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FAST SOLUTION OF A CERTAIN RICCATI EQUATION THROUGH
CAUCHY-LIKE MATRICES *
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Abstract. We consider a special instance of the algebraic RiccatitequX CX — XE — AX + B =0
encountered in transport theory, where the: n matrix coefficientsA, B, C, E are rank structured matrices. The
equation is reduced to unilateral fordy X2 + AqX + A_; = 0 and solved by means of Cyclic Reduction
(CR). It is shown that the matrices generated by CR are Calikéhyvith respect to a suitable singular operator
and their displacement structure is explicitly determin€de application of the GKO algorithm provides a method
for solving this Riccati equation i (n?) arithmetic operations (ops) with quadratic convergendee Jtructured
doubling algorithm is analyzed in the same framework anclacated toO(n2) ops as well. In critical cases
where convergence turns to linear, we present an adaptatitme shift technique which allows us to get rid of
the singularity. Numerical experiments and comparisonghvbonfirm the effectiveness of the new approach are
reported.

Key words. nonsymmetric algebraic Riccati equation, cyclic redutti@auchy matrix, matrix equation, fast
algorithm, M-matrix.
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1. Introduction. The numerical treatment of a problem in transport theorgteel with
the transmission of a neutron beam in a solid medi&} is reduced to the solution of the
following nonsymmetric algebraic Riccati equation (NARE)

XCX - XE-AX +B=0, (1.1)

whereA, B,C, E € R"*™ are given by

A=A—-eq", B=eel, C=q¢", E=D—qge", (1.2)
and
e=(1,1,...,1)7]
q:(qlanaaQn)T Wlth quQCTTTa (1 3)
A:diag(51,52,...,5n) with 51 = m, '
D= diag(dl,dg, .. ,dn) with di = m

The matrices and vectors above depend on the paranteters < 1, 0 < o < 1 and
on the sequences < w, < ... < wy < w; < lande¢; > 0,i = 1,2,...,n, such that
>, ci = 1. For the physical meaning of these parameters, we refeetider to 19 and to
the references therein. The solution of interest is the mmahipositive one, which exists as
proved in fL9).

Itis important to point out that equatioh.() with coefficients {..2), (1.3) originates from
the numerical discretization of an integral differentiglation where the size of the un-
known X corresponds to the number of nodes used for the numeriegiretion. Therefore,
the largem is, the more accurate is the approximation’®fto the solution of the physical
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model; thus, large values afare meaningful in practice. It is therefore important toiges
fast algorithms for the solution ofL.(1) for large values of..

As shown by Chun-Hua Gud. (], this equation falls in the class of nonsymmetric al-
gebraic Riccati equations associated with a nonsingulamatrix or a singular irreducible
M-matrix; in fact, arranging the coefficients as

(1.4)

el

-B A

yields an M-matrix. We recall that/ is an M-matrix if M = 61 — N, whereN has nonneg-
ative entries and is greater than or equal to the spectral ragi(i¥) of N [1].

The solution of {.1) with the assumptionsl(2) and (L.3) can be expressed in closed
form in terms of the eigenvalues and eigenvectors of a deitahtrix; see 19 and the more
recent paperZ2]. However, here we proposed hociterative algorithms based on matrix
iterations, which, unlike]9] and [22], avoid computing eigenvalues and eigenvectors, fully
exploit the structure of the problem, and are easily extbled® more general cases.

In fact, many iterative algorithms based on matrix itenagitnave been devised in the
literature. The main available algorithms for computing thinimal positive solution of this
class of algebraic Riccati equations are Newton’s methié}] [ogarithmic Reduction (LR)
[12], Cyclic Reduction (CR) 3] and the Structure-Preserving Doubling Algorithm (SDA)
[14, 16]. All these algorithms share the same order of complexitgt ts,O(n?) arithmetic
operations (ops) per step, and all provide quadratic cgevere in the generic case and linear
convergence in critical cases.

O(n?) complexity algorithms have been designed by L.-Z. 2ij] but they have linear
convergence which turns to sublinear in critical cases. évtecently, an algorithm imple-
menting the Newton iteration witf(n?) ops per step has been obtained relying on properties
of certain structured matriced][

In this paper, we provide two other algorithms of complexity2?) which maintain the
quadratic convergence. The first one relies on a transfawmptovided by Ramaswami in
[23] that allows one to express the matfixin terms of the solution of a unilateral quadratic
matrix equation of the form

A1Y2 + A()Y + A—l - O,

for suitable2n x 2n matricesA_1, Ay, A;. This equation is solved by means of the cyclic
reduction algorithm, which has quadratic convergence éngéneric case and complexity

O(n?). We prove that the matrix sequen({eﬂ‘&;i)}i,j = —1,0, 1, generated by CR are such

thatDAy) - A;l)D has rank at most 5 for anyandj = —1,0, 1, whereD is a suitable
diagonal matrix. Matrices of this kind are known as Caudkg:| Operators of the kind
X — D1 X — XD, have been introduced and systematically studied by Geoigjdiand
Karla Rost in the book1[g]. In particular, we provide the explicit Cauchy represtiotes of
these sequences and determine the equations that relajerteeators of these matrices at
two subsequent steps of the algorithm. This result enalslés provide an algorithm which
implements CR with complexity)(n?) based on a modification of the Gohberg-Kailath-
Olshevsky (GKO) algorithmd].

The second method that we introduce is based on the strdadorgbling algorithm in-
troduced in [L6]. As in the above case, it can be proved that the iteratesgeuEby applying
SDA to the problemX.2) are Cauchy-like, and their generators can be computedtékpin
terms of the involved matrices. This allows one to developlgorithm that implements the
SDA iteration in structured form i®(n?) operations per step.
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Since both Ramaswami’s Cyclic Reduction method and the SBAaater than Newton-
based methods for the general NARE1], it is interesting to study the behaviour of such
methods also in a structured context, such as the prolleln (o see if similar performance
comparisons can be achieved relative to the Newton-basttuohproposed ird].

In critical cases encountered when= 0, ¢ = 1, the convergence of CR and SDA
turns to linear. We show that the shift technique Df][ which transforms the critical case
into a new non-critical Riccati equation, can still be apglivith complexityO(n?) and with
guadratic convergence.

