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A NEW ITERATION FOR COMPUTING THE EIGENVALUES OF
SEMISEPARABLE (PLUS DIAGONAL) MATRICES *

RAF VANDEBRILf, MARC VAN BAREL Y, AND NICOLA MASTRONARDI*

Abstract. This paper proposes a new type of iteration for computingreiglues of semiseparable (plus diago-
nal) matrices based on a structured-rank factorizatiomarks on higher order semiseparability ranks are also made.
More precisely, instead of the tradition@IR iteration, aQ H iteration is used. Th€) H factorization is character-
ized by a unitary matrix) and a Hessenberg-like matt in which the lower triangular part is semiseparable (often
called a lower semiseparable matrix). TQdactor of this factorization determines the similarityrtséormation of
the @ H method.

It is shown that this iteration is extremely useful for coripg the eigenvalues of structured-rank matrices.
Whereas the traditional) R method applied to semiseparable (plus diagonal) and Heesgtike matrices uses
similarity transformations involvingp(n — 1) Givens transformations (whegedenotes the semiseparability rank),
the Q H iteration only needg(n — 1) Givens transformations, which is comparable to the geizechHessenberg
(symmetric band) situation havingsubdiagonals. It is also shown that this method can in somsedee interpreted
as an extension of the tradition@l R method for Hessenberg matrices, i.e., the traditional etsefits into this
framework. It is also shown that this iteration exhibits attra type of convergence behavior compared to the
traditional @ R method.

The algorithm is implemented in an implicit way, based on®&weens-weight representation of the structured
rank matrices. Numerical experiments show the viabilityhi§ approach. The new approach yields better complex-
ity and more accurate results than the traditiodt method.

Key words. Q H algorithm, structured rank matrices, implicit computatipeigenvalue) R algorithm, rational
QR iteration
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1. Introduction and preliminary results. Many authors are currently investigating ef-
ficient algorithms for computing the eigenvalues of stroetirank matrices. All the methods
discussed thus far focus attention @& algorithms for computing the eigenvalues of these
matrices. Various) R-type algorithms exist for higher order structured ranknmas, gener-
alized eigenvalue problems, polynomial root finding altjoris and so forth?, 4—7, 11, 20Q].

The QR factorization of a Hessenberg (tridiagohahatrix can be computed easily by
performing a sequence of — 1 Givens transformations from top to bottom, annihilating
in each of then — 1 steps one subdiagonal elemeh8[14]. The corresponding (single
shift) implicit @ R algorithm also uses — 1 Givens transformations. The implicit version
consists of an initial Givens similarity transformatiorpéipd to the Hessenberg (tridiagonal)
matrix. This introduces a disturbing element, the so-dalielge, in the structure. In the
implicit version, one constructs the remaining- 2 Givens transformations so that the bulge
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1when discussing tridiagonal and semiseparable matridheioontext of eigenvalue computations, we assume
them to be symmetric.
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is removed and we obtain again a Hessenberg (tridiagonai)xfid3]. Implicitly, one has
now performed a step of the shiftéz method.

The QR factorization of a semiseparable (Hessenberg-like) mpttis a diagonalcon-
sists of2n — 2 Givens transformationsl[]. A first sequence of Givens transformations
from bottom to top transforms the semiseparable (Hessgrlke) plus diagonal matrix into
a Hessenberg matrix, whereas the second sequence of traasifins from top to bottom
brings the Hessenberg matrix to upper triangular form. Tigicit @ R algorithm connected
to this type ofQR factorization also can be decomposed into two steps. A fiest sorre-
sponds to a similarity transformation involvimg— 1 Givens transformations; se&l, 20].

In the second step, a disturbance is introducedran® Givens transformations are needed
to restore the structure. Unfortunately, this impli@if: algorithm uses twice as many Givens
transformations as the corresponding algorithm for theskleiserg (tridiagonal) case.

This paper introduces a new type of algorithm for computhrey @igenvalues of struc-
tured rank matrices. The new algorithm is based on a soec@llé factorization. This is a
factorization of a matrixd = QZ, in which Q is unitary andZ is a Hessenberg-like matrix
(in which the lower triangular part of the matrix has semaaple form). This unitary ma-
trix ( is used to define the new iterate,; = Q7 AQ. It is shown that this iteration can
be performed in an efficient manner for structured rank roasti More precisely, th@ H
factorization of a Hessenberg-like minus shift mattix- I also consists ofi — 1 Givens
transformations. Th€ H algorithm also can be implemented in an implicit way, sudit th
n — 1 Givens transformations instead of the traditiokal— 2 are needed. Besides the fact
that the method is cheaper in terms of numerical computsifienstructured rank matrices,
we also show that this new iteration inherits a new type oleogence behavior, which can
be advantageous in many cases.

The paper is organized as follows. This section continuebri®fly introducing the
classes of semiseparable, Hessenberg-like (plus didgawadtices as well as the Givens-
weight representation. In Secti@various methods for computing tligR factorization of
structured rank matrices are introduced. Based on thefseatit types of) R factorizations,
one can deduce different types@f? algorithms. The different ways of computing theg&
algorithms are discussed in Sectidd. Section3 discusses th€ H factorization, which is
the basis for the neW H method. A rigorous treatment of the convergence and prasenv
of structure is presented in SectidnAn implicit version of the method for Hessenberg-like
plus diagonal matrices is presented in SecoBefore providing numerical experiments in
Section?7, we briefly show that th€) R method for Hessenberg matrices can be considered as
a special case of th@ H method. This is done in Sectidh

1.1. Definitions. The class of semiseparable and Hessenberg-like matricesidened
in this paper is defined as follows.

DEFINITION 1.1. A square matrixS is called a{p, ¢ }-semiseparable matrix if the fol-
lowing relations are satisfied:

rankS(l:i+¢g—1,i:n)<q and rankS(i:n,1:i+p—1) <p,

for all feasiblei. A matrix is called{p}-semiseparable if it ifp, p}-semiseparable, and
semiseparable if it i§1, 1}-semiseparable.

DEFINITION 1.2. A square matrixZ is called a{p}-Hessenberg-like (or lower semisep-
arable) matrix if the following relations are satisfied:

rank Z(i:n,1:i4+p—1) <p,

2The diagonal is necessary for introducing the shift matrjxI in the shiftedQ R algorithm. In the Hessenberg
(tridiagonal) case this does not influence the structurereds in the structured rank case it does.
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for all feasibles.

Sometimeq p}-generalized Hessenberg matrices arise. These matrees@nsions of
the standard Hessenberg matrices, and hayeubdiagonals different from zero.

For simplicity, we focus on Hessenberg-like (plus diagpmadtrices in this paper. There
is no loss of generality, because only the structure of theifdriangular part of the involved
matrices is important in the theoretical analysis. Henoe,nfiost derivations, we do not
need to know the structure of the upper triangular part. Thigery important for actual
implementations in order to obtain the lowest possible astaponal complexity. Th& R
algorithm compute§) R factorizations of the matrice8 — u/ for the shifted Hessenberg-
like matrix, orZ + D — ul for the shifted Hessenberg-like plus diagonal matrix. 8iboth
shifted matrices are essentially Hessenberg-like plugodial matrices, we discuss in the next
section the&) R factorization of a Hessenberg-like plus diagonal matrix.

