
Electronic Transactions on Numerical Analysis.
Volume 33, pp. 163-188, 2009.
Copyright  2009, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University 

http://etna.math.kent.edu

TRANSFORMING A HIERARCHICAL INTO A UNITARY-WEIGHT
REPRESENTATION∗

STEVEN DELVAUX†, KATRIJN FREDERIX‡, AND MARC VAN BAREL‡

Abstract. In this paper, we consider a class of hierarchically rank structured matrices that includes some of the
hierarchical matrices occurring in the literature, such ashierarchically semiseparable (HSS) and certainH2-matrices.
We describe a fast (O(r3n log(n))) and stable algorithm to transform this hierarchical representation into a so-called
unitary-weight representation, as introduced in an earlier work of the authors. This reduction allows the use of fast
and stable unitary-weight routines (or by the same means, fast and stable routines for sequentially semiseparable
(SSS) and quasiseparable representations used by other authors in the literature), leading, e.g, to direct methods
for linear system solution and for the computation of all theeigenvalues of the given hierarchically rank structured
matrix.

Key words. hierarchically semiseparable (HSS) matrix,H2-matrix, low rank submatrix, tree, QR factorization,
unitary-weight representation

AMS subject classifications.65F30, 15A03

1. Introduction.

1.1. Hierarchically rank structured matrices in the litera ture. In the literature, sev-
eral types of hierarchically rank structured matrices havebeen investigated. A first example
is the class ofH-matrices, which has been studied, e.g., in [13, 15]. Loosely speaking, a
matrix is called anH-matrix if it can be partitioned into a set of disjoint blocksof low rank.
This idea can be used to approximate the matrices arising in the discretization of certain in-
tegral equations. The idea of partitioning such matrices into disjoint blocks of low rank also
appears in the so-calledmosaic skeleton methodin [20, 21]. A typical example [13, 15] of
the partition in low-rank blocks occurring inH-matrices is shown in Figure1.1(a).

In many cases, additional speed-up can be achieved by forcing the different low-rank
blocks into which theH-matrix is partitioned to be related to each other. An often-encountered
condition in this respect is that the row and column spaces ofthe generators of the low-rank
blocks must be compatible, in the sense that the low-rank blocks must form huge horizontal
and vertical low-rank ‘shafts’ in the matrix. A graphical illustration is given in Figure1.1(b);
this figure shows some of the horizontal low-rank shafts by means of bold boxes. Rkr de-
notes that the rank of the shafts is at mostr.

The precise way in which the huge low-rank shafts as in Figure1.1(b) are enforced
will be recalled in Section2. We note that some examples of hierarchically rank structured
matrices that are explicitly based on this principle are theclasses ofH2-matrices[14, 16]

∗Received January 31, 2008. Accepted May 14, 2009. Publishedonline on December 11, 2009. Recommended
by Ahmed Salam. The research was partially supported by the Research Council K.U. Leuven, project OT/05/40
(Large rank structured matrix computations), CoE EF/05/006 Optimization in Engineering (OPTEC), by the Fund
for Scientific Research–Flanders (Belgium), G.0455.0 (RHPH: Riemann-Hilbert problems, random matrices and
Padé-Hermite approximation), G.0423.05 (RAM: Rational modelling: optimal conditioning and stable algorithms),
and by the Interuniversity Attraction Poles Programme, initiated by the Belgian State, Science Policy Office, Bel-
gian Network DYSCO (Dynamical Systems, Control, and Optimization). The scientific responsibility rests with its
authors.

†Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, B-3001 Leuven (Hever-
lee), Belgium. (Steven.Delvaux@wis.kuleuven.be). The first author is a Postdoctoral Fellow of the Fund
for Scientific Research, Flanders (Belgium). The work of this author is supported by the Onderzoeksfonds K.U. Leu-
ven/Research Fund K.U. Leuven.

‡Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001 Leuven
(Heverlee), Belgium. ({Katrijn.Frederix,Marc.VanBarel}@cs.kuleuven.be).

163



ETNA
Kent State University 

http://etna.math.kent.edu

164 S. DELVAUX, K. FREDERIX, AND M. VAN BAREL

(a)

Rk t

Rk s

Rk r

(b)

FIGURE 1.1. (a) Example of anH-matrix. Each of the indicated blocks is of low rank. The closer to the main
diagonal they are, the more difficult it is for the elements tobe approximated by low-rank blocks. (b) Example of an
H2-matrix hierarchical structure. The row and column space generators of the different low-rank blocks are now
related in such a way that huge horizontal and vertical low-rank shafts are formed. The figure shows some of the
horizontal low-rank shafts by means of the bold boxes (but there are many others which are not shown in the figure).
Rkr indicates that the rank of the shaft is at mostr.

and hierarchically semiseparable matrices(HSS matrices) [2, 4], all of which have been
introduced very recently.

Historically, the hierarchically rank structured matrices of the last paragraph were first
used in the 1980s in theFast Multipole Method[1, 12]. This method can be interpreted as
a fast way to compute the matrix-vector multiplication witha hierarchically rank structured
matrix as in Figure1.1(b). In addition, the method describes how one can approximate in
this format a matrix whose(i, j)th entry is given by the evaluation of an appropriate bivariate
functionf(xi,xj) in a set of pointsxi ∈ Ω ⊂ Rd, i = 1, . . . , n, for some fixed dimension
d ∈ {1, 2, 3}. These approximations are of an analytical flavor, and are based on separable
expansions of the formf(x,y) ≈

∑r

j=1 gj(x)hj(y). The point is to find such separable
expansions on several subdomains of the domainΩ × Ω. Here, the number of termsr is
related to the rank of the low-rank blocks in the hierarchical structure.

The interpretation of the Fast Multipole Method in terms of hierarchically rank structured
matrices in the general higher-dimensional cased > 1 is given in [19]. The classes ofH2-
and HSS matrices mentioned above can then be viewed as an underlying matrix framework
to describe the Fast Multipole Method.

Apart from matrix-vector multiplication, there are also situations where one is interested
in the solution of a linear system with a hierarchically rankstructured coefficient matrix.
Such solution methods were originally iterative; see, e.g., [13, 15]. Recently, it was shown
in [2, 4] how to provide fast and stable direct solvers for HSS-type matrices. This may be a
very important contribution in view of the fast and stable manipulation of these matrices.

Recently, hierarchically rank structured matrices were also considered as a tool for the
numerical approximation of (Fourier transformed) Toeplitz matrices [18]. The low-rank
shafts involved in the approximation of these matrices are termedneutered block rowsand
neutered block columnsby these authors, and they derive anO(n log2(n)) method to ap-
proximate a general Toeplitz matrix in this format. These authors also present a fast method
for solving the hierarchically rank structured linear system [17], but this method is probably
unstable in the general case. It seems, however, that a combination of the approximation
techniques in [18] with the solution methods in [2, 4] might lead to a superfast and stable



ETNA
Kent State University 

http://etna.math.kent.edu

TRANSFORMING FROM HIERARCHICAL TO UNITARY-WEIGHT REPRESENTATION 165

Rk r1
1i

i2

1j 2j 3j 4j 5j

Rk r2

Rk r3
Rk r4

Rk r5

i

i

3

4

i5

(a) (b)

FIGURE 1.2. (a) Rank structured matrix having5 structure blocks. (b) Unitary-weight representation.

solver for Toeplitz matrices.

1.2. Rank structured matrices. Another class of matrices that is often used in the
literature is the class ofrank structured matrices[8]. These are matrices with low-rank blocks
that are contiguous and include either the lower left or the upper right corner of the matrix.
We call these low-rank blocksstructure blocks. In contrast to the blocks in the hierarchical
rank structure (hierarchical blocks), which are small and disjoint, these structure blocks are
large and are allowed to intersect each other.

Each structure block can be characterized by a 3-tupleBk = (ik, jk, rk), with ik the
row index, jk the column index, andrk the rank upper bound. A collection of structure
blocks is a rank structure and a matrixA ∈ Cm×n satisfies the rank structure if for each
k, rankA(ik : m, 1 : jk) ≤ rk

1. A graphical illustration of a rank structure with five
structure blocks is shown in Figure1.2(a); the meaning of Figure1.2(b)is explained further
in Section4.1. By symmetry considerations it will be sufficient to describe our algorithm only
for those structure blocks in thelower triangular part ofA, but it is useful to keep in mind
that the blockuppertriangular part ofA also will be rank structured, i.e., that the matrixAT

also will satisfy the definition of rank structure.