Our algorithms are still valid in the more general case wiferd holds with

A=A-egT, B=¢T, C=g", E=D-g”,

ande, ¢, €, G € R™ ", In this case the complexity i3(rn?) ops per step while the analogous
generalization of the algorithm ofif based on Newton’s iteration would ca8{r3n?) ops
per step. Observe also that the secular equation approdé&l]atnd [22] is hardly extend-
able to this general case, since the eigenvalue problemdagonal plus rank matrix is
computationally more difficult than solving a secular edqpraaind the separation intervals for
the eigenvalues are not available anymore.

The paper is organized as follows. In Sectiyiwe introduce some of the tools that are
needed to prove our results. In Sectidghand4, we show how to develop the structured
versions of CR and SDA, respectively. Then, in SecBipwe show that the shift technique
can be used by our algorithm with no increasing of the contjmural cost. Sectior deals
with an alternative implementation of part of the algorithmorder to overcome numerical
problems in critical cases. This section is of more generarést since it shows how to
replace a singular displacement operator with a nonsingula with a slight increase of the
complexity. Numerical experiments and conclusions foliowthe last two sections.

2. Preliminary tools.

2.1. Singular and critical equations. Equation (..1) is said to benonsingularif M,
as in (L.4), is a nonsingular M-matrix. 1M is a singular irreducible M-matrix, let its left
and right Perron vectors’ andv be partitioned accordingly to the definition 6 asu” =

[ul Wl ]v= [Ul] ; the equation is said to be
U2

e transient if ul vy — ud'vy > 0;

e positive recurrentif u? vy — ulvy < 0;

e null recurrent or critical, if u{ v, — ulvy = 0.
It has been proved inlp, 11] that equation 1.1) is nonsingular ifc < 1, transient ifc = 1
anda > 0, and null recurrent it = 1 anda = 0.

2.2. Transforming a Riccati equation into unilateral form. It has been proved by
Ramaswami in3 (see also 12)) that.S is the minimal nonnegative solution df.{) if and
only if the matrix

| I—tE+tCS 0
o= [ 1S ) 2
is the minimal nonnegative solution of the following unded| equation
A1Y2 + Ay + A1 =0, (22)
where
I—tE 0 —I tC 00
Al_{ tB o}’AO_{o —I—tA]’Al_[O I}’ (2:3)
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andt is such that /t > max{e; ;,a;;: t=1,...,n}.

2.3. Cyclic reduction. We briefly recall the cyclic reduction algorithm for comput-
ing the minimal nonnegative solution o2.¢) and its convergence propertie3 p]. Let

AY = 4, i=-1,0,1,andA©® = Ay, and fork > 0 define the sequences

3

—1
k+1 k k k k k k
AP = Al — AN KO AP — AP EOAY, K0 = (a)

AR = AW W AR AR = AP ) A (2.4)
N N k k
Ak+1) — Ak) _ Ag )K(k)A(_f-

Since M is a nonsingular M-matrix, or an irreducible singular M-nigtthe conditions of

applicability et Agk) # 0) and convergence of CR are satisfiedd, 12]. In particular, the
sequence

Gk — _ (ﬂ’f))*l A, (2.5)

converges t@-. The following result holdsq, 12].
THEOREM2.1.If (1.])is

e nonsingular, therimy A(_kl) = limy Agk) = 0 with quadratic convergence, and
lim;, G*) = G with quadratic convergence.

e transient, therlimy, Agk) = 0, limg A(fl) = A* |, limp; G® = @ with quadratic
convergence;

e positive recurrent, therim;, Agk) = Aj, limg, A(fl) = 0, lim; G® = G with
quadratic convergence;

o null recurrent, therim,, Agk) = A3, limy, A(fl) = A* |, lim, G®) = G with linear
convergence.

The last case is known as thdtical case For the problem defined byL(2) and (L.3),
we fall in this case only for = 1, « = 0, as proved in19].

A useful formulation which enables us to perform a structamelysis of the matrix
sequences generated by CR is the functional formulationigied in [5]. Let p(*)(2) =
2AP 4 A 4 2=14%) and lety® (2) = o) (2)~! wherez is a complex variable and
() (2) is defined for the values af such thatlet p(*) () # 0. The following equation can
be easily verified

1
5 @M (@) + 90 (=2)). (2.6)
2.4. Structured doubling algorithm. The structured doubling algorithmi§] is an-
other algorithm for computing the solution of a nonsymnueeaiigebraic Riccati equation.
The algorithm can be described as follows. Chopsemax{e; ;,a;;: i=1,...,n};let

w(k+1)(22) _

W=A+~I—-B(E+~I)"'C, V=FE+~I—-CA+~I)"'B,
and
Ey=IT-279V"1,
Fo=1-29yW™1,
Go =2y(E+~I)"'CW 1,
Ho =29yW 'B(E +~I)"".

2.7)
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Fork > 0, calculate

Eyy1 = En(I — GpHy) ' Eg,
Fiy1 = Fp(I — HyGy) ' Fy,
Gri1 = Gy + Ex(I — Gy Hy) "' G Fy,
Hyy1 = Hy + Fi(I — Hi,Gy) ' HLE},.

(2.8)

We have the following convergence result]16].
THEOREM2.2.If (1.1)is
e nonsingular, thenlimy F;, = limg Fr, = 0 with quadratic convergence, and
limg Hy, = S with quadratic convergence.
e transient, therimy Fy, = 0, limy £y, = E,, limy Hi = S with quadratic conver-

gence;

e positive recurrent, thetimy, Fj, = F, limy Fx = 0, limy, H;, = S with quadratic
convergence;

e null recurrent, thenimy, F}, = F,, lim, E;, = E., lim;, H, = S with linear con-
vergence.

2.5. Cauchy-like matrices and the GKO algorithm. A displacement operatas an
operatofR™*" — R™*" of the formVg s : M — RM — MS, with R, S € R"*". Itis
easy to prove the following algebraic properties of disptaent operators.

