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ALGEBRAIC PROPERTIES OF THE BLOCK GMRES
AND BLOCK ARNOLDI METHODS *

L. ELBOUYAHYAOU!I f, A. MESSAOUDF, AND H. SADOKS

Abstract. The solution of linear systems of equations with severditrigand sides is considered. Approximate
solutions are conveniently computed by block GMRES methdtfe describe and study three variants of block
GMRES. These methods are based on three implementatiome dfidck Arnoldi method, which differ in their
choice of inner product.
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1. Introduction. Many problems in science and engineering require the swoluf
large linear systems of equations with multiple right-haiatks

AX =B, AeC™" BeC'®, XecC' 1<s<n. (1.1)

Instead of applying a standard iterative method to the wludf each one of the linear sys-
tems of equations

Az =p@  for i=1,...,s (1.2)

independently, it is often more efficient to apply a block noet to (1.1). The first block
method, a block conjugate gradient method, was introduged beary [14] for the solution

of a linear system of equations with multiple right-hancesid..1) and a symmetric positive
definite matrix. For systemd (1) with a nonsymmetric matrix, a block version of GMRES
was introduced in49] and studied in 26, 27]. This method is based on a block version of
the standard Arnoldi process|{ see, for example 1[7, 29].

The purpose of the present paper is to compare three vacb@MRES for multiple
right-hand sides, including the block GMRES method considen [26, 27, 29]. These
schemes are based on block Arnoldi-type methods and différe choice of inner product.
We provide a unified description of the methods discussed danive new expressions and
bounds for the residual errors.

The paper is organized as follows. Sectibdefines block GMRES iterates with the aid
of Schur complements, and presents a connection with madtied polynomials. We use
these polynomials to derive some new relations in Se@ioA few examples that illustrate
the theory are provided in Sectidn

We conclude this section by introducing notation used irréneainder of this paper. We
first recall the definition of the Schur complemera4]f

DEFINITION 1.1. Let M be a matrix partitioned into four blocks
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where the submatri¥’ is assumed to be square and nonsingular. The Schur compl@hen
Fin M, denoted byM/F), is defined by

(M/F)=C - DF'E.

Throughoutthis papef,and/, denote identity matrices arg their kth column. For two
matricesY” andZ in C"*#, we define the inner produ¢y, Z) p = trace(Y ¥ Z), (wherey #
denotes the conjugate transpos&9f The associated norm is the Frobenius ndrm|| .
The 2-norm of a matrixX € C™** is denoted by|| X ||2. The Kronecker product of the
matricesC' = [¢; ;] andD is given byC' ® D = [¢; ; D]. If X is ann x s matrix,z = vec(X)
is thens vector obtained by stacking tikecolumns of the matrixX.

Finally, the roots of a matrix-valued polynomiglwhich is a square matrix whose entries
are ordinary polynomials, are defined to be the roots of tbeary polynomiatet(P(¢)).

2. Block minimal residual-type methods. The nonsingular linear system with multiple
right-hand sides1(.1) can be solved by Krylov subspace methods in two distinctswaye
first approach is to apply classical GMREB] for linear systems of equations with single-
vector right-hand sides to thelinear systems separately. The second approach is to treat a
the right-hand sides simultaneously.

Before investigating the two approaches, we need someotatet the initial approxi-

mation of the solution of(.1) be X, = [z{", z(?, ..., 2], and letRy = [r{", ... r{)] =
B — AX, be the corresponding residual, witf’ = b() — Az andB = [p™®, ..., b))
In what follows, we let;, denote the block Krylov matrix

Ki = [Ro, ARy, ..., A*"*Ry],
andk; ;, the Krylov matrix
K= [r(()i),Ar((f) AR T(()i)]
fori =1,...,s. We also introduce the matrix
Wy, = AK.