1.3. Rank structure induced by hierarchical rank structure. The aim of this paper
is to ‘embed’ the hierarchically rank structured matrices of Section1.1 into the larger class
of rank structured matrices described in Section1.2. To see what this means, recall that the
hierarchically rank structured matrices of Section1.1 consist of a number ofsmall, disjoint
low-rank blocks (hierarchical blocks). To get these into the format of Section1.2, we have
to combine these hierarchical blocks into huge, non-disjoint low-rank blocks that start from
the bottom left corner element of the matrix (structure blocks). One can achieve this by
constructing structure blocks viatilings of the given hierarchical blocks or shafts. To see
what this means, the reader could already have a quick glimpse at Figure1.3(a). The figure
is explained in more detail below.

It is clear that this tiling procedure only requires the hierarchical blocks in thelower
triangular part ofA. Hence, from now on, we will be allowed to ‘decouple’ the hierarchical

1This MATLAB-like notation is interpreted as follows:i : m = [i, i + 1, i + 2, . . . , m] andA(i : m, 1 : j)
denotes the submatrix ofA with rows labeled byi : m and columns labeled by1 : j. Note that this submatrix lies
in the lower left corner ofA.



ETNA
Kent State University 

http://etna.math.kent.edu

166 S. DELVAUX, K. FREDERIX, AND M. VAN BAREL

structure by neglecting its upper triangular part. Moreover, in order for this tiling procedure
to lead to structure blocks with reasonably small ranks, it is clear that the region around the
bottom left corner element of the matrix should be well-approximated by a low-rank block. A
typical example of a hierarchical rank structure for which this is the case is shown in Figure
1.1(a); the point here is that the off-diagonal regions can be well-approximated by low-rank
hierarchical blocks. A counterexample is shown in Figure2.3. See Section2 for the precise
assumptions that we will impose on the hierarchical rank structure.

Let us now give a rough description of the expected rank upperbounds of the structure
blocks induced by this tiling procedure for a typical class of H- or H2-matrices. Consider
a matrixH ∈ Cn×n (n = 2α), which is partitioned into disjoint low-rank blocks of size
n/2k (k is the corresponding level,k = 1, . . . , α) as shown in Figure1.1(a). It is assumed
that all blocks are of the same rankr. For the matrixH in the case of theH-matrix, no
relation is defined between the hierarchical blocks, while in the case of theH2-matrices,
the hierarchical blocks are organized in shafts as in Figure1.1(b). The rank of the structure
blocks of each levelk will then beO(k2r) in case of theH-matrices andO(kr) in case of the
H2-matrices. This means that the rank of the structure blocks increases compared to the rank
of the hierarchical blocks by a factorlog2(n) (whenk becomesα = log(n)) for a typical
class ofH-matrices, and by a factorlog(n) in the case of theH2-matrices. We will work
with H2-matrices in the rest of this paper.

We illustrate how these rank bounds are obtained for anH2-matrix with r = 1 in Fig-
ure1.3. Figure1.3(a)shows a structure with rank-one hierarchical blocks (indicated by the
number ‘1’ in the middle of each block). It also shows an example of a structure block
(surrounded by the outermost bold box). The rank of this structure block is obtained by parti-
tioning it into a tiling of horizontal and vertical shafts ina minimal way; we find here a tiling
with four shafts, and hence the given structure block is of rank at most four. In Figure1.3(b),
the corresponding rank upper bounds ofall the different structure blocks are shown; e.g., the
structure block in Figure1.3(a)has the value ‘4’ at the position indicated by the arrow. The
other values should be interpreted in the same way.

Note that the rank structure in Figure1.3(b) includes a lot of ‘inner’ structure blocks,
where inner means that the structure block is fully contained in another structure block. For
practical reasons [5, 8], we focus only on theoutermoststructure blocks, i.e., the structure
blocks that are closest to the main diagonal. Note that the rank of these outermost structure
blocks is typically 4 (≈ log n) around the middle and< 4 close to the borders of the matrix.

1.4. Outline of the paper. The above observations show that the hierarchically rank
structured matrices of Section1.1often can be embedded in the larger class of rank structured
matrices described in Section1.2, with rank upper bounds that increase by a moderate factor
of aboutlog n. This opens the door for practical algorithms to achieve this embedding. In
this paper, we will present such an embedding algorithm. We will do this by transforming
the parameters of the hierarchically rank structured matrix representation (cf. Section2) into
those for aunitary-weight representation[5]. Figure1.2(b)shows an example of a unitary-
weight representation; the basic ideas of this representation are recalled in Section4.1. The
embedding algorithm requires aboutO(r3n log(n)) operations.

When the unitary-weight representation has been computed,one can then make use of a
variety of fast and stable routines for working with rank structured matrices, including meth-
ods for linear system solution [7] and the computation of all the eigenvalues of the given
hierarchically rank structured matrix [6]. The reduction to a unitary-weight representation
is not restrictive, since this representation can be easilytransformed [5] into other kinds of
representations for rank structured matrices, namely theblock quasiseparable(also calledse-
quentially semiseparable) representations introduced in [8] and subsequently used by several



ETNA
Kent State University 

http://etna.math.kent.edu

TRANSFORMING FROM HIERARCHICAL TO UNITARY-WEIGHT REPRESENTATION 167

1 1

1

1

1

1 1

1

1

1 1

1

1

11

1 1

1 1
1
1 1

1
1 1

1
1 1

1
1 1

1
1 1

1
1 1

1
1 1

1
1 1

1
1 1

1
1 1

1
1 1

1
1 1

1

1

1

1 1

1
1

1 1

1
1

1 1

1 1
1

1 1

1
1

1 1

1

Rk 1
Rk 1

Rk 1

Rk 1

Rk 4
(a)

1 1

1

1

1

4
4
4 4

4
4 4

4
4 4

4
4

4 4
4
4 4

4
4 4

4

1 1

1

1

1 1

1
1 2

2
2 3

3
3

11
2

22
3

33

2

2

2 3

3

3 3

3

3 3

3

3

2 2

2

3
33

3
3
3

2

2

2

4
4

2

2

3

3

Rk 4

(b)
FIGURE 1.3. (a) A H2 hierarchically rank structured matrix with rank-one hierarchical blocks. The the

indicated structure block can be realized as a tiling of 4 rank-one shafts (3 horizontal and 1 vertical) and hence it is
of rank at most 4. (b) For the matrix in Figure1.3(a), the figure shows the rank of each structure block, written at
the top right corner of the structure block. Note that typically the rank increases by a factor of about 4.

L

U

D

FIGURE 2.1.A partition of the matrixH in three parts: the block lower, block upper, and block diagonal part.
These three parts are denoted in the figure by L, U, and D, respectively.

authors in the literature. Thus, once the hierarchically rank structured matrix has been em-
bedded in the class of rank structured matrices, one can makeuse of virtually all the existing
routines to perform matrix operations with rank structuredmatrices in a fast and accurate way
[3, 9–11].

The remainder of this paper is structured as follows. Section 2 defines the hierarchical
structures that are considered in this paper. Section3 discusses existing algorithms for matrix-
vector multiplication and how they are adapted to our class of matrices. Section4 discusses
an algorithm for transforming the hierarchical representation into a unitary-weight represen-
tation. Section5 gives the numerical performance of the algorithm for certain H2-matrices.
Section6 states the conclusion.

2. Hierarchically rank structured matrices. In this section the class of matrices of
interest in this paper is defined. In what follows, the matrixH ∈ Cn×n is often partitioned
into three parts: its block lower (L), block upper (U) and block diagonal part (D). It is assumed
that the block lower triangular part ofH is a union of contiguous submatrices ofH that
contain the bottom left corner element ofH , and, similarly, that the block upper triangular
part of H is a union of contiguous submatrices ofH that contain the upper right corner
element ofH ; see Figure2.1.

The hierarchical structure is obtained by partitioning theblock lower and upper triangular



ETNA
Kent State University 

http://etna.math.kent.edu

168 S. DELVAUX, K. FREDERIX, AND M. VAN BAREL

parts ofH into small, disjoint blocks of low rank, as in Figure1.1(a). Additionally, we want
certain relations to hold between these blocks in order to guarantee the existence of huge
horizontal and vertical low-rank shafts, as in Figure1.1(b). This can be achieved with the
following definition.

DEFINITION 2.1 (Hierarchically rank structured matrix).Let H ∈ Cn×n, and let there
be given a partition ofH into its block lower, block upper and block diagonal part as de-
scribed above. Alower hierarchical structureon the matrixH involves:

(i) A partition of the block lower triangular part ofH into a set of disjoint blocks of
low rank. If thejth low-rank block (j = 1, . . . , J , whereJ is the total number of blocks) has
sizesj by tj and rank at mostrj , then we assume for this block a factorization of the form

UjBjVj , (2.1)

with Uj ∈ Csj×rj , Bj ∈ Crj×rj , andVj ∈ Crj×tj . HereUj is called therow shaft generator,
Vj thecolumn shaft generator, andBj the intermediate matrixof thejth low-rank block.

