Electronic Transactions on Numerical Analysis. ETNA

Volume 33, pp. 163-188, 2009. Kent State University
Copyright 0 2009, Kent State University. http://etna.math.kent.edu
ISSN 1068-9613.

TRANSFORMING A HIERARCHICAL INTO A UNITARY-WEIGHT
REPRESENTATION*

STEVEN DELVAUXT, KATRIJN FREDERIX,, AND MARC VAN BAREL ¥

Abstract. In this paper, we consider a class of hierarchically rankcstired matrices that includes some of the
hierarchical matrices occurring in the literature, suchiagarchically semiseparable (HSS) and cerfdthmatrices.
We describe a fastf(r3n log(n))) and stable algorithm to transform this hierarchical repreation into a so-called
unitary-weight representation, as introduced in an eanliwk of the authors. This reduction allows the use of fast
and stable unitary-weight routines (or by the same meass.afad stable routines for sequentially semiseparable
(SSS) and quasiseparable representations used by othersaut the literature), leading, e.g, to direct methods
for linear system solution and for the computation of all éigenvalues of the given hierarchically rank structured
matrix.

Key words. hierarchically semiseparable (HSS) matft2-matrix, low rank submatrix, tree, QR factorization,
unitary-weight representation

AMS subject classifications.65F30, 15A03

1. Introduction.

1.1. Hierarchically rank structured matrices in the literature. In the literature, sev-
eral types of hierarchically rank structured matrices Hasen investigated. A first example
is the class oft{-matrices which has been studied, e.g., ib3[15). Loosely speaking, a
matrix is called arf{-matrix if it can be partitioned into a set of disjoint bloos&low rank.
This idea can be used to approximate the matrices arisirtteidiscretization of certain in-
tegral equations. The idea of partitioning such matricés disjoint blocks of low rank also
appears in the so-calledosaic skeleton methad [20, 21]. A typical example 13, 15 of
the partition in low-rank blocks occurring iH-matrices is shown in Figure 1(a)

In many cases, additional speed-up can be achieved by ¢ptiear different low-rank
blocks into which thé{-matrix is partitioned to be related to each other. An oféeicountered
condition in this respect is that the row and column spacéseofenerators of the low-rank
blocks must be compatible, in the sense that the low-rantslsust form huge horizontal
and vertical low-rank ‘shafts’ in the matrix. A graphicdustration is given in Figuré.1(b)
this figure shows some of the horizontal low-rank shafts bamseof bold boxes. Rk de-
notes that the rank of the shafts is at mast

The precise way in which the huge low-rank shafts as in Figut€b) are enforced
will be recalled in Sectior2. We note that some examples of hierarchically rank strectur
matrices that are explicitly based on this principle aredlasses of{?-matrices[14, 16]

*Received January 31, 2008. Accepted May 14, 2009. Publishizte on December 11, 2009. Recommended
by Ahmed Salam. The research was partially supported by &sedkch Council K.U. Leuven, project OT/05/40
(Large rank structured matrix computations), CoE EF/06/Q@timization in Engineering (OPTEC), by the Fund
for Scientific Research—Flanders (Belgium), G.0455.0 (RHRiemann-Hilbert problems, random matrices and
Padé-Hermite approximation), G.0423.05 (RAM: Rationaldelling: optimal conditioning and stable algorithms),
and by the Interuniversity Attraction Poles Programmeijated by the Belgian State, Science Policy Office, Bel-
gian Network DYSCO (Dynamical Systems, Control, and Opation). The scientific responsibility rests with its
authors.

TDepartment of Mathematics, Katholieke Universiteit LeuvEelestijnenlaan 200B, B-3001 Leuven (Hever-
lee), Belgium. 6t even. Del vaux@i s. kul euven. be). The first author is a Postdoctoral Fellow of the Fund
for Scientific Research, Flanders (Belgium). The work of tnithor is supported by the Onderzoeksfonds K.U. Leu-
ven/Research Fund K.U. Leuven.

fDepartment of Computer Science, Katholieke Universitaititen, Celestijnenlaan 200A, B-3001 Leuven
(Heverlee), Belgium.{Kat ri j n. Frederi x, Marc. VanBar el }@s. kul euven. be).

163

ETNA
Kent State University
http://etna.math.kent.edu

164 S. DELVAUX, K. FREDERIX, AND M. VAN BAREL
+ gE
L%
}%i++ i%+++
SN N
\+\<~R
++i++ SR
S ST
ST ENNE
BN S
e e
EINE
ﬁ%{ Rl (]t

(@) (b)

FIGURE 1.1.(a) Example of art{-matrix. Each of the indicated blocks is of low rank. The etas the main
diagonal they are, the more difficult it is for the elementbecapproximated by low-rank blocks. (b) Example of an
‘H2-matrix hierarchical structure. The row and column spaceegators of the different low-rank blocks are now
related in such a way that huge horizontal and vertical lamk shafts are formed. The figure shows some of the
horizontal low-rank shafts by means of the bold boxes (lrethre many others which are not shown in the figure).
Rkr indicates that the rank of the shaft is at mest

and hierarchically semiseparable matricslSS matrices)d, 4], all of which have been
introduced very recently.

Historically, the hierarchically rank structured matsaaf the last paragraph were first
used in the 1980s in thigast Multipole Method1, 12]. This method can be interpreted as
a fast way to compute the matrix-vector multiplication wattnierarchically rank structured
matrix as in Figurel.1(b) In addition, the method describes how one can approximate i
this format a matrix whosg, j)th entry is given by the evaluation of an appropriate bivaria
function f(x;, x;) in a set of pointx; € Q C R, i = 1,...,n, for some fixed dimension
d € {1,2,3}. These approximations are of an analytical flavor, and asedan separable
expansions of the fornf(x,y) =~ Z;Zl g;(x)h;(y). The point is to find such separable
expansions on several subdomains of the dorfain 2. Here, the number of termsis
related to the rank of the low-rank blocks in the hierarchétaicture.

The interpretation of the Fast Multipole Method in termsiefarchically rank structured
matrices in the general higher-dimensional case 1 is given in [L9]. The classes of{?-
and HSS matrices mentioned above can then be viewed as aryimglenatrix framework
to describe the Fast Multipole Method.

Apart from matrix-vector multiplication, there are alstusitions where one is interested
in the solution of a linear system with a hierarchically rastkuctured coefficient matrix.
Such solution methods were originally iterative; see,, 1§, 15. Recently, it was shown
in [2, 4] how to provide fast and stable direct solvers for HSS-tydrives. This may be a
very important contribution in view of the fast and stablenipalation of these matrices.

Recently, hierarchically rank structured matrices wese @onsidered as a tool for the
numerical approximation of (Fourier transformed) Toeplitatrices 8. The low-rank
shafts involved in the approximation of these matrices eammédneutered block rowand
neutered block columnisy these authors, and they derive @ log®(n)) method to ap-
proximate a general Toeplitz matrix in this format. Thestharts also present a fast method
for solving the hierarchically rank structured linear gyst[17], but this method is probably
unstable in the general case. It seems, however, that a natidr of the approximation
techniques in 18] with the solution methods in2} 4] might lead to a superfast and stable

ETNA
Kent State University
http://etna.math.kent.edu

TRANSFORMING FROM HIERARCHICAL TO UNITARY-WEIGHT REPRESETATION 165

_ Rk
hWi—= X
. Rk r T
I XK
. Rk, I
I3 3 XXX
_ Rkr
i 4 ‘ XX
XXX
. Rk,
Ig 5 XXXXX]
T KXXXN

@ (b)

FIGURE 1.2.(a) Rank structured matrix havingstructure blocks. (b) Unitary-weight representation.

solver for Toeplitz matrices.

1.2. Rank structured matrices. Another class of matrices that is often used in the
literature is the class o&nk structured matricef8]. These are matrices with low-rank blocks
that are contiguous and include either the lower left or theeu right corner of the matrix.
We call these low-rank blockstructure blocks In contrast to the blocks in the hierarchical
rank structure (hierarchical blocks), which are small aisjbiht, these structure blocks are
large and are allowed to intersect each other.

Each structure block can be characterized by a 3-tifple= (i, jk, 7x), wWith iy, the
row index, ji the column index, and; the rank upper bound. A collection of structure
blocks is a rank structure and a matix € C™*" satisfies the rank structure if for each
k, rank A(i, : m,1 : ji) < 7. A graphical illustration of a rank structure with five
structure blocks is shown in Figufie2(a) the meaning of Figuré&.2(b)is explained further
in Section4.1. By symmetry considerations it will be sufficient to deserdur algorithm only
for those structure blocks in tHewer triangular part ofA, but it is useful to keep in mind
that the blockuppertriangular part of4 also will be rank structured, i.e., that the matdX
also will satisfy the definition of rank structure.

