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Abstract. The solution of linear systems of equations with several right-hand sides is considered. Approximate
solutions are conveniently computed by block GMRES methods. We describe and study three variants of block
GMRES. These methods are based on three implementations of the block Arnoldi method, which differ in their
choice of inner product.
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1. Introduction. Many problems in science and engineering require the solution of
large linear systems of equations with multiple right-handsides

AX = B, A ∈ C
n×n, B ∈ C

n×s, X ∈ C
n×s, 1 ≤ s ≪ n. (1.1)

Instead of applying a standard iterative method to the solution of each one of the linear sys-
tems of equations

Ax(i) = b(i) for i = 1, . . . , s (1.2)

independently, it is often more efficient to apply a block method to (1.1). The first block
method, a block conjugate gradient method, was introduced by O’Leary [14] for the solution
of a linear system of equations with multiple right-hand sides (1.1) and a symmetric positive
definite matrix. For systems (1.1) with a nonsymmetric matrix, a block version of GMRES
was introduced in [29] and studied in [26, 27]. This method is based on a block version of
the standard Arnoldi process [1]; see, for example, [17, 28].

The purpose of the present paper is to compare three variantsof GMRES for multiple
right-hand sides, including the block GMRES method considered in [26, 27, 29]. These
schemes are based on block Arnoldi-type methods and differ in the choice of inner product.
We provide a unified description of the methods discussed, and derive new expressions and
bounds for the residual errors.

The paper is organized as follows. Section2 defines block GMRES iterates with the aid
of Schur complements, and presents a connection with matrix-valued polynomials. We use
these polynomials to derive some new relations in Section3. A few examples that illustrate
the theory are provided in Section4.

We conclude this section by introducing notation used in theremainder of this paper. We
first recall the definition of the Schur complement. [24].

DEFINITION 1.1. LetM be a matrix partitioned into four blocks

M =

[
C D
E F

]
,
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where the submatrixF is assumed to be square and nonsingular. The Schur complement of
F in M , denoted by(M/F ), is defined by

(M/F ) = C − DF−1E.

Throughout this paper,I andIs denote identity matrices andek theirkth column. For two
matricesY andZ in Cn×s, we define the inner product〈Y, Z〉F = trace(Y HZ), (whereY H

denotes the conjugate transpose ofY ). The associated norm is the Frobenius norm‖ · ‖F .
The 2-norm of a matrixX ∈ Cn×s is denoted by‖X‖2. The Kronecker product of the
matricesC = [ci,j ] andD is given byC⊗D = [ci,jD]. If X is ann×s matrix,x = vec(X)
is thens vector obtained by stacking thes columns of the matrixX .

Finally, the roots of a matrix-valued polynomialP, which is a square matrix whose entries
are ordinary polynomials, are defined to be the roots of the ordinary polynomialdet(P(t)).

2. Block minimal residual-type methods. The nonsingular linear system with multiple
right-hand sides (1.1) can be solved by Krylov subspace methods in two distinct ways. The
first approach is to apply classical GMRES [16] for linear systems of equations with single-
vector right-hand sides to thes linear systems separately. The second approach is to treat all
the right-hand sides simultaneously.

Before investigating the two approaches, we need some notation. Let the initial approxi-
mation of the solution of (1.1) beX0 = [x

(1)
0 , x

(2)
0 , . . . , x

(s)
0 ], and letR0 = [r

(1)
0 , . . . , r

(s)
0 ] =

B − AX0 be the corresponding residual, withr(i)
0 = b(i) − Ax

(i)
0 andB = [b(1), . . . , b(s)].

In what follows, we letKk denote the block Krylov matrix

Kk = [R0, AR0, . . . , A
k−1R0],

andKi,k the Krylov matrix

Ki,k = [r
(i)
0 , A r

(i)
0 . . . , Ak−1 r

(i)
0 ]

for i = 1, . . . , s. We also introduce the matrix

Wk = AKk.

