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Abstract. Mimetic operators are approximations that satisfy discrete versions of continuum conservation laws.
We propose a technique for constructing mimetic divergenceand gradient operators over non-uniform structured
meshes based on the application of local transformations and the use of a reference set of cells (RSC). The RSC is
not a mesh, but a set of two uniform elements that are used while the operators are being built. The method has
been applied to construct second and fourth order gradient and divergence operators over non-uniform 1D meshes.
Our approach leaves invariant the boundary operator expressions for uniform and non-uniform meshes, which is a
new result and an advantage of our formulation. Finally, a numerical convergence analysis is presented by solving
a boundary layer like problem with Robin boundary conditions; this shows that we can obtain the highest order of
accuracy when implementing adapted meshes.
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1. Introduction. Mimetic operators or summation-by-part operators (as theyare some-
times called) are finite-difference-like approximations that replicate symmetry properties of
the continuum operators and could be thought as an effort to construct discrete analogs of
vector and tensor calculus. While having a formulation and computational implementation
with a complexity like that of standard finite difference schemes, mimetic schemes tend to
produce more physically reliable results, because they satisfy discrete versions of contin-
uum conservation laws. Another advantage of mimetic operators is that they simplify the
procedure of obtaining energy estimates in computational fluid dynamics and computational
aero-acoustics problems [13, 16].

A special class of mimetic schemes was recently presented [1] where the authors de-
velop a way of constructing high order gradient and divergence approximations with mimetic
properties for one dimensional problems on uniform grids. These operators will be called
Castillo-Grone operators to differentiate them from othermimetic schemes, such as the one
studied in [9]. The main attributes of Castillo-Grone operators are thatthey preserve symme-
try properties of the continuum, they have an overall high order accuracy, and no numerical
artifacts such as ghost points or extended grids are used in their formulation.

This article focuses on generalizing the Castillo-Grone operators to non-uniform struc-
tured meshes and it is organized as follows: Section2 shows some of the Castillo-Grone
operator matrices and presents basic concepts related to the construction of the new opera-
tors. In Section3, we explain the method proposed for expanding high order mimetic diver-
gence and gradient operators to non-uniform meshes, the construction of weight matrices for
defining generalized inner products, and the construction of the boundary operator matrix. In
the next section we show second and fourth order non-uniformmimetic operators obtained
from these ideas and prove that the boundary operator for non-uniform meshes is the same
one obtained for the uniform case. Also, the implementationof these operators is tested by
solving a boundary-layer-like problem where the numericalconvergence rate analysis shows
that, when using adapted meshes, they have the same order of accuracy as the corresponding
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operators on uniform meshes. Finally, Section5 presents the conclusions derived from this
work and some of the extensions that will be done in the future.

2. Preliminaries.

2.1. Mimetic schemes.Mimetic methods [1, 6, 15] for solving partial differential equa-
tions are based on discretizing the continuum theory underlying the problem in such a way
that the scheme obtained tends to replicate much of the behavior found in the continuum
problem. Also, as shown in [1, 3, 7], we can build mimetic operators with the same order of
approximation at the boundary as in the interior of the domain, achieving the same accuracy
for the solution in the whole domain, as is the case for Castillo-Grone operators [1].

Discretizing the continuum theory involves the construction of discrete mathematical
analogs for gradient and divergence operators in such a way that they satisfy conservation
laws like the general Stokes’ theorem (also known as Gauss’ theorem) or Green’s identity. A
generalized discrete version of this law is

〈Dv, f〉Q + 〈v, Gf〉P = 〈Bv, f〉I . (2.1)

In this expressionD, G, andB stand for the discrete divergence operator, the discrete gradient
operator, and the boundary operator, respectively. The brackets represent generalized inner
products with weightsQ, P , andI.

In [1], the authors describe a method for constructing high-order mimetic operators on
uniform 1D grids that satisfy (2.1) and have the same order of accuracy everywhere. Among
other properties these operators are centro-skew-symmetric; they satisfy the row sum condi-
tion, meaning that the sum of every row is equal to zero; they also satisfy the column sum con-

dition, given by:〈e, PGf〉 = fn − f1, wheree, f ∈ R
n, ande =

[
1 1 . . . 1

]T
∈ R

n+1.
As an example, expressions (2.2) and (2.3) below show Castillo-Grone second order opera-
tors, and (2.4) and (2.5) below show fourth order operators.

D =
1

h





−1 1 0 0 · · · 0
0 −1 1 0 · · · 0
...

. . .
. . .

...




(2.2)

G =
1

h





−8
3 3 −1

3 0 · · · 0

0 −1 1 0 · · · 0
...

. . .
. . .

...





(2.3)

D =
1

h





−4751
5192

909
1298

6091
15576

−1165
5192

129
2596

−25
15576 0 · · · 0

1
24

−9
8

9
8

−1
24 0 0 0 · · · 0

0 1
24

−9
8

9
8

−1
24 0 0 · · · 0

0 0 1
24

−9
8

9
8

−1
24 0 · · · 0

...
. . .

. . .
. . .

. . .
...





(2.4)
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G =
1

h





−1152
407

10063
3256

2483
9768

−3309
3256

2099
3256

−697
4884 0 · · · 0

0 −11
12

17
14

3
8

−5
24

1
24 0 · · · 0

0 1
24

−9
8

9
8

−1
24 0 0 · · · 0

0 0 1
24

−9
8

9
8

−1
24 0 · · · 0

...
. . .

