8 � S w B ³ -`��1 � ! , and
the � � stability of the fluctuation operator ê,� , we conclude

(3.11) D ?~§à�·ñ � §/D ?�¡É� � j×¬Û�Ü_Ý -Å��Z�Ö �× Z ì × 1�Ö � b× ?~§p? � w a�bcB × � w�x
� |

In order to estimate the second error term on the right hand side of (3.7), we use§ � D � À # � ñ � § � D � À and the �<L B � coercivity proved in Lemma 3.1. We obtain by using re-
lation (3.2) from Lemma 3.2

(3.12)
D ?�ñ6�O§à�5§��<D ? � ¡�Ã,-úñ6�c§à�5§,�<' é �A1�Z:ë��<-�ñ2�c§à�5§,�<' é �A1#ßÃ,-úñ6�c§à�5§f' é �A1�Z�ët�
-¸§Ä' é ��1fZ:ët�
-úñ6�c§à�5§f' é �A1~'

where we set é�� �g#:ñ � §à�5§ � for abbreviation.
We start by estimating the first term on the right hand side of (3.12). Using the Cauchy–

Schwarz inequality, the interpolation property (2.9) of ñ6� and the fact ªY8Â�Q³Â-»��1 , it follows
that

(3.13) � � ©´-úñ6��§à�M§�1~'>© é � � Z � ªO-úñ6�c§à�M§�1~' é � �¡�� � j×¬Û�Ü_Ý -Å��Z:Ö �× 1yÖ � b× ?~§p? � w a�bcB × � w�x
� D ? é�� D ?O|

In order to estimate the convective term in the bilinear form Ã , we integrate by parts and
obtain

(3.14)
� ¨Y@2©´-úñ6�c§à�5§,1s' é � � #É� � ñ2�c§à�5§f'>¨{@2© é � � � � ñ6�c§à�M§Ä' é ��-`©W@_¨�1 �Z"!6-`¨Y@s®�1�-�ñ � §à�5§,1s' é��$# � Æ |

The three terms will be estimated separately. Using the orthogonality property (2.10) of the
interpolation operator ñ � , we get�Åñ6�O§à�5§Ä'*¨{@_© é � � #���ñ6�c§à�M§Ä'*¨G@2© é � � ��� ñ6�O§à�5§Ä'y���
-`¨Y@_© é �A1 �#���ñ6�c§à�M§Ä'*ê��^-»¨G@6© é �A1 � |
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Using (3.10) and the approximation property (2.9), we estimate%%% � ñ � §à�5§Ä'*¨{@6© é�� � %%% ¡ j
×¬Û�Ü2Ý ?yñ � §à�5§/?sL B × ?�ê � -`¨Y@_© é�� 1_?~L B ×¡�� j

×¬Û�Ü2Ý Ö w afb× ?s§/? w a�bcB ×´�*? é �
? L B ×�Z�?_ê
�<-`© é �A1_? L B × �¡�� � j×¬Û�Ü2Ý Ö � a � b× ?~§p? � w a�bcB × � wyx
� ? é�� ?~L

Z:�&� j×¬Û�Ü Ý Ö � a � b× ì µ w× ?~§p? � w a�bcB ×'� w�x
� � j×¬Û�Ü Ý�ì ×�?�ê��^-»© é �F1_? �L B ×�� wyx �

and we obtain

(3.15)
%%% � ñ � §à�5§f'>¨{@_© é�� � %%% ¡�� � j×¬Û�Ü_Ý Ö w a � b× ?s§/? � w a�bcB × � w�x

� D ? é�� D ?E'
where ªsLG±�; and the choice ì × ��Ö × were exploited.

The second term in (3.14) can be estimated as follows

(3.16)
%%% � ñ � §à�5§f' é�� -`©W@2¨A1 � %%% ¡�� � j×¬Û�Ü2Ý Ö � a � b× ?~§p? � w a�bcB × � w�x

� D ? é�� D ?E'
where the interpolation error estimate (2.9), ¨½8 � S w B ³Â-»��1 � ! , and ª~LY±�; were used.

Applying (3.9), the last term in (3.14) can be estimates as! -`¨G@_®�1�-úñ6�c§à�M§�1~' é �$# � Æ # j
� Û�(_Ý*) Æ ïï D ¨Y@s®YD w�x � -úñ6�c§à�5§,1 ïï L B � ïï D ¨G@�®GD w�x � é � ïï L B �¡É�&� j×¬Û�Ü Ý Ö � b2a w× ?s§/? � w afbOB × � w�x

� D ? é �
D ?E'(3.17)

where the shape regularity of Ô<� and ¨P8 � S w B ³ -`��1 � ! were exploited. Putting together the
estimates (3.15), (3.16), and (3.17), we get the bound

(3.18)
%%% � ¨{@6©�-�ñ � §P�M§�1~' é�� � %%% ¡�� � j×¬Û�Ü2Ý Ö � b2a w× ?~§p? � w a�bcB × � w�x

� D ? é�� D ?
for the convective terms in the bilinear form Ã . Using (3.13) and (3.18), we conclude that

(3.19)
%% Ã,-úñ6�c§à�M§Ä' é �A1 %% ¡É�&� j×¬Û�Ü_Ý -Å��Z�Ö<×G1^Ö � b× ?~§p? � w a�bcB × � w�x

� D ? é �<D ?
holds true.