(ii) For all neighboring low-rank blocks which are distributed along the shape

i2

i1

ip

j ...

,
the row shaft generators in(2.1) satisfy the relation

Uj =











Ui1Ti1,j

Ui2Ti2,j

...
Uip

Tip,j











, (2.2)

for certainTi,j ∈ Cri×rj . The matricesTi,j are calledrow transition matrices.
(iii) For all neighboring low-rank blocks which are distributed along the shape

1k 2k qk

j

...

,
the column shaft generators in(2.1) satisfy the relation

Vj =
[

Sj,k1
Vk1

Sj,k2
Vk2

. . . Sj,kq
Vkq

]

, (2.3)

for certainSj,k ∈ C
rj×rk . The matricesSj,k are calledcolumn transition matrices.

(iv) Neighboring low-rank blocks that are not distributed alongthe shape of the two
previous items, are not allowed.

Finally, one can define anupperhierarchical structure in a similar way to how the lower
hierarchical structure is defined above. A matrixH is said to behierarchically rank structured
if it has hierarchical rank structure in both its lower and its upper triangular parts, possibly
combined with some unstructured matrix part around the maindiagonal of the matrix.

We note that Definition2.1 implies that the different low-rank blocks are compatible in
the sense that they form large horizontal and verticalshafts. This means that for each low-rank
block, the submatrix obtained by extending this low-rank block completely to the left-hand
side or the bottom of the matrix must have the same rank upper boundrj as the low-rank block
j itself, forming what we call a horizontal or vertical shaft,respectively. Figure2.2(a)shows
an example of a lower hierarchical structure underlying a typical class ofH2-matrices [16],
and Figure2.2(b)shows some horizontal shafts. The vertical shafts are analogous.



ETNA
Kent State University 

http://etna.math.kent.edu

TRANSFORMING FROM HIERARCHICAL TO UNITARY-WEIGHT REPRESENTATION 169

(a)

Rk r

Rk s

Rk t

(b)

FIGURE 2.2. (a) A typical example of a lower hierarchical rank structureof anH2-matrix. (b) Some examples
of horizontal shafts induced by this partitioning. In each case, the horizontal shaft is obtained by extending a low-
rank blockj completely to the left border of the matrix. By (2.2), the shaft has the same rank (Rk) upper boundrj

as its rightmost blockj; compare with Figure1.1.

FIGURE 2.3.ExampleH2-matrix structure which is not in the class defined in Definition 2.1

Notice that not allH2-matrices belong to class defined in Definition2.1. There areH2-
matrices for which the elements in the left bottom and the right upper corner of the matrix are
difficult to approximate with low-rank blocks. Such an example is shown in Figure2.3.

The main feature that distinguishes Definition2.1from the hierarchically rank structured
matrices in the literature is the decoupling between the block lower and upper triangular parts
of the matrix; compare Figure1.1with Figure2.2. The reason why this decoupling has been
done is because we believe that Definition2.1yields the natural class of matrices for which
the algorithm of Section4 works.

In the next paragraphs, some auxiliary attributes are defined.
DEFINITION 2.2 (2D graph, row and column tree).For any hierarchically rank struc-

tured matrix as in Definition2.1, there is a naturally associated planar graph whose nodes
correspond to the low-rank blocksj into which the matrix is partitioned,j = 1, . . . , J . This
graph is referred to as thetwo-dimensional graph, or the2D graphfor short. Its nodes are
connected in two ways: by means of therow andcolumn tree(sometimes referred to as the
2D row and 2D column tree). These trees are a model for the horizontal and the vertical
connections between neighboring low-rank blocks, respectively.



ETNA
Kent State University 

http://etna.math.kent.edu

170 S. DELVAUX, K. FREDERIX, AND M. VAN BAREL

Root

(a)

Root

(b)

FIGURE 2.4. H2-matrix hierarchical structure: (a) underlying 2D row tree, (b) underlying 2D column tree.
Note that to each block of the matrix there corresponds a nodein the tree, and in addition there are some virtual
nodes near the roots of the trees.

Let us provide some examples. First, for the example of the lower hierarchical rank
structure in Figure2.2, the underlying 2D row and column tree are shown in Figure2.4. Note
that in addition to the ‘real’ nodes these trees also have some ‘virtual’ nodes, at the left-hand
side in the 2D row tree and at the bottom in the 2D column tree.Virtual nodesare nodes
to which no physical block of the matrix corresponds. These virtual nodes are used only for
organizational purposes (and most of them could, in fact, beremoved if desired); they serve
to remind us how the hierarchical structure is obtained by recursively subdividing a given
matrix until all of its blocks are of sufficiently low rank [13–16].

Another example of a hierarchical rank structure is the class of HSS matrices introduced
in [2, 4]. The underlying 2D row and column trees are shown in Figure2.5. Note that these
trees also have virtual nodes, not only near the root, but also throughout the rest of the tree;
there are even virtualleaves! Once again these virtual nodes could, in fact, be removed; but
note that the resulting tree would then not be binary anymore. Moreover, the (virtual) root and
the virtual leaves play a special role in our algorithm, and hence cannot simply be removed.

Yet another example of a hierarchical rank structure is the class of lower block quasisep-
arable (also called sequentially semiseparable) representations [8]. In this case the underlying
row tree specializes to sequential shape; we omit the details.

In addition to the 2D row and column trees, we can also define the following one-
dimensional versions.

DEFINITION 2.3 (1D row and column tree).Any hierarchically rank structured matrix
as in Definition2.1 has an associatedone-dimensional row tree, or 1D row treefor short.
The nodes of this tree are defined as the subsets of{1, . . . , n} that occur as the row index
set of one of the low-rank blocks, and the edges are defined by the natural inclusion relations
between these subsets. Definition2.1 guarantees that this graph is indeed a tree. The1D
column treeis defined in an analogous way.

The 1D row and column tree are often closely related to the process that produces the
hierarchically rank structured matrix [14, 16]. They are usually uniform binary trees, corre-
sponding to an intervalI ⊆ R on which a certain integral equation is defined. This interval
is gradually cut into finer and finer pieces, leading to the nodes of the 1D row tree. Blocks
of the matrix that can be well-approximated by a low rank matrix are kept fixed, while the



ETNA
Kent State University 

http://etna.math.kent.edu

TRANSFORMING FROM HIERARCHICAL TO UNITARY-WEIGHT REPRESENTATION 171

Root

(a)

Root
(b)

FIGURE 2.5. Hierarchically semiseparable (HSS) structure: (a) underlying 2D row tree, (b) underlying 2D
column tree.

other blocks are again recursively subdivided, and so on. The virtual nodes in the 2D row tree
that we discussed above could then be interpreted as ‘placeholders’ for those levels of the 1D
row tree to which no physical low-rank block of the matrix corresponds. In fact, to each node
of the 1D row tree there can correspond zero, one, or more thanone nodes of the 2D graph.
Some examples where multiple nodes of the 2D graph lie on the same 1D row level can be
found in Figure2.4(a). Examples of virtual nodes can be found in Figures2.4(a)and2.5(a).

3. Matrix-vector multiplication. In this section, the multiplicationy = Hx between
a hierarchically rank structured matrixH ∈ Cn×n and a vectorx ∈ Cn×1 is discussed. The
algorithm allows a description in terms of the 2D graph, and thus in terms of the 2D row
and column trees. It is reminiscent of the matrix-vector multiplication algorithm for theFast
Multipole Methodin the literature [1, 12], although the class of matrices for which it applies
is slightly different, since we allow the structure in the block lower and upper triangular parts
of our matrices to be decoupled. The description of the algorithm is included here only for
completeness of the paper.

By the additivity of the matrix-vector multiplication, it clearly suffices to describe the
matrix-vector multiplication with the block lower triangular part of the hierarchically rank
structured matrixH . Indeed, the matrix-vector multiplication with the block upper triangular
part then can be treated similarly, while the matrix-vectormultiplication with the unstructured
part of the matrix around the diagonal can be performed usingstandard matrix techniques.

It will be convenient to denote byxk the part of the given vectorx that corresponds to
the indices of thevertical shaft induced by nodek. Similarly, we denote byyk the part of
the matrix-vector producty that corresponds to the indices of thehorizontalshaft induced by
nodek.

In the first phase of the computation, we want to compute for each nodek the matrix-
vector productwk := BkVkxk. (Recall the notations of Definition2.1). To do this in an
efficient way, the column vectorwk ∈ C

rk will be initialized for eachk to be zero. The
recursive relation (2.3) suggests that we can run through the 2Dcolumntree (e.g., in depth-
first order). The root of the column tree is used as starting node and the column children of
each node are recursively considered. Each edge of the column tree is visited twice, once in
the parent-child and once in the child-parent direction. The algorithm is as follows:

• When arriving at a leaf: updatewleaf = Vleafxleaf .