2.1. Standard GMRES applied to systems with multiple right-hand sides. In this
section we apply the standard GMRES method to each one of thes linear systems of equations
(1.2). Define theith classical Krylov subspaceKk(A, r

(i)
0 ) by

Kk(A, r
(i)
0 ) = span{r(i)

0 , A r
(i)
0 , . . . Ak−1r

(i)
0 } ⊂ C

n. (2.1)

It is well-known that thekth approximationx(i)
k,S of GMRES applied to theith linear system

(1.2) satisfies

x
(i)
k,S − x

(i)
0 ∈ Kk(A, r

(i)
0 ) and (Ajr

(i)
0 )Hr

(i)
k,S = 0 for j = 1, . . . k, (2.2)

wherer
(i)
k,S = b(i) − Ax

(i)
k,S . It follows that the residual vectorr(i)

k,S can be written as a linear

combination of the vectorsAjr
(i)
0 , j = 0, 1, . . . , k, i.e.,

r
(i)
k,S = p

(i)
k,S(A)r

(i)
0 ,
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where

p
(i)
k,S(t) =

det

([
1 t . . . tk

KH
i,kA

Hr
(i)
0 KH

i,kA
HAKi,k

])

det(KH
i,kA

HAKi,k)
.

The residual error for each one of thes linear systems satisfies

‖r(i)
k,S‖2

2 =
1

eT1 (KH
i,k+1 Ki,k+1)−1e1

, i = 1, . . . , s; (2.3)

see [21, 22]. Therefore, the Frobenius norm of the residual

Rk,S = [r
(1)
k,S , . . . , r

(2)
k,S ] = [p

(1)
k,S(A)r

(1)
0 , . . . , p

(s)
k,S(A)r

(s)
0 ] (2.4)

can be written as

‖Rk,S‖2
F =

s∑

i=1

1

eT1 (KH
i,k+1 Ki,k+1)−1e1

. (2.5)

Similarly to the situation for standard GMRES, the residualRk,S can be expressed in terms
of a polynomial inA. We deduce from (2.4) that

vec(Rk,S) = P
G
k,S(A) vec(R0), where P

G
k,S(t) = diag(p

(1)
k,S(t), . . . , p

(s)
k,S(t)). (2.6)

2.2. The global GMRES method. Instead of using standard GMRES to solve each
linear system (1.2) separately, we may apply GMRES to a block diagonal matrix. Thes linear
systems (1.2) can be rewritten in a compact form as(A⊗ Is)x = vec(B), with x = vec(X).
This gives the following linear system with a single right-hand side



A

. . .
A


 x =



b(1)

...
b(s)


 . (2.7)

Application of standard GMRES to (2.7) yields the global GMRES method, which also can
be defined as follows. Let

K
G
k (A, U) = span{U, AU, . . . , Ak−1 U} ⊂ C

n×s

denote the matrix Krylov subspace spanned by the matricesU, AU, . . . , Ak−1U , whereU is
ann × s matrix. Note thatZ ∈ K

G
k (A, U) implies that

Z =

k∑

j=1

αjA
j−1U, αj ∈ C, j = 1, . . . , k.

At stepk, the global GMRES method constructs the approximationXk,G, which satisfies
the relations

Xk,G − X0 ∈ K
G
k (A, R0) and 〈AjR0, Rk,G〉F = 0, j = 1, . . . , k.

The residualRk,G = B − AXk,G satisfies the minimization property

‖Rk,G‖F = min
Z ∈ K

G
k (A, R0)

‖R0 − AZ‖F . (2.8)
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The problem (2.8) is solved by applying the global Arnoldi process [8].
Global GMRES is a generalization of the global MR method proposed by Saad for ap-

proximating the inverse of a matrix [18, p. 300]. The global method also is effective, com-
pared to block Krylov subspace methods, when applied to the solution of large and sparse
Lyapunov and Sylvester matrix equations with right-hand sides of low rank; see [9, 10, 23].
Applications of the global Arnoldi method in control theory, model reduction, and quadratic
matrix equations are given in [4–6, 30].

It is convenient to introduce the matrix product⋄. Let Y = [Y1, Y2, . . . , Yp] and
Z = [Z1, Z2, . . . , Zl] be matrices of dimensionn× ps andn× ls, respectively, whereYi and
Zj (i = 1, . . . , p; j = 1, . . . , l) aren × s matrices. Then⋄ is defined by

Y H ⋄ Z =




〈Y1, Z1〉F 〈Y1, Z2〉F . . . 〈Y1, Zl〉F
〈Y2, Z1〉F 〈Y2, Z2〉F . . . 〈Y2, Zl〉F

...
...

. . .
...

〈Yp, Z1〉F 〈Yp, Z2〉F . . . 〈Yp, Zl〉F


 ⊂ C

p×l.