1.3. Rank structure induced by hierarchical rank structure. The aim of this paper
is to ‘embed’ the hierarchically rank structured matricéSectionl.1into the larger class
of rank structured matrices described in Sectich To see what this means, recall that the
hierarchically rank structured matrices of Sectiof consist of a number agmall, disjoint
low-rank blocks (hierarchical blocks). To get these inte tbrmat of Sectiori.2, we have
to combine these hierarchical blocks into huge, non-disjow-rank blocks that start from
the bottom left corner element of the matrix (structure k&)c One can achieve this by
constructing structure blocks vidings of the given hierarchical blocks or shafts. To see
what this means, the reader could already have a quick giirapBigurel.3(a) The figure
is explained in more detail below.

It is clear that this tiling procedure only requires the hrehical blocks in thdower
triangular part ofA. Hence, from now on, we will be allowed to ‘decouple’ the hiehical

1This MATLAB-like notation is interpreted as follows: : m = [i,i + 1,4 +2,...,m] andA(i : m, 1 : j5)
denotes the submatrix of with rows labeled by : m and columns labeled by : j. Note that this submatrix lies
in the lower left corner ofd.

ETNA
Kent State University
http://etna.math.kent.edu

166 S. DELVAUX, K. FREDERIX, AND M. VAN BAREL

structure by neglecting its upper triangular part. Morepiweorder for this tiling procedure
to lead to structure blocks with reasonably small ranks diéar that the region around the
bottom left corner element of the matrix should be well-apgmated by a low-rank block. A
typical example of a hierarchical rank structure for whikis tis the case is shown in Figure
1.1(a) the point here is that the off-diagonal regions can be wapfiroximated by low-rank
hierarchical blocks. A counterexample is shown in Figeu® See Sectior for the precise
assumptions that we will impose on the hierarchical rankcstire.

Let us now give a rough description of the expected rank uppands of the structure
blocks induced by this tiling procedure for a typical clags6 or H2-matrices. Consider
a matrix H € C™*™ (n = 2¢), which is partitioned into disjoint low-rank blocks of siz
n/2* (k is the corresponding levet, = 1,. ..,) as shown in Figuré.1(a) It is assumed
that all blocks are of the same rank For the matrixH in the case of thé{-matrix, no
relation is defined between the hierarchical blocks, whil¢hie case of thé{?-matrices,
the hierarchical blocks are organized in shafts as in Figuré) The rank of the structure
blocks of each levet will then beO(k?r) in case of thé{-matrices and(kr) in case of the
H2-matrices. This means that the rank of the structure blouk®ases compared to the rank
of the hierarchical blocks by a facttsg®(n) (whenk becomesy = log(n)) for a typical
class ofH-matrices, and by a factdog(n) in the case of thé{>-matrices. We will work
with H2-matrices in the rest of this paper.

We illustrate how these rank bounds are obtained forarmatrix with » = 1 in Fig-
ure 1.3 Figurel.3(a)shows a structure with rank-one hierarchical blocks (iattid by the
number ‘1’ in the middle of each block). It also shows an exkmgd a structure block
(surrounded by the outermost bold box). The rank of thiscstine block is obtained by parti-
tioning it into a tiling of horizontal and vertical shaftsaminimal way; we find here a tiling
with four shafts, and hence the given structure block is oki@ most four. In Figuré.3(b)
the corresponding rank upper boundsatfthe different structure blocks are shown; e.g., the
structure block in Figuré.3(a)has the value ‘4’ at the position indicated by the arrow. The
other values should be interpreted in the same way.

Note that the rank structure in Figute3(b)includes a lot of ‘inner’ structure blocks,
where inner means that the structure block is fully contineanother structure block. For
practical reasonsy[8], we focus only on theutermoststructure blocks, i.e., the structure
blocks that are closest to the main diagonal. Note that thie oAthese outermost structure
blocks is typically 4 & log n) around the middle ané 4 close to the borders of the matrix.

1.4. Outline of the paper. The above observations show that the hierarchically rank
structured matrices of Sectidnl often can be embedded in the larger class of rank structured
matrices described in Sectidn2, with rank upper bounds that increase by a moderate factor
of aboutlog n. This opens the door for practical algorithms to achieve &mbedding. In
this paper, we will present such an embedding algorithm. \llede this by transforming
the parameters of the hierarchically rank structured madpresentation (cf. Sectid) into
those for aunitary-weight representatiofb]. Figurel.2(b)shows an example of a unitary-
weight representation; the basic ideas of this representate recalled in Sectioh.1. The
embedding algorithm requires abaitr3n log(n)) operations.

When the unitary-weight representation has been compated¢an then make use of a
variety of fast and stable routines for working with rankustured matrices, including meth-
ods for linear system solutiory] and the computation of all the eigenvalues of the given
hierarchically rank structured matri%]] The reduction to a unitary-weight representation
is not restrictive, since this representation can be easilysformed $] into other kinds of
representations for rank structured matrices, namelplithek quasiseparabl@lso calledse-
guentially semiseparableepresentations introduced ig] fand subsequently used by several

ETNA
Kent State University
http://etna.math.kent.edu

TRANSFORMING FROM HIERARCHICAL TO UNITARY-WEIGHT REPRESETATION 167

1 1
111 1[2
1 2
!l K
1 3
1 111 1 233
1 3
1T 2 [34]
1 o 1 n
iy 2] 2 i
1 4|
1+ 3+
. . R .) 41
A 813 [aq Rk4
1] 4)
13 2 3aa =
o 7
Rl 1 L . 3| 3 17
1 34
Rki| : [: | e [,
1—],»1 3| 3 g
1] Z]
L [1[7] , [P [E3E
1 RPE
1 1J’» J’»
. Rk1. 1 1 1 A3
1 2
1 1 111 1 1 222
L]t L]t
() (b)

FIGURE 1.3. (a) A 12 hierarchically rank structured matrix with rank-one hiechical blocks. The the
indicated structure block can be realized as a tiling of 4kame shafts (3 horizontal and 1 vertical) and hence it is
of rank at most 4. (b) For the matrix in Figure3(a), the figure shows the rank of each structure block, written at
the top right corner of the structure block. Note that tyflicéhe rank increases by a factor of about 4.

L _LI
FIGURE 2.1.A partition of the matrixH in three parts: the block lower, block upper, and block diaglopart.
These three parts are denoted in the figure by L, U, and D, ctsgdy.

authors in the literature. Thus, once the hierarchicalhkrstructured matrix has been em-
bedded in the class of rank structured matrices, one can osakef virtually all the existing
routines to perform matrix operations with rank structureatrices in a fast and accurate way
[3,9-11].

The remainder of this paper is structured as follows. Sedidefines the hierarchical
structures that are considered in this paper. Seétitiscusses existing algorithms for matrix-
vector multiplication and how they are adapted to our cldseairices. Sectiod discusses
an algorithm for transforming the hierarchical represgoieinto a unitary-weight represen-
tation. Sectiorb gives the numerical performance of the algorithm for certdf-matrices.
Section6 states the conclusion.

2. Hierarchically rank structured matrices. In this section the class of matrices of
interest in this paper is defined. In what follows, the maffixc C"*" is often partitioned
into three parts: its block lower (L), block upper (U) anddkaliagonal part (D). Itis assumed
that the block lower triangular part dff is a union of contiguous submatrices Bf that
contain the bottom left corner element Bf, and, similarly, that the block upper triangular
part of H is a union of contiguous submatrices Hf that contain the upper right corner
element ofH; see Figure.l

The hierarchical structure is obtained by partitioningtiteek lower and upper triangular

ETNA
Kent State University
http://etna.math.kent.edu

168 S. DELVAUX, K. FREDERIX, AND M. VAN BAREL

parts of H into small, disjoint blocks of low rank, as in Figuiel(a) Additionally, we want
certain relations to hold between these blocks in order &rantee the existence of huge
horizontal and vertical low-rank shafts, as in Figdré(b) This can be achieved with the
following definition.
DEFINITION 2.1 (Hierarchically rank structured matrix)et H € C"*", and let there

be given a partition off into its block lower, block upper and block diagonal part as d
scribed above. Aower hierarchical structuren the matrixH involves:

(i) A partition of the block lower triangular part off into a set of disjoint blocks of
low rank. If thejth low-rank block { = 1,...,J, whereJ is the total number of blocks) has
sizes; byt; and rank at most;, then we assume for this block a factorization of the form

U,;B;V;, (2.1)

withU; € C%*"3, B; € C™5 >3, andV; e C™*%. HereU; is called therow shaft generator
V; thecolumn shaft generatpand B; theintermediate matrivof thejth low-rank block.
(iiy For all neighboring low-rank blocks which are distributetbag the shape

i
the row shaft generators if2.1) satisfy the relation

Ui T, ;
Ui, Tis 5
Uj _ 2712,] 7 (22)

U, T,

for certainT; ; € C™*"s. The matriced; ; are calledrow transition matrices
(i) For all neighboring low-rank blocks which are distributetbag the shape

-

J

the column shaft generators (&.1) satisfy the relation
Vj = [Sj,kIVkl Sj7k2Vk2 Sj,qukq] s (23)

for certain S, € C™7*"*. The matricesS; ; are calledcolumn transition matrices
(iv) Neighboring low-rank blocks that are not distributed alaihg shape of the two
previous items, are not allowed.