1.2. Representation.The matrices defined above are dense in the sense that they con
tain mostly nonzero elements. But these matrices can besepted by using only a limited
number of parameters. They admit, for example, a sparseseptation based on Givens
transformations. This representation is the so-callece@wveight representation for the
general structured rank case (s&p,[or the Givens-vector representation for the class of
{1}-semiseparable matricesviore precisely, the Givens-weight representation foldiner
triangular part of § p}-Hessenberg-like matriX consists op sequences of Givens transfor-
mations. In fact, it is a sort a R factorization of the matrix:

QFQY...QZ =RandZ = Q1Qs...Q,R = QR, (1.1)

where every unitary matrig!’ consists ofn — 1) — (p — i) Givens transformations, peeling
off a rankd part from the Hessenberg-like matrix. Each of the matrice§); contains a
descending sequence of Givens transformations. This nteanfor a particular);, the first
Givens transformation acts on rows- i + 1 andp — i + 2, the second on rows— i + 2 and

p — i + 3, and so forth. They start changing the top rows of the matitk go downwards;
hence, the name descending. Similarly, we call the sequemoesponding t6) ascending.

In an actual implementation, one does not really store th&ixn&, but a condensed
form (called the weights). The effective representationsists ofp sequences of Givens
transformations plus the weights.

One can also construct such a representation for the upaegtiar part, if it has rank
structure. In the case offa, ¢}-semiseparable matrix, one hasequences of Givens trans-
formations for storing the lower triangular part apdequences for storing the upper tri-
angular part plus all weights. The use of the weights is oelyessary for implementation
details. For theoretical purposes, we work with th&-like formulation from (L.1). More
information can be found irg} 21].

The above representation is often referred to as the tdpihakepresentation, as it starts
on the top row of the matri® (right equation in {.1)) and gradually fills up the matrix from
the top to the bottom. One can easily change this repregmmtatanother kind of factoriza-
tion: Z = RQ, where the matrix) consists again g sequences of Givens transformations,
now gradually filling up the low rank part of the matrix fronghi to left. This is called a
right-left representation. One can easily convert fromttdgbottom form to the right-left
form in O(pn) flops*.

3There are many more representations, such as the quasisiepaenerator representation and so forth.
4Every operation of the form-, —, /, x is considered as a flop.
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2. The@R factorization and its variants. The idea for the new iteration finds its origin
in the different variants for computing tligR factorization of structured rank matrices. These
variants result, of course, in differe@R algorithms. Let us briefly discuss the different
forms for computing the) R factorization of structured rank matrices. For simplicitg
assume we are working with a Hessenberg-like plus diagomdlixn semiseparable plus
diagonal matrices and higher order semiseparable pluskiégratrices can be treated in the
same way.

2.1. The traditional factorization: A pattern. For this type ofQ R factorization, an
ascending sequence of Givens transformations is applititetélessenberg-like plus diag-
onal matrixZ + D, followed by a descending sequence of Givens transformstid/lore
information on this type of) R factorization can be found if®[ 10, 17, 22]. The first ascend-
ing sequence of Givens transformations actingZosn D, denoted b)Q{f consists ofn — 1
Givens transformations in which each Givens transformadicts on two successive rows of
the matrixZ, exploiting thereby the rank structure in the lower trialagyart to annihilate
all elements below the diagonal (these unitary transfaonatcoincide with the ones from
the top to bottom representation). We obtain

QfzZ=R and QY(Z+D)=H,

in which H is a Hessenberg matrix. This is followed by a second sequenee- 1 Givens
transformations from top to bottom to annihilate the sugdisl elements of the matri .
This gives

QIH =QfQf(Z+D)=Q"(Z+D) =R, (2.1)

in which 2 is the resulting upper triangular matrix. This is the stadd@aR factorization,
which is discussed in detail in the pap&r].

We often work with a graphical interpretation related to &g transformations and the
matrix they are acting on. The matrix produ@tq(Z + D) is graphically represented as
follows.

EKKEEE
C C

87654321

2.2)

ooood
XXX KX X
XX KX X X
XXX X X
KX X X X
X X X X X

The right part consisting ot andX elements represents the matfix+ D. The element&
denote the part of the matrix satisfying the rank structditee elements< denote arbitrary
elements. In this figure, the elements on the diagonal cayeioicluded in the rank structure
because they are perturbed by the diagdnalThe left part, consisting of the brackets with
arrows, denotes the Givens transformations.

The numbered circles on the vertical axis depict the row$efrhatrix, to indicate on
which rows the Givens transformations act. The bottom numiEpresent in some sense a
time line to indicate in which order the Givens transformasi are performed. The bracketsin
the table represent graphically a Givens transformatitingion the rows in which the arrows
of the brackets are lying. The Givens transformations frofmmns1 up to4 represent the
Givens transformations in the matri¥’. The ones in the columrisup to8 denote these of
the matrixQ%; see .1).

Let us explain this schemes in more detail. First, a Givesnssfiormation is performed,
the one in position in Scheme2.2, that acts on rové and row4 to annihilate the first three
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elements of rovs. Second, a Givens transformation is performed that actews and row4

to annihilate the first two elements of ralyand this process continues. Applying the Givens
transformations in positions through4 to the matrix on the right results in the following
graphical representation. This represents exactly the saatrix as in the previous scheme,
but equals novQ' H.

(2.3)

OoOodo
1
X
X
X X X X X
X X X X X

8765

Applying the remaining four Givens transformations in Stle€.3 to the Hessenberg
matrix on the right removes the remaining subdiagonal efémeHence, we obtain the up-
per triangular matrix?. Therefore, Schem2.2 gives a graphical way to represent e
factorization of a Hessenberg-like plus diagonal matrix.

NOTE 2.1. Consider a{p}-Hessenberg-like plus diagonal matrix. First, one removes
the low rank part by applying ascending sequences of Givens transformations. This gives
us

QI ...Q(Z+D)=R+H,

in which H is a generalized Hessenberg matrix, havingonzero subdiagonals. To complete
the QR factorization, anothep top-to-bottom sequences of Givens rotations are needed,
each of which removes one subdiagonal frAim

Globally, we haveyp ascending sequences of Givens transformations for remgdhia
rank p structure, followed by descending sequences of Givens transformations removing
thep subdiagonals. This leads again to a so-calle@attern, this one having thicker legs.

Due to some specific properties of Givens transformationsameobtain other patterns,
as we describe in the next two subsections.

2.2. Some properties of Givens transformationsBriefly, two important properties of
Givens transformations are mentioned here. We also shangttagphical interpretation.
LEMMA 2.2. Suppose two Givens transformatieiis, andG, are given:

G = |: “ _fl :| anng = |: = _52 :| .

S1 C1 52 C2

Then we have that; Gy = G35 is again a Givens transformation. We call this the fusion of
Givens transformations in the remainder of the text.
The proof s trivial. In our graphical schemes, we depics ts follows.