ETNA
Kent State University 

http://etna.math.kent.edu

172 S. DELVAUX, K. FREDERIX, AND M. VAN BAREL

• For each transition child→ parent:
updatewparent = wparent + Sparent,childwchild, and
updatewchild = Bchildwchild.

If the root is a real node (not virtual), updatewroot = Brootwroot. At the end of this phase,
the auxiliary vectorwk := BkVkxk for each nodek will have been computed.

In the second phase of the algorithm, we want to compute the different piecesyleaf of the
required matrix-vector producty = Hx. To do this in an efficient way, an auxiliary column
vectorzk ∈ Crk , initialized to bewk, is defined for each nodek. The recursive relation (2.2)
suggests then that we can run through the 2Drow tree (e.g., in depth-first order) and

• For each transition parent→ child:
updatezchild = zchild + Tchild,parentzparent.

• When arriving at a leaf: updateyleaf = Uleafzleaf .

At the end of this phase, we will have computed the different piecesyleaf of the required
matrix-vector producty = Hx.

4. Transition to a unitary-weight representation. In this section, we discuss how one
can compute a unitary-weight representation as defined in [5] for the hierarchically rank struc-
tured matrices of Section2. As we explained in Section1.3, this can be considered asem-
beddingthe hierarchically rank structured matrices into the larger class of rank structured
matrices.

REMARK 4.1. It is possible to devise asequentialmethod for computing the unitary-
weight representation. Such a method was implemented for the rank-one case and presented
by the authors at the International Conference on Matrix Methods and Operator Equations,
Moscow, Russia, June 2005. The algorithm was also reported in the master thesis of Yvette
Vanberghen, Faculty of Science and Applied Science, K. U. Leuven, Leuven, Belgium (writ-
ten in the Dutch language). However, this method involves taking certain Schur complements
of the data, and we found that it unfortunately becomes numerically unstable for the higher
rank case. For this reason, in the present section, we describe an alternative,hierarchical
method for achieving this goal. This method does not always lead to the technically correct
ranks of the structure blocks, but this is compensated by a better efficiency and numerical
stability.

In what follows we will describe a hierarchical method for computing the unitary-weight
representation. We start with some preliminaries.

4.1. Basics of the unitary-weight representation.A unitary-weight representation is a
compact representation of a rank structured matrix [5]. It consists of only a small number of
parameters written as a pair({Ql}

L
l=1, W ), whereQl areelementary unitary operationsand

W is theweight matrix; L is the total number of structure blocks. An example is shown in
Figure1.2(b); the upward pointing arrows on the left-hand side denote theunitary operations,
and the elements in the grey area denote the weight matrix.

The basic idea behind the unitary-weight representation isto ‘compress’ a given rank
structure by means of elementary row operations, proceeding from the bottom to the top of
the matrix and storing in each step the non-zero elements just before they reach the top border
of the rank structure. In other words, we want to create as many zeros as possible in the rank
structure and thereby bring some ‘condensed’ information (‘weights’) to the top of the rank
structure.

An elementary row operation is a unitary operationQ = I ⊕ Q̃ ⊕ I, where theI denote
identity matrices of appropriate sizes andQ̃ is a unitary operation. IfQ is applied to a matrix



ETNA
Kent State University 

http://etna.math.kent.edu

TRANSFORMING FROM HIERARCHICAL TO UNITARY-WEIGHT REPRESENTATION 173

H ∈ Cn×n, then only the rows that correspond tõQ are changed:

QH =





I 0 0

0 Q̃ 0

0 0 I









H1

H2

H3



 =





H1

H̃2

H3



 .

The following technique is used in the construction of the unitary-weight representation
in order to create zeros in all but the top rows. Consider a matrix M ∈ Cm̃×ñ of low rankr.
This matrix can be factored asM = QR, whereQ ∈ Cm̃×m̃ is unitary andR ∈ Cm̃×ñ is
upper triangular. BecauseM is of low rank,R has the form

QHM = R =

[

M̃
0

]

,

whereM̃ ∈ Cr×ñ. This means that if the conjugate transpose of the unitary operationQ is
applied toM , all but the topr rows are converted to zeros.

The construction of the unitary-weight representation always starts at the bottom of the
rank structure, so the aforementioned technique is appliedto the bottommost structure block
of the rank structure, for instance block5 in Figure1.2(a). This results in zeros except in the
top rows (these non-zero elements are called weights). The weights that do not lie in the next
structure block (block4 in Figure1.2(a)) are saved in the weight matrix. (In Figure1.2, these
are the elements in the structure block5 with column index fromj4 + 1, . . . , j5.) The other
weights are combined with the original elements of the next structure block (In Figure1.2,
elements of structure block4 with row indicesi4, . . . , i5 − 1). On this combined matrix, the
technique is applied again. Then the same procedure of saving the weights outside the next
structure block and combining the weights with the originalelements of the next structure
block is followed until the top of the rank structure is reached. At the end, one obtains a
weight matrix and a set of unitary operations, one for each structure block. In Figure1.2(b),
the unitary weight-representation of Figure1.2(a)is shown (withr5 = r4 = 2, r3 = r2 =
r1 = 1).

The previous paragraphs gave a short introduction to the concept of unitary-weight rep-
resentation; for more information, the reader is referred to [5].

4.2. Basic idea of the embedding algorithm.In this subsection, we discuss the basic
idea of the algorithm to embed the hierarchically rank structured matrix into the class of rank
structured matrices. The idea of the algorithm is to compress the given matrixH by means of
elementary unitary row operations. Because we start from a structure according to Definition
2.1, this is done for the subsequent levels of the 2D row tree, going from finer to coarser levels
and from the bottom to the top of the structure, and in betweentransmitting information from
a child to its parent. Since this process can be considered ascomputing the first part of a
QR factorization ofH , we should then also store the resulting ‘weights’ at the topborder
of the structured lower triangular part during this process. This storage is performed at the
nodes of the 2D graph. The final weights at the end of the algorithm arrive in theleaves of the
column tree(the reader should try to see this!). At the end of the algorithm, we also obtain the
elementary unitary operations{Ql}

L
l=1 of the unitary-weight representation. These are stored

in the leaves of the row tree. This is shown in Figure4.1: Figure4.1(a)shows the schematic
begin configuration of the algorithm (in fact, the algorithmstarts with the hierarchically rank
structured formulation as defined in Definition2.1); and Figure4.1(b)shows the final result
of the algorithm, with the elementary unitary operations indicated at the left and with weight
blocks (depicted on a grey background) indicated at each column leaf.

Notice the difference between Figure1.2(b)and Figure4.1(b). In Figure1.2(b), each
structure block has a weight in which the number of nonzero rows remains the same. In



ETNA
Kent State University 

http://etna.math.kent.edu

174 S. DELVAUX, K. FREDERIX, AND M. VAN BAREL

(a)

(b)

FIGURE 4.1. (a) Starting situation for the algorithm. (b) Final situation for the algorithm. Here all the
hierarchical blocks are assumed to be of rank 1. Note that theranks of the induced structure blocks are all 1, 2 or 3.

Figure4.1(b), this is not the case; in the top structure block, there is a weight consisting of a
part with one row and another with two rows. This difference is because in the second case
the rank structure is generated from hierarchical blocks according to Definition2.1.

4.3. Organization of the algorithm. In this subsection, an overall description of the
organization of the embedding algorithm is given. We discuss the variables that are used
during the algorithm and give pseudocode for the two most important components of the
algorithm. The detailed explanation of these algorithms and their subroutines is given in
Section4.4. An illustration with a worked-out example is given in Section4.6.

We start by listing the variables that are used by the algorithm. The input of the algorithm
is the 2D graph of the given hierarchically rank structured matrix. According to Definitions
2.1and2.2, this is practically organized as follows:

• Each nodei of the 2D graph has references to its parent and children in the (2D)
column and row tree.

• Each nodei of the 2D graph that corresponds to a real block in the matrix (real node)
contains its intermediate matrixBi. Nodes that do not correspond to a real block in
the matrix, are called virtual nodes. For instance, nodes 1,2, 3, 5, 6, and 9, are
virtual in Figure4.4.

• Each nodei of the 2D graph contains the row transition matrixTi,j to its row parent
(nodej) and the column transition matrixSk,i to its column parent (nodek).

• The row and column shaft generatorsU andV are defined in the row and column
leaves, respectively.

