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Abstract. We present a new iterative method for the computation of approximate solutions to large-scale
continuous-time algebraic Riccati equations. The proposed method is a projection method onto an extended block
Krylov subspace, which can be seen as a sum of two block Krylovsubspaces inA andA

−1. We give some the-
oretical results and present numerical experiments for large and sparse problems. These numerical tests show the
efficiency of the proposed scheme as compared to the block Arnoldi and Newton-ADI methods.
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1. Introduction. This paper presents a new iterative method for the numericalsolution
of the continuous-time algebraic Riccati equation (CARE) of the form

AT X + XA − XBBT X + CT C = 0, (1.1)

whereA ∈ R
n×n is nonsingular,B ∈ R

n×p andC ∈ R
s×n. The matricesB andC are

assumed to be of full rank withp ≪ n, s ≪ n.
Riccati equations play a fundamental role in many areas, such as control, filter design,

model reduction, differential equations, and robust control [2, 3, 9, 14, 22, 25, 33]. For
historical developments, applications and importance of algebraic Riccati equations, we refer
to [1, 9, 13] and the references therein. Usually, in these applications, the so-called stabilizing
solution of (1.1) is desired. Such a solutionX is symmetric positive semidefinite and has
the property that the eigenvalues of the resulting closed-loop matrixA − BBT X are in the
open complex left-half plane (i.e., each eigenvalue of the matrix A − BBT X has a negative
real part). The stabilizing solution exists and is unique under certain assumptions on the
problem [12, 22].

Let x(t) ∈ R
n be the state vector,u(t) ∈ R

p be the control vector, andy(t) ∈ R
s be the

output vector. We consider the following problem: minimize

J(x0, u) =
1

2

∫ +∞

0

(

y(t)T y(t) + u(t)T u(t)
)

dt (1.2)

under the dynamic constrains
{

ẋ(t) = Ax(t) + Bu(t) with x(0) = x0,

y(t) = Cx(t).
(1.3)

Under the hypotheses that the pair(A, B) is stabilizable (i.e., there is a matrixS such that
A − BS is stable) and the pair(C, A) is detectable (i.e.,(AT , CT ) stabilizable), a unique
optimal solutionū that minimizes the functionalJ(x0, u) exists [32], and it can be deter-
mined through a feedback operatorK, such that̄u(t) = Kx(t), whereK = −BT X and
X ∈ R

n×n is the unique symmetric positive semidefinite and stabilizing solution of the ma-
trix equation (1.1).
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The unique stabilizing solution of the CARE equation (1.1) can be obtained by consider-
ing SH, then-dimensional stable invariant subspace (i.e., the subspace corresponding to the
eigenvalues ofH in the open left half plane) of the corresponding Hamiltonian matrix (see
[23, 25])

H =

[

A BBT

CT C −AT

]

∈ R
2n×2n.

If SH is spanned by the columns of
(

XT
1 , XT

2

)T
∈ R

2n×n and X1 is nonsingular, then
X = −X2 X−1

1 is the stabilizing solution of (1.1).
During the last decades, many numerical methods for solvingthe CARE (1.1) with small

and dense matrices have been developed. The standard computational methods are based on
the Schur and structure-preserving Schur methods [23, 31, 10, 24, 25], matrix sign function
methods [5, 11, 20, 29], Newton-type methods [21, 4, 22, 6, 16] and the symplectic Lanczos
method [7].

Generally, the matricesA, B andC are obtained from the discretization of operators de-
fined on infinite-dimensional subspaces. Moreover, the matrix A is in general sparse, banded
and very large. For such problems, only a few attempts have been made to solve (1.1). The
well-known Low Rank Cholesky Factorized Newton (LRCF-Newton) method [28] is one of
the widely used methods for solving (1.1). At each step of the outer Newton iteration, one
needs to solve a large Lyapunov matrix equation. In the LRCF-Newton method, these Lya-
punov matrix equations are solved by the Low Rank Cholesky Factorized method [28], which
is based on the solution of linear systems with shifted matricesA − µiI where theµi are the
ADI parameters. The determination of the “optimal” ADI parameters and the computation of
the approximate solution of the Lyapunov equations increase the memory requirements and
the CPU time of the LRCF-Newton method.