O 0
O “E’[: resulting in O [: )
21 1

The following lemma is very powerful and allows us to inteanlge the order of Givens
transformations and to obtain different patterns. QuiteroGivens transformations of higher

5The considered transformations are in fact rotations. Ntdgmation on Givens rotations can be foundh [
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dimensions, say, are considered. This means that the corresporitling@ Givens transfor-
mation is embedded in the identity matrix of dimensigstill changing only two consecutive
rows when applied to the left.

LEMMA 2.3 (Shift through lemma)Suppose thregx 3 Givens transformation§';, G
and G are given, such that the Givens transformatichsand G5 act on the first two rows
of a matrix, andG, acts on the second and third row (when applied on the left tatir).
Then there exist Givens transformatiafis, G, and G5 such that

GIGQGB = GIGQG&
whereG; and G5 work on the second and third row aidéh, works on the first two rows.
This result is well-known. The proof can be found 2] and is simply based on the

fact that one can factorize3ax 3 unitary matrix in different ways. Graphically we depictghi
rearrangement as follows.

0 Y 0
B [: [: [: resulting in B [:[:[: .
321 321

Of course, there is a similar transformation that transfotine right figure to the left figure,
which we would depict by a- in the right figure.

2.3. TheV pattern. We now show how one can change the order of the Givens trans-
formations in Schem2.2. We ultimately obtain a different graphical scheme thatespnts
exactly the same factorization, but in which the Givensdfarmations are performed in a
different order.

After applying Lemma.2to the Givens transformations in positiband5 in Scheme.2,
we can apply the shift through lemma several times (threegim this case), and thereby
change the order of the transformations so that we obtaifotlosving factorization.

C C
C, .t
EKK

| 7654321

(2.4)

Oooooo
KKK X X

X
X
X
X
X

X X X X X

X X
X X
X X
X x
X X

This gives us the/ pattern for computing th€ R factorization of a matrix. The order of
the Givens transformations has changed, but we computethe@R factorization (more
information can be found ir2f)):

Qi (Z+D) =R

NOTE 2.4. Some important remarks related to theand A patterns must be made.
e We have the equality

Q1Q2 = Q1Q3;
since? was not affected, we obtain an identic@R factorization.
e But generically:
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which means that the factorization of the unitary matrixtie € R factorization is
different in the two patterns.

This pattern can also be decomposed into two parts. Firstésaethding sequence of
Givens transformations (positidnup to3) is applied, followed by an ascending sequence of
Givens transformations (positichup to 7). To distinguish between the and theA pattern
we put av on top of the unitary transformations in case of thpattern.

The first three Givens transformations are, in fact, rankaeging Givens transforma-
tions. They lift up the rank structure. Hence, after havippgleed these first Givens transfor-
mations, we obtain the following scheme.

KE[;
(

7654

(2.5)

ooogg
XXXXX
XXX X X
XXX X X
XX X X X
KX X X X

The figure clearly illustrates that the strictly lower triadar rank structure has lifted up and
that the diagonal may be included in the lower triangulakstnucture.

The remaining four Givens transformations from bottom remove the rank-struc-
ture in the lower triangular part so that we obtain the uppangular matrix?.

Writing the above figure in mathematical formulas, we obtain

Q' QI (Z+ D)= Q4 Z,
Q'(Z+D)=12,
(Z+D)=WZ,

where Z denotes a Hessenberg-like matrix. The final equation deretstructured rank
factorization of the matrixZ + D, since the matrixZ is of Hessenberg-like form ang; is
a unitary transformation. This unitary-Hessenberg-li@él) factorization forms the basis of
the eigenvalue computations proposed in this paper.

DEFINITION 2.5. A factorization of the form

A=0QZ,

with @ unitary andZ a Hessenberg-like matrix is called a unitary-Hessenbégfactoriza-
tion, or aQ H factorization. In the case that the matrikis a {p}-Hessenberg-like matrix,
we still call this aQ H factorization, but we specify the rank of the matfix

NOTE 2.6. This factorization is a straightforward extension of Q& factorization, as
the QR factorization is aQ H factorization in which the matri¥ is of semiseparability rank
0, i.e., the strictly lower triangular part of is zero.

NOTE 2.7.For a {p}-Hessenberg-like plus diagonal mattk+ D we will use a higher
order QH factorization in whichZ, the Hessenberg-like matrix, has a lower triangular part
of {p}-Hessenberg-like form. More precisely, in this case, oreds&®(p(n — 1)) Givens

transformations for obtaining the factorization. To prawés statement one has to combine
Note2.1and the results from this subsection.

2.4. The@QR algorithm and its variants. As there are different manners of computing
the QR factorization, thel) R algorithms are slightly different. In fact, one obtains etka
the same result, but the way of computing the matrices afterstep of th&) R method can
differ. In this section, we will briefly discuss the R algorithms associated with both the
A and thev patterns for computing th@ R factorization. We remark once more that the
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final outcome of both transformations is equal; howevenetare differences both in the
order in which the Givens transformations are performediaride Givens transformations
themselves.

2.4.1. The@R algorithm connected to theA pattern. We consider the following iter-
ation step on a Hessenberg-like minus shift matrix:

Z —pl = @Q1Q2R,
Zgr = RQ1Q2 + ul = Q3' QY ZQ1Qo,
in which Zgr denotes the new iterate. We comment on the Hessenberghlikedagonal
case afterward.

The single shift) R algorithm based on the pattern was first discussed in an implicit
formin [20].

Let us discuss the global flow of the iteration related to/heattern. The iteration can
be decomposed into two steps, each step correspondingftormperg a sequence of — 1
Givens transformations. The first sequence is an ascendmdenoted by, in the A pattern,
which annihilates the low rank part in the Hessenberg-likdrin. The second sequence
corresponds to the descending Givens transformationgelgiy / in the A pattern, which
removes the subdiagonal elements.

Since the new iterate is defined @ Q¥ ZQ,Q2 = Q¥ (Q¥ Z(1)Q-, two similarity
transformations need to be applied to the mafixOne is determined bg: and the other
by Q2.

e The first similarity transformation (related €, ) computes the following (see Sub-
section2.1):

7= 024, = (0117) @1 = RQ.

This corresponds to performing a step of ta& method without shift on the matrix
Z. As a result, we obtain another Hessenberg-like mafrix

o The second similarity transformation (relatede) can be performed in an implicit
way as follows. Determine the first Givens transformativof Q- to annihilate the
element in positior{2, 1) of the Hessenberg matr@{f(Z —ul) = H. Applying
this Givens transformatio@ as a similarity transformation on the Hessenberg-like
matrix Z disturbs the specific rank structure of this Hessenbergstilatrix. The
implicit part of the method consists of finding the remaining- 2 Givens trans-
formations and applying them t67 ZG so that the resulting matrix is back in
Hessenberg-like form. Based on the impli€ittheorem for Hessenberg-like ma-
trices, one knows that this approach results in a Hessetliergatrix that is es-
sentially the same as the one resulting from an explicit stepe Q R method.

NOTE 2.8. The first similarity transformation based @y is independent of the chosen
shift ;. The second similarity transformation is dependent on Hik s.

The @R method for Hessenberg-like plus diagonal matriges D is identical. One first
performs a number of Givens transformations, correspanira step of) R-without shift
on Z, followed by a similarity transformation determined §y. To restore the structure in
the Hessenberg-like plus diagonal case, one needs to takednsideration the structure of
the diagonal, as the diagonal is preserved under a step ¢fEheethod [L§].