LEMMA 2.3 (properties of displacement operatodsgt R, S, T, M, N, D, A € R**™,
with D and A diagonal. Then,

1. Vp,p(A)=0;

2. Vps(M +N)=Vgs(M)+ Vgs(N);
3. Vst(MN) = VR,T(M)N + MVT,S(N);
4. Vrs(M™Y) = -M~'Vgr(M)M~!.

A matrix C' is calledCauchy-likeif there are diagonal matrice® = diag(r1,...,7,)
andsS = diag(si,. .., sn), Withr; # s; forall 4, j, such that

Vis(C) =u”, (2.9)
whereu,v € R™*" andr is small with respect ta,, i.e., if Vi ¢(C) has low rank. Note
thatC' is uniquely determined by igeneratorsu, v and the two vector§r1 e rn]T and
[s1 ... sn]T by means of the equation

1 T
Cij = — ;uz',evj,z.
We will call a matrix7” Trummer-liké if there is a diagonal matrio = diag(ds, ..., d,),

with d; # d; for all i # j, such that

Vp.p(T) =uv”, (2.10)
whereu,v € R"*", andr is small with respect ta, i.e., if Vp p(T) is low-rank. Note
thatVp p is a singular operator, its kernel being the set of all diajomatrices, and there-

fore the displacement equation determines only the offahal part of7". It follows that

1The name comes from the so-callBdimmer problemsee [] and the references therein for further details.
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T is uniquely determined by its generatarsy and the two vector:{dl e dn}T and
[t ... t,m]T (the latter one being the main diagonalloy

Using the relationsq.9) and .10 we can easily reconstruct a Cauchy-like or a Trummer-
like matrix from its generators witt(rn?) arithmetic operations; reconstructing the matrix
and then applying the usual matrix-matrix product yieldsabgorithm for multiplying an
n x s Cauchy-like (Trummer-like) matrix and a generic< s matrix in O(n?(r + s)) ops.

We refer to these algorithms as Algorithil.

ALGORITHM 2.4. Cauchy-like (Trummer-like) matrix-matrix product

function y = camm(r, s, u, v, X)
% returns y = Cx x, where C satisfies
% diag(r) « C — C % diag(s) = u x v’
% x may be a vector or a matrix
n size(u, 1);
C (uxv')y ./ (r = ones(1, n)— ones(n, 1)* (s).");
y =C % X;
end function
function y = trmm(d, dg, u, v, x)
% returns y = Tx x, where T satisfies
% diag(d) « T — T % diag(d) = u * v’
% and diag(T) = dg
n = size(u, 1);
T=(u=xv’') ./ (dx ones(l, n)— ones(n, 1)« (d).’ + eye(n));
for i = 1:n
T(i,i) = dg(i);
end for
y =T x X;
end function

The problem of solving a linear system with Cauchy mafrixvas treated by Gohberg,
Kailath and Olshevsky ing]. Their algorithm, known as the GKO algorithm, is based an th
fact that the Schur complement of certain Cauchy-like roasris Cauchy-like. In our case,

if
rt 0] |cin ci2 ci1 ci2| |s1 O Uy
— = v V 5
[0 Rz] Lzl 022] Lzl 022] [0 SJ {UJ [ V2]
wherery, s; ande; ; are scalarsge; andv; are column vectors, angq, u; are row vectors,
then the Schur compleme@t= Css — 02101_11c12 solves the displacement equation

A oA 1 1
RQC — OSQ = (U2 — _621U1)(V2 — —012’01). (211)
C11 C11

Thatis,Vg, s, (C) has rank at most.

Using this fact, one can perform Gaussian elimination onntlagrix C' in O(n?r) op-
erations: at each step, instead of computing the entridseothur complement a@f, one
computes its generators as given Byl(). Combining this algorithm with the customary
back-substitution, we can solve a linear system with Cadi&leymatrix andn x s constant
coefficientinO(n?(r + s)) operations.

The same technique can be used for systems with a Trumneeml#trix 7', as shown
in [4], with the additional complication that knowing the gertera of 7" is not sufficient
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to reconstruct the Schur complement. In fact, we need to céenis diagonal elements
separately: at each step, we update the diagon@l a$ we were performing a customary
Gaussian elimination, and we compute the generators offtiiiagonal elements as in the
GKO algorithm. The resulting algorithm is presented as Athon 2.5. The algorithm can
be combined with partial pivoting to improve its numericaslity, though this will not be
necessary in the following since it will only be applied tansmgular M-matrices.

ALGORITHM 2.5. Solution of a linear system with Trummer-like matrix

function x = trsv(d, dg, u, v, b)

% returns x = T{-1} b, where T satisfies

% diag(d) « T — T % diag(d) = u x v’

% and diag(T) = dg

% precondition: Gaussian elimination without pivoting
% is stable for T

n = size(u, 1);
U = zeros(n); %matrix U of the LU factorization
| = zeros(n,1); %active column of L of the LU factorization
X = b;
for k = 1:n
if (abs(dg(k)) < 1.d—10) warn "Pivot is too small!”;
% generates a column of L and solves {E1}xb on-the—fly
I (k+1:n) = ((u(k+21:n,:) %= (v(k,:))’')/dg(k)) ./ (d(k+1l:n}yd(k));
x(k+1:n) = x(k+1:n) — I(k+1:n) * x(k);
% generates a row of U
U(k, k) = dg(k);
U(k,k+1:n) = (u(k,:) * (v(k+1l:n,:))" ) ./ (d(k)-d(k+1:n)).’;
% updates the generators to generators of the Schur compheme
u(k+1:n,:) = u(k+l:n,:)— I(k+1l:n) % u(k,:);
v(k+1:n,:) = v(k+1:n,:) — (U(k,k+1:n)") % v(k,:) [/ dg(k);
% updates the diagonal
dg(k+1:n) = dg(k+1:n)— [(k+1:n) % U(k,k+1:n);
end for
% solves the resulting upper triangular system
x=U\ x

end function

3. Structure analysis of Cyclic Reduction and the main algathm. In the following,
we consider the case of Riccati equations of the fatri) (with

A=AN-¢¢", B=¢el, C=q", E=D-ge, (3.2)

suchthat, ¢, ¢, g € R"*" are positive, and, A € R™*" are diagonal with positive diagonal
entries. Moreover, we ask thatl (as in (L.4)) is an M-matrix, so that the theorems it
ensure that a minimal solution exists. Note that setting 1,¢ = e,q = ¢ yields (1.2).
Here we make no assumptions on the rank ofithe » matrices involved in3.1). In fact,
the theoretical analysis holds true in general. From thepedational point of view it is more
convenient to have full rank matrices.