Projection methods on block Krylov subspaces, using the block Arnoldi process, and
on matrix Krylov subspaces, using the global Arnoldi process, also have been applied to
compute low rank approximate solutions to large and sparse CAREs [17, 18, 19]. However,
these methods usually need many iterations (large projection subspaces) to produce an ac-
curate approximate solution, and this increases considerably the CPU time and the memory
requirements.

To remedy the drawbacks of the LRCF-Newton and the block or global Arnoldi algo-
rithms, we present a new projection method that allows us to compute low rank approxima-
tions to the stabilizing solution of (1.1). We project the initial problem onto an extended block
Krylov subspace generated by the matricesA andA−1, and we obtain a low-dimensional
CARE that is solved by a standard algorithm such as the Schur method [23]. The extended
block Krylov subspace is generated by means of the extended block Arnoldi process first
introduced in [15] and used for solving Lyapunov equations in [30]. We also give new theo-
retical results, such as an upper bound for the norm of the error and a perturbation result.

The remainder of the paper is organized as follows. In Section 2, we present the extended
block Arnoldi algorithm and give some properties. In Section 3, we show how to extract low
rank approximate solutions to CAREs and give some theoretical results, such as an expression
for the norm of the residual and an upper bound for the norm of the error. Section4 is devoted
to some numerical examples and comparisons with other methods.

Throughout this paper, we use the following notation. The 2-norm and the Frobenius
norm of matrices will be denoted by‖ · ‖ and‖ · ‖F , respectively. The separation between
two matricesA andB of dimensionn × n andp × p, respectively, is given bysep(A, B) =
min‖X‖=1 ‖AX − XB‖. Finally, Ir andOr×l will denote the identity of sizer × r and the
zero matrix of sizer × l, respectively.
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2. The extended block Arnoldi algorithm. We first recall the extended block Arnoldi
process applied to the pair(F, G), whereF ∈ R

n×n andG ∈ R
n×s. The projection subspace

Kk(F, G) of R
n that we will consider was introduced in [15, 30]:

Kk(F, G) = Range([G, F−1G, FG, F−2G, F 2G, . . . , F−(k−1)G, F k−1G]).

Note that the subspaceKk(F, G) is a sum of two block Krylov subspaces,

Kk(F, G) = Kk(F, G) + Kk(F−1, F−1G),

whereKk(F, G) = Range([G, FG, . . . , F k−1G]). The following algorithm allows us to
compute an orthonormal basis of the extended Krylov subspaceKk(F, G). This basis con-
tains information on bothF andF−1. Letm be some fixed integer which limits the dimension
of the constructed basis. The extended block Arnoldi process is described as follows:

ALGORITHM 2.1. The extended block Arnoldi algorithm (EBA).
• Inputs:F ann × n matrix,G ann × s matrix andm an integer.
• Step 0.Compute the QR decomposition of[G, F−1G], i.e.,[G, F−1G] = V1Λ;

SetV0 = [ ];
• Step 1.Forj = 1, . . . , m

• Step 1.1 SetV (1)
j : first s columns ofVj ; V

(2)
j : seconds columns ofVj

• Step 1.2 Vj = [Vj−1, Vj ]; V̂j+1 =
[

FV
(1)
j , F−1V

(2)
j

]

.

• Step 1.3 OrthogonalizêVj+1 with respect toVj to getVj+1, i.e.,
For i = 1, 2, . . . , j

Hi,j = V T
i V̂j+1;

V̂j+1 = V̂j+1 − ViHi,j ;
end for

• Step 1.4 Compute the QR decomposition of̂Vj+1, i.e., V̂j+1 = Vj+1Hj+1,j .
end for.

Since the above algorithm involves implicitly a Gram-Schmidt process, the block vec-
tors Vm = [V1, V2, . . . , Vm] (Vi ∈ R

n×2s) have mutually orthogonal columns, provided
none of the upper triangular matricesHj+1,j are rank deficient. Hence, afterm steps, Algo-
rithm 2.1 builds an orthonormal basisVm of the Krylov subspaceKm+1(F, G) and a block
upper Hessenberg matrixHm whose nonzero blocks are theHi,j . Note that each submatrix
Hi,j (1 ≤ i ≤ j ≤ m) is of order2s.