THEOREM 2.1 ([3]). Let the matrix(AKk)H ⋄ (AKk) be nonsingular. Then

Rk,G = R0 − AKk
(
(AKk)H ⋄ (AKk)

)−1
((AKk)H ⋄ R0)

= P
G
k,G(A)R0,

where

P
G
k,G(t) =

det

([
1 t . . . tk

(AKk)H ⋄ R0 (AKk)H ⋄ (AKk)

])

det((AKk)H ⋄ (AKk))
. (2.9)

Moreover,

‖Rk,G‖2
F =

1

eT1 (KHk+1 ⋄ Kk+1)−1e1
=

1

eT1 (
∑s

i=1 KH
i,k+1 Ki,k+1)−1e1

.

We also can writeRk,G =
[
PGk,G(A)r

(1)
0 , . . . , PGk,G(A)r

(s)
0

]
or equivalently

vec(Rk,G) = diag
(
P
G
k,G(A), . . . , PGk,G(A)

)
vec(R0).

The matrix-valued polynomial involved in the preceding twostudied methods are both diag-
onal. In the next section, we consider a general matrix-valued polynomial.

2.3. The block GMRES method. Another approach to solving (1.1) is to consider all
thes right-hand side vectorsb(i), i = 1, . . . , s, as ann × s matrix. This leads to the block
GMRES method (BGMRES). This method determines at stepk an approximate solution
Xk,B of (1.1) from the requirements

Xk,B − X0 ∈ K
B
k (A, R0), and Rk,B = B − AXk,B ⊥ K

B
k (A, AR0), (2.10)

where

K
B
k (A, U) = block span{U, AU, . . . , Ak−1U},

and “block span” is defined by

K
B
k (A, U) =

{
X ∈ C

n×s |X =

k−1∑

i=0

AiU Ωi; Ωi ∈ C
s×s for i = 0, . . . , k − 1

}
⊂ C

n×s.
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Alternatively, BGMRES can be defined by considering the approximate solution of the
ith system (1.2), which is determined by

x
(i)
k,B − x

(i)
0 ∈ Kk(A, R0) and(AjR0)

H r
(i)
k,B = 0, j = 1, . . . , k; i = 1, . . . , s, (2.11)

where

Kk(A, R0) = Range([R0, AR0, . . . , A
k−1 R0]) ⊂ C

n. (2.12)

Note that the Krylov subspaceKk(A, R0) is a sum ofs classical Krylov subspaces

Kk(A, R0) =

s∑

i=1

Kk(A, r
(i)
0 ).

Each column of the residual matrixRk,B is obtained by projecting orthogonally the corre-
sponding column ofR0 onto the block Krylov subspaceA Kk(A, R0). Therefore, BGMRES
is a minimization method

‖Rk,B‖F = min
Z∈K

B

k
(A,R0)

‖R0 − AZ‖F .

The following result will be used in the sequel.
THEOREM 2.2. ([2]) Let the matrixWk = AKk be of full rank. Then

Rk,B = R0 − AKk
(
WH
k Wk

)−1 WH
k R0

=

([
R0 Wk

WH
k R0 WH

k Wk

]
/WH

k Wk

)
.

Following Vital [29], we introduce the operator

P
G
k,B(A) ◦ R0 =

k∑

i=0

AiR0Ωi,

whereΩ0 = Is, [Ω1, . . . , Ωk] = −
(
WH
k Wk

)−1 WH
k R0, and PGk,B is the matrix-valued

polynomial defined by

P
G
k,B(t) =

k∑

i=1

tiΩi =






Is tIs . . . tkIs

WH
k R0 WH

k Wk


 /WH

k Wk


 . (2.13)

Then the residualRk,B can be expressed as

Rk,B = P
G
k,B(A) ◦ R0.

Theorem2.2helps us compare the residuals of standard GMRES applied to (1.2) and of
BGMRES applied to (1.1). The relation (2.3) is the key to developing convergence results for
GMRES [21, 22]. We have the following expression for the norm of the residuals determined
by BGMRES.