The second term on the right hand side of (3.12) can be handled by Lemma 3.2. We get

(3.20)
%% ët�
-¸§Ä' é ��1 %% ¡É��� j×¬Û�Ü Ö � b2a w× ?~§p? � w a�bcB × � w�x

� D ? é ��D ?E|
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To estimate the third term of (3.12), we use the Cauchy–Schwarz inequality, the � � stabil-
ity of the fluctuation operator ê � , the parameter choice ì × �IÖ × , and the approximation
property (2.9) of the interpolation operator ñE� . We obtainët�
-úñ6�c§à�M§Ä' é �A1Q¡�ë��<-�ñ2��§��q§Ä'»ñ6�E§à�5§�1 w�x � ët�<- é �<' é ��1 wyx �¡,+ j×¬Û�Ü_Ý ì × ?�ê � -»©�-�ñ � §P�M§�1y1_? �L B ×.- wyx � D ? é�� D ?¡��&� j×¬Û�Ü Ý Ö � b_a w× ?~§p? � w a�bcB ×�� wyx

� D ? é ��D ?O|
(3.21)

Using (3.12) and the estimates (3.19), (3.20), (3.21), we obtain

D ?yñ6�E§P�M§��
D ?�¡É� � j×¬Û�Ü2Ý -¸��Z�Ö<×G1^Ö � b× ?~§p? � w a�bcB × � wyx
� |

Combining this with (3.7) and (3.11) yields the assertion (3.5). The estimate for the case§·8·3N4�a w -`��1 follows the same lines.

4. Numerical examples. This section will present some numerical results for the local
projection stabilization applied to convection-diffusion problem. All numerical calculations
were performed with the finite element package MooNMD [20].

We consider problems on the unit square �É#X-`;^'_021 � . Our calculations were carried out
on quadrilateral meshes which were obtained by successive regular refinement of an initial
coarse grid (level 0) consisting of /�Ç / congruent squares. The number of degrees of freedom

TABLE 4.1
Total number of degrees of freedom.

level dofs0 bubble132 4 0 bubble562 4 0 bubble782 4
0 41 113 201
1 145 417 753
2 545 1,601 2,913
3 2,113 6,273 11,457
4 8,321 24,833 45,441
5 33,025 98,817 180,993

for different enriched finite element spaces are given in Table 4.1. It is clearly to see that the
number of dofs increases by a factor of about / from one mesh level to the next finer one.

Since ì × ��Ö
× , compare Theorem 3.3, the stabilization parameters are chosen as fol-
lows

ì ×X�R# ì L Ö
× ¹,Õ]8´Ô^�
'
where ì L ±ß; denotes a constant which will be fixed for each of the test problems presented
in this section.

We will investigate in this section the behaviour of the local projection stabilization ap-
plied to problems with different kinds of solutions. The presented examples, except the first
one, can be found in [7, 26].
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4.1. Smooth solution. We start with a problem which has a smooth solution and check
the convergence orders which were predicted by Theorem 3.3. Let�Y#U0_; µ:9 'ã¨�#d-»%('�)A1<;	'çª�#X0c'
and ��¯d�R#Xº�-.o�'yr^1�8Â+�� �/o´#X0c'^; z r z 0F¼^' � C �R#ß+��q²Q��¯$|
The right hand side « , the Dirichlet boundary condition ­ C on � C , and the Neumann bound-
ary condition ­�¯ on �f¯ are chosen, such that§/-¸of'yr^1"# ý ø�ù�-¸��o,1 ý ø�ù�-.��r(1
is the solution of (2.1). Table 4.2 shows for the enriched quadrilateral elements of first,

TABLE 4.2
Errors = >3?�@A? 4 = > and rates of convergence, B8CEDGFIHKJ�L�C .

level M 0 bubble132 4,NPO discQ82 4SR M 0 bubble562 4,NPO disc132 4SR M 0 bubble782 4TNUO disc562 4SR
0 8.634e-2 1.515e-2 1.871e-3
1 3.206e-2 1.429 2.241e-3 2.757 1.696e-4 3.464
2 1.166e-2 1.459 3.423e-4 2.711 1.506e-5 3.494
3 4.166e-3 1.485 5.632e-5 2.603 1.330e-6 3.501
4 1.477e-3 1.496 9.683e-6 2.540 1.174e-7 3.502
5 5.229e-4 1.499 1.694e-6 2.515 1.037e-8 3.501

second, and third order the error in the local projection norm D ?�@(D ? on different levels whereì L #�;<|ú0 was used. We see that the predicted convergence order of Ë{Zd06ÒO% is achieved in
all cases. Moreover, we see that higher order finite elements give much more accurate results
with less unknowns.

