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AN EXTENDED BLOCK ARNOLDI ALGORITHM FOR LARGE-SCALE
SOLUTIONS OF THE CONTINUOUS-TIME ALGEBRAIC RICCATI EQUATI  ON*

M. HEYOUNIT AND K. JBILOUY

Abstract. We present a new iterative method for the computation of @pprate solutions to large-scale
continuous-time algebraic Riccati equations. The progasethod is a projection method onto an extended block
Krylov subspace, which can be seen as a sum of two block Krgitspaces il and A—1. We give some the-
oretical results and present numerical experiments fgeland sparse problems. These numerical tests show the
efficiency of the proposed scheme as compared to the blookldirand Newton-ADI methods.
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1. Introduction. This paper presents a new iterative method for the numesidation
of the continuous-time algebraic Riccati equation (CAREBhe form

ATX + XA-XBBT"X +C"C =0, (1.1)

whereA € R™ " is nonsingularB € R"*P andC € R**™. The matrices3 andC are
assumed to be of full rank with < n, s < n.

Riccati equations play a fundamental role in many areas) asacontrol, filter design,
model reduction, differential equations, and robust art?, 3, 9, 14, 22, 25, 33]. For
historical developments, applications and importancég#laraic Riccati equations, we refer
to[1, 9, 13] and the references therein. Usually, in these applicatitre so-called stabilizing
solution of (L.1) is desired. Such a solutiol is symmetric positive semidefinite and has
the property that the eigenvalues of the resulting closeg-matrixA — BBT X are in the
open complex left-half plane (i.e., each eigenvalue of tia¢rin A — BB X has a negative
real part). The stabilizing solution exists and is uniquéemcertain assumptions on the
problem [L2, 22].

Letz(t) € R™ be the state vector,(t) € R? be the control vector, anglt) € R® be the
output vector. We consider the following problem: minimize
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under the dynamic constrains

Aux(t) + Bu(t) with z(0) = o, (1.3)
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Under the hypotheses that the péit, B) is stabilizable (i.e., there is a matrix such that
A — BS is stable) and the paiiC, A) is detectable (i.e.(A”,CT) stabilizable), a unique
optimal solutionz that minimizes the functional (z¢, u) exists B2], and it can be deter-
mined through a feedback operatf; such thati(t) = Kux(t), whereK = —BT X and
X € R™*™ is the unique symmetric positive semidefinite and stabiigolution of the ma-
trix equation (.1).
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The unique stabilizing solution of the CARE equatidnlj can be obtained by consider-
ing Sy, then-dimensional stable invariant subspace (i.e., the sulespacesponding to the
eigenvalues of in the open left half plane) of the corresponding Hamiltormaatrix (see

[23, 25])

A BBT

= [CTO AT

:| c RQnXQn

If Sy is spanned by the columns @‘XlT,XQT)T € R?xn and X is nonsingular, then
X = —X, X, ! is the stabilizing solution ofi(.1).

During the last decades, many numerical methods for sothi@@ ARE (L.1) with small
and dense matrices have been developed. The standard etimpaitmethods are based on
the Schur and structure-preserving Schur meth@dsd1, 10, 24, 25], matrix sign function
methods b, 11, 20, 29], Newton-type method<[1, 4, 22, 6, 16] and the symplectic Lanczos
method [].

Generally, the matriced, B andC' are obtained from the discretization of operators de-
fined on infinite-dimensional subspaces. Moreover, theiradtis in general sparse, banded
and very large. For such problems, only a few attempts haga beade to solvel(l). The
well-known Low Rank Cholesky Factorized Newton (LRCF-Nemjtmethod 28] is one of
the widely used methods for solvind.(). At each step of the outer Newton iteration, one
needs to solve a large Lyapunov matrix equation. In the LR@#ton method, these Lya-
punov matrix equations are solved by the Low Rank Choleskydfaed method4g], which
is based on the solution of linear systems with shifted roas$til — ;1 where theu,; are the
ADI parameters. The determination of the “optimal” ADI pareters and the computation of
the approximate solution of the Lyapunov equations in&é¢has memory requirements and
the CPU time of the LRCF-Newton method.