THEOREM 2.3. Assume that the matrixWk is of full rank. Then

‖r(i)
k,B‖2 =

1

eT1

[
r
(i)
0

H
r
(i)
0 r

(i)
0

H
Wk

WH
k r

(i)
0 WH

k Wk

]−1

e1

for i = 1, . . . , s. (2.14)
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Proof. From the first expression in Theorem2.2, we deduce that

r
(i)
k,B = r

(i)
0 −Wk

(
WH
k Wk

)−1 WH
k r

(i)
0 = (I −Wk

(
WH
k Wk

)−1 WH
k )r

(i)
0 . (2.15)

Consequently,

‖r(i)
k,B‖2 = r

(i)
0

H
r
(i)
k,B = (r

(i)
0 )Hr

(i)
0 − (r

(i)
0 )HWk

(
WH
k Wk

)−1 WH
k r

(i)
0 ,

and so we obtain

‖r(i)
k,B‖2 =

([
(r

(i)
0 )H(r

(i)
0 ) (r

(i)
0 )HWk

WH
k r

(i)
0 WH

k Wk

]
/WH

k Wk

)
. (2.16)

Hence,‖r(i)
k,B‖2 is the Schur complement ofWH

k Wk in the matrix

[
(r

(i)
0 )Hr

(i)
0 (r

(i)
0 )HWk

WH
k r

(i)
0 WH

k Wk

]
,

which can be factored into a product of a block upper and a block lower triangular matrix
(UL factorization)
[
(r

(i)
0 )Hr

(i)
0 (r

(i)
0 )HWk

WH
k r

(i)
0 WH

k Wk

]
=

[
1 (r

(i)
0 )HWk

(
WH
k Wk

)−1

0 I

] [
‖r(i)
k,B‖2 0

WH
k r

(i)
0 WH

k Wk

]
.

This factorization yields

eT1

[
r
(i)
0

H

r
(i)
0 r

(i)
0

H

Wk

WH
k r

(i)
0 WH

k Wk

]−1

e1 =
1

‖r(i)
k,B‖2

, (2.17)

which proves the theorem.
The above theorem allows us to improve the well-known result

min
Z∈K

B

k
(A,R0)

‖R0 − AZ‖ψ ≤ max
i=1...s

min
zi∈Kk(A,r

(i)
0 )

‖r(i)
0 − zi‖,

which was stated in [26, 27] with ‖Z‖ψ = max
i=1,...,s

(‖zi‖), and was shown by Vital in her

thesis [29]. It shows that the residual obtained by BGMRES is bounded bythe maximum of
the norm of the residuals obtained by applying standard GMRES to each one of thes systems
(1.2).

THEOREM 2.4. Let the matrixWk be of full rank. Then

‖r(i)
k,B‖ ≤ ‖r(i)

k,S‖ for i = 1, . . . , s

and

‖Rk,B‖F ≤ ‖Rk,S‖F ≤ ‖Rk,G‖F .
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Proof. It suffices to show the first part of the theorem fori = 1. Let us first remark that
there exists a permutation matrixP , such thatWk = A[K1,k, . . . , Ks,k] P . Therefore, we

can rewrite the expression of‖R(1)
k,B‖2 as

‖r(1)
k,B‖2 =

1

eT1 F−1
k e1

,

where

Fk =




r
(1)
0

H
r
(1)
0 r

(1)
0

H
AK1,k . . . r

(1)
0

H
AKs,k

(AK1,k)
H

r
(1)
0 (AK1,k)

H
AK1,k . . . (AK1,k)

H
AKs,k

...
... . . .

...

(AKs,k)
H

r
(1)
0 (AKs,k)

H
AK1,k . . . (AKs,k)

H
AKs,k




.

By noticing that the(k + 1) × (k + 1) principal submatrix ofFk is KH
1,k+1 K1,k+1, using

Theorem 6.2 of [31, p. 177] and (2.3), we deduce that

1

‖r(1)
k,B‖2

= eT1 F−1
k e1 ≥ eT1 (KH

1,k+1 K1,k+1)
−1

e1 =
1

‖r(1)
k,S‖2

.