Finally, one can define anpperhierarchical structure in a similar way to how the lower
hierarchical structure is defined above. A matkixs said to behierarchically rank structured
if it has hierarchical rank structure in both its lower anditipper triangular parts, possibly
combined with some unstructured matrix part around the ndéagonal of the matrix.

We note that Definitior2.1implies that the different low-rank blocks are compatible i
the sense that they form large horizontal and versbalts This means that for each low-rank
block, the submatrix obtained by extending this low-rankckl completely to the left-hand
side or the bottom of the matrix must have the same rank ugperdr; as the low-rank block
j itself, forming what we call a horizontal or vertical shatspectively. Figur@.2(a)shows
an example of a lower hierarchical structure underlyingmcsl class ofH{?-matrices 6],
and Figure2.2(b)shows some horizontal shafts. The vertical shafts are goak

ETNA
Kent State University
http://etna.math.kent.edu

TRANSFORMING FROM HIERARCHICAL TO UNITARY-WEIGHT REPRESETATION 169

-
- u:
E E

+‘H Rk'[
a al

@ (b)

FIGURE 2.2.(a) A typical example of a lower hierarchical rank structurean?{2-matrix. (b) Some examples
of horizontal shafts induced by this partitioning. In eacse, the horizontal shaft is obtained by extending a low-
rank block; completely to the left border of the matrix. BY.%), the shaft has the same rank (Rk) upper bound
as its rightmost blocki; compare with Figurel.1

+

FIGURE 2.3. Example{2-matrix structure which is not in the class defined in Defimit2.1

Notice that not all{2-matrices belong to class defined in Definitidri. There are{?-
matrices for which the elements in the left bottom and thitrigpper corner of the matrix are
difficult to approximate with low-rank blocks. Such an exdenp shown in Figure.3,

The main feature that distinguishes DefinitidA from the hierarchically rank structured
matrices in the literature is the decoupling between thelkdlmwer and upper triangular parts
of the matrix; compare Figure 1 with Figure2.2. The reason why this decoupling has been
done is because we believe that Definitiba yields the natural class of matrices for which
the algorithm of Sectiod works.

In the next paragraphs, some auxiliary attributes are d&fine

DEFINITION 2.2 (2D graph, row and column treeffor any hierarchically rank struc-
tured matrix as in Definitior2.1, there is a naturally associated planar graph whose nodes
correspond to the low-rank blockisinto which the matrix is partitioned, = 1, ..., J. This
graph is referred to as thewvo-dimensional graplor the 2D graphfor short. Its nodes are
connected in two ways: by means of ther and column tree(sometimes referred to as the
2D row and 2D column treg These trees are a model for the horizontal and the vertical
connections between neighboring low-rank blocks, re$pegt

ETNA
Kent State University
http://etna.math.kent.edu

170 S. DELVAUX, K. FREDERIX, AND M. VAN BAREL
E ki
- A
= Nyige
- h
= Y
== ies
Root S i
= whia
22 it
& i
== V1
e A¥iGe
22 h
= Ny

(@) (b)

FIGURE 2.4. H2-matrix hierarchical structure: (a) underlying 2D row treéo) underlying 2D column tree.
Note that to each block of the matrix there corresponds a riodbe tree, and in addition there are some virtual
nodes near the roots of the trees.

Let us provide some examples. First, for the example of theddierarchical rank
structure in Figur.2, the underlying 2D row and column tree are shown in Figu#ie Note
that in addition to the ‘real’ nodes these trees also haveesuimiual’ nodes, at the left-hand
side in the 2D row tree and at the bottom in the 2D column t\etual nodesare nodes
to which no physical block of the matrix corresponds. Theas®al nodes are used only for
organizational purposes (and most of them could, in factebsoved if desired); they serve
to remind us how the hierarchical structure is obtained loyngvely subdividing a given
matrix until all of its blocks are of sufficiently low rank B-16].

Another example of a hierarchical rank structure is thesotd$1SS matrices introduced
in [2, 4]. The underlying 2D row and column trees are shown in FiguBe Note that these
trees also have virtual nodes, not only near the root, bottai®ughout the rest of the tree;
there are even virtud¢aves$ Once again these virtual nodes could, in fact, be removed; b
note that the resulting tree would then not be binary anymdogeover, the (virtual) root and
the virtual leaves play a special role in our algorithm, aadde cannot simply be removed.

Yet another example of a hierarchical rank structure is thgsof lower block quasisep-
arable (also called sequentially semiseparable) reptatsems B]. In this case the underlying
row tree specializes to sequential shape; we omit the detail

In addition to the 2D row and column trees, we can also defieefeliowing one-
dimensional versions.

DEFINITION 2.3 (1D row and column tree)Any hierarchically rank structured matrix
as in Definition2.1 has an associatedne-dimensional row treer 1D row treefor short.
The nodes of this tree are defined as the subsefd.of ., n} that occur as the row index
set of one of the low-rank blocks, and the edges are defindtehyatural inclusion relations
between these subsets. Definitibd guarantees that this graph is indeed a tree. Tl
column treds defined in an analogous way.

The 1D row and column tree are often closely related to thege® that produces the
hierarchically rank structured matrit4, 16]. They are usually uniform binary trees, corre-
sponding to an interval C R on which a certain integral equation is defined. This interva
is gradually cut into finer and finer pieces, leading to theasodf the 1D row tree. Blocks
of the matrix that can be well-approximated by a low rank mmatre kept fixed, while the

ETNA
Kent State University
http://etna.math.kent.edu

TRANSFORMING FROM HIERARCHICAL TO UNITARY-WEIGHT REPRESETATION 171

3 T,
i

ES i}

EN Y,
e

(@) (b)

FIGURE 2.5. Hierarchically semiseparable (HSS) structure: (a) ungliery 2D row tree, (b) underlying 2D
column tree.

other blocks are again recursively subdivided, and so oga.vittual nodes in the 2D row tree

that we discussed above could then be interpreted as ‘pitesis’ for those levels of the 1D

row tree to which no physical low-rank block of the matrix isponds. In fact, to each node
of the 1D row tree there can correspond zero, one, or moregdhamodes of the 2D graph.
Some examples where multiple nodes of the 2D graph lie onaimeslD row level can be

found in Figure?2.4(a) Examples of virtual nodes can be found in Figuzefa)and2.5(a)

3. Matrix-vector multiplication. In this section, the multiplicatiog = Hx between
a hierarchically rank structured matrix € C**" and a vectox € C"*! is discussed. The
algorithm allows a description in terms of the 2D graph, amastin terms of the 2D row
and column trees. It is reminiscent of the matrix-vectortiplitation algorithm for theFast
Multipole Methodin the literature §, 12], although the class of matrices for which it applies
is slightly different, since we allow the structure in thedk lower and upper triangular parts
of our matrices to be decoupled. The description of the &lyoris included here only for
completeness of the paper.

By the additivity of the matrix-vector multiplication, itlearly suffices to describe the
matrix-vector multiplication with the block lower triantgu part of the hierarchically rank
structured matri¥{ . Indeed, the matrix-vector multiplication with the blogiper triangular
partthen can be treated similarly, while the matrix-veotaitiplication with the unstructured
part of the matrix around the diagonal can be performed ustiangdard matrix techniques.

It will be convenient to denote by, the part of the given vectot that corresponds to
the indices of thevertical shaft induced by nodk. Similarly, we denote by the part of
the matrix-vector produgt that corresponds to the indices of therizontalshaft induced by
nodek.

In the first phase of the computation, we want to compute foh emdek the matrix-
vector productw, := B Vix. (Recall the notations of Definitio.1). To do this in an
efficient way, the column vectow;, € C" will be initialized for eachk to be zero. The
recursive relation4.3) suggests that we can run through the @umntree (e.g., in depth-
first order). The root of the column tree is used as startirderand the column children of
each node are recursively considered. Each edge of the ndhemis visited twice, once in
the parent-child and once in the child-parent directiore @lgorithm is as follows:

e When arriving at a leaf: updat@ic.r = VieatXlcas-

ETNA
Kent State University
http://etna.math.kent.edu

172 S. DELVAUX, K. FREDERIX, AND M. VAN BAREL

e For each transition chile> parent:
updatewparcnt = Wparent + Sparcnt,childwchildi and
updatew cnila = BehildWehild-
If the root is a real node (not virtual), updatg,ot = Broot Wroot- At the end of this phase,
the auxiliary vectow, := By V). x;, for each nodé: will have been computed.