2.4.2. The@R algorithm connected to thev pattern. We consider the iteration step:
Z—pl = Q1Q2R,
Zor = RQ1Q2 + 1l = QY QT ZQ:1Q2,



ETNA
Kent State University
http://etna.math.kent.edu

134 R. VANDEBRIL, M. VAN BAREL, AND N. MASTRONARDI

in which Zgr denotes the new iterate. The higher order and semisepgrhisieliagonal
cases can be considered in the same way.

The @R algorithm based on the pattern has not been discussed before. However, the
idea is a straightforward generalization of )& algorithm based on the pattern. Due to
the fact that we have switched in some sense the order of kqgtiesces o — 1 Givens
transformations, we can also switch the interpretatiomisfalgorithm.

We have again two similarity transformations to be perfatn@l (Q¥ ZQ,)Q-. Now,

Q. is a descending sequence of Givens transformations fonelipgthe rank structure and
Q- is an ascending sequence of Givens transformations forviemthe newly created rank
structure of the intermediate Hessenberg-like matrix.

e The first step can be performed implicitly, similar to the @t sequence in the
A-case. An initial disturbing Givens transformation is apg) followed byn — 2
structure restoring Givens transformatiinds a result we obtain the Hessenberg-
like matrix’

Z=QiZQ.

e One can prove that the second step (corresponding to then&tv@nsformations
from bottom to top) can again be seen as performing a stepeoth method
without shift on the newly created Hessenberg-like maftixAfter performing the
similarity transformation corresponding ., we obtain the result of performing
one step of th&) R method without shift applied to the Hessenberg-like mafrix

NOTE 2.9. In the similarity transformation related to the pattern, we have that the
first step is dependent on the shiftwhereas the second step is independeni. dbee also
Note2.8for the iteration related to the\ pattern.

NOTE 2.10. The remark above makes it clear that this algorithm (as welthee algo-
rithm related to then pattern) has a kind of contradicting convergence behawdhen we
look at the bottom-right corner of the matrix, we have that:

e The first step is determined by the shift, and hence createsagence to the eigen-
value(s) closest to the shift.

e The second step corresponds tQ &-step without shift, and hence converges to the
smallest eigenvalue(s) in modulus.

Both convergence behaviors do not necessarily coopematarhe sense, the second step can
damage the improvements made by the first step.

One can opt to remove the second similarity transformatiémfortunately we will not
have aQ R factorization and a correspondidg? method anymore. This approach leads to
the @ H method, which is discussed in Sectibn

Based on the comments above, we would like to use only therfgxt for performing
an orthogonal similarity transformation of the mat#ix As Q) is closely related to th&@ H
factorization, a naive approach would be

Z—ul =QZ,

which is aQ H factorization of the matri2 — pI. We can define the new iteration as
Zow = Q7 ZQ.

Unfortunately, this creates some problems, as we will séleemext section.

6The chasing can be performed in the same way as the chasinip stase of then pattern.
7 In Section4, we will prove that the matri¥ is indeed of Hessenberg-like form.
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3. More onthe@H factorization and the new@ H algorithm. The@ H factorization
is the basic step in the ne@y H method. Unfortunately, th€ H factorization as proposed
above is not properly defined for immediate use in@h# method. We illustrate possible
problems with some examples.

EXAMPLE 3.1. Suppose we have the matrix

1 0 0
Z=10 10
0 0 1

This matrix is obviously already in Hessenberg-like fornenkle the factorizatio = 17
is a@ H factorization. But, in fact, one can apply an arbitrayx 2 Givens transformation
acting on the last two rows, without disturbing the struetuiThis means that we have an
infinite number of) H factorizations for this matrix.

One can also clearly see in Scherdesand2.5that the first three Givens transformations
already applied to the matrix create the desired strucfthiss. means that in general one needs
n — 2 Givens transformations to obtain a matrix of the followingrh (for a4 x 4 problem):

X x x X
XK x x
XXX x
XXX X

7 =

This matrix is clearly of Hessenberg-like form, and an asit Givens transformation acting
on the last two rows can never destroy this rank structure.

NoTE 3.2. For the higher order case, a similar remark concerning ur@gess can be
made. Suppose one hag)dl factorization@Z, with Z of {p}-Hessenberg-like form. One
can apply an arbitrary unitary transformation involvingahastp + 1 rows without disturbing
the factorization.

The freedom in constructing the factorization has a dinagtact on the) H method, as
we can no longer guarantee the preservation of the struasurell as convergence. Later, we
will show that we can guarantee this, after having defined;plirfactorization in a different
essentially unique way.

ExAMPLE 3.3. Suppose we have the followiig< 3 matrix Z and aQ H factorization
of this matrix. The given matriX is clearly a Hessenberg-like matrix, which has its struetur
preserved under the standa@R algorithm. Let us construct § H factorization of this
matrix:

01 0 0 -1 1 100 o
Z=|100|=|1 0 0 =1 (0 0 1|=(CiG)
00 1 1 1 ofl]lo 10

N«

=Q7Z,

in whichG1 G2 = @, with G; and G, two Givens transformations aré a Hessenberg-like
matrix. Performing the similarity transformation with thaitary matrix, we obtain:

S = O

. . 0 1

Zon =Q"ZQ=10 1 0
1 0

The new iterateZgy after a step of the)H method with this factorization is clearly no

longer of Hessenberg-like form.
Hence, itis clear that we have to impose some extra constaimthel) H factorization.
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Let us consider the following constructive procedure. Sggpthat we would like to
compute th&) H factorization of the matri¥ + D. For the Hessenberg-like cade,= —u/;
for the Hessenberg-like plus diagonal caBancorporates the shift matrix /. Assume all
diagonal elements are nonzero. We can write{fhe Hessenberg-like matriX as follows:

Z = RQ,

whereQ consists ofp sequences of Givens transformations. The mabi@* is a {p}-
generalized Hessenberg matrix.
We now obtain

Z+D=RQ+DQ"Q=(R+DQ")Q
= QRQ,
whereQR = R+ DQY, which is theQ R factorization of the left factor in the product. This
corresponds to @ H factorization of the original matri¥ + D:

Z+D=QRQ=QZ,
with Z a {p}-Hessenberg-like matrix. It is important to remark that thatrix Z = RQ
has exactly the sam@ factor in its representation from right to left as the oraimatrix
7 = RQ); only the upper triangular matricds and R differ. This factorization will be used

for the Q H method.
DEFINITION 3.4. A Hessenberg-like matriX is said to be irreducible if

rank(Z(i+1:n,1:4))#0, foralli=1:n—-1
rank(Z(i:n,1:9i4+1)) > 1, foralli=1:n—1.

This means that one cannot subdivide the problem, and thedlokvstructure does not cross
the diagonal [L§].

In [20], the irreducibility of Hessenberg-like as well as seméa@ble matrices is dis-
cussed in more detail.