4.2. Solution with exponential layer. We will study now the behaviour of the local
projection stabilization for a problem with an exponential boundary layer. Let�Y#U0_; µ:9 'ã¨�#d-`;^'*%�1 ; 'çª�#�;^'
and � C �R#�+,�¬' ��¯X�g#WV(|
The right hand side « and the Dirichlet boundary condition ­ C are chosen, such that

§Ä-.o�'yr^1"#W-`%Oo���061 0��YX�Ú ÿ.Z � Ï w µ:[ Ð\ ]0��YX�Ú ÿ �y� � \ �
is the solution of (2.1). Note that the solution § exhibits an exponential boundary layer atr�#�0 . Figure 4.1 shows for the choice ì L #�;<|ú0 the numerical solution which was obtained
by using the approximation space � bubblew B � and the projection space � discL B � . Note that here and in
all subsequent figures only the nodal values at the cell vertices are shown, i.e., the additional
bubble part of the solution will not be shown. We see that the numerical solution shows no
oscillations in the whole domain. Away from the exponential boundary layer, the numerical
solution approximates the function %Oo���0 which is the solution of the reduced problem.
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FIG. 4.1. Example 4.2 with M_^ 4 Na` 4 R DYM 0 bubble132 4TNUO discQ82 4SR and B Q DGFIHKJ : solution (left) and its isolines (right).

4.3. Solution with interior and exponential layers. Our next problem is a benchmark
for problems with an interior layer and an exponential layer. Let�{#X0_; µ:9 'ã¨°#��UbOo<r�-y0��Mo,1~'���/�-`%Oo���061s-�0��5r � 1 � ; ' ª�#�;^'
and � ¯ �g# º -¸o�'�r^1�8´+�� ��06ÒO% z o z 0�'(r½#�; ¼ ' � C �R#ß+��q²Q� ¯ |
We prescribe on Dirichlet boundary � C the piecewise constant function

­ C -.o�'yr^1	# ¢£¤ £¥
0 for 06Òc/$¡�o·¡�06ÒO%�'fr�#ß;<'0 for ;½¡�rà¡�0"'/o´#d0c'; otherwise '

while the homogeneous Neumann condition ­ ¯ #�; will be used on � ¯ . The right hand side
in (2.1) is given by «M#X; . The numerical solution for ì L #d;<| ;<0 is presented in Figure 4.2.
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FIG. 4.2. Example 4.3 with Md^ 4 NU` 4 R DYM 0 bubble132 4 NUO discQ82 4SR and B Q D.FIH FIJ : solution (left) and its isolines (right).

It shows overshoots and undershoots near the interior layer and exponential boundary layer.
This seems to be a common feature of many stabilization techniques; see [25]. However,
the solution obtained by the local projection stabilization has no oscillations away from the



ETNA
Kent State University 
etna@mcs.kent.edu

102 G. MATTHIES, P. SKRZYPACZ, AND L. TOBISKA

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

x

u

gradient
streamline

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

y

u

gradient
streamline

FIG. 4.3. Example 4.3 with Md^ 4 NU` 4 R DeM 0 bubble132 4 NUO discQ82 4 R and B Q DfFIH FIJ : profiles along the lines g�DfFIH hji
(left) and k'DGFIH l*mni (right) for two different stabilizations.

layer. Furthermore, the position of the layers is captured very well. There are no significant
differences between the numerical solutions obtained by using the stabilizing term (2.6) or its
alternative based on the fluctuations of the derivatives in streamline direction; see Figure 4.3.

4.4. Solution with parabolic layers. The solution of our last example exhibits two
parabolic boundary layers. Let�G#U02; µo9 'ã¨$#X-.;^'_0ôZ¶o � 1 ; 'çª�#�;^'
and ��¯X�g# º -.o�'�r(1�8´+��}�"; z o z 0�'(r½#d0 ¼ ' � C �R#ß+��q²���¯°|
We use homogeneous Neumann condition ­F¯è#è; on �f¯ while the Dirichlet boundary
condition ­ C on � C is given by

­ C #�+ 0 for ;½¡�o·¡�0c'/r½#�;^'0��5r otherwise |
Furthermore, the right hand side of (2.1) is «É#[; . Note that the solution of (2.1) exhibits
parabolic layers at the vertical walls o5#�; and o5#�0 . The pictures in Figure 4.4 show the
obtained result for ì Là#�;^| ;^0 . We see that the parabolic boundary layers are well captured.
Overshoots and undershoots occur only near the layers while the solution has no oscillations
away from the layer.