Let Tm ∈ R
2ms×2ms be the restriction of the matrixF to the extended Krylov subspace

Km(F, G), i.e.,Tm = VT
mFVm. It is shown in [30] thatTm is also block upper Hessenberg

with 2s × 2s blocks. Moreover, a recursion is derived to computeTm from Hm without
requiring matrix-vector products withF . For more details on how to computeTm from
Hm, we refer to [30]. We note that for large problems the inverse of the matrixF is not
computed explicitly, and in this case we can use iterative solvers with preconditioners to
solve linear systems withF . However, when these linear systems are not solved accurately,
the theoretical properties of the extended block Arnoldi process are no longer valid. Next, we
give some properties that will be useful later.

PROPOSITION2.2. Let T̄m = VT
m+1FVm, and suppose thatm steps of Algorithm2.1

have been carried out. Then we have

FVm = Vm+1T̄m (2.1)

= VmTm + Vm+1Tm+1,mET
m. (2.2)

whereTi,j is the2s × 2s (i, j) block ofTm andEm = [O2s×2(m−1)s, I2s]
T is the matrix of

the last2s columns of the2ms × 2ms identity matrixI2ms.
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Proof. SinceVm+1 = [Vm, Vm+1], we have

Tm+1 = VT
m+1FVm+1

=

[

VT
mFVm VT

mFVm+1

V T
m+1FVm V T

m+1FVm+1

]

=

[

Tm VT
mFVm+1

V T
m+1FVm V T

m+1FVm+1

]

.

Now, asTm+1 is block upper Hessenberg, we haveV T
m+1FVm = Tm+1,mET

m, and

T̄m = VT
m+1FVm =

[

Tm

Tm+1,mET
m

]

.

Using the fact thatFKm ⊆ Km+1 and thatVm+1 is orthogonal, it follows that there exists
a matrixL such thatFVm = Vm+1L. HenceVT

m+1FVm = L, which shows thatL = T̄m.
Therefore,FVm = Vm+1T̄m.

3. Low rank approximate solutions to large CAREs. In this section, we will see how
to extract low rank approximate solutions to the continuous-time algebraic Riccati equation
(1.1). We project the initial problem onto the extended block Krylov subspaceKm(AT , CT ).
Applying the extended block Arnoldi process (Algorithm2.1) to the pair(AT , CT ) gives us
an orthonormal basis{V1, . . . , Vm} of the extended block Krylov subspaceKm(AT , CT ).
We consider low-rank approximate solutions that have the form

Xm = VmYmVT
m, (3.1)

whereVm = [V1, . . . , Vm] andYm ∈ R
2ms×2ms. Note thatrank(Xm) ≤ 2ms.

We note that the block Arnoldi algorithm also produces low rank approximate solutions
of the form (3.1). However, the last method usually needs many iterations togive an accu-
rate approximation, which increases the CPU time. The rational part of the extended block
Arnoldi method is considered here as an acceleration procedure.

From now on, the matrixTm is defined byTm = VT
mATVm. Using the expression (3.1)

in the matrix equation (1.1), multiplying on the left byVT
m and on the right byVm, we get the

low-dimensional continuous-time algebraic Riccati equation

TmYm + YmT T
m − YmB̃mB̃T

mYm + C̃T
mC̃m = 0, (3.2)

with B̃m = VT
mB, C̃T

m = VT
mCT = E1Λ1,1, whereE1 = [Is, Os×(2m−1)s]

T is the matrix
of the firsts columns of the2ms × 2ms identity matrixI2ms andΛ1,1 is thes × s matrix
obtained from the QR decomposition

[CT , A−T CT ] = V1Λ with Λ =

[

Λ1,1 Λ1,2

0 Λ2,2

]

. (3.3)

We assume that the projected algebraic Riccati equation (3.2) has a unique symmetric positive
semidefinite and stabilizing solutionYm. This solution can be obtained by a standard direct
method such as the Schur method [23].

If m steps of Algorithm2.1 are applied to the pair(AT , CT ), then using the results of
Proposition2.2we have

ATVm = VmTm + Vm+1Tm+1,mET
m. (3.4)
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Now, multiplying the reduced-order continuous-time algebraic Riccati equation (3.2) on the
left by Vm and on the right byVT

m and using (3.4), we get

[

ATVm − Vm+1Tm+1,mET
m

]

YmVT
m + VmYm

[

ATVm − Vm+1Tm+1,mET
m

]T

−VmYmVT
mBBTVmYmVT

m + CT C = 0.