The following data is also used during the algorithm:
• For each nodei of the 2D graph, a memory element containing a ‘weight’Wi and a

‘temporary weight ’W tempi is created.
• For the row leaves a memory elementQleaf is created which contains at the end of

the algorithm the product of the applied unitary compression operations.
Note that the above variables are expressed only in terms of the 2D graph and the cor-



ETNA
Kent State University 

http://etna.math.kent.edu

TRANSFORMING FROM HIERARCHICAL TO UNITARY-WEIGHT REPRESENTATION 175

responding (2D) row and column trees as in Definition2.2. Indeed, the corresponding one-
dimensional (1D) row and column trees arenot used in our implementation, although they
are implicitly considered by the use of virtual nodes in the 2D graph. We stress that this is a
purely organizational point, and is by no means essential.

During the first part of the algorithm, only the row shaft generatorsU , the intermediate
matricesB, and the transition matricesT andS are considered. The column shaft generators
V are used only at the very end of the algorithm. In fact, the main purpose of the algorithm
is to create zero weight matrices in the nodes which are not column leaves by applying el-
ementary unitary row operations. At the end of the algorithm, each column leaf contains a
non-zero weight matrix and each row leaf contains a unitary operation; these are the main
components for a unitary-weight representation.

In the remainder of this subsection, pseudocode for the two main programs of the al-
gorithm is given. The pseudocode may be difficult to follow now, but it will be gradually
explained in the following subsections. At the beginning ofthe algorithm, the root of the row
tree is used as starting node. For the example in Figure2.4(a), this is the virtual node labelled
‘Root ’on the left-hand side of the figure. The first program isthe main program, which recur-
sively calls itself for each of the row children of the input nodenode in order from the bottom
child to the top child. The second program, which is called bythe first program, executes the
most important transition operations of the algorithm.

Programtransform to unitary weight representation(node):

1. FOR i = p (number of row children ofnode) down to1
transform to unitary weight representation(node.rowchild(i))

END FOR

2. IF the number of row children is zero (node is a row leaf)
Apply QR factorization on row shaft generatorU of node.

END IF

3. IF the number of row children is greater than zero (node is not a row leaf)
Expand information from bottommost row child to parent (node).
Update the weight of bottommost row child.

END IF

4. Transmit information upwards:
FOR i = p (number of row children) down to2 (node has more than one row child)

• Define
child := node.rowchild(i),
toplevel := topdescendant(nextchild),
nextchild := node.rowchild(i-1),
currentlevel := topdescendant(child),

The functiontopdescendant is returns the topmost row descendant of a given
2D node, which is always a row leaf.

• Setauxnode := currentlevel.
• WHILE auxnode 6= node

– IF auxnode is non-virtual
(currentlevel)= transmit upwards(auxnode,currentlevel,toplevel)

END IF

– Setauxnode := row parent ofauxnode.
END WHILE

• Expand information ofnextchild to node.
• compress(node,toplevel)

END FOR



ETNA
Kent State University 

http://etna.math.kent.edu

176 S. DELVAUX, K. FREDERIX, AND M. VAN BAREL

5. IF node = row root and non-virtual
Update the weight ofnode.

END IF

End programtransform to unitary weight representation.

Program(currentlevel)=transmit upwards(auxnode, currentlevel, toplevel)
1. Compress:

IF auxnode has its topmost row index less than or equal to the one ofcurrentlevel,
and if currentlevel is different fromtoplevel, and if auxnode has non-virtual col-
umn children, then

• compress(auxnode,currentlevel). This compression is redundant when it is
invoked for the first time, i.e., whencurrentlevel still equals the value to which
it was initialized in the main program, since then a compression has been done
already there.

• Updatecurrentlevel := currentlevel.nextleaf. Here,nextleaf is a function
that returns the next leaf in the 2D row tree, i.e., the row leaf whose bottommost
row index is adjacent to the topmost row index ofcurrentlevel. Note that this
leaf could be virtual.

END IF

2. Recursively transmit information upwards:
IF auxnode is not attoplevel and there is a non-virtual column descendant
FOR i = q (number of column children) down to1

• Setcolumnchild := auxnode.columnchildren(i).
• IF columnchild is non-virtual

– Bring weight ofauxnode upwards by postmultiplying the weight with
the transition matrixSauxnode,columnchild to obtain a new weight.

– IF weight ofcolumnchild is empty
Save the new weight in the variableWcolumnchild

ELSE

Save the new weight in the variableW tempcolumnchild

END IF

– (currentlevel)=transmit upwards(columnchild,currentlevel,toplevel)
END IF

END FOR

Set weight ofauxnode to empty
END IF

End programtransmit upwards.

4.4. Detailed description of the algorithm. In this section, we give a detailed descrip-
tion of the programs mentioned in the previous section.

4.4.1. Main program. As described in the previous section, the main programtrans-
form to unitary weight representation recursively visits the nodes in the row tree in depth-
first order, always processing the bottom children first. Nodes are processed in different ways
depending on how many row children they have. We explain below the different actions that
can occur when processing nodej (we use the same labeling scheme that we used in the
pseudocode of Section4.3).

1. The program first recursively processes the row children of nodej.
2. If nodej is a row leaf, the row shaft generatorUj ∈ Rsj×rj is decomposed as

Uj = ZjRj , whereZj ∈ Rsj×sj is unitary andRj ∈ Rsj×rj is upper triangular.



ETNA
Kent State University 

http://etna.math.kent.edu

TRANSFORMING FROM HIERARCHICAL TO UNITARY-WEIGHT REPRESENTATION 177

The unitary operationQleaf = ZH
j and the weightWj = Rj(1 : min(sj , rj), 1 : rj)

are stored.
3. If nodej is not a row leaf, then we will denote byp the number of row children

of nodej; the bottom-most row child of nodej is ip. Information about nodeip is
brought to nodej by using the transtion matrixTip,j . That is, the weight of nodej is
set toWj := Wip

Tip,j ; and the weight of the childip is updated byWip
:= Wip

Bip
,

because all information has now been transmitted to the left. Because every node
has a different intermediate matrixB, it is not possible to do the update earlier.

4. When nodej has more than one row child, information has to be transmitted up-
wards, and at the end a compression has to take place.

FOR i = p (number of row children) down to2:
• We define several variables that indicate which nodes transit information up-

wards and how far the information from those nodes is transmitted:
child := node.rowchild(i),
toplevel := topdescendant(nextchild),
nextchild := node.rowchild(i-1),
currentlevel := topdescendant(child),

The functiontopdescendant returns the topmost row descendant of a given
2D node, which is always a row leaf. The variablecurrentlevel denotes the
highest row level that has already been accessed, and the variable toplevel is
the ‘ceiling’ through which information cannot pass.
To derive the nodes which have to transmit information upwards, the horizontal
line betweenchild andnextchild has to be followed to the right until the end of
the rank structure. This line is called thelevel line. The line above the topmost
column child is called thetop line. See Figure4.5(e)for an illustration. All the
nodes that are to the level line from below are considered sequentially (from
the finest to the coarsest node) in thetransmit upwards phase. Information
from these nodes is recursively transmitted upward to any column descendants
until toplevel is reached.

• The following loop now is executed whileauxnode 6= node.
– The transmit upwards phase consists of two parts. In the first part, an

extra compression is applied (if necessary); and in the second part, the
information is transmitted upwards until thetoplevel is reached. This is
explained in detail in Section4.4.2.

– Next, auxnode becomes the row parent of the previousauxnode. If
auxnode 6= node, transmit upwards is called on the newauxnode.

• Whenauxnode is node, all information has been brought upwards from all
the nodes below the level line. Nownextchild has to be expanded tonode, its
row parent. This means that

– The weight is stored in a temporary weight:

W tempnode = Wnode.

– The new weight is computed as follows:

Wnode = WnextchildTnextchild,node.

– The weight ofnextchild is updated,

Wnextchild = WnextchildBnextchild.



ETNA
Kent State University 

http://etna.math.kent.edu

178 S. DELVAUX, K. FREDERIX, AND M. VAN BAREL

• When all the information has been transmitted upwards, compression can take
place for nodej and the nodes that are attached to the top line from below. All
these nodes have two weights, a weightW and a temporary weightW temp.
The information in the two weights has to be merged into a single, hopefully
smaller weight by applying a unitary row operation. The compression phase is
explained in detail in Section4.4.3.

END FOR

5. At the very end of the algorithm, in case when the row root isnon-virtual, the weight
of the row root has to be updated with its intermediate matrixB.

Then, from the information stored in the weightW and the column shaft generatorV in the
column leaves, the weight matrix of the unitary-weight representation is extracted. Together
with the unitary operations in the row leaves, the unitary-weight representation is obtained.