In the second phase of the algorithm, we want to compute ffexelt pieces/..; of the
required matrix-vector produgt = Hx. To do this in an efficient way, an auxiliary column
vectorz;, € C"*, initialized to bewy, is defined for each node The recursive relatior2(2)
suggests then that we can run through the@®tree (e.g., in depth-first order) and

e For each transition parent child:
updat&child = Zchild T Tchild,parcntzparcnt-
e When arriving at a leaf: upda8ear = UleatZieat-
At the end of this phase, we will have computed the differeatgsy..r of the required
matrix-vector producy = Hx.

4. Transition to a unitary-weight representation. In this section, we discuss how one
can compute a unitary-weight representation as definéd fofthe hierarchically rank struc-
tured matrices of Sectioh As we explained in Sectioh.3 this can be considered am-
beddingthe hierarchically rank structured matrices into the larass of rank structured
matrices.

REMARK 4.1. It is possible to devise sequentiamethod for computing the unitary-
weight representation. Such a method was implemented ématiik-one case and presented
by the authors at the International Conference on Matrixndds and Operator Equations,
Moscow, Russia, June 2005. The algorithm was also reparnttteimaster thesis of Yvette
Vanberghen, Faculty of Science and Applied Science, K. Wyvkea, Leuven, Belgium (writ-
ten in the Dutch language). However, this method involvkisitacertain Schur complements
of the data, and we found that it unfortunately becomes nigal@r unstable for the higher
rank case. For this reason, in the present section, we Hesani alternativehierarchical
method for achieving this goal. This method does not alwegd ko the technically correct
ranks of the structure blocks, but this is compensated byttarbefficiency and numerical
stability.

In what follows we will describe a hierarchical method fongauting the unitary-weight
representation. We start with some preliminaries.

4.1. Basics of the unitary-weight representation. A unitary-weight representation is a
compact representation of a rank structured ma#ijxIf consists of only a small number of
parameters written as a p&ifQ;}~_,, W), whereQ, areelementary unitary operatiorand
W is theweight matrix L is the total number of structure blocks. An example is shawn i
Figurel.2(b) the upward pointing arrows on the left-hand side denoteitfitary operations,
and the elements in the grey area denote the weight matrix.

The basic idea behind the unitary-weight representatido isompress’ a given rank
structure by means of elementary row operations, procgdddm the bottom to the top of
the matrix and storing in each step the non-zero elemeritbgfisre they reach the top border
of the rank structure. In other words, we want to create as/maros as possible in the rank
structure and thereby bring some ‘condensed’ informatieri@hts’) to the top of the rank
structure.

An elementary row operation is a unitary operatigr= I © Q @ I, where thel denote
identity matrices of appropriate sizes afds a unitary operation. I) is applied to a matrix

ETNA
Kent State University
http://etna.math.kent.edu

TRANSFORMING FROM HIERARCHICAL TO UNITARY-WEIGHT REPRESETATION 173

H e C"*", then only the rows that correspond@oare changed:

I 0 O H, H,
QH={0 @Q O Hy | = | Hs
0o 0 I Hs Hj

The following technique is used in the construction of th#arg-weight representation
in order to create zeros in all but the top rows. Consider aimal ¢ C™*" of low rankr.
This matrix can be factored a8 = QR, whereQ € C™*™ is unitary andR € C™*" is
upper triangular. Becaus¥ is of low rank, R has the form

QM =R= {M] ,

0
whereM e C™*7, This means that if the conjugate transpose of the unitagyaiipn@ is
applied toM, all but the topr rows are converted to zeros.

The construction of the unitary-weight representatioregisvstarts at the bottom of the
rank structure, so the aforementioned technique is apfi#te bottommost structure block
of the rank structure, for instance bloghn Figurel.2(a) This results in zeros except in the
top rows (these non-zero elements are called weights). Eights that do not lie in the next
structure block (block in Figurel.2(a) are saved in the weight matrix. (In Figute?, these
are the elements in the structure bldckith column index fromj, + 1, ..., j5.) The other
weights are combined with the original elements of the nexicsure block (In Figurel.2,
elements of structure blockwith row indicesiy, . . ., i5 — 1). On this combined matrix, the
technique is applied again. Then the same procedure ofgsévinweights outside the next
structure block and combining the weights with the origiel@ments of the next structure
block is followed until the top of the rank structure is readh At the end, one obtains a
weight matrix and a set of unitary operations, one for eagalcsire block. In Figurd.2(b)
the unitary weight-representation of Figure(a)is shown (withr; = ry = 2,r3 = ry =
r = 1)

The previous paragraphs gave a short introduction to theegmirof unitary-weight rep-
resentation; for more information, the reader is refercefé}.

4.2. Basic idea of the embedding algorithm.n this subsection, we discuss the basic
idea of the algorithm to embed the hierarchically rank streedd matrix into the class of rank
structured matrices. The idea of the algorithm is to congpttes given matrix{ by means of
elementary unitary row operations. Because we start frotruatare according to Definition
2.1, this is done for the subsequent levels of the 2D row treengyivom finer to coarser levels
and from the bottom to the top of the structure, and in betvirgrsmitting information from
a child to its parent. Since this process can be consideredraputing the first part of a
QR factorization ofH, we should then also store the resulting ‘weights’ at theltoper
of the structured lower triangular part during this proceBkis storage is performed at the
nodes of the 2D graph. The final weights at the end of the dlguorarrive in thdeaves of the
column tregthe reader should try to see this!). At the end of the alforjtwe also obtain the
elementary unitary operatiof&); }_, of the unitary-weight representation. These are stored
in theleaves of the row tre€This is shown in Figurd.1: Figure4.1(a)shows the schematic
begin configuration of the algorithm (in fact, the algoritstarts with the hierarchically rank
structured formulation as defined in Definiti@ril); and Figure4.1(b)shows the final result
of the algorithm, with the elementary unitary operatiordicated at the left and with weight
blocks (depicted on a grey background) indicated at eacinuoleaf.

Notice the difference between Figuie?(b)and Figure4.1(b) In Figurel.2(b) each
structure block has a weight in which the number of nonzevesreemains the same. In

ETNA
Kent State University
http://etna.math.kent.edu

174 S. DELVAUX, K. FREDERIX, AND M. VAN BAREL
KK KKK KKK KA KK
XXXXXKHKXX XXX XXX XX
XXXXXKXXXXXX XXX XXX X
XXX XK XXX KKK K KKK K XXX
XXXXXKXXXXXX XXX XXX X
DXXXXXKXXXXXX XXX X XXX
XXX K XXX K XXX KKK X XXX
DXXXXXKXXKXKXX XXX XXX XXX
DX XXXXKXX XXX XX XX XXX XXX XXXEX XX
XXX K XXX KKK KKK XXX K XK XXX X
DXXXKXXKXEX XXX XX XX XEXXEXXEX XXX XX XXX X
) 9.9.9.9.9.9.9.9.9.9.9.00.9. 009900900 VO V90O

I

(b)

FIGURE 4.1. (a) Starting situation for the algorithm. (b) Final situati for the algorithm. Here all the
hierarchical blocks are assumed to be of rank 1. Note thatdin&s of the induced structure blocks are all 1, 2 or 3.

Figure4.1(b) this is not the case; in the top structure block, there is ighteonsisting of a
part with one row and another with two rows. This differene®&écause in the second case
the rank structure is generated from hierarchical blocksiting to Definition2.1

4.3. Organization of the algorithm. In this subsection, an overall description of the
organization of the embedding algorithm is given. We discilre variables that are used
during the algorithm and give pseudocode for the two mosbitgmt components of the
algorithm. The detailed explanation of these algorithma ioeir subroutines is given in
Sectiond.4. An illustration with a worked-out example is given in Sect#.6.

We start by listing the variables that are used by the algaritThe input of the algorithm
is the 2D graph of the given hierarchically rank structurestni®. According to Definitions
2.1and2.2, this is practically organized as follows:

e Each node of the 2D graph has references to its parent and childreneir{2D)
column and row tree.

e Each nodé of the 2D graph that corresponds to a real block in the mateixl hode)
contains its intermediate matri®;. Nodes that do not correspond to a real block in
the matrix, are called virtual nodes. For instance, nodes B, 5, 6, and 9, are
virtual in Figure4.4.

e Each node of the 2D graph contains the row transition matrix; to its row parent
(nodeyj) and the column transition matri¥; ; to its column parent (node).

e The row and column shaft generatéfsand V' are defined in the row and column
leaves, respectively.