To prove the last inequality, we apply (2.5) and Theorem 7.2 of [15], and obtain

‖Rk,S‖F =
s∑

i=1

1

eT1 (KH
i,k+1 Ki,k+1)−1e1

≤ 1

eT1 (
∑s

i=1 KH
i,k+1 Ki,k+1)−1e1

= ‖Rk,G‖2
F ,

which completes the proof.
We now examine the zeros of the matrix-valued polynomialPGk,B .
THEOREM 2.5. Let the matrixWk be of full rank. Then

det(PGk,B(t)) =

ks∏

i=1

(α
(k)
i − t)

α
(k)
i

,

where theα
(k)
i , for i = 1, ..., ks, are the generalized eigenvalues of the matrix pair

{WH
k Wk,WH

k Kk}.
Proof. Let α be a root ofdet(PGk,B). Then from Theorem2.2, we deduce that

det






Is αIs . . . αkIs

WH
k R0 WH

k Wk




 = 0. (2.18)

Let us denote theith block column of this determinant byCi. Then by replacing the block
columnCi by Ci − αCi−1 for i = 2, . . . , k, we obtain

det(WH
k Wk − αWH

k Kk) = 0, (2.19)

which shows thatα is a generalized eigenvalue of the matrix pair{WH
k Wk,WH

k Kk}. The
proof is completed by noticing thatdet(PGk,B(0)) = 1.
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3. Block Arnoldi-type algorithms for multiple starting vec tors. This section pro-
vides the framework for block Arnoldi-type algorithms. These algorithms are used for deter-
mining multiple or clustered eigenvalues. They also are applied in implementations of block
and global GMRES methods.

We give a unified presentation of Arnoldi-type algorithms, which include the standard
Arnoldi algorithm applied to each column of the starting block vector, the global Arnoldi
method, and the block Arnoldi method. LetU be ann × s matrix. The Arnoldi-type algo-
rithms construct a basis{V •

1 , . . . , V •
k } of a subspace ofKB

k (A, U). The basis satisfies an
orthogonality property andH•

k = (V•
k )H AV•

k is upper block Hessenberg.
We examine three possibly choices of orthogonality. LetΦ• : Cn×s×Cn×s → Cs×s be

defined for• ∈ {B, S, G} by





ΦB(X, Y ) = XHY,
ΦS(X, Y ) = the diagonal of the matrixXHY,
ΦG(X, Y ) = trace(XHY )Is = 〈X, Y 〉F Is,

for all X ∈ Cn×s and for allY Cn×s.
If ΦB(X, Y ) = XHY = 0, then the block-vectorsX, Y are said to be block-orthogonal;

see Gutknecht [11]. Moreover,X is said to be block-normalized ifXHX = Is. Of course,
the vector space of block vectors is a finite-dimensional inner product space with inner prod-
uct 〈X, Y 〉F = trace(XHY ). If 〈X, Y 〉F = 0, thenX andY are said to be F-orthogonal. If
ΦS(X, Y ) = diag(XHY ) = 0, then we say thatX andY are diagonally orthogonal.

Using the mapΦ•, we will show how the matricesV•
k andH•

k are computed.

Block Arnoldi-type algorithms

1. LetU be ann × s matrix.
2. ComputeV •

1 ∈ Cn×s by determining the factorization ofU : U = V •
1 H•

1,0,
H•

1,0 ∈ Cs×s, such thatH•
1,0 = Φ•(V •

1 , U) andΦ•(V •
1 , V •

1 ) = Is.
3. for i = 1, . . . , k do

• ComputeW = AV •
i .

• for j = 1, . . . , i do
(a) H•

j,i = Φ•(V •
j , W )

(b) W = W − V •
j H•

j,i

• End
• ComputeH•

i+1,i by determining the decomposition ofW : W = V •
i+1 H•

i+1,i,
such thatH•

i+1,i = Φ•(V •
i+1, W ) andΦ•(V •

i+1, V
•
i+1) = Is.

4. End
We now consider two particular choices.

3.1. The block Arnoldi algorithm. ForΦ•(X, Y ) = ΦB(X, Y ) = XHY , the preced-
ing algorithm reduces to block Arnoldi algorithm [11, 18–20, 25–27, 29], which builds an
orthonormal basis{V B

1 , . . . , V B
k } such that the block matrixVBk = [V B

1 , . . . , V B
k ] satisfies

(VBk )
HVBk = Iks. It is well known that

AVBk = VBk HB
k + V B

k+1H
B
k+1,kE

T
k , (3.1)

whereET
k = [0s, . . . , 0s, Is] ∈ Rs×ms. Multiplying equation (3.1) by Ek, we deduce that

V B
k+1H

B
k+1,k = AV B

k − VBk VBk
H

AV B
k .
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We also haveAV B
1 H1,0 = AU andV B

2 HB
2,1 = AV B

1 − VB1 VB1
H

AV B
1 , which imply that

V B
2 HB

2,1H1,0 = AU − VB1 VB1
H

AU . Thus, by induction, we deduce that

V B
k+1H

B
k+1,kH

B
k,k−1 · · ·HB

1,0 = AkU − VBk VBk
H

AkU.