We are finally interested in the influence of the size of the stabilization parameter ì × on
the solution. To this end, we will vary the constant ì L in ì × # ì LfÖ × . For simplicial meshes
and piecewise linears enriched with cubic bubbles, it is known that the elimination of the
bubble part leads to the SUPG method where the stabilization parameters of both methods
act in an inverse way; see [14]. For quadrilaterals, it is an open question and needs further
theoretical studies. Exemplarily, we plot the solution on the outflow boundary. We start with
calculation for the pair -»� bubblew B � '�� discL B � 1 . The graphs in Figure 4.5 show that too small values
for ì L result in oscillations while too large values for ì L cause a smearing of the layer. If the
constant ì L is chosen suitably then the solution is captured very well on almost the whole
edge. This means that the remaining small oscillations concentrate near the boundary and
only a little smearing takes place.
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FIG. 4.4. Example 4.4 with Md^ 4 NU` 4 R DYM 0 bubble132 4,NUO discQ82 4SR and B Q D.FIH FIJ : solution (left) and its isolines (right).
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FIG. 4.5. Example 4.4 with Md^ 4 NU` 4 R DpM 0 bubble132 4,NUO discQ82 4SR : Influence of parameter B Q on the behaviour of
outflow profile.

Using the pair -`� bubble� B � '*� discw B � 1 , the situation changes. Even for the quite small stabi-
lization parameter ì L #�;^| ;^0 , the solution shows no oscillations in the nodal values at the
vertices; see Figure 4.6. One reason for this behaviour might be the additional stability which
is already introduced by the presence of bubble functions in � bubble� B � .

5. Conclusions. We have presented and analysed a stabilized finite element method for
solving convection-diffusion problems. The stabilization was achieved by applying the local
projection technique which gives additional control over the fluctuation of the gradient. Our
analysis handles mixed boundary conditions. The given a-priori error estimate gives qualita-
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FIG. 4.6. Example 4.4 with Md^ 4 NU` 4 R DpM 0 bubble562 4 NPO disc132 4 R : Influence of parameter B Q on the behaviour of
outflow profile.

tively the same result as other stabilization techniques like the streamline diffusion method.
The numerical results presented in Section 4 show that stabilization by local projection is well
suited for problems with layers of different kind. The last example indicates that the size of
the stabilization parameter has for first order elements an important influence on the quality
of the numerical solution while the dependence is much smaller for second order elements.
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Applied Mathematics), vol. 22, Masson, Paris, 1992.

[18] J.-L. GUERMOND, Stabilization of Galerkin approximations of transport equations by subgrid modeling,
M2AN Math. Model. Numer. Anal., 33 (1999), pp. 1293–1316.

[19] T. J. R. HUGHES AND A. BROOKS, A multidimensional upwind scheme with no crosswind diffusion, in Finite
Element Methods for Convection Dominated Flows (Collection of Papers Pres at Winter Annual Mtg of
Asme, New York, Dec 2-7, 1979), T. J. R. Hughes, ed., American Society of Mechanical Engineers, New
York, 1979, pp. 19–35.

[20] V. JOHN AND G. MATTHIES, MooNMD—a program package based on mapped finite element methods,
Comput. Vis. Sci., 6 (2004), pp. 163–169.

[21] G. MATTHIES, Mapped finite elements on hexahedra. Necessary and sufficient conditions for optimal inter-
polation errors, Numer. Algorithm, 27 (2001), pp. 317–327.

[22] G. MATTHIES AND F. SCHIEWECK, On the reference mapping for quadrilateral and hexahedral finite ele-
ments on multilevel adaptive grids, Computing, 80 (2007), pp. 95–119.

[23] G. MATTHIES, P. SKRZYPACZ, AND L. TOBISKA, A unified convergence analysis for local projection sta-
bilisations applied to the Oseen problem, M2AN Math. Model. Numer. Anal., 41 (2007), pp. 713–742.

[24] G. MATTHIES AND L. TOBISKA, The inf-sup condition for the mapped
0rq

- O�snt uwvqyx 1 element in arbitrary space
dimensions, Computing, 69 (2002), pp. 119–139.

[25] H.-G. ROOS, M. STYNES, AND L. TOBISKA, Numerical Methods for Singularly Perturbed Differential
Equations. Convection–Diffusion and Flow Problems, Springer Series in Computational Mathematics,
vol. 24, Springer-Verlag, Berlin, 1996.

[26] Y.-T. SHIH AND H. C. ELMAN, Iterative methods for stabilized discrete convection-diffusion problems, IMA
J. Numer. Anal., 20 (2000), pp. 333–358.