4.4.2. Transmit upwards phase.The transmit upwards phase is called with three ar-
guments:auxnode, currentlevel, andtoplevel. The variableauxnode is the node which is
going to transmit information upwards to its column children and descendants. The variable
currentlevel is the highest level already accessed and the variabletoplevel is the ‘ceiling’
above which information may not pass. This means thatauxnode is going to transmit infor-
mation upwards to its column children and further descendants, until thetoplevel is reached.

The transmit upwards phase consists of two parts. In the firstpart, an extra compression
is applied (if necessary); and in the second part, the information is transmitted upwards. The
description is as follows (we use the same labelling as in thepseudo-code in Section4.3).

1. In the first part, a compression occurs (if not the first time) when the level ofauxn-
ode is at least as high as that ofcurrentlevel, currentlevel is different fromtoplevel,
andauxnode has non-virtual column children. After this the variablecurrentlevel
becomes the next row leaf encountered in the direction of thetop of the row tree.

2. In the second part, information is transmitted upwards when auxnode has non-
virtual column children andauxnode does not lie on the same level as thetoplevel
(transition parent→ column children):
FOR i = q (number of column children) down to2:

Setcolumnchild = auxnode.columnchild(i).
IF columnchild is non-virtual.
• The information which has to be transmitted upwards is constructed using the

column transition matrixS between these nodes to obtain the new weight

WauxnodeSauxnode,columnchild.

• If the weight of thecolumnchild is not empty, store the new weight as the tem-
porary weightW tempcolumnchild; otherwise, store it as the weightWcolumnchild.

• Now the transmit upwards program is called again, but withcolumnchild as
its first argument.

END IF

END FOR

When all column children ofauxnode have been considered, all information has
been transmitted upwards. This means that the weight ofauxnode is of no further
use, therefore it is set empty.

4.4.3. Compression phase.Finally, we can now describe the actual compression rou-
tinecompress. This routine is invoked at two different places in the algorithm: (i) in the main
program when all the information has been transmitted upwards and (ii) during the transmit
upwards phase itself. The compression will take place on a horizontal chain of nodes lying



ETNA
Kent State University 

http://etna.math.kent.edu

TRANSFORMING FROM HIERARCHICAL TO UNITARY-WEIGHT REPRESENTATION 179

i 0
i 1 a

2
1

a

5
a

+b15
a

5
a +b2

5
a 5+b

0
0

0
0
0

0
0
0
0

0
0
0
0

0
0

0
0
0

Weight W

Temporary weight Wtemp

31 2 4 5

i 2

0
0

0

FIGURE 4.2.Matrix A which contains the weightsW and temporary weightsW temp.

between a starting nodej and a row leafleaf. All the nodes in the chain have two weights,
a weightW and a temporary weightW temp. The information of the two weights has to be
merged into a single, hopefully smaller weight by applying aunitary row operation. Before
the actual compression can take place some parameters have to be introduced:

• Number the nodes that have to be compressed ask = 1, . . . , K and store the original
node numbers in a vector:s = [j, . . . , leaf] (the last node is always a row leaf).

• Define two vectorsa andb of lengthK that contain the number of rows of the
weightsW and temporary weightsW temp, i.e.,ak andbk are the number of rows of
the weightWsk

and the temporary weightW tempsk
, respectively, fork = 1, . . . , K.

• Define a vectorc of lengthK that contains the number of columns of the weights
W , or, what is the same, the number of columns of the temporary weightsW temp.

• The different weightsW andW temp of all the nodes have to be placed in one matrix
A. The number of rows of the matrixA is the sum:aK + bK because these values
are the highest possible number of rows of the weights (the highest rank is obtained
at the leaves). The number of columns of the matrixA is the sum:

∑K

k=1 ck.
• Place the weights in the matrixA. The values in the vectorsa andb are (mostly) not

the same. The weightWsk
starts from the first row of the matrixA to rowak (with

k = 1, . . . , K). If ak < aK , then zeros are added to fill the matrix. The temporary
weight starts from rowaK + 1 to row aK + bk (with k = 1, . . . , K). If bk < bK ,
then zeros are added to fill the matrix. Figure4.2 shows matrixA when five nodes
are involved (K = 5).

• To make matrixA correspond to the actual matrix, the unitary operation correspond-
ing to the leaf,Qleaf , is extended with an identity matrix of the sizebK and on this
matrix a preliminary permutationP is applied such thatQleaf becomes (sq is the
size of the old matrixQleaf ):

Qleaf =





IaK
0 0

0 0 IbK

0 Isq−aK
0





[

Qleaf 0

0 IbK

]

.

• Define three row indicesi0, i1 andi2. Indexi0−1 denotes the number of fixed rows
that cannot be touched because they were already consideredin a previous step. This
can be seen in Figure4.5(f), where the weights of node12 and17 cannot be touched



ETNA
Kent State University 

http://etna.math.kent.edu

180 S. DELVAUX, K. FREDERIX, AND M. VAN BAREL

because they are a result of a compression in a previous phaseof the algorithm.
Indexi1 denotes the first zero row in the top part of the matrixA, indexi2 denotes
the first non-zero row in the bottom part of the matrixA. These indices are shown
in Figure4.2.

The intention of the compression is to make the matrixA as sparse as possible by running
through the nodes fork = 1, . . . , K and applying in each step a permutationPk and a com-
pressionCk. At the end, the unitary operationQleaf is decomposed as follows:

Qleaf = CKPK . . . C2P2C1P1Qleaf .

Now run through the nodesk = 1, . . . , K. Consider the columns of matrixA which corre-
spond tok.

• A permutation is applied toA to bring the weight of the bottom part to the top part
of blockk, such that all the zeros, which are in between the two weights, appear in
the bottom rows of the blockk. The permutation is as follows (setb0 = 0, c0 = 1):

P̄k =









Ii1−1 0 0 0

0 0 Ibk−bk−1
0

0 Ii2−i1 0 0

0 0 0 IaK+bK−(i2+bk−bk−1−1)









.

The result of applyinḡPk to A is shown fork = 1 in Figure4.3(a). The permutation
has to be applied to the same rows of the unitary operationQleaf ; thereforeP̄k has
to be extended (becauseA andQleaf are of different size) to

Pk =

[

P̄k 0

0 Isq−aK

]

.

SetQleaf = PkQleaf .
• When the permutation has been applied to both matrices, the actual compression can

take place. If the number of non-zero rows starting at row index i0 is greater than
the number of columnsck of the corresponding blockk (i1 + bk − bk−1 − i0 > ck),
a QR factorization of that part of the matrixA is computed:QAR = A(i0 : i1 +

bk − bk−1 − 1, 1 +
∑k−1

K=1 ck :
∑k

K=1 ck). Figure4.3(a) shows the part ofA which
is compressed fork = 1 in a bold box. The unitary operation to be applied to matrix
A is as follows (A = C̄kA):

C̄k =





Ii0−1 0 0

0 QH
A 0

0 0 IaK+bK−(i1+bk−bk−1−1)



 .

In the other case, if there are more columns than non-zero rows, it is disadvantageous
to compute aQR factorization because no zero rows will be created. ThenC̄k is the
identity matrix of sizeaK + bK . The compression̄Ck has to be applied to the same
rows of the unitary operationQleaf , thereforeC̄k has to be extended for the same
reason as before:

Ck =

[

C̄k 0

0 Isq−aK

]

.

SetQleaf = CkQleaf .



ETNA
Kent State University 

http://etna.math.kent.edu

TRANSFORMING FROM HIERARCHICAL TO UNITARY-WEIGHT REPRESENTATION 181

i 0
i 1

0
0
0

0
0
0
0

0

0
0
0

0
0

0

0
0

0
0

31 2 4 5

i 2 0

0

(a)

i 1

2
i

i 0

0

0
0

0
0

0

0
0

0
0

0
0
0

0
0
0
0

0

31 2 4 5

0

0

(b)

FIGURE 4.3. (a) Matrix A after permutationP̄1. (b) Matrix A after compression̄C1.

10

15

11 12 17

16

7 8

4

13 14

1

2

3

5
6

9

FIGURE 4.4.2D graph.

• The weightWsk
of the nodesk is now updated using all the non-zero rows of the

matrixA in blockk, and the temporary weightW tempsk
is emptied. Also the three

row indices are updated (see Figure4.3(b)):

i0 = i0 + min(ck, i1 + bk − bk−1 − i0),

i1 = ak+1 + bk + 1,

i2 = i2 + bk − bk−1.

At the end, every node contains a compressed weightWsK
, an empty temporary weight

W tempsK
= 0 and the memory element of the leaf contains an adjusted unitary operation

Qleaf .