Projection methods on block Krylov subspaces, using thekbkrnoldi process, and
on matrix Krylov subspaces, using the global Arnoldi precesso have been applied to
compute low rank approximate solutions to large and spafgRES [17, 18, 19]. However,
these methods usually need many iterations (large projestibspaces) to produce an ac-
curate approximate solution, and this increases condifjettae CPU time and the memory
requirements.

To remedy the drawbacks of the LRCF-Newton and the block abajl Arnoldi algo-
rithms, we present a new projection method that allows ustoptite low rank approxima-
tions to the stabilizing solution of.(1). We project the initial problem onto an extended block
Krylov subspace generated by the matriceand A~!, and we obtain a low-dimensional
CARE that is solved by a standard algorithm such as the Schetitod P3]. The extended
block Krylov subspace is generated by means of the extenlbett B\rnoldi process first
introduced in 5] and used for solving Lyapunov equations 80]. We also give new theo-
retical results, such as an upper bound for the norm of tloe and a perturbation result.

The remainder of the paper is organized as follows. In Se&iwe present the extended
block Arnoldi algorithm and give some properties. In Setpwe show how to extract low
rank approximate solutions to CARESs and give some theailesults, such as an expression
for the norm of the residual and an upper bound for the northeétror. Sectio# is devoted
to some numerical examples and comparisons with other metho

Throughout this paper, we use the following notation. Theo2m and the Frobenius
norm of matrices will be denoted by- || and|| - || », respectively. The separation between
two matricesA and B of dimension: x n andp x p, respectively, is given byep(A, B) =
min| x =1 [|[AX — X B|. Finally, I, andO,..; will denote the identity of size x r and the
zero matrix of size* x [, respectively.
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2. The extended block Arnoldi algorithm. We first recall the extended block Arnoldi
process applied to the pdiF, G), whereF’ € R™*"™ andG € R™**. The projection subspace
K (F, G) of R™ that we will consider was introduced it 30]:

Ki(F,G) = Range([G, F~'G, FG, F2G, F?G, ..., F~ V@G, FF1q)).
Note that the subspadg; (F, G) is a sum of two block Krylov subspaces,
Ki(F,G) = Ki(F,G) + Kg(F~ 1, F'@),

whereK(F,G) = Range(|G, FG,...,F*~1G]). The following algorithm allows us to
compute an orthonormal basis of the extended Krylov sulespa¢F, G). This basis con-
tains information on bottd andF —*. Letm be some fixed integer which limits the dimension
of the constructed basis. The extended block Arnoldi piedescribed as follows:
ALGORITHM 2.1. The extended block Arnoldi algorithm (EBA).
e Inputs: F'ann x n matrix,G ann x s matrix andm an integer.
¢ Step 0.Compute the QR decomposition[¢¥, F~1G], i.e.,[G, F~1G] = V1 A;
SetVo = [];

SteplForj=1,...,m
Step 1.1 Seth(l): first s columns ofV; Vj(Q): seconds columns ofV

Stepl2 V; =V, 1,V Vjs1 = [ij(l)’Fflvj(Q)]

Step 1.3 Orthogonalizé/; . ; with respect to/; to getV 1, i.e.,
Fori=1,2,...,5
H;; = ViTVjJrl;
Vita =Vj — Vil j;
end for
e Step 1.4 Compute the QR decomposition é@ﬂ, ie., VjH = Vit1Hjq1 ;.
end for.

Since the above algorithm involves implicitly a Gram-Sctingrocess, the block vec-
torsV,, = [Vi,Va,...,Viu] (Vi € R™@29%) have mutually orthogonal columns, provided
none of the upper triangular matricés . ; ; are rank deficient. Hence, after steps, Algo-
rithm 2.1 builds an orthonormal basis,, of the Krylov subspacé,,, 1 (F, G) and a block
upper Hessenberg matriX,, whose nonzero blocks are tiig ;. Note that each submatrix
H;; (1 <i<j<m)isoforder2s.