3.1. Block structure. By performing the cyclic reduction with initial matrices tfe
form (2.3), some structures are preserved in the matrix sequeﬂéésAf.k), i=-1,0,1:

THEOREM3.1. LetA(fl) , Aék) , A) , Agk), k > 0, be the matrix sequences generated by
the CR(2.4) with initial matrices(2.3). Then,
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1. The matrix sequences are of the form

S N S N PO
wherex denotes a generie x n block.
2. The(2,1) block ofA{") and A%) are the same matrix.
Proof. All results can be easily proved by induction, noticing hitve zero blocks are
distributed among the matrices. In particular, the secantifpllows by observing that, in
the formulas 2.4) for updatingA{*™™" and A*+1), the term—A") K A" only modifies
the (2, 1) block, and the ternﬁkAgk)K(k)A(fl) only modifies the second block colunih.

3.2. Rank structure. Consider the unilateral matrix equation.?) with block coeffi-
cients @.3). For the matrix functionp(?) (2) = A_;27' + A + A 2, we get

— D)1 — 7
R R SO P01 [P

Using the Sherman-Morrison formulg][to invert (%) (), we have

4O (2) = (6O () = 2(2) - 2(2) [2] 1) [T 7] Z(2)

with

() = (I—tD)z"t—1 0 -

- 0 oI — (I+tA)|
~1 _1

r(z)=t (Ir +t[z7tel ¢'] Z(z) [g )

Now, since
DZ(2) = Z(2)D = {ZOI _OI} 4 2Z(2) with D = I_OtD I—i—OtA] ,

we find that

Vp,p(w(o)(z)) =—-DZ(z) [~ r(z) [z’leT QT] Z(z)

SSY
—_

Setting
§OT(2) = —zr(2) 21T 7] Z(2),
TOT(2) = r(2) 27t "] Z(2),

1) =2 [ rco),
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yields

Vo) = [ 507 + [ 107 4 10 [ o).

e

Using the functional formulation2(6) of CR and the linearity oV p p, we can easily
prove by induction that

Vo) = 25076 + [ 07 106 [ -] )

for eachk > 0, with
1

0 (22) = (0 () + E9(~2)),
G* D (22) = %(a““)(z) +a®(—2)).

Thereforey*)(z) has displacement rark for all & > 0. Also, »*)(z) has displacement
rank3r, since

Vo,0(¢™(2)) = Vo,p (w(’“’(fr)’l) = —o®(2) (vp,p(w““) (z))) oM (2)

by part 4 of Lemma.3.
Let
k k) |4 k)T k
N H I G e PG

k k) |4 k)T k
o = (2 ATl ) A,

0
o~ [, A7 AP, 63

o9 = 4 (2], ohD = AWK,

) _ 4© g 7 WD) — () 408 k) ()

(0) _ 40 g 7 Wi = ) A®) pe ) (B

- (3.4)

wf® = a0 [, W) — AW KR,
PO = [ —qT]AY), PHHIT = BT o)
T((JO)T _ [eT —qT} Aéo), r((JkJrl)T _ Ték) B T(_kl)TK(k)Agk) B Tgk)TK(k)A(_kl)7
TgO)T _ [eT —qT} A§0)7 r§k+1)T _ —T‘gk)TK(k)Agk).
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Also, define

(O = <[ o], &7 - 8T R 4%, .
th)T _ [0 qT] ’ t(()kJrl)T _ t(()k)T o t(,kl)TK(k)Agk). .

Finally, set

KT wr (I 0
=10 )

and notice that in view of the block structure of Theorér

S((Jk-l—l)T _ S((Jk)T B Tgk)TK(k)A(_kl).

We can now prove a more precise result concerning the steuofp®) (z).
THEOREM3.2. Letp® (2) = 241" 4 AP 4 2-14") pe the sequence generated by
the application of cyclic reduction t?.3) for the problem(3.1). Then,

V(AR =o 5T 4 T BT

)

Vp D(A((Jk)) ZU(_kl)rgk)T + vé’“’sé’“” + wék)tgk)T + wgk)t(_kl)T + uorék)T, (3.6)

)

Vo,p(AM) =0 +uo)r{?" + w{MtT

Proof. The result holds by mathematical induction. The base stegiisple verification;
concerning the inductive step, for the sake of brevity, weamily present the analysis relative
to A(fl) since the cases of(()k) andAgk) are very similar. In view of Lemma.3, from (2.4)
we have

VD,D(A(_]T_I)) =Vopop (—A(_kl)K(k)A(_kl))

—— Voo (AS’?) K®A® A% g (K(’“)) A® — A® W g, (A&’“f)

— Voo (AS’“}) K®A® 4 AW g0 g, 5 (Ag@) E®A® _ gA® g0 g, (AS’“})
- (v(_kl)sék)T +wP BT 4 uorﬂ?T) KM AR 4
ALK (o80T 4 o7 BT 00T 07 0408
AR (o AT | g7

_ Agcl)K(k)vgkl) (Sék)T _ TEk)TK(k)A(lcl)) -~ (w(()k) - A(Jcl)K(k)wgk)) tgcl)TK(k)A(fl)
—ulr®) K 4R

:vgkrl)sgk+l)T +w(()k+l)t(ff_1)T —|—ugk+l)r(7k;_1)T.

Here, we made use of the following facts:
e A_1Kvy = v_q androKA_; = r_;, which follows from the definitions of¢ (*)

and @.3);
o A Kwy=A_4 g = 0, due to the position of the zero bIocksA{_kl) andAgk),

as proved in Theore®.1. O
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We can say more about the meaningtglffT andt(fl)T. Let us consider first th&, 1)
block ofA(fl); let it be calledF(®). Selecting the second block row of the formula for the
update ofA(fl), we have

[F+D 0] = — [F®) 0] KW AK)

andF© = tgeT. Thus, by comparing this formula with that 87 in (3.5), we see that
[F® 0] = —tet™)".