The following data is also used during the algorithm:

e For each nodéof the 2D graph, a memory element containing a ‘weid#it’and a
‘temporary weight Wtemp is created.

e For the row leaves a memory elemé&nt..; is created which contains at the end of
the algorithm the product of the applied unitary compreassiperations.

Note that the above variables are expressed only in ternfeed2D graph and the cor-

ETNA
Kent State University
http://etna.math.kent.edu

TRANSFORMING FROM HIERARCHICAL TO UNITARY-WEIGHT REPRESETATION 175

responding (2D) row and column trees as in DefinitbR Indeed, the corresponding one-
dimensional (1D) row and column trees aret used in our implementation, although they
are implicitly considered by the use of virtual nodes in tiegzaph. We stress that this is a
purely organizational point, and is by no means essential.

During the first part of the algorithm, only the row shaft gextersU, the intermediate
matricesB, and the transition matricdsand.S are considered. The column shaft generators
V' are used only at the very end of the algorithm. In fact, thenrpairpose of the algorithm
is to create zero weight matrices in the nodes which are rlahuoleaves by applying el-
ementary unitary row operations. At the end of the algorjteach column leaf contains a
non-zero weight matrix and each row leaf contains a unit@esration; these are the main
components for a unitary-weight representation.

In the remainder of this subsection, pseudocode for the ta&im mprograms of the al-
gorithm is given. The pseudocode may be difficult to followwnbut it will be gradually
explained in the following subsections. At the beginninghaf algorithm, the root of the row
tree is used as starting node. For the example in Figui@) this is the virtual node labelled
‘Root 'on the left-hand side of the figure. The first prograrthis main program, which recur-
sively calls itself for each of the row children of the inpwidenode in order from the bottom
child to the top child. The second program, which is calledHzyfirst program, executes the
most important transition operations of the algorithm.

Prograntransform_to_unitary_weight_representation(node):

1. FOR4 = p (number of row children ofiode) down to1
transform_to_unitary_weight_representation(node.rowchild(i))
END FOR
2. IF the number of row children is zeradde is a row leaf)
Apply QR factorization on row shaft generatdrof node.
END IF
3. IFthe number of row children is greater than zamode is not a row leaf)
Expand information from bottommaost row child to parembde).
Update the weight of bottommaost row child.
END IF
4. Transmit information upwards:
FOR? = p (number of row children) down t® (node has more than one row child)

e Define
child := node.rowchild(i),

toplevel := topdescendant(nextchild),
nextchild := node.rowchild(i-1),
currentlevel := topdescendant(child),
The functiontopdescendant is returns the topmost row descendant of a given
2D node, which is always a row leaf.
e Setauxnode := currentlevel.
e WHILE auxnode # node
— IF auxnode is non-virtual
(currentlevel)= transmit_upwards(auxnode,currentlevel,toplevel)
END IF
— Setauxnode := row parent ofiuxnode.
END WHILE
e Expand information ohextchild to node.
e compress(node,toplevel)
END FOR

ETNA
Kent State University
http://etna.math.kent.edu

176 S. DELVAUX, K. FREDERIX, AND M. VAN BAREL

5. IF node = row root and non-virtual
Update the weight afiode.
END IF
End prograntransform_to_unitary_weight_representation.

Program(currentlevel)=transmit_upwards(auxnode, currentlevel, toplevel)
1. Compress:
IF auxnode has its topmost row index less than or equal to the oreaioEntlevel,
and if currentlevel is different fromtoplevel, and ifauxnode has non-virtual col-
umn children, then

e compress(auxnode,currentlevel). This compression is redundant when it is
invoked for the first time, i.e., whezurrentlevel still equals the value to which
it was initialized in the main program, since then a compogsisas been done
already there.

e Updatecurrentlevel := currentlevel.nextleaf. Here,nextleaf is a function
thatreturns the next leaf in the 2D row tree, i.e., the roindeose bottommost
row index is adjacent to the topmost row indexcofrentlevel. Note that this
leaf could be virtual.

END IF
2. Recursively transmit information upwards:
IF auxnode is not attoplevel and there is a non-virtual column descendant
FOR? = ¢ (number of column children) down tb
e Setcolumnchild := auxnode.columnchildren(i).
e IF columnchild is non-virtual
— Bring weight ofauxnode upwards by postmultiplying the weight with
the transition matrixS,uxnode,columnchild t0 0Obtain a new weight.
— IF weight ofcolumnchild is empty
Save the new weight in the variablg. o umncnhila
ELSE
Save the new weight in the variadlétemp, ;... nehild
END IF
— (currentlevel)=transmit_upwards(columnchild,currentlevel,toplevel)
END IF
END FOR
Set weight ofauxnode to empty
END IF
End prograntransmit_upwards.

4.4. Detailed description of the algorithm. In this section, we give a detailed descrip-
tion of the programs mentioned in the previous section.

4.4.1. Main program. As described in the previous section, the main progtams-
form_to_unitary_weight_representation recursively visits the nodes in the row tree in depth-
first order, always processing the bottom children first. &oare processed in different ways
depending on how many row children they have. We explainvbéte different actions that
can occur when processing nogldwe use the same labeling scheme that we used in the
pseudocode of Sectigh3).

1. The program first recursively processes the row childferode;.
2. If nodej is a row leaf, the row shaft generatby € R®% *" is decomposed as
U; = ZjR;, whereZ; € R®%*% is unitary andR; € R *"7 is upper triangular.

ETNA
Kent State University
http://etna.math.kent.edu

TRANSFORMING FROM HIERARCHICAL TO UNITARY-WEIGHT REPRESETATION 177

The unitary operatio@c.; = Z;" and the weightV; = R;(1 : min(s;,7;),1: 7;)
are stored.

. If nodej is not a row leaf, then we will denote hythe number of row children
of nodey; the bottom-most row child of nodgis i,. Information about nodé, is
broughtto nodg by using the transtion matrik;,, ;. Thatis, the weight of nodgis
settoW; := W; T; ;; and the weight of the child, is updated byV; = W; B; ,
because all information has now been transmitted to the Bdtause every node
has a different intermediate matri, it is not possible to do the update earlier.

. When nodej has more than one row child, information has to be transchitfe
wards, and at the end a compression has to take place.

FOR: = p (humber of row children) down t®:
e We define several variables that indicate which nodes trarfermation up-

wards and how far the information from those nodes is trattschi
child := node.rowchild(i),

toplevel := topdescendant(nextchild),

nextchild := node.rowchild(i-1),

currentlevel := topdescendant(child),

The functiontopdescendant returns the topmost row descendant of a given
2D node, which is always a row leaf. The variablarentlevel denotes the
highest row level that has already been accessed, and tlabledoplevel is
the ‘ceiling’ through which information cannot pass.

To derive the nodes which have to transmit information uplwathe horizontal
line betweerchild andnextchild has to be followed to the right until the end of
the rank structure. This line is called tlewel line The line above the topmost
column child is called theop line. See Figurel.5(e)for an illustration. All the
nodes that are to the level line from below are consideredesgally (from
the finest to the coarsest node) in thensmit_upwards phase. Information
from these nodes is recursively transmitted upward to ahynoo descendants
until toplevel is reached.

e The following loop now is executed whikuxnode # node.

— Thetransmit_upwards phase consists of two parts. In the first part, an
extra compression is applied (if necessary); and in thergkpart, the
information is transmitted upwards until theplevel is reached. This is
explained in detail in Sectiof.4.2

— Next, auxnode becomes the row parent of the previcaisxnode. If
auxnode # node, transmit_upwards is called on the newuxnode.

e Whenauxnode is node, all information has been brought upwards from all
the nodes below the level line. Navextchild has to be expanded twde, its
row parent. This means that

— The weight is stored in a temporary weight:

wtemp, 4. = Whode-

— The new weight is computed as follows:

Wnodc = WncxtchildTncxtchild,nodc .

— The weight ofnextchild is updated,

Wnextchild = WnextchildBnextchild-

ETNA
Kent State University
http://etna.math.kent.edu

178 S. DELVAUX, K. FREDERIX, AND M. VAN BAREL

e When all the information has been transmitted upwards, cesgon can take
place for nodg and the nodes that are attached to the top line from below. All
these nodes have two weights, a weiglitand a temporary weighi’temp.
The information in the two weights has to be merged into alsintgppefully
smaller weight by applying a unitary row operation. The coesgion phase is
explained in detail in Sectiof.4.3

END FOR
5. Atthe very end of the algorithm, in case when the row roaobis-virtual, the weight
of the row root has to be updated with its intermediate marix
Then, from the information stored in the weidht and the column shaft generatigrin the
column leaves, the weight matrix of the unitary-weight esg@ntation is extracted. Together
with the unitary operations in the row leaves, the unitasight representation is obtained.