Furthermore, ifKk = VBk RB
k is the QR decomposition of the full-rank matrixKk, then

VkVkB = Kk(KHk Kk)−1KHk . Hence, we have

V B
k+1H

B
k+1,kH

B
k,k−1 · · ·HB

1,0 = AkU −Kk(KHk Kk)−1KHk AkU. (3.2)

Consider the representationV B
k+1 = PAk,B(A) ◦U . Since it is not easy to expressPAk,B in

terms of Krylov matrices, we consider a monic matrix-valuedpolynomial, which, apart from
a multiplicative matrix, is the polynomialPAk,B. Thus, letP̃Ak,B denote the matrix-valued
polynomial

P̃
A
k,B(t) = P

A
k,B(t)HB

k+1,k · · ·HB
1,0,

and let{Zk} be the block vectors defined byZ1 = U and

Zk+1 = V B
k+1H

B
k+1,k · · ·HB

1,0.

Then

Zk+1 =
(
I −Kk (KHk Kk)−1KHk

)
AkU = P̃A

k,B(A) ◦ U for k ≥ 1. (3.3)

The matrix-valued polynomial̃PAk,B can be expressed as

P̃
A
k,B(t) =








tkIs Is . . . tk−1Is

KHk AkU KHk Kk



 /KHk Kk



 . (3.4)

Applying the determinant function to this Schur complement, we obtain

det(P̃Ak,B(t)) =

det






tkIs Is . . . tk−1Is

KHk AkU KHk Kk






det(KHk Kk)
. (3.5)

The following result examines the zeros ofP̃Ak,B.
THEOREM 3.1. Let the matrixKk be of full rank. Then

det(P̃Ak,B(t)) =

ks∏

i=1

(t − θ
(k)
i ),

whereθ
(k)
i , i = 1, ..., ks, are the eigenvalues of the matrix(KHk Kk)−1(KHk AKk).

Proof. Let θ be a root ofdet(P̃Ak,B(t)). It follows from (3.5) that

det








Is . . . θk−1Is θkIs

KHk Kk KHk AkR0







 = 0.
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Let Ci denote theith block column of this determinant. Then replacingCi by Ci − θCi−1

for i = 2, . . . , k, we obtain

det(KHk AKk − θKHk Kk) = 0.

Since the matrixKHk Kk is nonsingular,θ is an eigenvalue of(KHk Kk)−1KHk AKk. This result,
for the special cases = 1, is shown in [21].

Using the QR decomposition of the full-rank matrixKk = VBk RB
k , we deduce that

(KHk Kk)−1KHk AKk =
(
RB
k

)−1HB
k RB

k .

Consequently the roots ofPAk,B(t) are the eigenvalues ofHB
k .

3.2. The global Arnoldi algorithm. We have

Φ•(X, Y ) = ΦG(X, Y ) = 〈X, Y 〉F Is.

Hence, the global Arnoldi process builds an F-orthonormal basis{V G
1 , . . . , V G

k } of KB
k (A, U),

such that the matrixVGk = [V G
1 , . . . , V G

k ] satisfies

AVGk = VGk HG
k + V G

k+1H
G
k+1,kE

T
k ,

whereHG
k = HG

k ⊗ Is and the matrixHG
k is a k × k Hessenberg matrix whose nonzero

entries(hGi,j) are defined by the following algorithm.

Global Arnoldi algorithm

1. LetU be ann × s matrix.
2. ComputeV G

1 ∈ Cn×s by V G
1 = U/‖U‖F ,

3. for i = 1, . . . , k do
• ComputeW = AV G

i .
• for j = 1, . . . , i do

(a) hGj,i = 〈V G
j , W 〉F

(b) W = W − hGj,iV
G
j

• End
• ComputehGi+1,i = ‖W‖F and setV G

i+1 = W/hi+1,i.
4. End

It is easy to see thatHG
k+1,k = hGk+1,kIs and thatV G

k+1 = P
A
k,G(A)U . Moreover, if we

set

P̃
A
k,G(t) = hGk+1,k · · ·hG2,1‖U‖FP

A
k,G(t)

and use the explicit form of̃PAk,G,

P̃
A
k,G(t) =

det






tk 1 . . . tk−1

KHk ⋄ (AkU) (KHk ⋄ Kk)






det(KHk ⋄ Kk)
, (3.6)

we can characterize the roots.
THEOREM 3.2. Let the matrix(KHk ⋄ Kk) be nonsingular. Then