Let us now turn to consider tH&, 2) block ofA((Jk); let it be calledG®). From the block
structure of the iterates, it follows that in the update fatan(2.4) for Ag’“) only the term

AM E® 4% ypdates the block ). Writing down explicitly the update relation, we get
[0 GED] =[]0 GW]—[F® o K®MAP

andG(® = —T —t(A —eq™). By using the above result and combining this update formula

with that oft((f)T in (3.5, we can see that

[0 ¢®] =0 —I—tA] -7, (3.7)

3.3. The main algorithm. The structure relations3(6) allow us to develop a faster
version of the CR iteration with computational c@3tn?r) per step. In fact, Algorithms

2.4and2.5allow us to perform fast computations Wiﬂl(fl), Agk) and Agk) using only the
generators of these matrices. At each détepthe cyclic reduction, we only need to store and
update the nine x r generators

(k) (k) (k) (k) (k) (k) Tgk)’ t(()’“), tgk). (3.8)

’Ufl’ ’UO y ’LUO ) U)l ) 7’71, 7’0 y
Note thats'*) need not be explicitly stored because it easily can be reed\ieomrf)k).

Our plan is to perform the update using the Trummer-like afens introduced in Sec-
tion 2.5, However, in order to do that, we need a method to calculaalithgonal entries
of the involved matrices, since they cannot be recovered tiee generators, nor computed
explicitly during the algorithm (without resorting to & (n?) algorithm). Notice first that a
Trummer-like matrixI" can be written as

diag(7T') + Trummer(D, U, V),

whereTrummer (D, U, V') is the only Trummer-like matrix with respect ¥p p» with gen-
eratorsl/, V and zeroes on the diagonal. Therefore, for any vectare have

Tz — Trummer(D, U, V)x = diag(T)z,
so that knowing the generators’Bfand the vector produdtzx, we can recover;; as

b = (T'z — Trummer(D, U, V))ii’ (3.9)

Xq

provided thatr; is nonzero. We can use this technique to calculate the d&#goitries of the
Al(.k) which are not knowm priori from the above results, that is, the firstliagonal entries
of A(_kl) and the lask of Agk) (note that, in view of Theorer®.1and (3.7), the diagonal of
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Aék) can be easily determined). As for the vectorit is possible to choose a column of
respectively{g] or [g] . After recovering the diagonal entries of thék), we can update the

generators using the Trummer matrix-vector arithmeticadgrm the updates described in
the right-hand part of equation3.4) and 3.5). R
Notice that we do not need to store nor updaté) explicitly in order to recover the

~ -1
solution X as the(2, 1) block of — (A(k)) ASO{ at the end of the algorithm, because of

(2.)) and @.5). In fact, Theoren3.1shows that the four blocks of(*) are known; moreover,
the Schur complemeut = Ag;) + Aé’i)Agg) is diagonal plus rank, as it can be written as

Z=-T—tA+te+ AP, (3.10)

in view of (3.1) and Theoren3.1 It is therefore possible to find by applying block Schur
~ —1
complementation to the system(A(k)) (A9 [ 0]), which yields

ZX =tB+ AW(I —tE). (3.11)

The resulting system involving can be solved irO(rn?) ops using, e.g., the Sherman-—
Morrison formula or the GKO algorithm (since a diagonal plaiskr matrix is Trummer-like
with rank2r with respect to any diagonal matrix).

The algorithm, whose total costd(rn?), is briefly sketched in Algorithr3.3.

ALGORITHM 3.3. Structured cyclic reduction

function X=fastcr(D,A,e,q,¢,q)
k=0;
initialize the generator matrices (usin®4, (3.4 and @3.9)
do
k=k+1;
calculate the diagonals ofﬁlgk) with (3.9
update the generators usin@g.4 and @.H
while (stopping criterion)
calculate the entries of the (2,1) block of Aék)
build the Schur complementZ of A® according to %.10
solve @.11) with the Sherman—Morrison formula or GKO
end function

An obvious choice for the stopping criterion would be to cenepthe iterateX (*) at
each step and explicitly calculate the residual of the Ri@gguation (.1). However, this is
quite expensive. Theorefhl provides another good choice. In all three cases, the seqaen
A(fl) andAgk) converge; therefore, we can simply check that the normseofitio values

G RO R TGSV (U O U
—1 0 —1 0l 1 e 1 e
are small enough. This can be done with a small overhead #iecvalues we need are two
of the nine generators and thus are already computed at &gehls the noncritical case,
another viable choice is checking that
Agk) [9] ) <g,
€l

. k) |G
min (|42 g

)

1
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since at least one oi(fl) andAgk) converges to zero by TheoreiriL

Note also that the algorithm can be accelerated by skippiagomputations with the
zero blocks, thus reducing all the computations te n matrix computations. This way, one
sees that one only needs to updatertenr» matrices (instead of nin@n x r) at each step.

4. Structure analysis of SDA. The structure analysis of SDA, following the same strat-
egy, leads to less cumbersome computations. Let

E -C

= {B ~A

} \ = (H D) H — A1),

and suppose thdi, is nonsingular. For the problerfi.(), we have

g 5[ o

The matrices{ and’., commute, since the latter is a rational function of the farnidis
fact implies that

|:€ _OA:| 'H%k _Hik |:€ _OA:| _ |:E]v~] [eT QT} ,H%k —'Hik |:_Z]Vg] [eT qT}7 (4.1)

—e
which shows tha‘Hik has low displacement rank with respect to a suitable (saryopera-
tor.

It follows from the results on matrix pencils presentedlif]] or also by direct verifica-
tion from equations4.7) and @.8), that

Hgk: I —Gk -1 Ek 0
v 0 Fy —H, I|°

Using this relation, it is easy to check that

1w =B o). [0 BJME = [-H. 1),
2" 1 _ E}, 72" 0 _ G (4.2)
Y | Hg 0]’ 7| Fy I |’
Now, multiply (4.1) by [0 F] to the left and by{lg } to the right, to get
k
—FA + AF, = —Fye(q” +e"Gy) + (Hiq + €)q" Fi.