NoTE 3.5. We now have several remarks:

e When considering an irreducible Hessenberg-like maffixone can easily prove
unigueness of the above factorization. Since the méiriis irreducible, it has
an essentially uniqu&@ factorization in which all Givens transformations differ
from I. This implies that the corresponding Hessenberg matfiks irreducible,
guaranteeing an essentially uniqadgR factorization of H. Hence, we obtain an
essentially uniqué) H factorization of the matrixz.

e We imposed the constraint that the diagonal eleménigeeded to be different from
zero. In fact, one can without loss of generality also coaisizero diagonal ele-
ments. This will, however, lead to trivial block divisionghe factorization.

e Reconsidering now both examples above, we see that theytdoatch our con-
structive procedure.

DEFINITION 3.6. The new iteration proposed in this paper is of the followingnf.
Assume a Hessenberg-like plus diagonal mafrix D is given and we have a shijit(with
RQ an R(Q) factorization of7). Then

Z+ (D~ pl) = RQ+ (D - ul)Q"Q
= (R+ (D - p)Q")Q
Q

)

I
Qe &
N =3¢



ETNA
Kent State University
http://etna.math.kent.edu

COMPUTING EIGENVALUES OF SEMISEPARABLE (PLUS DIAGONAL) MARICES 137

which gives us a specifi@ H factorization of the matrixZ + D.
The new iterate is defined as follows

Zon +Don = ZQ + ul
=Q"(Z + D)Q.

NoOTE 3.7. We would like to remark that this paper is based on the technéport [24].
The report contains extra material related to the uniquenelsthe@ H factorization and
alternative proofs to predict convergence and preservatibstructure. The details are rather
technical and we chose not to include them in this paper.

4. Convergence of the) H method. This method can be considered as a specific case
of a more general framework presented2s][ This framework discusses ration@IR iter-
ation steps. In this report, general theoretical convergeasults, as well as results on the
preservation of structure and so forth, are presented. Wemly use the results applicable
to our case.

Since the results for the standard Hessenberg-like cagbeaeasiest ones to derive, we
will focus attention to this case. The results for Hessegli€e plus diagonal matrices are
more complicated since a diagonal is involved. We will naverall the details, but state the
results.

4.1. Arational QR iteration. Let us interpret th&) H iteration in terms of a rational
QR iteration. The analysis presented here is similar to theioifd0-32] and is a special
case of the rationa) R iteration, which was presented ia].

As discussed in the previous section, the global iteraton i

Z = RQ,
Z+(D - pl) = (R+ (D - uD)QM)Q = QRQ,
Zqu + Dou = Q" (Z + D)Q,
whereZgn + Don defines the new iterate in the method.

One can rewrite the above formulas and obtain that the m@tisxthe Q factor in the
QR factorization of the matrix produ€Z + (D — ul))Z~:

(Z+(D—uD)Z™" = (QRQ) (Q¥R™)
=QRR™ .

This formulaillustrates that we have computed the unitacydr of a special function of
7. Depending on the diagonal matrX, we have to distinguish between two cases: the case
in which D is zero, which is the Hessenberg-like case; or the case iohwhiis an arbitrary
diagonal matrix.

4.2. The Hessenberg-like casdn this case the diagonal matriX equals zero, and
is a suitably chosen shift. Without loss of generality one assume”Z to be nonsingular, so
that the equation above simplifies and we obtain

(Z —uhZ™ ' =QRR™,

whereQ is the unitary transformation that will be used to define teeriterate. Since this
fits into the framework of rationa) R as presented ir2f], preservation of structure of the
matrix Z follows immediately. This means that the convergence ptagseof the iteration
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performed on the matrix are defined by the subspace convergence properties, defined b
the rational functiomp()\) = (A — u)A~1. These convergence properties, and more advanced
results for a general rational iteration of the fopM\) = (A — u)(A — )1, were extensively
discussed inZ5].

Some initial theoretical results on subspace iterationrthare necessary. Given two
subspaces$ and7 in C", denote byPs and Py the orthonormal projectors onto the sub-
spacesS and7, respectively. The standard metric between subspacefinedas

d(S,T)=||Ps — Pr|l2 = sup d(s,T) = sup inf ||s—t|2
ses ses teT
lIsll2=1 lIsll2 =1

if dim(S) = dim(7), andd(S,7) = 1 otherwise; seel[3].

The next theorem states how the distance between subspgeaneges when performing
subspace iteration with shifted rational functions. Theotlem is a generalization 082,
Theorem 5.1].

THEOREM 4.1. Let A € C™*" be a simple matrix with eigenvalues, Xz, ..., A\,
and associated linearly independent eigenvectarsvs, . .., v,,. LetV = [vi,va, ..., v,]
and letxy be the condition number df, with respect to to the spectfahorm. Letk be
an integerl < k < n — 1, and define the invariant subspadés= (vy1,...,v,) and
7T = {v1,...,vi). Denote by(p;); a sequence of rational functions and fgt= p; . . . paps.
Suppose that

pi\)#0 j=1,...,k,
pi()\j)7&i00 j=k+1,...,n,
for all 7, and let
_ MaXp41<j<n |]51 /\j)|

i(
ming<;j<k [Pi(A;)]

LetS be ak-dimensional subspace 6f* satisfying
Snu ={0}.

LetS; = pi(A4)Sp,i = 1,2,..., withSy = S. Then there exists a constafit(depending on
S) such that for alki,

d(SZ,T) S C Ry 721
In particular S; — 7 if #; — 0. More precisely we have that

dVTIS, VIT)
V1I—d(V-IS, VIT)

The following lemma relates the subspace convergence taeathishing of certain sub-
blocks of a matrix.

LEMMA 4.2 ([32, Lemma 6.1]).Supposed € C"*" is given, and let be a subspace
that is invariant underd. AssumeZ to be a nonsingular matrix, and assur§eto be the

8The spectral norm is naturally induced by thé> norm on vectors.
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subspace spanned by the fikstolumns ofG. (The subspacé& can be considered an ap-
proximation of the subspacg.) Assume tha3 = G~'AG, and consider the matrix3,
partitioned as

Bi1 B2
B = ,
[ Ba1 Bao }

whereB,y; € C("~k)xk_ Then we have:
|Batllz < 2 V2 pe [|All2 d(S, T),

whereu denotes the condition number of the matex
For the Hessenberg-like case, the functions are of the form

pi(A) = (A —p)A ™

Let us compare the convergence behavior of this new iterédithat of the standa@ R
iteration with shiftu;. We consider only one iterate, i.e;,denotes the contraction rate from
stepi in the iteration process. For the stand@rft algorithm we obtain the contraction ratio

(QR) _ MaXpi1<j<n |Aj — pil

i = : . (4.1)
mini<j<k [Aj — il

r

We introduce the constants

= 1 A y

w=, min_{]A;]}

Q= 1}
max {1}

Calculating now an upper bound for the convergence ofdlie method towards the eigen-
value closest to the shift; gives us:

Aj
Aj = i

Aj — Hi
Aj

< Qmaxpii<i<n [N — il

T w minigi<r [N — il

K2

max EQR) .

k+1<j<n

Q
=—r
w

X
1<j<k

This indicates that convergence of the new iteration is cmaigle (up to a constant) to the
convergence of the standagd? method. This constant only creates a small, negligibleydela
in the convergence. This means that if the traditiap& method converges to an eigenvalue
in the lower right corner, th& H method also will converge. Hence, to obtain convergence
to a specific eigenvalug;, we chooseu; close to this eigenvalue. The convergence results
prove that this eigenvalue will then be revealed by both@#feand theQ H method in the
lower right corner.