Let7,, € R?msx2ms pe the restriction of the matrik to the extended Krylov subspace
K (F,G), i.e.,T,, = VLFV,,. Itis shown in B(] that 7,, is also block upper Hessenberg
with 2s x 2s blocks. Moreover, a recursion is derived to comptje from H,, without
requiring matrix-vector products witth’. For more details on how to compufg, from
H,,, we refer to B(]. We note that for large problems the inverse of the malffiis not
computed explicitly, and in this case we can use iterativeess with preconditioners to
solve linear systems with'. However, when these linear systems are not solved actyrate
the theoretical properties of the extended block Arnoldigesss are no longer valid. Next, we
give some properties that will be useful later.

PROPOSITION2.2. Let7,, = VI FV,,, and suppose that: steps of Algorithn2.1
have been carried out. Then we have

FVm = Vins1 T 2.1)
=V T + Vi1 T 1,m By (2.2)

whereT; ; is the2s x 2s (i, j) block of7,,, and E,;, = [Oax2(m—1)s> Is]T is the matrix of
the last2s columns of th@ms x 2ms identity matrixls,,, ;.
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Proof. SinceV,,,+1 = [Vin, Vint1], we have

Tont1 = V1 FVmi1

B { VIEV,, VIV }
| Ve FVe Vi FVn

— |: Tm VrjrzFVerl }
L Ve FVm Vi FVag |

Now, as7,,1 is block upper Hessenberg, we ha>Q§+1FVm = mHmEﬁ, and

. 7,
_ VT _ m
Tm - Vm+1FVm - |: Terl.,mE;zrl :| .
Using the fact that#'/C,,, C K,,+1 and thatV,,; is orthogonal, it follows that there gxists
a matrix L such thatFVm_: m41L. HenceV,EHFVm = L, which shows thaf., = 7,,.
Therefore F'V,, = Vin+1Zm. O

3. Low rank approximate solutions to large CARES. In this section, we will see how
to extract low rank approximate solutions to the continutiore algebraic Riccati equation
(1.1). We project the initial problem onto the extended blockliswsubspacéC,,, (AT, CT).
Applying the extended block Arnoldi process (Algorittind) to the pair( AT, CT) gives us
an orthonormal basi§Vi, ..., V,,} of the extended block Krylov subspa#g, (AT, CT).
We consider low-rank approximate solutions that have thafo

X = Vi Y VL, (3.1)

whereV,, = [Vi, ..., V,,] andY,, € R?msx2ms Note thatrank(X,,) < 2ms.

We note that the block Arnoldi algorithm also produces lonkrapproximate solutions
of the form B.1). However, the last method usually needs many iteratiomggvi® an accu-
rate approximation, which increases the CPU time. Thematipart of the extended block
Arnoldi method is considered here as an acceleration ptoeed

From now on, the matrig,,, is defined byZ,,, = VI ATV,,. Using the expressiors(1)
in the matrix equationl( 1), multiplying on the left byv'Z, and on the right by,,,, we get the
low-dimensional continuous-time algebraic Riccati egprat

ToYo + Y T.F — Y, B BLY,, + CT C,, = 0, (3.2)

with B,,, = VLB, C1 = VICT = & Ay 1, whereé; = [I;, Oy (2m—1)s]7 is the matrix
of the firsts columns of the2ms x 2ms identity matrix [2,,,s andA; ; is thes x s matrix
obtained from the QR decomposition

[CT,A"TCT] = ViA with A = [A“ Al@} : (3.3)
0 A272
We assume that the projected algebraic Riccati equaii@hifas a unique symmetric positive
semidefinite and stabilizing solutidr),,. This solution can be obtained by a standard direct
method such as the Schur methad]|
If m steps of Algorithm2.1 are applied to the paitA”, CT), then using the results of
Propositior2.2we have

ATVm — Vme + Vm-ﬁ-le-Q—l,mErz;- (34)
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Now, multiplying the reduced-order continuous-time algéb Riccati equation3.2) on the
left by V,,, and on the right by’ and using 8.4), we get

[ATVm - m-l—le-l—l,mEgJ Ymvg; + mem [ATVm - m+1Tm+1,mEZ;]T

V.Y, VI BB, Y, VI + cTC = 0.