2.1. Standard GMRES applied to systems with multiple righthand sides. In this
section we apply the standard GMRES method to each one sefithear systems of equations

(1.2). Define theith classical Krylov subspadé, (A, r((f)) by
Ky (A, r((f)) = span{r(()i), Aréi), . .Ak_lr((f)} ccn. (2.1)

It is well-known that thekth approximatiom,if)s of GMRES applied to théth linear system
(1.2 satisfies

o — 2l e Kp(A, ") and (A =0 for j=1,...k,  (2.2)

Wherer,(f)s =00 — Aarg)s. It follows that the residual vectm,(js can be written as a linear
combination of the vectorA-jr((f), j=0,1,... k, ie.,

o = (AN,
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where
1 t

t
§ det< KH A {0 KHATAK,, D
i 1) = ’ .’ '
Pr,s(t) det(K[j AHAK; k)

The residual error for each one of théinear systems satisfies

1

, i=1,...,s; (2.3)
e,{(KiI,—Ik-i—l Ki7k+1)7181

112 =

see P1, 22]. Therefore, the Frobenius norm of the residual

Ris = [r0%s .m0 = ol 5 (A8, pl% (A)r ) (2.4)

can be written as

1
Ris|% = : 2.5
H ||F ; ef{‘(Ki[,—[k_‘_l Ki7k+1)7181 ( )

Similarly to the situation for standard GMRES, the residlals can be expressed in terms
of a polynomial inA. We deduce from4.4) that

vec(Ry,s) = P§ g(A) vec(Ro), where P§ o(t) = diag(py 4(2), ..., pUs(1).  (2.6)

2.2. The global GMRES method. Instead of using standard GMRES to solve each
linear systemX.2) separately, we may apply GMRES to a block diagonal mattne sllinear
systems1.2) can be rewritten in a compact form @4 ® I, )z = vec(B), with z = vec(X).
This gives the following linear system with a single riglarl side

A p(1)
r= | |. (2.7)

Application of standard GMRES t@(7) yields the global GMRES method, which also can
be defined as follows. Let

K{(A,U) =span{U, AU,...,AF=1U} c Cc™*¢

denote the matrix Krylov subspace spanned by the matticeld/, ..., A*~1U, whereU is
ann x s matrix. Note thatZ € K¢ (A, U) implies that

k
Z=Y oAU, o;€C,  j=1,.. .k

j=1

At stepk, the global GMRES method constructs the approximakign;, which satisfies
the relations

Xig— Xo €KY (A Ry) and (A’Ro,Rig)r =0, j=1,... .k
The residuakR, ¢ = B — AX}, ¢ satisfies the minimization property

HRkG”F = min ||R0 —AZHF (28)
Z € K (A, Ry)
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The problem2.8) is solved by applying the global Arnoldi proces}.[

Global GMRES is a generalization of the global MR method psmal by Saad for ap-
proximating the inverse of a matrid§, p. 300]. The global method also is effective, com-
pared to block Krylov subspace methods, when applied to dhgisn of large and sparse
Lyapunov and Sylvester matrix equations with right-hamtsiof low rank; seed 10, 23].
Applications of the global Arnoldi method in control thepmyodel reduction, and quadratic
matrix equations are given idf6, 30].

It is convenient to introduce the matrix produet LetY = [¥3,Ys,...,Y,] and
Z =1Zy,%Zs,...,7] be matrices of dimensiom x ps andn x ls, respectively, wher&; and
Zi(i=1,...,p;j=1,...,1)aren x s matrices. Ther is defined by
Y1, Z20)r YN, Z2)F ... V1,Z)F
(Yo, Z1)r (Yo, Zo)r ... (Yo,Zi)F
Yoz = , , , , ccre,
Yo, Z0)r (Yp,Zo)r . (Yp,Zi)F

THEOREM 2.1 ([3]). Let the matrix( AKX, )" o (AK}) be nonsingular. Then

Ry = Ro — AK ((AKK)H o (AKy)) ™ ((AKk)™ o Ry)
where

1 t tk
o det ([(AICk)H o Ry (AK)H o (AKy) ]) (2.9)
ra(t) = det((AKk)H o (AKk)) . |

Moreover,
1 1

el (Kl oK) ter  ef (i KAy Kiksr)ler

IRkl =

We also can writeRy, ¢ = {]P’,?,G(A)rél), e ,IP’kG,G(A)réS)} or equivalently

vec(Ry,¢) = diag (PﬁG(A), .. ,]P’kG,G(A)) vec(Ry).