Similarly, multiplying @.1) by either[0  F},] or [I —Gy] to the left and eithe{}?] or
k

[é ] to the right, in all four combinations, yields equations
k

DE), — E,.D = (4 Gré)e By, — Exq(e” +¢" Hy),

AFy, — FyA = (Hiq+¢€)q" Fi, — Fré(q" + " Gi), 4.3)
DGy + GipA = (G+ Gre) (T Gr + ¢7) — Ergq” Fy, '
AHy, + HyD = (Hpg+ €)(eT + ¢THy,) — Freel By,
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which provide low displacement rank representations fertatrix sequences generated by
SDA. Using these relations, we proceed along the lines obatigm 3.3. At each step, we
only store in memory the eight generators

oW =B, o =Re, o) =@+ Gre), oY =Hg+e, )
wgk)T =eT E},, wék)T =qT Fy, wék) =eT'Gy + 47, wflk)T =el + ¢THy, '
and update them accordingly to the following relations i{gakerived from @.9))
vgkﬂ) Ei(I — GpHy)~ Uik),
oY) = Fu(1 — H,Gr) ol
oY = o) L B (T — GLH) T Gl
oD = oW 4 BRI — H.GR) Ho “s)
wT — w1 — G Hy) B, '
wlFT — BT (1 G R,
wFT = T L w1 — GLHL) T GRF
wi T = (’“)T +wi (I — Hy,Gy,) " Hy. By

using the Cauchy- and Trummer-like structue3[ to carry out the computations. Note that
I — GiH, andI — H,G) are Trummer-like, and their generators can be computedjusin
Lemma2.3 e.qg., for] — Gy Hy, we have

Vo p(I—-GrH)=Vpp(I)—Vpp(GrHy) =0—Vp _aA(Gr)Hy, — G, V_a p(Hy).

In addition, we have to keep track of the diagonald/pfand F}; in order to perform the
computations. In the same fashion as CR, these diagonalsecegcovered using formula

(3.9 using asr one of the columns ofg = Fiq, vy (k) — = Fye.

ALGORITHM 4.1. Structured SDA

function X=fastsda D ,A,e,q,¢,q)
k=0;
initialize the generator matrices usin@.])
do
k=k+1;
calculate the diagonals of, Fr, with (3.9
update the generators using.5)
while (stopping criterion)
return X=Hj
end function

As a stopping criterion, in the noncritical case, we can heefact that the sequence

min(||e” Ex ||, , | Fe]|,) converges quadratically to zero.

5. On differences between CR and SDAIn view of the similar structure and be-
haviour of the two algorithms we have presented, one may dwt tie think that there is a
deep connection between them. Recently, some new resuliseorelationships between
Cyclic Reduction and the SDA have been presented]inlf turns out that the SDA can be
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expressed as a form of CR applied to a unilateral equafidh {hose coefficients are sub-
stantially different from those in2(3). The convergence behaviour of CR f@r3) depends
essentially on the ratip; /2, wherep is the largest (in modulus) eigenvalue of the matrix
pencil associated with2(2) inside the unit circle, angd. is the smallest one outside it; see,
e.g., b]. These eigenvalues are given in terms of those of

K:E jﬂ (5.1)

by 11 = f(\1), p2 = f(A2), where\y, A, are the two eigenvalues closer to zero (on the two
different sides of the complex axis) &f, f(xz) = I — ¢tz for Ramaswami's CR and(z) =

% in the case of the SDA. Therefore, it turns out that the e)gioes for the convergence
ratio of the two algorithms in terms of the are significatively different, especially when the
shift technique is applied to remove the zero eigenvalu&Siofthe singular case. Depending
on the location of the eigenvalues/6fin the complex plane, one method may attain a faster
convergence than the other. Moreover, sire€)(is definitely simpler than its analogue for
the SDA (which, in the end, is equivalent t8.7)), there might be a small loss of precision
implied in the computations to get the initial values of titmethods. In fact, in the
numerical experiments that we are presenting, it turns loait in their structured versions
SDA is slightly faster than CR, but also less accurate.

6. The shift technique. In the critical case: = 1, « = 0 of the NARE (L.2), several
drawbacks are encountered. As reported in Theoramand?2.2, the convergence of the
presented algorithms is linear instead of quadratic; maedt has been shown il § that
an O(e) perturbation to the coefficients of the equation leads t@&(=) variation in the
solution. All these drawbacks can be removed by means offifietechnique originally
introduced be He, Meini, and Rhee ih7] and applied to algebraic Riccati equations in
[3, 4, 14].

The shift technique applied to this problem consists inaeiplg the Riccati equation
(1.2), with the coefficient matrices given bg.(), with the equation

XCX - XE—-AX +B =0, (6.1)
with
A=A—nupl, B=B+nupl, C=C-nupl, E=FE+nupl, (62)

=[]

is the right Perron vector of the M-matrid defined in Equationi(4), andp” = [p{ p3]| €
R*2" js any positive row vector such thatv = 1, andn > 0 is such thatM + nup’ is
still an M-matrix. It is proved in 4] that the minimal nonnegative solution df.() is the
minimal nonnegative solution 06(1), and that the latter is noncritical. Therefore, cyclic
reduction and SDA applied to this problem converge quachtyi to the common minimal
nonnegative solutiody' of the two equations.

As noted in fl], a natural choice fop” in the problem (.2 isp” = [e” ¢”],0 <y <
dy, which preserves the property that the corresponﬁfmgs defined in1.3) is a diagonal
plus rank one M-matrix, and therefore allows one to use therdhm presented here for the

case 8.1) with » = 1 and
q _ 9=
e e+ nua |’

where
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More generally, in the cas@(l) one can apply the same technique choogih@s one of the
rows of [eT qT} (suitably scaled), and a value gfchosen such that the column with the

same index o{g] is (entry-wise) greater thajv. This choice preserves the property that the
correspondin@ﬁ is a diagonal plus rank M-matrix, maintaining the problem in the form of

equation 8.1) without having to increase the valuesof

7. Another approach to the computation of the diagonal. The algorithms presented
in the previous sections provide an effective tool for ssgvequation.1) under the assump-
tions (L.2) and (L.3). However, in the critical and nearly critical cases wherec) is close
to (0, 1), numerical instability problems are encountered in the matation of the diagonal
entries of the involved matrices via the formuBad). This phenomenon is well illustrated in
the numerical experiments of SectiBn The cancellation error in formul&(9) in a single
iteration is not particularly high, but its accumulatiomahigh the successive iterations of the
algorithm has a dramatic impact on the accuracy of the coeapadlution.