SettingF,, = Vi T, 1, Vi1 @nd using the relation

Vit 1 Tt 1,m B Y Vit = Vi1 Tt m B VE X,
it follows that
(A-F) "X + Xpu(A = Fp) — X,,BBTX,,, + CTC = 0. (3.5)

The matrix equationd.5) shows that the approximatioty,, is an exact solution of a perturbed
continuous-time algebraic Riccati equation.

LetR,, = A" X,, + X,;,A — X,,BBT X,,, + CTC be the residual associated with the
mth approximate solution and lebe some fixed tolerance. The computatiorkgf (and of
R,,) becomes expensive asincreases. Therefore, in order to stop the iterations, asdd
test if || R,,|| < e without computing extra products involving the matrlx The next result
shows how to compute the residual norm/tf, without computing the approximatial,,,,
which is computed in a factored form only when convergeneeigeved.

THEOREM 3.1. Let X,, = V,,Y;,, VL be the approximation obtained at stepby the
extended block Arnoldi-CARE method and Y&t be the symmetric positive semi-definite
stabilizing solution of the low-dimensional CAREZ). Then the residuak,,, satisfies

”RmH = HTerl,mYmH, (36)

whereY,, is the2s x 2ms matrix corresponding to the lagts rows ofY;,,.
Proof. From the relations3.1) and 3.2), we have

Ry, =A™V, Y, VL + v, v, VLA -V, Vv,V BBV, Y, VI + CTC.

Using 3.4) and the fact that'" = Vl(l)AM, Wherevl(l) is the matrix of the firs columns
of V; andA; ; is defined in 8.3), we get

R = VT + Vi1 T 1,m B ) Yo Vi, + Vi Yo (Th Vi + En T 1 Vi)

57 1 nT
VoY B BLY, VE 4+ VVA AT VY

- (7, Y — Yo B BT Y, ] 3o
- L Tm-ﬁ-l,mE;l;Ym Vm+

T
Voo [YoTL Y EwTE ) VE o+ VA AT v

Vo (T Y + Y T,L — Y By BLY,, + E:M AT ET Y ELTE VT
" Toi1.mELY,, 0 m+1

SinceC,, = &A1 1 andY,, is the symmetric solution of the reduced CAREZ), we have

0 Y EnTE

B =Vsr | g L ETY,, 0" ] Vot
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and
HRmH = HTmﬂ-l,mErz;Ym” = ”Tm-f-l,mf/mHa

wherey,, = ETY,, represents thes last rows ofY,,,. 0

Theorem3.1is important in practice, as it allows us to stop the iteratichen conver-
gence is achieved without computing the approximate soiuti,,, at each iteration. The
solution X,,, could be given as a product of two matrices of low rank. In,fastce X, is
positive semidefinite, it is possible to decompose iKas = ZZ”, where the matri¥ is of
rank smaller than or equal fan. Consider the singular value decomposition of2hex 2m
matrix Y;, = UXU”T whereY is the diagonal matrix of the singular values ¥, sorted
in decreasing order. Léf; be the2m x [ matrix of the first/ columns ofU corresponding
to the! singular values of magnitude greater than some tolerdtale We obtain the trun-
cated singular value decompositidh, ~ U;,U whereX;, = diag[oy,...,0;]. Setting

Zm = ViUiE)?, it follows that
X~ ZnZE.

We notice that this remark was used 81 for Lyapunov matrix equations.

Next, we give an upper bound for the norm of the etkor X ,,,, whereX is the exact
solution of the CARE 1.1).