SettingFm = VmT T
m+1,mV T

m+1 and using the relation

Vm+1Tm+1,mET
mYmVT

m = Vm+1Tm+1,mET
mVT

mXm,

it follows that

(A − Fm)T Xm + Xm(A − Fm) − XmBBT Xm + CT C = 0. (3.5)

The matrix equation (3.5) shows that the approximationXm is an exact solution of a perturbed
continuous-time algebraic Riccati equation.

Let Rm = AT Xm + XmA − XmBBT Xm + CT C be the residual associated with the
mth approximate solution and letǫ be some fixed tolerance. The computation ofXm (and of
Rm) becomes expensive asm increases. Therefore, in order to stop the iterations, one has to
test if ‖Rm‖ < ǫ without computing extra products involving the matrixA. The next result
shows how to compute the residual norm ofRm without computing the approximationXm,
which is computed in a factored form only when convergence isachieved.

THEOREM 3.1. Let Xm = VmYmVT
m be the approximation obtained at stepm by the

extended block Arnoldi-CARE method and letYm be the symmetric positive semi-definite
stabilizing solution of the low-dimensional CARE (3.2). Then the residualRm satisfies

‖Rm‖ = ‖Tm+1,mỸm‖, (3.6)

whereỸm is the2s × 2ms matrix corresponding to the last2s rows ofYm.
Proof. From the relations (3.1) and (3.2), we have

Rm = ATVmYmVT
m + VmYmVT

mA − VmYmVT
mBBTVmYmVT

m + CT C.

Using (3.4) and the fact thatCT = V
(1)
1 Λ1,1, whereV

(1)
1 is the matrix of the firsts columns

of V1 andΛ1,1 is defined in (3.3), we get

Rm = (VmTm + Vm+1Tm+1,mET
m)YmVT

m + VmYm(T T
mVT

m + EmT T
m+1,mV T

m+1)

−VmYmB̃mB̃T
mYmVT

m + V
(1)
1 Λ1,1Λ

T
1,1V

1)
1

T

= Vm+1

[

TmYm − YmB̃mB̃T
mYm

Tm+1,mET
mYm

]

VT
m +

Vm

[

YmT T
m YmEmT T

m+1,m

]

VT
m+1 + V

(1)
1 Λ1,1Λ

T
1,1V

(1)
1

T

= Vm+1

[

TmYm + YmT T
m − YmB̃mB̃T

mYm + E1Λ1,1Λ
T
1,1E

T
1 YmEmT T

m+1,m

Tm+1,mET
mYm 0

]

VT
m+1.

SinceC̃m = E1Λ1,1 andYm is the symmetric solution of the reduced CARE (3.2), we have

Rm = Vm+1

[

0 YmEmT T
m+1,m

Tm+1,mET
mYm 0

]

VT
m+1
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and

‖Rm‖ = ‖Tm+1,mET
mYm‖ = ‖Tm+1,mỸm‖,

whereỸm = ET
mYm represents the2s last rows ofYm.

Theorem3.1 is important in practice, as it allows us to stop the iteration when conver-
gence is achieved without computing the approximate solution Xm at each iteration. The
solutionXm could be given as a product of two matrices of low rank. In fact, sinceXm is
positive semidefinite, it is possible to decompose it asXm = ZZT , where the matrixZ is of
rank smaller than or equal to2m. Consider the singular value decomposition of the2m×2m
matrix Ym = UΣUT whereΣ is the diagonal matrix of the singular values ofYm sorted
in decreasing order. LetUl be the2m × l matrix of the firstl columns ofU corresponding
to the l singular values of magnitude greater than some tolerancedtol. We obtain the trun-
cated singular value decompositionYm ≈ UlΣlU

T
l whereΣl = diag[σ1, . . . , σl]. Setting

Zm = VmUlΣ
1/2
l , it follows that

Xm ≈ ZmZT
m.