The matrix-valued polynomial involved in the preceding tstodied methods are both diag-
onal. In the next section, we consider a general matrixagpolynomial.

2.3. The block GMRES method. Another approach to solvind.(1) is to consider all
the s right-hand side vectors?), i = 1,...,s, as ann x s matrix. This leads to the block
GMRES method (BGMRES). This method determines at étegm approximate solution
X}, g of (1.1) from the requirements

Xip—Xo€KP(A Ry), and Ryp=B-AXyp L KZ(A ARy), (2.10)
where
KP2(A,U) = block span{U, AU, ..., A*~1U},
and “block span” is defined by

k—1
KB (A, U) = {X T X =Y AUQ; Q€ CC fori=0,... k- 1} c Cnee,
1=0
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Alternatively, BGMRES can be defined by considering the apipnate solution of the
ith system {.2), which is determined by

g — 2l € Ki(A, Ro) and(A7Ro) 1, =0, j=1,... .k i=1,..5 (211)

where
Ky (A, Ro) = Range([Ro, ARy, ..., A*"1 Ry]) c C™. (2.12)

Note that the Krylov subspadé&, (A, Ry) is a sum ofs classical Krylov subspaces
Ki(A, Ro) =Y Ki(Ar().
=1

Each column of the residual matri®; 5 is obtained by projecting orthogonally the corre-
sponding column of?, onto the block Krylov subspacé Ky (A4, Ry). Therefore, BGMRES
is a minimization method

|Re,Bllr = min [[Ry— AZ||F.
ZEK,CB(A,RO)

The following result will be used in the sequel.
THEOREM 2.2.([2]) Let the matrixWV, = AK, be of full rank. Then

Rip = Ry — Ay (WIWL) ™ W R,
_ Ro Wi H
= ([t wow] wtme).

Following Vital [29], we introduce the operator

k
Py p(A)o Ry = > AR,

i=0
whereQo = I, [Q,..., Q) = — (W,fwk)_lw,fRo, and P{ ; is the matrix-valued
polynomial defined by
ko 1, tI, thI,
Py p(t) = 0, = JWEW, | . (2.13)
i=1 WH Ry WEW;,

Then the residuak;, 5 can be expressed as
Ry, = P{ 5(A) o Ry.

Theorem?.2 helps us compare the residuals of standard GMRES appliddAoand of
BGMRES applied toX.1). The relation 2.3) is the key to developing convergence results for
GMRES R1, 22]. We have the following expression for the norm of the realduletermined
by BGMRES.

THEOREM 2.3. Assume that the matriv/,, is of full rank. Then

1

112 = ~
’ @H @ O
eT o’ To Ty Wk e

fori=1,...,s. (2.14)

whrs WHE W,
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Proof. From the first expression in Theoreéh®?, we deduce that
1 7 1 7
iy =8 =W WEW) T WD = (1 - W WEWR) T W) (2.15)
Consequently,
12 = 7y = 6§ — ) (W) WD,

and so we obtain

O INONEINON
I s 1% = ([( Ow)k T(OS) (VOV;,WV:’“]/WEW;C) (2.16)

Hence,Hr,(f’)B |2 is the Schur complement a97)V,, in the matrix
(r6) T (o7 W
WH§ o WEW, |’

which can be factored into a product of a block upper and akbllower triangular matrix
(UL factorization)