In this section, we propose an attempt to cure this drawbablch in fact is a general
technique for transforming a singular displacement oper&ip p into a new nonsingular
operatoV p, p, for whichrank Vp, p,(A) < rankVp p(A) + 1.

For a given vecton, rewrite R = Vp p(A) = DA — AD as

R=DA — AD + uu” — uu™),
so that
DA — AD +uu”) = R — Auu” =: Ry,

whererank R; < rank(R) + 1. Moreover, ifu is chosen as one of the displacement gen-
erators ofR, thenrank R; < rank R. Assume for simplicity thaD = diag(v1,...,%v2n),
whered < 71 < -+ <Y < Y1 < -+ < Yap. Set

g’i = (71 +’Y’i+l)/27 1= 1727 . .,2TL - 17 6277. > Yon- (71)

Then it is easily verified that the quantities

H?L (& — )

o H?il j;éi(%‘ = %) 72

are positive and that the matriX + vu”, with
u; = \/o3, (7.3)
has eigenvalueg,, . . . , £&2,. Moreover, it is a simple matter to prove that the veatdt =

(v, wherev!?) = u;0;/(€; — ;) and

—1/2
0; = (Z(ui/(%’ - 53‘))2) ; (7.4)

is a normalized eigenvector & + uu” corresponding to the eigenvalgg In other words,
it holds that

(D + UUT)S = SDl, S = (9Jul/(§7 — ’}/i)), Dy = diaqgl, e ,ggn), (75)
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whereSST = I. Thus, one has
DAS — ASD; = RS — Auu™'S,

and the operatoV p, p, is nonsingular.

This approach would allow one to apply the standard Cauikeyrhatrix machinery to
perform the computation of CR (or SDA) by replacirgyg) by new expressions. However,
in this way we would lose the block structure of the vectowived in 3.8) with an increase
of complexity.

It is also possible to use the new nonsingular operator algdmputing the diagonal
elements oﬁ4(f1) andAgk). For the sake of notational simplicity, let us uddor one of the
above matrices and 18 p p(A) = 320_, v(Dw®T = ywT, where the vectors”) andw(®)
represent the vectors in the right-hand side36), andv = [v1,v2,v3], w = [w1, w2, ws].
DenoteB = AS and observe that

0: (vwTS + (Au)uT S
aii =Y (B)ij(S)ij=—uiy = ( @ J_rii)Q) ) (7.6)

J J

In the case wherd = AT i =1 1, it holds that
Ay = — AP (AP APy, (7.7)

so that the productu can be computed using the Trummer-like representatioreafiitrices

AZ(.'“). In the SDA case, similarlyy. .1 u andFj, v can be computed from the Trummer-like
representations of the matrices at skep

Algorithm 7.1 synthesizes the computation of the diagonal entries of anfirar-like
matrix A given its generators and the produbt (for a suitable vectou).

ALGORITHM 7.1. Computation of the diagonal of an x m Trummer-like matrixA

# precomputation step:
choosew
compute :
&, t=1:m by means of 1.0
u;, i=1:m by means of 1.2 and (.3
0;. i=1:m by means of 1.4
uTS, where S is as defined in7(6), using Algorithm 2.4

function d=altdiag D ,v,w,Au)

# output:

# d = diag(A).

# input:

# D (diagonal matrix),v, w such that

# DA — AD = vw’

# and Au=A:u

# Au can be computed inany way, e.g. using 1.7
compute w™S by using Algorithm 2.4

for i=1:m
apply (7.6) and obtaind(i) = ai
end for

end function
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n BIP Lu SDA CR SSDA sCR

32 2.E-04 2.E-04 1.4E-03 9.9E-04 1.4E-03 1.6E-03
64 4.E-04 1.8E-03 9.4E-03 7.2E-03 4.8E-03  5.0E-03
128 2.2E-03 1.4E-02 7.5E-02 59E-02 1.7E-02 1.8E-02
256 1.2E-02 1.0E-01 1.7E+00 1.0E+00 7.2E-02 7.2E-02
512 7.3E-02 1.2E+00 3.5E+01 1.8E+01 3.9E-01  3.3E-01

1024 | 3.4E-01 9.9E+00 1.6E+02 1.6E+00 1.3E+00

2048 | 1.3E+00 8.1E+01 1.2E+03 6.5E+00 5.3E+00

4096 | 6.25E+00 7.0E+02 2.8E+01 2.4E+00
TABLE 8.1

CPU time for a single iteration of the methods for severalatisionsn of the equation.

n BIP Lu SDA CR sSDA sCR

32 9.5E-15(4) 1.7E-14(4) 4.8E-13(11) 8.2E-13(12) 2.2E-1¥(1 9.5E-16(12)
64 1.9E-14 (4) 4.4E-14(4) 2.4E-12(12) 6.0E-12(13) 4.2E-12)(1 1.6E-15 (13)
128 | 4.2E-14(4) 1.1E-13(4) 1.8E-11(13) 3.0E-11(14) 1.2E-1B(1 6.4E-15(14)
256 | 1.2E-13(4) 3.9E-13(4) 1.4E-10(14) 2.0E-10(15) 7.6E-18 (1 1.8E-14 (15)
512 | 3.0E-13(4) 1.2E-12(4) 6.4E-10(15) 1.0E-09(16) 3.4E-B®(1 2.7E-14(16)

1024 | 9.0E-13(4) 3.5E-12(4) 9.2E-09 (17) 1.4E-11(16) 7.3E-14(1

2048 | 2.4E-12(4) 9.3E-12(4) 5.4E-11 (17) 6.0E-13 (18)

4096 | 7.0E-12(4) 2.8E-11(4) 4.5E-10 (18) 7.1E-12(19)
TABLE 8.2

Best accuracy (rel. residual) reached (and in parenthesesber of iterations required) farw = 0.5,c = 0.5.