4.4.2. Transmit upwards phase.The transmit upwards phase is called with three ar-
guments:auxnode, currentlevel, andtoplevel. The variableauxnode is the node which is
going to transmit information upwards to its column childiend descendants. The variable
currentlevel is the highest level already accessed and the vartaplevel is the ‘ceiling’
above which information may not pass. This meansdlianode is going to transmit infor-
mation upwards to its column children and further descetsjantil thetoplevel is reached.

The transmit upwards phase consists of two parts. In thepfnst an extra compression
is applied (if necessary); and in the second part, the indibion is transmitted upwards. The
description is as follows (we use the same labelling as ip#ieeido-code in Sectigh3).

1. In the first part, a compression occurs (if not the first jimbken the level ofuxn-
ode is at least as high as thatadrrentlevel, currentlevel is different fromtoplevel,
andauxnode has non-virtual column children. After this the variablerentlevel
becomes the next row leaf encountered in the direction afopef the row tree.

2. In the second part, information is transmitted upwardemdwuxnode has non-
virtual column children anduxnode does not lie on the same level as tbplevel
(transition parent> column children):

FOR? = ¢ (number of column children) down t
Setcolumnchild = auxnode.columnchild(i).
IF columnchild is non-virtual.
e The information which has to be transmitted upwards is ¢canttd using the
column transition matrix' between these nodes to obtain the new weight

WauxnodcSauxnodc,columnchild .

o If the weight of thecolumnchild is not empty, store the new weight as the tem-
porary weigh@Vtemp. ; ..uncnings Otherwise, store it as the weight;oumnchild-
e Now the transmit upwards program is called again, but walumnchild as
its first argument.
END IF
END FOR
When all column children oduxnode have been considered, all information has
been transmitted upwards. This means that the weightigfiode is of no further
use, therefore it is set empty.

4.4.3. Compression phaseFinally, we can now describe the actual compression rou-
tinecompress. This routine is invoked at two different places in the altfon: (i) in the main
program when all the information has been transmitted ugsvand (ii) during the transmit
upwards phase itself. The compression will take place onrzdntal chain of nodes lying

ETNA
Kent State University
http://etna.math.kent.edu

TRANSFORMING FROM HIERARCHICAL TO UNITARY-WEIGHT REPRESETATION 179
1 2 3 4 5_
|
0 - **Eiiﬁi, B o
1 0 N O O A I
0 0 2
0 0 O 0
_ 0 0 0 0 ||| a
o™~ E II ,,,,,,,,ag+b1
o o B I Pl "'a5+b2
0 0 O
0 0 0 0 M | axbg
[1 weightw

N Temporary weight Wtemp

FIGURE4.2.Matrix A which contains the weightd” and temporary weightsl//temp.

between a starting nodeand a row leafeaf. All the nodes in the chain have two weights,
a weightW and a temporary weighit’temp. The information of the two weights has to be
merged into a single, hopefully smaller weight by applyingnitary row operation. Before
the actual compression can take place some parametersohaéntroduced:

Number the nodes that have to be compresséd-ag, ..., K and store the original
node numbers in a vectas:i= [7, . .., leaf] (the last node is always a row leaf).
Define two vectorsa andb of length K that contain the number of rows of the
weightsiW and temporary weightd’temp, i.e.a; andb;, are the number of rows of
the weightiVs, and the temporary weight'temp, , respectively,fok = 1,..., K.
Define a vector of length K that contains the number of columns of the weights
W, or, what is the same, the number of columns of the temporaightsii temp.
The different weight$y” andiWtemp of all the nodes have to be placed in one matrix
A. The number of rows of the matrid is the sum:ax + bx because these values
are the highest possible number of rows of the weights (thledst rank is obtained
at the leaves). The number of columns of the matris the sum:ZkK:1 Ck-

Place the weights in the matrik. The values in the vectossandb are (mostly) not
the same. The weigh/;, starts from the first row of the matriA to row a;, (with
kE=1,...,K). If ap < ag,then zeros are added to fill the matrix. The temporary
weight starts from rowa + 1 to rowayx + by (wWith k = 1,..., K). If by < b,
then zeros are added to fill the matrix. Figdr@ shows matrixA when five nodes
are involved K = 5).

To make matrixA correspond to the actual matrix, the unitary operationespond-
ing to the leafQ\c.t, IS extended with an identity matrix of the sizg and on this
matrix a preliminary permutatio® is applied such thaf),..; becomes g is the
size of the old matrixQ)car):

L. O 0
Qreaf = 0 0 Iy, [anf IO] .
0 Iqa O bx

Define three row indiceg), i; andi,. Indexig — 1 denotes the number of fixed rows
that cannot be touched because they were already consideredevious step. This
can be seen in Figure5(f), where the weights of node and17 cannot be touched

ETNA
Kent State University
http://etna.math.kent.edu

180 S. DELVAUX, K. FREDERIX, AND M. VAN BAREL

because they are a result of a compression in a previous jpfidse algorithm.
Indexi; denotes the first zero row in the top part of the mattixindexi, denotes
the first non-zero row in the bottom part of the matrix These indices are shown
in Figure4.2
The intention of the compression is to make the matrigas sparse as possible by running
through the nodes for = 1, ..., K and applying in each step a permutatiBnand a com-
pressiorCy. At the end, the unitary operati@py..¢ is decomposed as follows:

Qieat = Cx Pi ... CoPyC1 Py Qeat-

Now run through the nodds = 1,..., K. Consider the columns of matriz which corre-
spond tok.
e A permutation is applied tal to bring the weight of the bottom part to the top part
of block &, such that all the zeros, which are in between the two wejgipisear in
the bottom rows of the block. The permutation is as follows (st = 0, ¢ = 1):

I 4 0 0 0

5 0 0 Ibkfbkfl 0

P, = 0 Ly, 0 0
0 0 0 IaK+bK—(i2+bk—bk—1_1)

The result of applyind®. to A is shown fork = 1 in Figure4.3(a). The permutation
has to be applied to the same rows of the unitary operapion; thereforeP;, has
to be extended (becaugeand). are of different size) to
Py 0
Pr = [0 loyax }
Sethcaf = Plecaf-

e When the permutation has been applied to both matricescthalaompression can
take place. If the number of non-zero rows starting at rovexnd is greater than
the number of columng, of the corresponding block (i1 + by, — bx_1 — 79 > cx),

a QR factorization of that part of the matrik is computed:QaR = A(ip : i1 +

b —br_1— 1,1+ Z’;{;ll Cl Zl;(ﬂ ¢k). Figure4.3(a) shows the part aft which

is compressed fdt = 1 in a bold box. The unitary operation to be applied to matrix
Ais as follows @ = C, A):

B Liy-1 O 0
Cr = 0 Qf 0
0 0 Loytbr—(is+bu—bre_1—1)

In the other case, if there are more columns than non-zerg, libis disadvantageous
to compute &) R factorization because no zero rows will be created. ThHgrs the
identity matrix of sizeux + bx. The compressiof;, has to be applied to the same
rows of the unitary operatio®,..¢, thereforeC), has to be extended for the same
reason as before:
Cy, 0
a-[% .0]

SetQ]eaf = Ck Qleaf .

ETNA
Kent State University
http://etna.math.kent.edu

TRANSFORMING FROM HIERARCHICAL TO UNITARY-WEIGHT REPRESETATION 181
1 2 3 4 5_ 1 2 3 4 5_
|
0 I N e B _
|1% ﬁi |O VDH _ _ _
) _ 0
0 0 h—=] 0 o
. 0 0 O 0 o0 o
l>™] 0 0 0 O i 0 o 0 O
o B I 27| 0 W I
0 0 0 0
0 0 O 0 0 O
0 0 0 O 0 0 0 O

@

(b)

FIGURE 4.3.(a) Matrix A after permutationP; . (b) Matrix A after compressiold; .

10

11| 12 17|

16

14

13

FIGURE4.4.2D graph.

e The weightWW,, of the nodes;, is now updated using all the non-zero rows of the
matrix A in block k, and the temporary weight'temp, is emptied. Also the three
row indices are updated (see Figdr&(b)):

ig = ig + min(cg, i1 + by — bp—1 — 7o),
11 = agy1 + bp + 1,
i9g =49 + br — bp_1.

At the end, every node contains a compressed wéight, an empty temporary weight
Wtemp, = 0 and the memory element of the leaf contains an adjustedryrafzgeration

Qleaf-

4.5. Computational complexity. The main computational cost of the algorithm is dur-
ing the transmit upwards phase. Information has to be traresinupwardsO(n log(n))
times, and each transmission involves a matrix multiplicabetween two matrices of size
r x r, which costs0(r®) operations. Thus, the total cost of this phase gés*n log(n)),
which is the computational complexity of the algorithm.