(rg)Tre”  (r5”) W :[1 (ST Wi (WE W)~ } Irsl? 0]
WH r((f WHW, 0 I wi rg WHW;
This factorization yields
PO oH -
| ol o W el—# (2.17)
WH Wi Wi I 12

which proves the theorerl.
The above theorem allows us to improve the well-known result

min  ||[Ryg — AZ||y < max min ||7’((Ji) — zill
Z€K{ (A,Ro) =15 ek (Ar$)

which was stated inZ6, 27] with || Z|, = max (lz:1)), and was shown by Vital in her

.....

thesis P9. It shows that the residual obtained by BGMRES is boundethbymaximum of
the norm of the residuals obtained by applying standard GBIREach one of thesystems

1.2.
THEOREM 2.4. Let the matrixV,, be of full rank. Then
HT |<||7’ Sl for i=1,...,s

and

|Rr.5llF < || RksllF < ||RrcllF-



ETNA
Kent State University
http://etna.math.kent.edu

ALGEBRAIC PROPERTIES OF THE BLOCK GMRES AND BLOCK ARNOLDI MEHODS 213

Proof. It suffices to show the first part of the theorem for 1. Let us first remark that
there exists a permutation matrk, such thatV, = A[K k,..., K] P. Therefore, we

can rewrite the expression ﬂJR,(ifB |? as

1) 2 _ L
||rk,BH C?Fk_lel’
where
H H H
T(()l) T(()l) T(()l) AKy i 7’(()1) AK i
sz (AKL;C)HT‘((JI) (Af(l,k)HAKVLIC (AK&JJHA‘KS,}C
(AK, )"l (AK )" AR, ... (AR, )7 AK,

By noticing that the(k + 1) x (k + 1) principal submatrix oy, is kaﬂ K1 k41, Using
Theorem 6.2 of 31, p. 177] and 2.3), we deduce that
1

1
{5 12

= clF e 2 (K Kuen) e = g
Tk,

To prove the last inequality, we appl9.6) and Theorem 7.2 ofl[f], and obtain

® 1 1
IReslle = <
=1 elT (Kﬂﬂ Kik1) ter elT (25:1 Kﬁcﬂ Kikt1) e

= | Rr.cll%,

which completes the prodil
We now examine the zeros of the matrix-valued polynomﬁ;\é.
THEOREM 2.5. Let the matrixW,, be of full rank. Then

ks (k)

(O‘i — )

det(Pf 5(t)) = H —
i=1

where theaz(.k), fori = 1,..., ks, are the generalized eigenvalues of the matrix pair
IWEW,, WEK Y.
Proof. Let« be a root ofdet(IP’ﬁB). Then from Theoren.2, we deduce that

I alg o P I,
det =0. (2.18)
WH Ry WHEW,
Let us denote théth block column of this determinant ;. Then by replacing the block
columnC; by C; — aC;_q fori = 2,..., k, we obtain
det WEW, — aWE Ky) =0, (2.19)

which shows thatv is a generalized eigenvalue of the matrix p{aW,f’Wk, W,flck}. The
proof is completed by noticing thdbt(PﬁB(O)) =1.0
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3. Block Arnoldi-type algorithms for multiple starting vectors. This section pro-
vides the framework for block Arnoldi-type algorithms. Beealgorithms are used for deter-
mining multiple or clustered eigenvalues. They also ardiegjn implementations of block
and global GMRES methods.

We give a unified presentation of Arnoldi-type algorithmdyieh include the standard
Arnoldi algorithm applied to each column of the startingdiovector, the global Arnoldi
method, and the block Arnoldi method. LiEtbe ann x s matrix. The Arnoldi-type algo-
rithms construct a basi§V®, ..., V,*} of a subspace cdKZ(A,U). The basis satisfies an
orthogonality property an#(; = (V)% AVy is upper block Hessenberg.