Moreover, we also have extra convergence, which is not pt@séhe standard R-case,
and which is stems from the factar! in the rational functions.

Define the constants

A — o
i k+1?£;(§n{|/\3 wil}s
0i = min {1 — pal}-

Similarly to the above, we can define the contraction ratio

_ A maxigi<k Al

e = ot I .
Y6 mingri<j<n [N
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Assume now (without loss of generality) tHat | < [A2] < ... < |\,|. This means that our
convergence rate can be simplified as follows:

o A ]
b Mgl

Hence, we get a contraction for &l determined by the ratio,/A\,11. This is a basic
non-shifted subspace iteration taking place forkadlt the same time. We remark that this
convergence takes place in addition to the convergencesetpby the shifj;, which can
force, for example, extra convergence towards the botight-element.

More information on this specific type of subspace iteratian be found inZ5].

4.3. The Hessenberg-like plus diagonal casé& he convergence theory related to the
Hessenberg-like plus diagonal case is more complicatedath step of the above method,
one will now perform a step of the shift€@dR iteration, combined with a nested multishift
iteration. The convergence analysis of this method is n@asy compared to the standard
@ H method for Hessenberg-like matrices. We will not presemgibbal convergence theory,
but a brief explanation of the behavior. Similarly to theulesin [25, 28], one can derive
global convergence results and predictions of the conneeyeatios.

We distinguish between two cases. First, we discuss theigasgbich . = 0. As we
want to compute the specifiQ H factorization of the matrixA = Z + D in which Z is a
Hessenberg-like matrix and an arbitrary diagonal, we apply the algorithm

Z = RQ,
Z+D=(R+DQR™MQ
= QRQ.

Applying the traditional analysis from above, we obtain
(Z4+D)Z ' =A(A-D)"' =QRR™.

Hence, we have computed tiER factorization of the original matrixd multiplied by the
inverse ofA minus a diagonal shift matrix. This diagonal shift createsnested multishift
iteration, with shifts equal to the diagonal elements, kintd the reduction to semiseparable
plus diagonal form.

Assumingu # 0, we obtain

Z = RQ,
Z+D—pl=(R+(D-u)Q")Q
=QRQ.

We also get
(Z+D—pul)Z ' =(A—ul)(A- D)t =QRR™".

This implies that we perform a step of the traditiogak method combined again with the
nested multishift iteration.

Hence, in the Hessenberg-like plus diagonal case, we atfain ¢he classical conver-
gence of th&) R method plus an extra nested multishift iteration. An intetation of this
kind of subspace iteration and its convergence properde$e found in28].

NoOTE 4.3. Nothing has yet been mentioned about the preservation dttbeture in
case of performing this iteration on a Hessenberg-like pliagonal matrix. Since th@ H
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iteration performs a partiaty R step related to the/ pattern as discussed in Subsectibf,
the preservation of the structure can be derived by modifitie proof of the preservation of
the structure in the traditional) R method. The proof can be found in the technical report
[24]. We only formulate the theorem.

THEOREM4.4. Suppose a Hessenberg-like plus diagonal matrix D is given where
D = diag([dy, .. .,d,]), with

Z+D—ul=QZ,

constructed as described above. Then the mapik(Z + D)(Q is a Hessenberg-like plus
diagonal matrixZgy + Dou, Where the diagonal elements bfpy are shifted up one
position relative to the diagonal elements of the matvixi.e.,

DQH = dlag([d27 ey dn—17 d’ﬂmﬁ])a
wheref is a freely chosen element.

4.4. Summary of QH convergence results.Let us draw some conclusions from this
and the previous section. TIigH factorization as it was presented initially clearly does no
satisfy the needs of an iterative method to compute eigaasalFor example, the freedom
in computing the factorization allowed one to make choiagshghat the structure was not
preserved, making it useless for the design of an eigengalver.

Definition 3.6 provided formulas for computing the factorization in a eifént way.
Based on these relations, we were able to prove thaftfi@ctor in theQ H factorization
is actually the unitary factor of th@ R factorization of a rational function in the Hessenberg-
like (plus diagonal) matri¥,. Hence, all theoretical results for tlieH method transform in
a certain sense to classical results for (multistijff} iterations B1, 32].

Being able to use classical results for the (multiskifty iteration opens several doors.
One might, for example, consider the design of an imp(icif method. Standard theorems
for constructing implicit algorithms state that the firstuoon of the orthogonal factor, com-
bined with a structure-restoring process applied to thelimd matrix, is enough to guarantee
that one has performed a step of th& method on the matri¥.

Since the& factor in theQ H-decomposition consists of a descending sequence of Givens
transformations, the first column 6f is only determined by a single Givens transformation.
Hence, it is not necessary to follow the complete proceduns Definition3.6 in order to
compute the matrig); we only need to determine its first Givens transformatiach@mbine
it with a structure-restoring process. This is the subjétt® upcoming section.

Both convergence behaviors are very closely related to timvargence behavior in
the reduction algorithms to respectively Hessenbergdik& Hessenberg-like plus diagonal
form:

e The unitary similarity reduction of an arbitrary matrix tessenberg-like form has
an extra convergence property compared with the traditi@caction to tridiagonal
form. In every step of the reduction process a kind of nestedshifted subspace it-
eration also takes place. This nested non-shifted subgeaaton also can be found
in the new@ H iteration. The standard convergence results foiQtieiteration are
present, plus an extra subspace iteration convergencglSee

e The unitary similarity transformation to Hessenberg-fites diagonal form has an
even more advanced convergence behavior than the reduotidessenberg-like
form: namely, a nested multishift subspace iteration tgiase. A similar phe-
nomenon also takes place in &7 iteration: in every step of the iteration we have
the traditional convergence properties plus an extraeshiferation, which we can
see when combining multiple steps as a multishift itergtiee [L2, 27, 29].
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5. The implicit QH iteration for Hessenberg-like (plus diagonal) matrices. Even
though the presented theoretical results might seem coatetl, the actual implementation
is quite simple, even simpler than the implementation of@iémethod.

In this section, we derive an implicit chasing techniqueHessenberg-like plus diagonal
matrices. This approach is also valid in the special caseasisenberg-like matrices, for
which the diagonal matrix in the sum is zero.

5.1. An implicit algorithm. In this section, we design an implicit way of performing
an iteration of th&) H method on a Hessenberg-like plus diagonal matrix.
Based on the results above, we can compute the factorization

Z4 (D —pul)=QZ.
The matrixQ is then used to perform a unitary similarity transformatonZ + D:
Zon + Don = Q™ (Z + D)Q.

The idea of the implicit method is to compuf¥’ (Z + D)Q based on only the first column
of  and on the fact that the matri%oy + Do satisfies some structural constraints. This
approach is completely similar to the implicitR-step for tridiagonal/Hessenberg matrices
[13, 14] (and also semiseparable matric2§]).