4.5. Computational complexity. The main computational cost of the algorithm is dur-
ing the transmit upwards phase. Information has to be transmitted upwardsO(n log(n))
times, and each transmission involves a matrix multiplication between two matrices of size
r × r, which costsO(r3) operations. Thus, the total cost of this phase givesO(r3n log(n)),
which is the computational complexity of the algorithm.

4.6. Example. To give a better idea of the algorithm, an example with 17 nodes is
elaborated. The corresponding 2D graph is shown in Figure4.4. First the notation used in



ETNA
Kent State University 

http://etna.math.kent.edu

182 S. DELVAUX, K. FREDERIX, AND M. VAN BAREL

Figure4.5 is explained. The lines at the top of a node denote the weightsW . The lines
in the middle or at the bottom of a node denote the temporary weightsW temp coming from
information of the bottom row child or the column parent, respectively. The horizontal lengths
of the weights are not correctly represented because the weights are small blocks (recall that
the column space generatorsV are only considered at the very end of the algorithm). Grey
areas in a node denote that the weight of this node is set to zero. The unitary operations are
denoted by upward pointing arrows at the left of the structure.

The software of this example is available from the authors onrequest. The algorithms
were implemented in MATLAB 2.

The algorithm starts at the row root, node 4. Then the row children are recursively
considered (bottom first). Thus, node 14 is the first node where a computation will be done.
This is a row leaf; therefore, the computations for a row leafhave been executed. Then
the nodes 13, 16, and 8 are considered, in this order, and the corresponding computations
of the algorithm is executed. Because node 8 has two row children, information has to be
transmitted upwards from node 13 to 16 with transition matrix S13,16. This phase of the
algorithm is shown in Figure4.5(a). At the left, the two unitary operations computed in node
14 and 16 are shown by means of the small arrows.

Figure4.5(b)shows the algorithm when the information has been transmitted upwards
and node 16 has been expanded to node 8. When this is done, node8 and 16 have to be
compressed. This results in a bigger weight for node 16, a combined weight for node 8, and
an updated unitary operation. This is shown in Figure4.5(c).

After the compression, we continue to run through the row tree. The nodes 7, 17, 12,
11, 15, and 10 are considered, in this order, and the corresponding computations are exe-
cuted. Node 10 has more than one row child, so information hasto be transmitted upwards
between its row children (see Figure4.5(c)); and node 15 has to be expanded to node 10 (see
Figure4.5(d)). After this, a compression has to be applied to node 10 and 15. The result is
shown in Figure4.5(e). Note that, again, the weight matrices of nodes 10 and 15 havebeen
updated by the compression.

As we continue to run through the row tree, the only node whichhas not been considered
yet is node 4. It gets a temporary weight from node 7. Node 4 hasmore than one row child.
Therefore information has to be transmitted upwards. The nodes which have to transmit in-
formation upwards are the nodes that are attached to the level line from below; these are nodes
16, 8, and 7, shown in Figure4.5(e). These nodes have to transmit the information upwards
until the top line is reached. The following variables are set, child := node 7,nextchild :=
node 10,currentlevel := node 16,toplevel := node 15, andauxnode := node 16.

The transmit upwards phase starts atauxnode = node 16. This node lies on the same
level as thecurrentlevel but not ontoplevel and it has column children. Therefore, part 1
of the transmit upwards phase occurs; but this is the first time, so there is no compression.
Only currentlevel has to become the next leaf in the row going to the top. This means that
currentlevel becomes node 17. Now part 2 of the transmit upwards phase has to be executed,
node 16 has column children so information has to be transmitted upwards to node 17. When
this has been done, the transmit upwards routine is called with node 17 in its first argument.
Node 17 does not fulfill the conditions for part 1 and 2 (it has no column children), so nothing
happens.

Now the row parent of node 16 is considered,auxnode = node 8. This node does not
fulfill the condition for part 1 (it does not lie on the same level ascurrentlevel), but part 2
will be executed. Hence, information has to be transmitted upwards to node 12, and when this
has been done the transmit upwards routine will be called with node 12 as the first argument.

2MATLAB is a registered framework of The MathWorks, Inc.



ETNA
Kent State University 

http://etna.math.kent.edu

TRANSFORMING FROM HIERARCHICAL TO UNITARY-WEIGHT REPRESENTATION 183

7

10

15

12 17

16

14

11

8

13

4

(a) Node 14, 13, 16 and 8 are compressed. Transmit information upwards
from node 13 to node 16.

7

10

15

12 17

16

14

11

8

4

(b) Weight matrix of node 13 is set to zero and a compression isapplied on
node 8 and 16.

7

15

12 17

16

14

11

10

8

4

(c) Nodes 7, 17, 12, 11, 15, and 10 are compressed. Transmit information
upwards from node 11 to node 15.

FIGURE 4.5.Constructing unitary-weight representation.

For node 12, the same happens as in node 17: the conditions forpart 1 and 2 are not fulfilled.
So, the next column child (node 11) of node 8 considered is considered next.

Information has to be transmitted upwards to node 11; and because node 11 has no
weight, this information is stored as the weight and not in the temporary weight. The top
rows of node 11 are already compressed; therefore these rowswill not be touched. The
weight will be placed below these rows, as shown in Figure4.5(f). Now the transmit upwards
routine will be called with node 11 as its first argument.

For node 11, the conditions of part 1 are now fulfilled. This means that there has to be
a compression from node 11 to node 17; see Figure4.5(f). In fact, node 11 has already been
compressed in a previous phase, so only node 12 and 17 have to be compressed; see Fig-
ure4.5(g). After the compression, the variablecurrentlevel is set to node 15 and information
from node 11 is transferred upwards to node 15. Then node 15 isconsidered; but this node
lies just below the top line, so nothing happens.

Node 8 has transmitted all its information upwards to its column descendants. Now
we can go to the row parent of node 8 (auxnode becomes node 7), so that this node can
transmit its information upwards to its column children; see Figure4.5(h). When this has



ETNA
Kent State University 

http://etna.math.kent.edu

184 S. DELVAUX, K. FREDERIX, AND M. VAN BAREL

7

15

12 17

16

14

10

8

4

(d) Weight matrix of node 11 is set to zero and a compression isapplied tp
node 10 and15.

7

10

15

12 17

16

14

8

4
line

Level

Top line

Child

Next Child

Current

Top level

level

(e) Transmit information upwards from node 16 to column child 17, and
from node 8 to nodes 12 and 15.

7

10

15

12 17

14

4
line

Level

Current Level

Top Level

Top line

(f) Special compression step: Compression of node 11, 12, and 17.

FIGURE 4.5.Constructing unitary-weight representation (continued).

been done,auxnode becomes node 4. This is the node where the transmit upwards phase
started; therefore, the transmit upwards phase ends here.

The last phase of the algorithm is to compress nodes 4, 10, and15; see Figure4.5(i).
After this, the weight of node 4 has to be updated with its intermediate matrix, because it
is the row root and non-virtual. At the end, every column leafcontains a weight and every
row leaf a unitary operation. The weights in the column leaves have to be multiplied with the
corresponding column shaft generatorsV , to obtain the weight matrix. The weight matrix
and the unitary operations in the row leaves are the main components of the unitary-weight
representation.

5. Numerical experiments. In this section, the results of numerical experiments on
the stability of the transition to a unitary-weight representation are reported. Consider a
hierarchically rank structured matrix underlying a typical class ofH2-matrices of sizen = 2k

with k = 9, 10, as shown in Figure2.2. Every example is tested for different levels of rank
structure. Level0 is the full matrix, level1 is the matrix divided into four blocks, level2
denotes that the inadmissible blocks of level1 are further divided into four parts, and so



ETNA
Kent State University 

http://etna.math.kent.edu

TRANSFORMING FROM HIERARCHICAL TO UNITARY-WEIGHT REPRESENTATION 185

10

15

12 17

14

4

Top level

Current level

7

(g) Transmit information from node 7 upwards to node 10.

10

15

12 17

14

4

(h) Compression of node 4, 10, and 15.

10

15

12 17

14

4

(i) Final result: Unitary-weight representation consisting of weights in column
leaves and unitary operations in the row leaves.

FIGURE 4.5.Constructing unitary-weight representation (continued).

on. For instance, Figure2.2 is of level5. In the numerical tests only level2 through level
5 are considered. Also, three different possibilities corresponding to the rank of the blocks
are considered. The first possibility is that all the blocks of low rank have the same rank
(r = 1, . . . , 5); the second and third possibilities are that the rank decreases and increases,
respectively, from the leaves to the left bottom matrix corner (blocks of the same size have
the same rank). The construction of the generatorsU , V , the transition matricesS, T , and the
intermediate matricesB is done with a random number generator which generates numbers
uniformly between 0 and 1.