THEOREM 3.2. Let X,,,, Y,, be themth approximate solution obtained with the ex-
tended block Arnoldi-CARE algorithm and the solution of phejected problem3.2), re-
spectively. Le,, be the2s x 2ms matrix corresponding to the lagts rows ofY;,. We
sety,, = |Tmi1mYml, n = ||[BBT|, andA,, = A — BBTX,,, and assume that,, =
sep(Am, —AL) > 0. Then ifd~,,n/62, < 1, we have

[X — Xl < (3.7)

29m
5m + \ 57271 - 4'7m77.

Proof. The proofis similar to the one given iad]. O
The extended block Arnoldi (EBA-CARE) algorithm for the tioious-time algebraic
Riccati equation is summarized as follows
ALGORITHM 3.3. The extended block Arnoldi Riccati algorithm (EBA-CARE)
e Inputs: A ann x n matrix, B ann x p matrix,C ans x n matrix.
e Step 0. Choose atolerance> 0, a maximum number of iterations,,, .,
and a tolerancdtol;
e Stepl. Form=1, 2,..., Mmaz
e Stepl.1  Computel,, to update the orthonormal badi®y, ...,V }
by Algorithm 2.1
Compute the block Hessenberg matfjy ;
e Step 1.2  Solve the low-dimensional Riccati equation:
TYm + Y T,V — Y, B, BYY,, + CLC,, = 0;
whereB,, = VI B; CT = VI CT,
e Step 1.3  Compute the residual norm: B
T'm ‘= ||Tm+1,mYm|
whereY,, is the2s x 2ms matrix corresponding to
the last2s rows ofY;,,.
e Stepl4d  Ifr, <e
gotoStep 2
end if.
end for
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e Step 2. Compute the singular value decompositio¥gf, i.e.,Y,, = ULUT

whereX = diagoy,...,00,] andoy > ... > oo
Determine such that; 1 < dtol < oy, set¥; = diagoy,...,0;
1/2.

computeZ,, = V,,U;%;"7;
The approximation,,, is given byX,, ~ Z,,Z1.
In Step 1.2, the low order algebraic Riccati problem is soblvg the Schur metho@f).

4. Numerical examples.In this section, we provide experimental results to show the
effectiveness of the extended block Arnoldi-CARE algaritiThe obtained results are com-
pared with those obtained by the block Arnoldi Riccati metfib7, 18] and by the Newton-
ADI method, also called the Low Rank Cholesky Factorized téeviLRCF-Newton) method
[8, 28]. We used the functiohp_l r nmin the LYAPACK packageZ7]. We notice that in
each Newton outer iteration we have to solve a large Lyapumaivix equation. In the LRCF-
Newton method, these Lyapunov matrix equations are soly¢iadid_ow Rank Cholesky Fac-
torized ADI method 28]. This last method requires the computation of optimal ARigm-
eters. In our numerical tests, we used a heuristic procetheevIATLAB functionl p_par a
from the LYAPACK library [27]. This last procedure is based on the classical Arnoldigssc
and is denoted by LRCE(k), k,,), wherel is the number of ADI parameters, is the num-
ber of Arnoldi iterations, and,,, is the number of inverted Arnoldi iterations. A maximum
numbemaxN= 20 of outer iterations was allowed for LRCF-Newton, while theér iter-
ations were stopped when the norm of inner residuals wagHasd0—° or when the inner
iteration number was larger thamaxA= 50.

All the experiments were performed on a computer with anl [Rentium 4 processor
at 3.4 GHz and 2048 MBytes of RAM. The algorithms were codeMuarLAB 7.2. The
same stopping criterion is used for both algorithms, anatimeputations were stopped when
|R(Xm)||/||CCT|| < ¢ = 107", In the singular value decomposition &f,, (Step 2 in
Algorithm 3.3), we useditol = 10712 to discard the columns @f corresponding to diagonal
elements of less thardtol.