We notice that this remark was used in [30] for Lyapunov matrix equations.
Next, we give an upper bound for the norm of the errorX − Xm, whereX is the exact

solution of the CARE (1.1).
THEOREM 3.2. Let Xm, Ym be themth approximate solution obtained with the ex-

tended block Arnoldi-CARE algorithm and the solution of theprojected problem (3.2), re-
spectively. Let̃Ym be the2s × 2ms matrix corresponding to the last2s rows ofYm. We
setγm = ‖Tm+1,mỸm‖, η = ‖BBT ‖, andAm = A − BBT Xm, and assume thatδm =
sep(Am,−AT

m) > 0. Then if4γmη/δ2
m < 1, we have

‖X − Xm‖ ≤
2γm

δm +
√

δ2
m − 4γmη

. (3.7)

Proof. The proof is similar to the one given in [18].
The extended block Arnoldi (EBA-CARE) algorithm for the continuous-time algebraic

Riccati equation is summarized as follows
ALGORITHM 3.3. The extended block Arnoldi Riccati algorithm (EBA-CARE)
• Inputs: A ann × n matrix,B ann × p matrix,C ans × n matrix.
• Step 0. Choose a toleranceǫ > 0, a maximum number of iterationsmmax,

and a tolerancedtol;
• Step 1. Form = 1, 2, . . . , mmax

• Step 1.1 ComputeVm to update the orthonormal basis{V1, . . . , Vm}
by Algorithm2.1.
Compute the block Hessenberg matrixTm ;

• Step 1.2 Solve the low-dimensional Riccati equation:
TmYm + YmT T

m − YmB̃mB̃T
mYm + C̃T

mC̃m = 0;
whereB̃m = VT

mB; C̃T
m = VT

mCT ;
• Step 1.3 Compute the residual norm:

rm := ‖Tm+1,mỸm‖;
whereỸm is the2s × 2ms matrix corresponding to
the last2s rows ofYm.

• Step 1.4 If rm < ǫ,
go toStep 2,

end if.
end for
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• Step 2. Compute the singular value decomposition ofYm, i.e.,Ym = UΣUT

whereΣ = diag[σ1, . . . , σ2m] andσ1 ≥ . . . ≥ σ2m;
Determinel such thatσl+1 < dtol ≤ σl, setΣl = diag[σ1, . . . , σl];

computeZm = VmUlΣ
1/2
l ;

The approximationXm is given byXm ≈ ZmZT
m.

In Step 1.2, the low order algebraic Riccati problem is solved by the Schur method [23].

4. Numerical examples. In this section, we provide experimental results to show the
effectiveness of the extended block Arnoldi-CARE algorithm. The obtained results are com-
pared with those obtained by the block Arnoldi Riccati method [17, 18] and by the Newton-
ADI method, also called the Low Rank Cholesky Factorized Newton (LRCF-Newton) method
[8, 28]. We used the functionlp lrnm in the LYAPACK package [27]. We notice that in
each Newton outer iteration we have to solve a large Lyapunovmatrix equation. In the LRCF-
Newton method, these Lyapunov matrix equations are solved by the Low Rank Cholesky Fac-
torized ADI method [28]. This last method requires the computation of optimal ADI param-
eters. In our numerical tests, we used a heuristic procedure: the MATLAB functionlp para
from the LYAPACK library [27]. This last procedure is based on the classical Arnoldi process
and is denoted by LRCF(l, kp, km), wherel is the number of ADI parameters,kp is the num-
ber of Arnoldi iterations, andkm is the number of inverted Arnoldi iterations. A maximum
numbermaxN= 20 of outer iterations was allowed for LRCF-Newton, while the inner iter-
ations were stopped when the norm of inner residuals was lessthan10−6 or when the inner
iteration number was larger thanmaxA= 50.

All the experiments were performed on a computer with an Intel Pentium 4 processor
at 3.4 GHz and 2048 MBytes of RAM. The algorithms were coded inMATLAB 7.2. The
same stopping criterion is used for both algorithms, and thecomputations were stopped when
‖R(Xm)‖/‖CCT ‖ < ǫ = 10−7. In the singular value decomposition ofYm (Step 2 in
Algorithm 3.3), we useddtol = 10−12 to discard the columns ofU corresponding to diagonal
elements ofΣ less thandtol.