P̃
A
k,G(t)) =

s∏

i=1

(t − θ̃
(k)
i ),
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whereθ̃
(k)
i , for i = 1, ..., s, are the eigenvalues of the matrix(KHk ⋄ Kk)−1(KHk ⋄ (AKk)).

The eigenvalues̃θ(k)
i can be called the F-Ritz values, since they also are the eigenvalues

of the Hessenberg matrixHG
k = (VGk

H ⋄ (AVGk )).
When we apply the global or the block Arnoldi processes withs = 1 and with theith

columns ofU , we obtain the standard Arnoldi process. Hence, the standard Arnoldi vectors
obtained with theith columns ofU can be written asv(i)

k = p
(i)
k,S(A)Uei. Let V A

k,S be the

vector whose columns arev(1)
k , . . . , v

(s)
k . We have

V A
k,S = [p

(1)
k,S(A)Ue1, . . . , p

(s)
k,S(A)Ues].

Consequently,

vec(V A
k,S) = P

A
k,S(A) vec(U), (3.7)

wherePAk,S(t) = diag(p
(1)
k,S(t), . . . , p

(s)
k,S(t)).

4. Examples. We illustrate the theory developed in this paper with two examples. The
first one involves a diagonalizable matrix; the matrix of thesecond example is defective. In
these examples, we setX0 = 0 andU = B.

EXAMPLE 4.1. Consider the matrix and right-hand sides

A =




−1 0 −1 1
0 2 0 −1
0 0 1 −1
0 0 0 −2


 and B =




1 1
0 0
1 1
−1 2


 .

Results obtained by the block Arnoldi and BGMRES methods arereported in Table4.1.
Moreover, we have for block Arnoldi,det(PA1,B(t)) =

√
2

18 (2t+1)(t+2) anddet(PA2,B(t)) =
√

2
9 (t2 − 1)(t2 − 4). Hence, the eigenvalues of the matrixA are the roots ofPA2,B. We also

remark that the roots ofPA1,B are− 1
2 and−2.

k PAk,B(t) PGk,B(t)

1
√

3
3

[√
2

3 (t + 1) 1
3 (t − 2)

−
√

2
6 t + 4

3

] [
3
26 t + 1 5

26 t
− 1

13 t 7
13 t + 1

]

2
√

3
3

[√
2

3 (t2 + 2
3 t − 2) 1

3 (t2 − 10
3 t + 4)√

2
3 ( t3 + 1) t2 − 5

9 t − 8
3

] [
(− 3

4 t2 − 1
6 t + 1 − 1

2 t2 + 1
3 t

− 1
4 t2 − 1

12 t − 1
2 t2 − 1

6 t + 1

]

TABLE 4.1
Polynomials obtained by the block Arnoldi and BGMRES methods.

On the other hand, the upper block Hessenberg matrixHB
2 determined by block Arnoldi

algorithm is

HB
2 =




−1
√

2
2

5
√

2
18

1
9√

2
2

−3
2

5
18

√
2

18
3
√

2
2 − 1

2
11
18 − 5

√
2

18

0
√

2
2 −5

√
2

18
17
9


 ,
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k PA
k,G(t) PG

k,G(t)

1 1√
23

(3t + 4) ( 4
13 t + 1)

2 1√
15042

(69t2 + 64t − 91) (−21
113 t2 + 88

1467 t + 1)

3 1
3037830 (981t3 + 1482t2 − 2066t− 2182) (−2182

11809 t3 − 4589
11809 t2 + 716

1687 t + 1)

4 3
√

327
9290 (t2 − 1)(t2 − 4) 1

4 (t2 − 1)(t2 − 4)

TABLE 4.2
Polynomials obtained by the global Arnoldi and global GMRESmethods.

k PA
k,S(t)

1
√

5
5

[
t + 1 0

0 2t + 3

]

2

[√
6

6 (3t2 + 2t − 5) 0

0
√

870
870 (15t2 + 22t− 7)

]