4.6. Example. To give a better idea of the algorithm, an example with 17 sode
elaborated. The corresponding 2D graph is shown in FiguteFirst the notation used in

ETNA
Kent State University
http://etna.math.kent.edu

182 S. DELVAUX, K. FREDERIX, AND M. VAN BAREL

Figure4.5is explained. The lines at the top of a node denote the weightsThe lines

in the middle or at the bottom of a node denote the temporaight&ll temp coming from
information of the bottom row child or the column parentpestively. The horizontal lengths
of the weights are not correctly represented because trghtgeire small blocks (recall that
the column space generatdrsare only considered at the very end of the algorithm). Grey
areas in a node denote that the weight of this node is set ®o Zé&e unitary operations are
denoted by upward pointing arrows at the left of the struetur

The software of this example is available from the authorseguest. The algorithms
were implemented in MTLAB 2.

The algorithm starts at the row root, node 4. Then the rowdchil are recursively
considered (bottom first). Thus, node 14 is the first node evaeromputation will be done.
This is a row leaf; therefore, the computations for a row leafe been executed. Then
the nodes 13, 16, and 8 are considered, in this order, andbthesponding computations
of the algorithm is executed. Because node 8 has two rowremjdnformation has to be
transmitted upwards from node 13 to 16 with transition maffis ;5. This phase of the
algorithm is shown in Figuré.5(a) At the left, the two unitary operations computed in node
14 and 16 are shown by means of the small arrows.

Figure4.5(b)shows the algorithm when the information has been transditpwards
and node 16 has been expanded to node 8. When this is done8ravdk 16 have to be
compressed. This results in a bigger weight for node 16, ebowed weight for node 8, and
an updated unitary operation. This is shown in Figlu&(c)

After the compression, we continue to run through the row.tr€he nodes 7, 17, 12,
11, 15, and 10 are considered, in this order, and the comeépg computations are exe-
cuted. Node 10 has more than one row child, so informatiortdag transmitted upwards
between its row children (see Figutes(c); and node 15 has to be expanded to node 10 (see
Figure4.5(d). After this, a compression has to be applied to node 10 and’8 result is
shown in Figuret.5(e) Note that, again, the weight matrices of nodes 10 and 15 eer
updated by the compression.

As we continue to run through the row tree, the only node whahinot been considered
yet is node 4. It gets a temporary weight from node 7. Node 4r@e than one row child.
Therefore information has to be transmitted upwards. Thieaaevhich have to transmit in-
formation upwards are the nodes that are attached to thidilev&om below; these are nodes
16, 8, and 7, shown in Figure5(e) These nodes have to transmit the information upwards
until the top line is reached. The following variables arg shild := node 7,nextchild :=
node 10gcurrentlevel := node 16toplevel := node 15, anéuxnode := node 16.

The transmit upwards phase startsaaknode = node 16. This node lies on the same
level as thecurrentlevel but not ontoplevel and it has column children. Therefore, part 1
of the transmit upwards phase occurs; but this is the firs tiso there is no compression.
Only currentlevel has to become the next leaf in the row going to the top. Thisnaézat
currentlevel becomes node 17. Now part 2 of the transmit upwards phase bassixecuted,
node 16 has column children so information has to be tratednitpwards to node 17. When
this has been done, the transmit upwards routine is callddneide 17 in its first argument.
Node 17 does not fulfill the conditions for part 1 and 2 (it hasalumn children), so nothing
happens.

Now the row parent of node 16 is consideradxnode = node 8. This node does not
fulfill the condition for part 1 (it does not lie on the samedéascurrentlevel), but part 2
will be executed. Hence, information has to be transmitfegards to node 12, and when this
has been done the transmit upwards routine will be calleld mote 12 as the first argument.

2MATLAB is a registered framework of The MathWorks, Inc.

ETNA
Kent State University
http://etna.math.kent.edu

TRANSFORMING FROM HIERARCHICAL TO UNITARY-WEIGHT REPRESETATION 183

15

10
11 12 17

T 8 16
7 b !
T 13 14

(a) Node 14, 13, 16 and 8 are compressed. Transmit informapavards
from node 13 to node 16.

15

10
11 12 17

T 8 16
7 b
T 14

(b) Weight matrix of node 13 is set to zero and a compressiappied on
node 8 and 16.

11 12 17

T 16
7 8

(c) Nodes 7, 17, 12, 11, 15, and 10 are compressed. Trandoniiation
upwards from node 11 to node 15.

14

FIGURE 4.5.Constructing unitary-weight representation.

For node 12, the same happens as in node 17: the conditiopartdt and 2 are not fulfilled.
So, the next column child (node 11) of node 8 considered isidered next.

Information has to be transmitted upwards to node 11; andusscnode 11 has no
weight, this information is stored as the weight and not & tamporary weight. The top
rows of node 11 are already compressed; therefore thesewdlusot be touched. The
weight will be placed below these rows, as shown in FiguEgf). Now the transmit upwards
routine will be called with node 11 as its first argument.

For node 11, the conditions of part 1 are now fulfilled. Thisamethat there has to be
a compression from node 11 to node 17; see Figus€). In fact, node 11 has already been
compressed in a previous phase, so only node 12 and 17 haeedonipressed; see Fig-
ure4.5(g) After the compression, the varialdarrentlevel is set to node 15 and information
from node 11 is transferred upwards to node 15. Then node dénisidered; but this node
lies just below the top line, so nothing happens.

Node 8 has transmitted all its information upwards to itsuouh descendants. Now
we can go to the row parent of node &knode becomes node 7), so that this node can
transmit its information upwards to its column childrene d&igure4.5(h) When this has

ETNA
Kent State University
http://etna.math.kent.edu

184 S. DELVAUX, K. FREDERIX, AND M. VAN BAREL

15

12 17

T .
7 8

(d) Weight matrix of node 11 is set to zero and a compressiappdied tp
node 10 and 5.

14

Top line
=
Top level
15 .4
10
T 4 12 17 Level
Next Child line
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ‘A ¢ [
! ! ‘ Current
16 £ level
7 8
T Child 14

(e) Transmit information upwards from node 16 to columndHhiV, and
from node 8 to nodes 12 and 15.

= Top line

Top Level
15 4

Current Level
T 10 ¥—

Level

4 12 17 | lire

T 14

(f) Special compression step: Compression of node 11, I21@n

FIGURE 4.5. Constructing unitary-weight representation (continued)

been doneauxnode becomes node 4. This is the node where the transmit upwaedseph
started; therefore, the transmit upwards phase ends here.

The last phase of the algorithm is to compress nodes 4, 1015ndee Figuretl.5(i).
After this, the weight of node 4 has to be updated with itsrmidiate matrix, because it
is the row root and non-virtual. At the end, every column leaitains a weight and every
row leaf a unitary operation. The weights in the column |Isdvave to be multiplied with the
corresponding column shaft generatbfsto obtain the weight matrix. The weight matrix
and the unitary operations in the row leaves are the main oaegs of the unitary-weight
representation.

5. Numerical experiments. In this section, the results of numerical experiments on
the stability of the transition to a unitary-weight repnetsgion are reported. Consider a
hierarchically rank structured matrix underlying a typidass of{?-matrices of size» = 2*
with k£ = 9,10, as shown in Figur@.2. Every example is tested for different levels of rank
structure. LeveD is the full matrix, levell is the matrix divided into four blocks, levél
denotes that the inadmissible blocks of leveare further divided into four parts, and so

ETNA
Kent State University
http://etna.math.kent.edu

TRANSFORMING FROM HIERARCHICAL TO UNITARY-WEIGHT REPRESETATION 185

Top level
15 " current level

10

T 4 12 17
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, A
T 14

(g) Transmit information from node 7 upwards to node 10.

T 5
10
T 4 12 17

T »

(h) Compression of node 4, 10, and 15.

15
10
T 4 12 17

| u

(i) Final result: Unitary-weight representation consigtof weights in column
leaves and unitary operations in the row leaves.

FIGURE 4.5. Constructing unitary-weight representation (continued)

on. For instance, Figur2.2is of level 5. In the numerical tests only levelthrough level
5 are considered. Also, three different possibilities cgpmnding to the rank of the blocks
are considered. The first possibility is that all the block$oav rank have the same rank
(r = 1,...,5); the second and third possibilities are that the rank dsa®and increases,
respectively, from the leaves to the left bottom matrix esr¢(blocks of the same size have
the same rank). The construction of the generdtors, the transition matriceS, 7', and the
intermediate matrice® is done with a random number generator which generates nsmbe
uniformly between 0 and 1.