ExAMPLE 4.1. This first example describes a model of heat flow with ectign in the
given domain. We consider the following linear time-inzant system

x(t) = Ax(t) + Bu(t),
y(t) = Cu(t),

where the matrix4 is obtained from the centered finite difference discreitiradf the oper-
ator

on the unit squar@, 1] x [0, 1] with homogeneous Dirichlet boundary conditions. The di-
mension of the matrix4 is n = nZ, wheren, is the number of inner grid points in each
direction. Different values of, p, ands are used. Since the matriis structured (band
matrix), the LU factorization required in Algorithh 1is easily done, even though the prob-
lems are relatively large. The entries of the p matrix B and thes x n matrixC' are random
values uniformly distributed oft), 1].

In Table 4.1, we report the results obtained with the extended block WindBA-
CARE), the block Arnoldi (BA-CARE), and the Low Rank Cholgskactorized Newton
(LRCF-Newton) methods. For each method, we listed the numbierations needed for
convergence, the CPU time in seconds, and the rank of thénebtapproximate solution.
The results listed in Tabke.1show the performance of EBA-CARE as compared to the other
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TABLE 4.1
Results for Examplé.1

Test problem Method Iter. CPUtime Rank(,,)
n = 6400 EBA-CARE 14 4.87 93
s=5p=5 BA-CARE 99 595.65 93

1 =10, k, =20, k,, =20 | LRCF-Newton 12 678.85 118
n = 8100 EBA-CARE 17 3.96 61
s=3,p=2 BA-CARE 114 210.96 60
l=15,k, =40, k,, =20 | LRCF-Newton 11 365.71 65
n = 12100 EBA-CARE 17 12.28 101
s=5,p=2 BA-CARE 127  1503.21 100

1 =10, k, =20, ky, =20 | LRCF-Newton 12 927.25 115

two algorithms. For LRCF-Newton, we used different valutthe parameters k,,, andk,,
and we report those parameters that give the best results.

EXAMPLE 4.2. In this example, we consider a benchmark problem coifnarg a dis-
cretization of a convective thermal flow proble®6]. The associated linear time-invariant
system is given by
E.I'(t) = Aol'(t) + Bou(t), (41)
y(t) = Cx(t).

The matricesdy (flow meter model v0.5.4), By (flow meter model v0.5.B),

E (flowmeter model v0.5.E) and C' (flow meter model v0.5.C) have been extracted
from the IMTEK collectiort. For this example: = 9669, nnz(A,) = 67391, s = 5 and
p = 1. As the matrixZ is diagonal and nonsingular, the linear time-invariantesys@.1)
can be reformulated as in.Q) with A = E~'Ay, andB = E~'B,. We note that for this
examplel| Al r ~ 106 and|| B|| p ~ 10°.

TABLE 4.2
Results for Examplé.2.

Method | Iter. Res. norms CPUtime Rank(,)
EBA-CARE 39  8.6710°8 1.210? 111
BA-CARE > 300 2341072 > 2.210° -
LRCF-Newton > 20 3.07107% > 4.1103 -

1=10,kp = 15,k = 15

For this experiment, we compared the performance of the EBRE algorithm with the
LU factorization of the matrix4, the BA-CARE algorithm, and the LRCF-Newton method.
As shown in Tablel.2, the BA-CARE and the LRCF-Newton methods fail to convergiimi
a total number ofmaxB= 300 iterations for BA-CARE andnaxN= 20 outer iterations for
LRCF-Newton.

5. Conclusion. We presented in this paper a new iterative method for comgutw
rank approximate solutions to large scale algebraic Riecatations. The method is based on
the extended block Arnoldi algorithm, which is a Krylov spase generated by the matrices
A andA~!. The advantage of this new method as compared to others fa¢héhat, in

Ihttp:/iwww.imtek.de/simulation/
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general, it requires a small number of iterations to give ecueate approximation of the
desired solution. As compared to the block Arnoldi and toltR&€F-Newton methods for
large and sparse problems, our algorithm requires less @R&and memory. We notice
that when the LU factorization of the matrix is not possible (or is very expensive), then,
in the EBA-CARE algorithm, we can use a preconditioned Kvyirethod for solving linear
systems with4, but in this case some theoretical properties are lost.

Acknowledgments. We would like to thank the referees for their recommendatamd
helpful suggestions.
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