3

[√
30

120 (15t3 + 15t2 − 28t− 8) 0

0
√

174
870 (87t3 + 108t2 − 323t− 352)

]

4 (t2 − 1)(t2 − 4)

[√
30
8 0

0
√

174
10

]

TABLE 4.3
Polynomials obtained by the standard Arnoldi method.

k PG
k,S(t)

1

[
1
6 t + 1 0

0 3
7 t + 1

]

2

[
(−75

161 t2 − 44
161 t + 1) 0

0 (−3
71 t2 + 178

497 t + 1)

]

3

[
(−1

22 t3 − 1
2 t2 − 2

11 t + 1) 0
0 (−352

1567 t3 − 443
1567 t2 + 1358

1567 t + 1)

]

4 1
4 (t2 − 1)(t2 − 4)I2

TABLE 4.4
Polynomials obtained using the Standard GMRES method.

with the characteristic polynomial

PH2(t) = det(tI4 −HB
2 ) = (t2 − 1)(t2 − 4).

The polynomials determined by global Arnoldi and global GMRES are displayed in Ta-
ble 4.2. The standard Arnoldi methods yields the polynomials of Table 4.3, and the polyno-
mial determined by standard GMRES are shown in Table4.4.
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k PA
k,B(t) PG

k,B(t)

1
√

10
5

[
1
4 (4t − 9) 3

5 t − 2
3
5

t
4 − 1

] [
− 7

18 t + 1 t
18

− 13
54 t − 29

54 t + 1

]

2 t−1
5
√

10

[
4t − 7 3

4 (t − 3)
− 1

4
5t−7

4

]
t−1
8

[
5t − 8 −3t
−t 7t − 8

]

TABLE 4.5
Polynomials obtained by the block Arnoldi and BGMRES methods.

EXAMPLE 4.2. Define the defective matrix

A =




1 2 1 0
0 1 0 1
0 0 1 0
0 0 0 2




and let

B = U =




1 2
1 0
0 1
0 1


 .

Table4.5 shows the results obtained by the block algorithms. The upper block Hessenberg
matrix determined by the block Arnoldi algorithm is given by

HB
2 =

1

20




45 5 −3
√

10 4
√

10

−15 25 5
√

10 0

5
√

10 −3
√

10 −2 −4

0 4
√

10 16 32


 .

It has the characteristic polynomial

PH2(t) = (t − 1)3(t − 2).

We also have

PA
3,G(t) =

2
√

19√
67

(t − 1)2(t − 2),

PG
3,G(t) = −1

2
(t − 1)2(t − 2),

PA
3,S(t) = (t − 1)2(t − 2)

[√
38 0

0
√

66
9

]
,

PG
3,S(t) = −1

2
(t − 1)2(t − 2).

We remark that for all iterations except for the last one, theroots of the BGMRES polyno-
mials are, in general, different from those of the corresponding Arnoldi polynomials. More-
over, apart from a multiplicative scalar, the determinant of the Arnoldi polynomial is the char-
acteristic polynomial of the Hessenberg matrix obtained from the Arnoldi-type algorithms.
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[21] H. SADOK, Méthodes de projections pour les systèmes linéaires et non linéaires. Habilitation thesis, Univer-

sity of Lille 1, Lille, France, 1994.
[22] , Analysis of the convergence of the minimal and the orthogonal residual methods, Numer. Algorithms,

40 (2005), pp. 101–115.
[23] D. K. SALKUYEH AND F. TOUTOUNIAN,New approaches for solving large Sylvester equations, Appl. Math.

Comput., 173 (2006), pp. 9–18
[24] I. SCHUR, Potenzreihen im Innern des Einheitskreises, J. Reine Angew. Math., 147 (1917), pp. 205–232.
[25] V. SIMONCINI ,Ritz and Pseudo-Ritz values using matrix polynomials, Linear Algebra Appl., 241-243 (1996),

pp. 787–801.
[26] V. SIMONCINI AND E. GALLOPOULOS, Convergence properties of block GMRES and matrix polynomials,

Linear Algebra Appl., 247 (1996), pp. 97–119.
[27] , An iterative method for nonsymmetric systems with multipleright-hand sides, SIAM J. Sci. Comput.,

16 (1995), pp. 917–933.
[28] G. W. STEWART, Matrix Algorithms II: Eigensystems, SIAM, Philadelphia, 2001.
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