The results of the experiments are shown in Figuie Based on ten samples, the average
error between the originat2-matrix M/ and the reconstructed matri,

1M — M|/ || M]|2,

is shown. Figurés.1(a}5.1(b)shows results for blocks with constant rank, FigGr&(c)
5.1(d)shows results for blocks with decreasing rank, and Figuiée}5.1(f) shows results
for blocks with increasing rank (figures at the left are foe 9 and at the right fok = 10).
The rank values on the-axis denote the rank which is defined in the leaves, and wien t
rank decreases or increases it means that the rank decogaseseases by one when going
to a coarser block.

ETNA
Kent State University
http://etna.math.kent.edu

186 S. DELVAUX, K. FREDERIX, AND M. VAN BAREL
-15 -15
M *
-15.1 % 1 -15.1 X
@ x x + [}
® + - < * x
S . 51 +
g -15.2 g -15.2 3
F : ' 3 : CoE
= + = - *
E 15.3 . o 5 o} E 15.3 . N 5
<} <]
£ £ +
G -15.4 . T -15.4 *
w <
o ke
5] * 53
£ ~155 o Level 2| g ~155 o Level 2
2 + Level3 2 + Level 3
-15.6 * Level 4/ -15.6 * Level4
° x Level 5 ° x Level5
~15.7 _157 . . .
0 1 2 3 5 6 0 1 2 3 4 5 6
Rank of blocks Rank of blocks
@) (b)
-15.1 -14.95
N -15 R
o _
: 15.15 x %
S S
4 » -15.05
o o
g 152 ! g
= - = -151 x
= = -
8 * s
£ £ x
% _15.25 . + % -15.15 . ¥
< L
o [T
g £ 15.2 +
2 -153 + Level 3| 2 + Level3
. * Level4 -15.25 * Level4
x Level 5 + x Level 5
-15.35 . : . : -15.3 + -
1 2 3 4 5 6 1 2 3 4 5 6
Rank of blocks Rank of blocks
(© (d)
-15 -15
+
-15.051 x 1 *
-15.1 x ¥
o -151F < * 3 + *
S -15.15¢ + . S -152 "
§' . * 2 * +
= -15.2r c "
5 x " 5 -15.3
5 -15.25¢ * 5
8 K]
§ -15.3 " 2 -15.4
£ o
3 £
< -15.35} + Level 3|7 2 + Level3
L » * Level4| | -185 * * Level 4
-15.4 « Level§ x Level 5
+ L - =SV
-15.45 . - -15.6 - =
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Rank of blocks Rank of blocks
(€) ®

FIGURE 5.1. Numerical results fom = 2%, k = 9 (left), 10 (right). (a)-(b) For constant rank, (c)-(d) for
decreasing rank, (e)-(f) for increasing rank.

Al six figures show that the relative error is of the ordér . When the rank of the
blocks increases, the relative error is still of the orbt@r . This is also the case when the
level increases. When blocks of different size have differank, the relative error is still of
the order10—16.

In Sectionl.3 we gave a description of the expected rank upper boundeattthcture
blocks for a typical class oft?-matrices. For these matrices, the rank increases by a facto
of log(n). Table5.1shows the maximal obtained numerical rank of the structloekis for
a test matrix of siz&?, for different levels and with hierarchical blocks of rahlkand?2. It
shows that the numerical computed ranks of the structurekblare slightly larger than the

ETNA
Kent State University
http://etna.math.kent.edu

TRANSFORMING FROM HIERARCHICAL TO UNITARY-WEIGHT REPRESETATION 187

TABLE 5.1
Maximal obtained rank of structure blocks, for= 2° and for the different levels. The rank of the hierarchical
blocks is considered constant, rank 2.

level |2 3 4 5 6
rank=1]1 2 3 5 7
rank=212 4 6 10 14

expected rank upper bounds of the rank structure. For fefraink= 1), a rank upper bound
of 4 is expected (see Figude3(b), but numerically several structure blocks of ranwere
found.

Also, numerical experiments were performed with the ugiaeight representation ob-
tained for the test matrices. The unitary-weight represt@nt was used as input for solving
linear systems and computing the eigenvalues of the givematuhically rank structured ma-
trix; see B, 7]. The conclusions of these numerical experiments is sinldahe results for
the test matrices reported i6,[7].

6. Conclusion. In this paper we described an algorithm to transform a hibieal rep-
resentation into a unitary-weight representatiofinn log(n)) operations. The algorithm
is based on compression of the blocks and the transmissimricsmation between blocks.
The numerical experiments showed that in all cases thevelatror is of orden 0—16.

REFERENCES

[1] J. CARRIER, L. GREENGARD, AND V. ROKHLIN, A fast adaptive multipole algorithm for particle simula-
tions SIAM J. Sci. Statist. Comput., 9 (1988), pp. 669-686.

[2] S. CHANDRASEKARAN, P. DEWILDE, M. Gu, W. LYONS, AND T. PALS, A fast solver for HSS representa-
tions via sparse matrice SIAM J. Matrix Anal. Appl., 29 (2006), pp. 67-81.

[3] S. CHANDRASEKARAN, P. DEWILDE, M. Gu, T. PALS, AND A.-J.VAN DER VEEN, Fast stable solver for
sequentially semi-separable linear systems of equatini&oceedings of High Performance Computing
2002, S. Sahni, V. K. Prasanna, and U. Shukla, eds., LectatesNin Computer Science, 2552 (2002),
Springer, Berlin, 2002, pp. 545-554.

[4] S. CHANDRASEKARAN, M. Gu, AND W. LYONS, A fast adaptive solver for hierarchically semiseparable
representationsCalcolo, 42 (2005), pp. 171-185.

[5] S. DELVAUX AND M. VAN BAREL, A Givens-weight representation for rank structured masiSIAM J.
Matrix Anal. Appl., 29 (2007), pp. 1147-1170.

[6] , A Hessenberg reduction algorithm for rank structured ntasi SIAM J. Matrix Anal. Appl., 29
(2007), pp. 895-926.
[7] , A QR-based solver for rank structured matrice3IAM J. Matrix Anal. Appl., 30 (2008), pp. 464—

490.
[8] P. DEwILDE AND A.-J.VAN DER VEEN, Time-Varying Systems and Computatiokkiwer Academic Pub-
lishers, Boston, Massachusetts, 1998.
, Inner-outer factorization and the inversion of locally fenisystems of equationkinear Algebra
Appl., 313 (2000), pp. 53-100.
[10] Y. EIDELMAN AND |. C. GOHBERG, On a new class of structured matricdategral Equations Operator
Theory, 34 (1999), pp. 293-324.
, A modification of the Dewilde-van der Veen method for ineersif finite structured matrice&inear
Algebra Appl., 343—-344 (2002), pp. 419-450.
[12] L. GREENGARD AND V. ROKHLIN, A fast algorithm for particle simulations). Comput. Phys., 73 (1987),
pp. 325-348.
[13] W. HAckBUSCH, A sparse matrix arithmetic based @trmatrices. part I: Introduction té{-matrices Com-
puting, 62 (1999), pp. 89-108.
[14] W. HACKBUSCH AND S. BORM, Data-sparse approximation by adaptivé2-matrices Computing, 69
(2002), pp. 1-35.
[15] W. HAckBuscH AND B. N. KHOROMSKIJ, A sparse-matrix arithmetic, part Il: Application to multi-
dimensional problem<omputing, 64 (2000), pp. 21-47.

(11]

ETNA
Kent State University
http://etna.math.kent.edu

188 S. DELVAUX, K. FREDERIX, AND M. VAN BAREL

[16] W. HACKBUSCH, B. N. KHOROMSKIJ, AND S. A. SAUTER, On H2-matrices in Lectures on Applied
Mathematics, H. Bungartz and L. Horsten, eds., SpringelageBerlin, 2000, pp. 9-29.

[17] P. G. MARTINSSON AND V. ROKHLIN, A fast direct solver for boundary integral equations in twimen-
sions J. Comput. Phys., 205 (2005), pp. 1-23.

[18] P. G. MARTINSSON, V. ROKHLIN, AND M. TYGERT, A fast algorithm for the inversion of general Toeplitz
matrices Comput. Math. Appl., 50 (2005), pp. 741-752.

[19] X. SuN AND N. P. RTSIANIS, A matrix version of the fast multipole meth@IAM Rev., 43 (2001), pp. 289—
300.

[20] E. E. TYRTYSHNIKOV, Mosaic-skeleton approximation€alcolo, 33 (1996), pp. 47-58.

[21] , Mosaic ranks and skeletons Numerical Analysis and Its Applications, L. Vulkov, J.adhiewski,
and P. Y. Yalamov, eds., Lecture Notes in Computer Scierkc®,1Springer-Verlag, 1997, pp. 505-516.