8. Numerical experiments. The proposed algorithms have been implemented in For-
tran 90 and tested on a 2.8 GHz Xeon biprocessor, compildd lveihey Fortran compiler
v. 6.20c. The experiments performed are those mentionetnthat is, equation.1) for
(1.2 with o = 0.5, ¢ = 0.5 (nonsingular case) and with = 1078, ¢ = 1 — 1075 (close to
null recurrent case). We have let the dimensioof the matrices vary between 32 and 4096
to get a better grasp on the growth of the computational cost.

The algorithms have been compared to the original versioB& and CR with Ra-
maswami’s reduction, to the algorithm mentioned26][(Lu), which is anO(n?®) Newton-
like algorithm specialized for problem (), and to the algorithm in4] (BIP), which is the
structure-preservin@(n?) version of Lu. Our structure-preserving algorithms areslat
sSDA and sCR in the legend, to distinguish them from the palgiersions. In tabl&.1, we
show the CPU time needed for a single iteration of each méfitrodifferent sizes: of the
matrices appearing in the NARE. The CPU time has been céézllzy averaging over five
successive iterations. In tabl@fand8.3we report the minimum relative residual, calculated
as

HA)? +XD— (Xq+e)(¢"X + eT)H
Res = 1

max((| K742, [er +arx])

that can be achieved with the different methods, and the eumihiterations needed to ac-
tually achieve this residual. Note that the expression appg in the numerator inside the
norm symbols is an alternative way of expressing the resiofuiie Riccati equationi(.2).
For practical reasons, some of the most time-consumingempets with the non-structured
O(n?) versions of SDA and CR were not performed.

The results are encouraging in terms of computational tifte structured versions of
the algorithms perform better than their non-structurathterparts starting from a very low
threshold for the size; further on, the structured algorithms also outperfornslalgorithm
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n BIP Lu SDA CR SSDA SCR
32 | 6.0E-14(15) 16E-14(13) b5.0E-13(19) 75E-13(20) 2.054® 4.6E-11 (19)
64 | 2.8E-13(13) 4.9E-14(13) 2.0E-12(20) 5.7E-12(21) 2.6§4H 4.1E-09 (20)
128 | 6.8E-13 (13) 1.4E-13(13) 16E-11(21) 4.8E-11(22) 8.5H4® 5.9E-08 (20)
256 | 2.0E-12(13) 4.2E-13(13) 95E-11(22) 22E-10(22) 2.8F4W  2.6E-06 (20)
512 | 6.5E-12(13) 1.4E-12(13) 1.1E-09(22) 1.4E-09(23) 5.5F4T)  4.2E-05 (20)

1024 | 1.7E-11(13) 4.8E-12(13) 2.8E-01(17) 4.2E-04(19)

2048 | 4.9E-11 (13) 1.5E-11(13) 7.7E-01(18) 5.3E-04 (21)

4096 | 1.4E-10(13) 4.1E-11(13) 2.1E+00 (19) 8.3E-03(20)
TABLE 8.3

Best accuracy (rel. residual) reached (and in parenthesesber of iterations required) for = 1078, ¢ =
1—10-6.

[20], which is faster for low dimensions but scales@§:*) with the size of the problem
instead ofO(n?).

In terms of accuracy, the algorithms perform well for casasffom singularity, but
show very large residuals for critical and near-criticades Eventually, for sufficiently high
dimension, the convergence is lost. Based on the interrigeidiaults, we guess that the loss
of accuracy is due to the computation of the diagonal entfiise Trummer-like matrices by
formula 3.9, which suffers from cancellation problems.

In order to get around this problem, we have developed thentque of Sectiony.
Though changing the involved displacement operator sekeng/dy to overcome the prob-
lem, application of Algorithn¥.1has provided no significantimprovementin the errors. The
problem of how to reduce the error in near-critical casesllausder investigation.

9. Conclusions. This work provides a structural analysis of SDA and CR foigdia
nal plus low-rank equations. It is noteworthy that both allfpons preserve the Cauchy-like
structure of the iterates, since this is not at all appamem their definitions.

The presented algorithms provide a new approach to the@olof the structured alge-
braic Riccati equationsl(2) and 3.1). While their speed is definitely inferior to that of the
structured Lu method presented #],[the most recently developed numerical algorithm for
this NARE, they compare favorably to the previous ones. Aergsting application would
be applying them to equations of the kirlX) (7 diagonal plus rank) with 7 in the range
10-15 or larger. For such equations, the analogous generalizafithe structured Lu meth-
ods has complexity)(r®n?), as can be deduced from the derivation 4h {the Sherman—
Morrison complement of the Jacobian matrixnis x nr with block Cauchy structure, but
full matrix arithmetic on the: x r blocks is needed in the computation). Instead, structured
SDA and CR have complexit®(rn?). Therefore, it is expected that our methods become
competitive with structured Lu starting from a very smallueofr.

Turning to numerical stability, some more work is neededdbgjable versions of our
algorithms for near-critical cases. Apparently, the c#latien problems in the calculation
of the diagonal of the Trummer-like matrices cannot be overe easily. An alternative to
the direct calculation of the diagonals (which would req@x(n?) ops) and to the methods
presented here (which do not solve the stability issuesgdsiired. Different techniques,
alternative to the approach of Sectiédnmight be changing the displacement operator from
the beginning and doing all the computations using the nesvaipr; or introducing a new
operator for each step of the algorithms. In this framew&RA would appear simpler to
analyze than CR.

An interesting question, which was raised by one of the anmus referees of this paper,
is whether we can apply the shift technique even when thetiequia near-critical. From the
spectral analysis of the problem (see, e.t)4])] it follows that the properties of the NARE
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are related to the eigenvalues/of(as defined ing.1)). The critical case corresponds to the
case in whichC has a double eigenvalue at zero; in this case, it also ho#tdtie Perron
vector of M is the only eigenvector of relative to 0. However, in the near-critical case,
this nice relation between the eigenvectorsiddfand K is lost. One would need to work
with K to calculate the eigenvector which is needed for the shifin@ue to work, but this
is prone to numerical issues, as the near-critical casesponds to the one in whidG has
two eigenvalues very close to zero. It could help to use a otetih calculate the eigenspace
relative to these two eigenvalues without attempting tcasse them, such as an inverse
subspace iteration with dimension 2.
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