Because)” = GH GH , ... GH consists of a descending sequence of 1 Givens
transformations, only the first Givens transformati®nis needed to determine the first col-
umn of Q. This Givens transformation is applied to the matfi + D), disturbing the
Hessenberg-like plus diagonal structure. The remaining2 Givens transformations are
constructed to restore the structure of the Hessenbeegrldtrix, and to obtai@oy + Do
satisfying Theoremd.4. After performing these transformations, we know, basetherim-
plicit @Q-theorems for Hessenberg-like (plus diagonal) matrices [is 12, 19]), that we have
performed a step of th@ H method in an implicit manner.

5.2. Assumptions. Before starting the construction of the implicit algoritiwe need
to assume some things about the Hessenberg-like (plusrdiguoatrix. In the Hessenberg
case, one only assumes irreducibility, i.e., the matrixncare split up into several sub-
blocks. Here we similarly assume the Hessenberg-like mtibe irreducible (according to
Definition 3.4), and the diagonal minus shift matrix should not have zezmehts.

5.3. Computing the initial disturbing Givens transformations. For the actual imple-
mentation, we assume the Hessenberg-like mairta be represented by the Givens-vector
representation. This can be seen as@iefactorization of the matrix¥ = Q R. We remind
the reader that the matriy = G,,_1G,,_2 ... G can be factored as a sequence of Givens
transformations, where each Givens transformafigracts on two successive rowsand
i + 1. Graphically, this representatich= QR is depicted as follows.

L
:

1321

(5.1)

OOoOodo
X X X X
X X X X X

The Givens transformations in positiohto 4 make up the matrix), and the upper triangular
matrix R is shown on the right.

We will now determine a Givens transformation acting on rdawand2 of the matrix
Z+ D such that the strictly lower triangular rank structure @$ thatrix also includes the first
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and the second diagonal element. This is the first Givensfoamation needed to compute
the Q H factorization.
We have

Z+(D—pl)= QR+ (D —pul) = Q(R+H),

where H is a Hessenberg matrix. We now want to apply a sequence oédéisg Givens
transformations t& + (D — pI) so that we obtain a Hessenberg-like matfix

Using the graphical representation we can repre§ei®® + H) as follows, where the
Givens transformations making dpare shown on the left, and the Hessenberg mairixH
is shown on the right.

O X X X X X
O H ® X X X X
O K X X X X
0 X X X
[l X X

(

4321

The element marked by should be annihilated, because we want to obtain a Giveci®ive
representation of a new Hessenberg-like matrix, narfelys in Schemé.1. Removing this
element by placing a new Givens transformation in positioe,@and applying the indicated
fusion, gives us the following result.

O X X X X X O X X X X X

0 E&%Ox><xx O EBO><xxx

O X X X X O ® X X X

O KE xxx 0 KK X X X

O X X O X X
|4321 |4321

Annihilating the element marked in positi¢h 2) by a Givens transformation and performing
the shift-through operation at the indicated position, Wwtam the following figure.

O X X X X X O X X X X X O X X X X X
C C,C C C

O H E0x><xx O K 0 X X X X O K 0 X X X X

O K s 0 X X X 0 E 0 X X % 0 K 0 X X X

O K xxx 0O K x xx 0 K X X X

O X X O X X O X X
|4321 |54321 |54321

We remark that the rightmost figure still represents theioaigmatrix Z + D — ul. Due
to the rewriting of the matrix, we can, however, clearly deat performing the Hermitian
conjugate of the Givens transformation in positioto the left of the matrixz + D will give

a Hessenberg-like structure in the upper left corner ofrtragrix. This is due to the fact that
this upper left part is already represented in the Givertseveepresentation.

Having calculated this Givens transformation, we can aftjaly a similarity transforma-
tion to Z, and then, to complete the implicit chasing procedurepreghe structure of this
matrix, never again interfering with the first column and raw the following subsection,
we illustrate how to restore the structure of this matrixdghsn an initial disturbing Givens
transformation.
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5.4. Restoring the structure. We have a Hessenberg-like plus diagonal maffix D
in which D = diag([d1,da, . ..,d,]). We know that a step of th@ H method results in a
Hessenberg-like plus diagonal maté ; + Do in which D = diag([da,ds, . .., dn, 3]).
Assume in the following graphical schemes that all tramsftions are well-defined.

After computing the initial disturbing Givens transforneat, we apply this transforma-
tionto Z + D. Before being able to perform the first transformation wedneerewrite our
matrix Z + D = Z; + D, whereZ; is a Hessenberg-like matrix that differs frathonly in
the upper left element, and whefs = diag([ds, ds, ds, . .., d,]). Applying the similarity
transformation gives u6 (7, + D1)G1 = G Z,Gy + D;. The diagonalD; does not
change, because the Givens transformation acts on thewosioivs and columns, and the
diagonal elements in these positions are both equél .t®ur matrixZ; can be represented
asin Schemé&.1 After applying the disturbing transformation, this scleeafso is disturbed.
Then we try to obtain again Scherfel by applying similarity transformations that do not
further affect the first column and row of the matrix.

In the following figures, we do not show the diagonal, but dhly effect of the similarity
transformationy; acting on the matrixZ,. For simplicity, we assume our matrix to be of
size5 x 5. Let us writeZy, = G Z,G.

O X X X X X O X X X X X

0 [: [:[:®><><><>< O [: [:LE’[: X X X X

0 X X X O X X X

0 [:E xx 0 EK X X

[l X [l X
| 54321 | 654321

The transformatiod:; applied on the right creates the bulge, markedin position(2, 1),
whereas the Givens transformati6ff’ applied on the left can be found in position The
bulge marked by can be annihilated by a Givens transformation as depictedeab

In the following figure, we have combined the Givens transfations in positiori and2,
by a fusion. We have moved the transformation from posititmposition3, and we depicted
where to apply the shift-through lemma. The right figure shthe result after applying the
shift-through lemma and after creating the bulge, market wi

O [:m X X X X X O [:><><><><>< O X X X X X
X X X X X X X X X X X X

. C . [C . C

O [: X X X O [: X X X O [: ® X X X

O [: xx 0 [: xx 0 [: X X

O X O X O X

|4321 |54321 |4321

We remark once more that the above rearrangements of thessikensformations did not
affect the diagonal matri®;. To continue further, we need deal again widh.

The next similarity Givens transformation acts on colunmd @ws2 and3. To perform
the procedure, we first change the diagonal mdbix= diag([dz, d2, ds, . . ., d,]) iInto Dy =
diag([dy, ds, ds, . .., d,]). This change in the diagonal, with D; = Dy + D5, andD, =
diag([0,d2 — d3,0,...,0]) needs to be incorporated in the scheme above, in the rightmos
figure, namely matrixZ,. To incorporate the matriX), into Z,, we use the factorization
of the matrixZ, = UsS5 depicted in the rightmost scheme above, whiésedepicts the
combination of the Givens transformations in positidrte 4 and S, is the upper triangular
matrix with the bulge on the right. We obtain that the maibix = U,U Dy = Uy (U D5)
equals the following scheme. The Givens transformationmositionsl to 4 coincide with
U, and the sparse matrix on the right equdlg’ D).
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0 0x000

0 ph %000

SR x 000

0| p 00

0 0
4321

Rewriting all of this into formulas, we obtain

GH(Z,+ DG, =GH2,G, + D,
= 7o+ Dy
= Zo+ Dy + Dy
= Uy + Uy (UF Dy) + Do
= Uy(Sy + U Dy) + D,
= 7o+ Ds.