EXAMPLE 4.1. This first example describes a model of heat flow with convection in the
given domain. We consider the following linear time-invariant system

{

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),

where the matrixA is obtained from the centered finite difference discretization of the oper-
ator

L(u) = ∆u − 10y
∂u

∂x
− 2x

∂u

∂y
− (y2 − x2)u

on the unit square[0, 1] × [0, 1] with homogeneous Dirichlet boundary conditions. The di-
mension of the matrixA is n = n2

0, wheren0 is the number of inner grid points in each
direction. Different values ofn0, p, ands are used. Since the matrixA is structured (band
matrix), the LU factorization required in Algorithm2.1is easily done, even though the prob-
lems are relatively large. The entries of then×p matrixB and thes×n matrixC are random
values uniformly distributed on[0, 1].

In Table 4.1, we report the results obtained with the extended block Arnoldi (EBA-
CARE), the block Arnoldi (BA-CARE), and the Low Rank Cholesky Factorized Newton
(LRCF-Newton) methods. For each method, we listed the number of iterations needed for
convergence, the CPU time in seconds, and the rank of the obtained approximate solution.
The results listed in Table4.1show the performance of EBA-CARE as compared to the other
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TABLE 4.1
Results for Example4.1.

Test problem Method Iter. CPU time Rank(Xm)
n = 6400 EBA-CARE 14 4.87 93
s = 5, p = 5 BA-CARE 99 595.65 93
l = 10, kp = 20, km = 20 LRCF-Newton 12 678.85 118
n = 8100 EBA-CARE 17 3.96 61
s = 3, p = 2 BA-CARE 114 210.96 60
l = 15, kp = 40, km = 20 LRCF-Newton 11 365.71 65
n = 12100 EBA-CARE 17 12.28 101
s = 5, p = 2 BA-CARE 127 1503.21 100
l = 10, kp = 20, km = 20 LRCF-Newton 12 927.25 115

two algorithms. For LRCF-Newton, we used different values of the parametersl, kp, andkm,
and we report those parameters that give the best results.

EXAMPLE 4.2. In this example, we consider a benchmark problem comingfrom a dis-
cretization of a convective thermal flow problem [26]. The associated linear time-invariant
system is given by

{

Eẋ(t) = A0x(t) + B0u(t),

y(t) = Cx(t).
(4.1)

The matricesA0 (flow meter model v0.5.A), B0 (flow meter model v0.5.B),
E (flow meter model v0.5.E) and C (flow meter model v0.5.C) have been extracted
from the IMTEK collection1. For this examplen = 9669, nnz(A0) = 67391, s = 5 and
p = 1. As the matrixE is diagonal and nonsingular, the linear time-invariant system (4.1)
can be reformulated as in (1.3) with A = E−1A0 andB = E−1B0. We note that for this
example‖A‖F ≃ 106 and‖B‖F ≃ 105.

TABLE 4.2
Results for Example4.2.

Method Iter. Res. norms CPU time Rank(Xm)
EBA-CARE 39 8.67 10−8 1.2 102 111
BA-CARE > 300 2.34 10−2 > 2.2 103 -
LRCF-Newton > 20 3.07 10−4 > 4.1 103 -
l = 10, kp = 15, km = 15

For this experiment, we compared the performance of the EBA-CARE algorithm with the
LU factorization of the matrixA, the BA-CARE algorithm, and the LRCF-Newton method.
As shown in Table4.2, the BA-CARE and the LRCF-Newton methods fail to converge within
a total number ofmaxB= 300 iterations for BA-CARE andmaxN= 20 outer iterations for
LRCF-Newton.

5. Conclusion. We presented in this paper a new iterative method for computing low
rank approximate solutions to large scale algebraic Riccati equations. The method is based on
the extended block Arnoldi algorithm, which is a Krylov subspace generated by the matrices
A andA−1. The advantage of this new method as compared to others is thefact that, in

1http://www.imtek.de/simulation/
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general, it requires a small number of iterations to give an accurate approximation of the
desired solution. As compared to the block Arnoldi and to theLRCF-Newton methods for
large and sparse problems, our algorithm requires less CPU time and memory. We notice
that when the LU factorization of the matrixA is not possible (or is very expensive), then,
in the EBA-CARE algorithm, we can use a preconditioned Krylov method for solving linear
systems withA, but in this case some theoretical properties are lost.
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