The results of the experiments are shown in Figure5.1. Based on ten samples, the average
error between the originalH2-matrixM and the reconstructed matrix̃M ,

‖M − M̃‖2/‖M‖2,

is shown. Figure5.1(a)-5.1(b)shows results for blocks with constant rank, Figure5.1(c)-
5.1(d)shows results for blocks with decreasing rank, and Figure5.1(e)-5.1(f) shows results
for blocks with increasing rank (figures at the left are fork = 9 and at the right fork = 10).
The rank values on thex-axis denote the rank which is defined in the leaves, and when the
rank decreases or increases it means that the rank decreasesor increases by one when going
to a coarser block.



ETNA
Kent State University 

http://etna.math.kent.edu

186 S. DELVAUX, K. FREDERIX, AND M. VAN BAREL

0 1 2 3 4 5 6
−15.7

−15.6

−15.5

−15.4

−15.3

−15.2

−15.1

−15

Rank of blocks

N
um

er
ic

al
 e

rr
or

 in
 lo

g1
0 

sc
al

e

 

 

Level 2
Level 3
Level 4
Level 5

(a)

0 1 2 3 4 5 6
−15.7

−15.6

−15.5

−15.4

−15.3

−15.2

−15.1

−15

Rank of blocks

N
um

er
ic

al
 e

rr
or

 in
 lo

g1
0 

sc
al

e

 

 

Level 2
Level 3
Level 4
Level 5

(b)

1 2 3 4 5 6
−15.35

−15.3

−15.25

−15.2

−15.15

−15.1

Rank of blocks

N
um

er
ic

al
 e

rr
or

 in
 lo

g1
0 

sc
al

e

 

 

Level 3
Level 4
Level 5

(c)

1 2 3 4 5 6
−15.3

−15.25

−15.2

−15.15

−15.1

−15.05

−15

−14.95

Rank of blocks

N
um

er
ic

al
 e

rr
or

 in
 lo

g1
0 

sc
al

e

 

 

Level 3
Level 4
Level 5

(d)

0 1 2 3 4 5 6
−15.45

−15.4

−15.35

−15.3

−15.25

−15.2

−15.15

−15.1

−15.05

−15

Rank of blocks

N
um

er
ic

al
 e

rr
or

 in
 lo

g1
0 

sc
al

e

 

 

Level 3
Level 4
Level 5

(e)

0 1 2 3 4 5 6
−15.6

−15.5

−15.4

−15.3

−15.2

−15.1

−15

Rank of blocks

N
um

er
ic

al
 e

rr
or

 in
 lo

g1
0 

sc
al

e

 

 

Level 3
Level 4
Level 5

(f)

FIGURE 5.1. Numerical results forn = 2k , k = 9 (left), 10 (right). (a)-(b) For constant rank, (c)-(d) for
decreasing rank, (e)-(f) for increasing rank.

All six figures show that the relative error is of the order10−16. When the rank of the
blocks increases, the relative error is still of the order10−16. This is also the case when the
level increases. When blocks of different size have different rank, the relative error is still of
the order10−16.

In Section1.3, we gave a description of the expected rank upper bounds of the structure
blocks for a typical class ofH2-matrices. For these matrices, the rank increases by a factor
of log(n). Table5.1shows the maximal obtained numerical rank of the structure blocks for
a test matrix of size29, for different levels and with hierarchical blocks of rank1 and2. It
shows that the numerical computed ranks of the structure blocks are slightly larger than the



ETNA
Kent State University 

http://etna.math.kent.edu

TRANSFORMING FROM HIERARCHICAL TO UNITARY-WEIGHT REPRESENTATION 187

TABLE 5.1
Maximal obtained rank of structure blocks, forn = 29 and for the different levels. The rank of the hierarchical

blocks is considered constant, rank =1, 2.

level 2 3 4 5 6
rank= 1 1 2 3 5 7
rank= 2 2 4 6 10 14

expected rank upper bounds of the rank structure. For level5 (rank= 1), a rank upper bound
of 4 is expected (see Figure1.3(b)), but numerically several structure blocks of rank5 were
found.

Also, numerical experiments were performed with the unitary-weight representation ob-
tained for the test matrices. The unitary-weight representation was used as input for solving
linear systems and computing the eigenvalues of the given hierarchically rank structured ma-
trix; see [6, 7]. The conclusions of these numerical experiments is similar to the results for
the test matrices reported in [6, 7].

6. Conclusion. In this paper we described an algorithm to transform a hierarchical rep-
resentation into a unitary-weight representation inO(r3n log(n)) operations. The algorithm
is based on compression of the blocks and the transmission ofinformation between blocks.
The numerical experiments showed that in all cases the relative error is of order10−16.

REFERENCES

[1] J. CARRIER, L. GREENGARD, AND V. ROKHLIN , A fast adaptive multipole algorithm for particle simula-
tions, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 669–686.

[2] S. CHANDRASEKARAN, P. DEWILDE, M. GU, W. LYONS, AND T. PALS, A fast solver for HSS representa-
tions via sparse matrices, SIAM J. Matrix Anal. Appl., 29 (2006), pp. 67–81.

[3] S. CHANDRASEKARAN, P. DEWILDE, M. GU, T. PALS, AND A.-J. VAN DER VEEN, Fast stable solver for
sequentially semi-separable linear systems of equations, in Proceedings of High Performance Computing
2002, S. Sahni, V. K. Prasanna, and U. Shukla, eds., Lecture Notes in Computer Science, 2552 (2002),
Springer, Berlin, 2002, pp. 545–554.

[4] S. CHANDRASEKARAN, M. GU, AND W. LYONS, A fast adaptive solver for hierarchically semiseparable
representations, Calcolo, 42 (2005), pp. 171–185.

[5] S. DELVAUX AND M. VAN BAREL, A Givens-weight representation for rank structured matrices, SIAM J.
Matrix Anal. Appl., 29 (2007), pp. 1147–1170.

[6] , A Hessenberg reduction algorithm for rank structured matrices, SIAM J. Matrix Anal. Appl., 29
(2007), pp. 895–926.

[7] , A QR-based solver for rank structured matrices, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 464–
490.

[8] P. DEWILDE AND A.-J. VAN DER VEEN, Time-Varying Systems and Computations, Kluwer Academic Pub-
lishers, Boston, Massachusetts, 1998.

[9] , Inner-outer factorization and the inversion of locally finite systems of equations, Linear Algebra
Appl., 313 (2000), pp. 53–100.

[10] Y. EIDELMAN AND I. C. GOHBERG, On a new class of structured matrices, Integral Equations Operator
Theory, 34 (1999), pp. 293–324.

[11] , A modification of the Dewilde-van der Veen method for inversion of finite structured matrices, Linear
Algebra Appl., 343–344 (2002), pp. 419–450.

[12] L. GREENGARD AND V. ROKHLIN , A fast algorithm for particle simulations, J. Comput. Phys., 73 (1987),
pp. 325–348.

[13] W. HACKBUSCH, A sparse matrix arithmetic based onH-matrices. part I: Introduction toH-matrices, Com-
puting, 62 (1999), pp. 89–108.

[14] W. HACKBUSCH AND S. BÖRM, Data-sparse approximation by adaptiveH2-matrices, Computing, 69
(2002), pp. 1–35.

[15] W. HACKBUSCH AND B. N. KHOROMSKIJ, A sparseH-matrix arithmetic, part II: Application to multi-
dimensional problems, Computing, 64 (2000), pp. 21–47.



ETNA
Kent State University 

http://etna.math.kent.edu

188 S. DELVAUX, K. FREDERIX, AND M. VAN BAREL

[16] W. HACKBUSCH, B. N. KHOROMSKIJ, AND S. A. SAUTER, On H2-matrices, in Lectures on Applied
Mathematics, H. Bungartz and L. Horsten, eds., Springer-Verlag, Berlin, 2000, pp. 9–29.

[17] P. G. MARTINSSON AND V. ROKHLIN , A fast direct solver for boundary integral equations in two dimen-
sions, J. Comput. Phys., 205 (2005), pp. 1–23.

[18] P. G. MARTINSSON, V. ROKHLIN , AND M. TYGERT, A fast algorithm for the inversion of general Toeplitz
matrices, Comput. Math. Appl., 50 (2005), pp. 741–752.

[19] X. SUN AND N. P. PITSIANIS,A matrix version of the fast multipole method, SIAM Rev., 43 (2001), pp. 289–
300.

[20] E. E. TYRTYSHNIKOV,Mosaic-skeleton approximations, Calcolo, 33 (1996), pp. 47–58.
[21] , Mosaic ranks and skeletons, in Numerical Analysis and Its Applications, L. Vulkov, J. Wasniewski,

and P. Y. Yalamov, eds., Lecture Notes in Computer Science, 1196, Springer-Verlag, 1997, pp. 505–516.