It is important thatZ, and Z, are factored by the same matii%, and moreover that they
have the bulge in exactly the same position. Hence, we careptbwith a similar scheme to
the one above, where we now work wiffy instead ofZ5.

X X X X

Oooogd

X
E X X X X
[: ® X X X
E X X
X

4321

The new scheme looks similar to the one above, but a few elesrianluding the bulge, have
changed.

To continue the implicit procedure, we want to remove theeuh position(3,2). In
order to do so, we choose a Givens transformatigracting on columr2 and3, which will
remove the bulge. Performing this Givens transformatioa anilarity transformation on
the matrixZs + D5, we obtain

Ggl(ZQ + DQ)GQ e GvéiZQGVQ + Do
= 23 + D».
The diagonalD-, remains unchanged, as the diagonal elements on the secotiir@hposi-

tions are equal to each other.
The similarity transformation o# is schematically depicted as follows:

O Kxxxxx O Kxxxxx O Kxxxxx
O Km[: X X X X O [: X X X X O [: X X X X
O [: ><><><_>D [:[: ><><><_>D [: X X X
O [: X X O [: X X O [: ® X X
O X O X O X
|4321 |4321 |4321

We see that we have now created a new bulge in positios). A similar technique can
now be applied to change the diagorda to D3 and to transforn¥”s into Z5. Since the
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upper triangular parts of the involved matrices are denseh a chasing step involve3(n)
operations, leading to a global complexity ©fn?) for performing one step of the shifted
QH method.

We will show only the final step. Assume we have our ma#pin the following form.

0 K X X X X X
0 E X X X X
O E X X X
O K X X
O ® X

We choose the similarity Givens transformatiéh to annihilate the element in position
(5,4). Applying this transformation results in the lower left figu Now, instead of applying
the shift-through lemma, we only need to combine the Givearssformations in position
andb5, resulting in a Hessenberg-like matrix as we wanted. Moggave immediately have
the new representation of this Hessenberg-like matrix, taedefore we can immediately
perform a new step of the iteration.

O E X X X X X O E X X X X X

O K X X X X O K X X X X

O H X X X O H X X X

O %K X X O K X X

O X O X
|54321 |54321

The resulting diagonal iB5 = diag([dz, ds, - . ., dn, 0]), whereg is freely chosen.
Based on the implicif)-theorems, we know that we have now implicitly performed a
step of the shifted) H method.

6. The@R iteration on Hessenberg matrices is a disguise@ H iteration. Inthe pre-
vious part of the paper, we constructe@#/ factorization to make th€ H method suitable
for Hessenberg-like and Hessenberg-like plus diagonaliceat Let us now compute the
Q H factorization of a Hessenberg matrix, based on a sequerndesoending Givens trans-
formations. We remark that the strictly lower triangulartps a Hessenberg matrix already
has semiseparability rank Hence, the descending sequence of Givens transformasions
constructed in such a way as to expand the strictly lowenduigar rank structure to include
the diagonal. Let us first consider the structure of the Gitesmnsformations involved.

COROLLARY 6.1. Suppose the roye, f] and the following2 x 2 matrix are given

a b
a-[ot)
Then there exists a Givens transformation

o- sl )

such that the second row of the matéi¥’ A, and the rowe, f] are linearly dependent. The
value oft in the Givens transformatio@' as in(6.1), is defined as

t_af—k
cf —de’
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under the assumption thaf — de # 0; otherwise, one may choosé= I.

Proof. The proof involves straightforward computatiofis.

Hence, we want to apply a sequence of Givens transformatidhe Hessenberg matrix
H to obtain thel) H factorization. Denote the diagonal elements of the Hessgbatrix as
[a1,...,ay,] and the subdiagonal elementsj&s . . ., b,—1]. The first Givens transformation
acts on rowd and2 and only the first two columns are important, and so, as in ¢hellary,
we consider the matrix

| a1 h1,2
A= [ b as } , (6.2)

and we want to make the last row dependeridof;]. A Givens transformation withdefined

ast = % = 3+, is found (assuming; andb; to be different from zero). Computing the
102 1

productG* A gives us

GH A — 1 t 1 ar b | _ | x X
V1412 -1 t ’ b1 as ’ 0 x '
One can continue this process, and as a result we obtain
H=QZ=QR.

The Hessenberg-like matriX becomes an upper triangular matrix. Hence, in this case,
the Q H factorization coincides with the tradition@ R factorization, and therefore th@R
algorithm for Hessenberg (as well as tridiagonal) matriiss fits into this framework in

a certain sense. Better, one can see@i# method as an extension of the traditiodaRk
method.

7. Numerical experiments. In this section, we illustrate the speed and accuracy of the
proposed method by various numerical experiments.

7.1. Comparison with the traditional @ R method for symmetric semiseparable ma-
trices. In the following experiment, we constructed arbitrary syetrit semiseparable matri-
ces and computed their eigenvalues via the traditiQfaimethod for semiseparable matrices
(the implementation fromi43] was used). These eigenvalues were compared with those com-
puted by the algorithm described in this paper. Both setégefiwalues were compared with
the eigenvalues computed by theaM AB routineei g. The following relative error norm
was used: denote the vectors containing the eigenvaluesasy, andAqr for respectively
ei g, the@QH, and the®) R method. The plotted error value, shown in Figdrg equals

A = Aqull [A = Agrll
and ,
Al Al

for both methods. Five experiments were performed, anditieedlenotes the average accu-
racy of all five experiments combined. Theaxis denotes the problem sizes, ranging from
100 to 700 in steps of siz&0. The cut-off criterion was chosen equallt® 2. In Figures7.1
and7.2circles denote the results of individual experiments ofi@ieiteration, whereas stars
denote the results for th@ H iteration.

Figure7.2 shows the average number of iterations and the CPU timeg¢ionsls) for
both methods. We see that the new method needs, on averagejtierations than th@ R
method.
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Comparison in accuracy
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FIGURE 7.1.Accuracy comparison.

Comparison in time Comparison in number of iterations
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FIGURE 7.2.CPU times (left) and iteration count (right).

7.2. Comparison with nonsymmetric complex matrices.In this section, we describe
the results of a similar experiment to the one describedatmt for complex, not necessarily
symmetric, matrices. The examples range friditi to 700 in steps of siz&0, and the cut-off
criterion is set tal0~'4 now.

Figure7.3compares the accuracy of thaR and@ H methods, and Figuré.4shows the
average number of iterations and the CPU times (in secondpth methods. We see that
the new method needs on average much fewer iterations te@h/hmethod.

8. Conclusions.In this paper, we proposed a new method for computing thee#adees
of Hessenberg-like and Hessenberg-like plus diagonal cohwlexity of the methods is half
that of the traditional) R methods. Moreover, the new iteration converges in fewgsstean
the correspondin@ R method.
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