We examine three possibly choices of orthogonality.®®t C"*% x C"*% — C*** be
defined fore € {B, S, G} by

PE(X)Y) = XHy,
®5(X,Y) = the diagonal of the matrixX 7Y,
Y (X,Y) = trace(XHY)I, = (X,Y)pI,

forall X € C™*% and for ally’ C™**,

If ®3(X,Y) = XY = 0, then the block-vectorX, Y are said to be block-orthogonal;
see Gutknechtl[1]. Moreover,X is said to be block-normalized X ¥ X = I,. Of course,
the vector space of block vectors is a finite-dimensionatimroduct space with inner prod-
uct(X,Y)p = trace(X1Y). If (X,Y)r = 0, thenX andY are said to be F-orthogonal. If
®5(X,Y) = diag(XH#Y) = 0, then we say thak andY are diagonally orthogonal.

Using the mapb®, we will show how the matrice¥;, and7;, are computed.

Block Arnoldi-type algorithms

1. LetU be ann x s matrix.
2. ComputeV® € C™** by determining the factorization d: U = V°H7,,
HY o € C**%, suchthatti? , = ®*(V*,U) and®*(V?*, V) = [. '
3. fori=1,...,kdo '
o Computel = AV.®.
e forj=1,...,7do
(8) Hy; = ®*(V*, W)
(b) W=W -V H?,

e End
e ComputeH?,, ; by determining the decomposition@f : W =V, Hp s
such thatif?,, ; = &*(Vi3,, W) and®* (V3 Vis,) = L.
4, End

We now consider two particular choices.

3.1. The block Arnoldi algorithm. For®*(X,Y) = ®?(X,Y) = XY, the preced-
ing algorithm reduces to block Arnoldi algorithri, 18-20, 25-27, 29], which builds an
orthonormal basi§V;Z, ..., V,} such that the block matrix? = [V/Z,..., V,P] satisfies

(V,?)HVE = I1. Itis well known that
AVP = VOHE + Vkﬁleﬂ,kEkTa (3.1)
whereE[ = (05, ..., 05, I;] € R**™*. Multiplying equation 8.1) by Ej., we deduce that

H
VlfHHlirl,k = AVkB - VEVE AVkB'
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We also haveAViP H, o = AU andV,PHP| = AV{P — VEVET AVB| which imply that
VIPHP Hy o = AU — VEVET AU, Thus, by induction, we deduce that
Vi Hid p Higpoy - Hijg = APU — VEVE" AtU,

Furthermore, ifiC;, = VkaB is the QR decomposition of the full-rank matrkg, then
VWP = Kr(KH Ky)~*KH. Hence, we have

VI HE o H oy -+ Hig = AMU — K (K k) T G AV (3.2)

Consider the representatidff} ; = IP{ 5(A) o U. Since it is not easy to expreBg ; in
terms of Krylov matrices, we consider a monic matrix-valpetynomial, which, apart from
a multiplicative matrix, is the polynomids ;. Thus, letP{ ; denote the matrix-valued
polynomial 7 '

ﬁ?.,B(t) = Pﬁ,B(t)Hli-l,k - 'Hfo,
and let{ Z;.} be the block vectors defined 5y = U and
Zky1 = VkBiﬁ-lHkB-i—l,k T HIE,;o-
Then
Zjr = (I — Ky (KEK)TICH) AU = PAg(A)oU  for k>1.  (3.3)
The matrix-valued polynomiﬁﬁB can be expressed as

N VA0 P P A
PRp(t) = JKEK, | . (3.4)
KCH ARU KHE Ky,

Applying the determinant function to this Schur complemer obtain

thr, I, ... R
det
_ KHARU KHK
det(Pj 5(t)) = k det(ICHICkk) . (3.5)
k

The following result examines the zeroskyf .
THEOREM 3.1. Let the matrix/C;. be of full rank. Then

ks

det(Pf 5 (1) = [t - 6)).

i=1

whered*) i =1, ..., ks, are the eigenvalues of the mat(iK k) =1 (KH AK},).
Proof. Let# be a root oﬁet(PﬁB(t)). It follows from (3.5 that

I, ... 0, 0% 1,
det =0.
KHKy, K A* Ry
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Let C; denote the'” block column of this determinant. Then replaciigby C; — 0C;_,
fori =2,...,k, we obtain

det(KH A, — 0KEKCy) = 0.

Since the matrixC K, is nonsingular is an eigenvalue dfiC ;) =1 KCH AK,,. This result,
for the special case = 1, is shown in p1]. 00
Using the QR decomposition of the full-rank matfiy = VP R}, we deduce that

(KEKW K AR = (RE) T HERE.
Consequently the roots MQB(t) are the eigenvalues 7.

3.2. The global Arnoldi algorithm. We have
P*(X,Y)=d%X,Y) = (X,Y)rL,.

Hence, the global Arnoldi process builds an F-orthonormai{ V,©, ..., V,¢} of KB (A4, U),
such that the matri¥S = [V, ..., V7] satisfies

AVE =VEHT +VE L HE, | B,

whereH{ = HY ® I, and the matrix{ is ak x k Hessenberg matrix whose nonzero
entries(hicfj) are defined by the following algorithm.

Global Arnoldi algorithm

1. LetU be ann x s matrix.
2. Compute/,€ € C"** by V,¢ = U/||U||F,
3. fori=1,...,kdo
e Computel = AVE,
e forj=1,...,7do
(a) hS, = (VE, W)
(b) W =W — h&VE
e End
o Computeh{,, , = |W||rand set;§, = W/hij1.
4. End
Itis easy to see thal’, , , = hf/,, .1 and thatV,S | = P;! ,(A)U. Moreover, if we
set

PQG@) = th+1,k e h2G,1||U||FP?,G(t)
and use the explicit form df{! .,

th 1 th=1
det
KH o (AU) (KH o Ky,)
det(leH OICk) ’

Pyl o(t) = (3.6)

we can characterize the roots.
THEOREM 3.2. Let the matrix K o KCx) be nonsingular. Then

S

Plo) = [Je -6,

i=1
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whered*) fori =1, ..., s, are the eigenvalues of the mattik? o )~ (KH o (AK})).
The eigenvalueégk) can be called the F-Ritz values, since they also are the e es
of the Hessenberg matrif¢ = (V&' o (AV9Y).

When we apply the global or the block Arnoldi processes wite 1 and with theith
columns ofUU, we obtain the standard Arnoldi process. Hence, the stdrd@oldi vectors

obtained with theith columns oft/ can be written as\” = p,(j)S(A)U ei. LetV/ be the
vector whose columns aiél), . ,v,(:). We have

VA e = (1) s(A)Uey, ... ,p,(f)S(A)UeS].

Consequently,
VeC(VkI?S) = PQS(A) vee(U), (3.7)
whereP{! ¢ (t) = dzag(pg)s( t), ---,p;f)s( t).

4. Examples. We illustrate the theory developed in this paper with twornegkes. The
first one involves a diagonalizable matrix; the matrix of #eeond example is defective. In
these examples, we s& = 0 andU = B.

ExamMPLE 4.1. Consider the matrix and right-hand sides

10 -1 1 11
0 2 0 -1 0 0
A=1g o 1 _1| ad B=|,
0 0 0 -2 -1 2

Results obtained by the block Arnoldi and BGMRES methodsreperted in Tablet.1

Moreover, we have for block Aroldilet (P15 (t)) = Y2(244+1)(t+2) anddet (P4 5(t)) =

@(ﬁ — 1)(t? — 4). Hence, the eigenvalues of the matrxare the roots OP‘;,B. We also
remark that the roots dfﬁB are—3 and—2.

k PQB(t) ]P)kGB(t)
) v B+ 3(t-2) {%tﬂ 7! ]
3 _\/Ti t+ 4 -kt Lt+1
y 3 V(2 4 2p—2) (1 - 10p 4 4) {( 342 1t+1 1t2+ 1t }
3 \/Ti(%_Fl) tQ_%t_g t2 t —%t t+1

TABLE 4.1
Polynomials obtained by the block Arnoldi and BGMRES method

On the other hand, the upper block Hessenberg matfixdetermined by block Arnoldi
algorithm is

1 2 52 1
18 9
vz o =3 5 V2
HE = 2 2 8 18
2 3v2 1 11 _5v2 |7
2 2 18 18
0 M2 _5v2 17
2 18 9
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k Pla(t) Pa(t)
1 S
1 T (3t +4) (St+1)
1 —21 88
2 T (6987 + 64t — 91) (THt2 4 o=t + 1)
1 —2182 4589 716
3 omgo (9814% + 1482t% — 2066t — 2182)  (TH2¢3 — 128942 + 8¢ 4 1)
4 3y 2 (12 — 1) (2 — 4) (2 =1)(t2 - 4)
TABLE 4.2

Polynomials obtained by the global Arnoldi and global GMR&&hods.

k Pils(t)
1 v [t+1 0
500 2t+3

5 Y8312 + 2t — 5) 0

0 AT (157 + 22t — 7)
3 V30 (1543 4 15¢% — 28t — 8) 0

0 VAT (873 + 108t? — 323t — 352)

) 5 V30

4 (12 —1)(t* — 4) oy
10
TABLE 4.3

Polynomials obtained by the standard Arnoldi method.

k Plgs(t)
L Ft—i—l 0 J
3
0 2t+1
2 [GT?H ~ Tert +1) —3,2 0178 }
0 (42 4+ 1B 41)
—1,3 142 2
St — 2t — 2t +1) 0
3 |:( 22 2 11 —352,3 443 49 1358 :|
0 (Bert’ — a7t + et T 1)
4 1212 - 4)
TABLE 4.4

Polynomials obtained using the Standard GMRES method.

with the characteristic polynomial
Py, (t) = det(tly — HE) = (12 — 1)(t* — 4).

The polynomials determined by global Arnoldi and global GE8Rrare displayed in Ta-
ble 4.2 The standard Arnoldi methods yields the polynomials ofl@dh3, and the polyno-
mial determined by standard GMRES are shown in Tdble
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k i Piip(t) ; _ Pep(t) t
Tar—9) 2t—2] [-Zt+1 T
1 10 {4( 3 5 J { 18, 29'8 J
° 5 i~ sat st

o 11 [H-7 3(t—3) o1 [t—8 =3t
5T 8 | -t Tt-38

TABLE 4.5
Polynomials obtained by the block Arnoldi and BGMRES method

EXAMPLE 4.2. Define the defective matrix

2

o O =
O = O =
N O = O

and let

S O = =
== O N

Table4.5 shows the results obtained by the block algorithms. The uploek Hessenberg
matrix determined by the block Arnoldi algorithm is given by

45 5 —3v10 410
p_ L |-15 25 5/10 0
2720 |5Y/10 —-3V10 -2 —4

0 4v/10 16 32

H

It has the characteristic polynomial

Pres() = (¢ — 1)*(t - 2).

We also have

Pty = 220 - 1% -2)
PEalt) = 5t~ 17(t ~2)

Pis(t) = (L= 17 ~2) [ﬁ’g H ,
9

Pgg(t) = —%(t —1)2(t—2).

We remark that for all iterations except for the last onertuts of the BGMRES polyno-
mials are, in general, different from those of the corresiog Arnoldi polynomials. More-
over, apart from a multiplicative scalar, the determindihe Arnoldi polynomial is the char-
acteristic polynomial of the Hessenberg matrix obtainedifthe Arnoldi-type algorithms.
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