. . .
. . .

. ..
...





. (2.5)

These operators have a factor1/h that depends on the spacing of the uniform mesh and a
factor that depends on the order of accuracy, the matrix at the right. This matrix will be called
the fixed part of the operator, since its basic structure doesnot depend on the discretization.

In addition, there is an important fact associated with these operators: the treatment
of boundary conditions does not involve ghost points or any other numerical artifacts, as
sometimes happens with standard finite difference methods.Instead, a boundary operatorB
is used.

Here we present a technique that uses these operators to build mimetic schemes on
non-uniform structured meshes while preserving their valuable attributes. Other attempts
have been made seeking this goal, as in [12], where the authors construct mimetic opera-
tors for non-uniform staggered meshes from a matrix-analysis-based method. They explain
the method in a general way and present the explicit construction of second order operators.
However, the gradient and boundary operators obtained in [12] are more complex than the
operators obtained with our technique.

We propose a finite-element-like technique for constructing the operators, based on the
implementation of local transformations of the mesh cells.We also present numerical exam-
ples of the implementation of second and fourth order mimetic operators.

2.2. Staggered mesh.Consider a discretization of the domain by a geometric meshU .
In Figure4.1, the geometric mesh is given by the pointsxi with i = 0, 1, . . . , n, and the cells
of this mesh are the intervals[xi−1, xi] with i = 1, 2, . . . , n. Define the divergence operator
at the centers of these cells, and call these points D-points. Define the gradient operator at the
edges of the cells inU , xi with i = 0, 1, . . . , n, and call these points G-points. The set of all
G-points and D-points will be called astaggered mesh. Staggered meshes are widely used,
particularly when solving problems related to fluid dynamics.

2.3. The Reference Set of Cells (RSC).The RSC, as its name suggests, is a set of
uniform reference elements where the actual approximations are carried out. This set has
two uniform objects: one called CD, used for the estimation of the divergence operator and
another one, called CG, used for the estimation of the gradient operator.

The RSC is independent of the number of points of the mesh, though its elements could
change depending on the order of the approximation desired,on the type of elements em-
ployed for discretizing the physical domain, and on the dimension of the physical problem.
However, once these aspects are established, the RSC can be constructed and it will remain
unchanged during the process of constructing the mimetic operators.

3. Mimetic operators on non-uniform structured meshes.

3.1. Idea proposed.Develop local transformations of the cells by using a reference set
of cells in order to obtain local, mimetic operatorsG andD.

Notice that this is not the same as using traditional curvilinear coordinates for the fol-
lowing reasons.
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(i) We locally transform the cells instead of transforming the entire meshat once.
(ii) We use a reference set of cells instead of a reference mesh.
(iii) The idea can be implemented either for structured or unstructured meshes, at least in

the case of second order operators. This would not be possible using a reference mesh.
It is worth mentioning that in [16], the authors proved that it is not possible to construct a

coordinate transformation operatorXξ such thatPXξ can be used to define a norm and keep
the order of accuracy,p, for p ≥ 3. In this case,P defines a norm for the mimetic operators
or summation-by-part operators discussed in [10, 11]. P is a diagonal matrix except at the
upper left and lower right corners. However, as we shall show, the use of the operators in [1]
along with local transformations does solve this problem, allowing us to construct high-order
mimetic operators on non-uniform meshes. These new operators maintain the same accuracy
as their uniform counterpart when adapted meshes are used.

3.2. OperatorsD and G. To calculate the divergence, we transform each cell, one at
a time, by using the element CD of the RSC. In, CD we can implement the approximations
presented in [1] for uniform grids. Then, we go back with the transformationto obtain the
divergence at the D-points of the non-uniform staggered mesh.

To calculate the gradient, we take groups of juxtaposed cells and transform them by using
the element CG of the RSC. As we did for the divergence, in CG wecan calculate the gradient
by using the approximations presented in [1] and then reverse the transformation. Note the
difference between calculating the gradient and the divergence operator: for the former, we
have to take into account groups of juxtaposed cells becausewe consider the gradient defined
at the edges of the geometric mesh.

3.3. WeightsP and Q. As shown in the previous section, we would like our operators
to satisfy a discrete conservation law of the form

〈D̂v, f〉Q + 〈v, Gf〉P = 〈Bv, f〉I , (3.1)

which ensures that our approximation is fully conservativeand mimics the physical properties
of the problem. Here, the matrix̂D is the extended divergence operator – the matrixD with
rows of zeros added, one row per boundary node. This is because we seek to approximate
the solution of a given PDE at the D-points as well as at the boundary points. Therefore, the
number of null rows added and the places where they are incorporated into the matrixD will
depend on the numbering of boundary nodes that we have and thenumbering of the nodes,
respectively.

For the construction of the weight matrixP , we use the conservation law (3.1), setting

v = ev =
[
1 1 . . . 1

]T
∈ R

n+1; we get

〈D̂ev, f〉Q + 〈ev, Gf〉P = 〈Bev, f〉I ,

〈ev, Gf〉P = 〈Bev, f〉I . (3.2)

This is true because the divergence of a constant function (D̂ev) is equal to zero.
At this point, we do not know what the boundary operator for non-uniform meshes is,

but we note that the left hand side of (3.2) is a weighted discrete version of the integral
∫

Ω

gradf dΩ.

Then, by using the fundamental theorem of calculus we get that

〈ev, Gf〉P = fn − f1, (3.3)
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and solve it forP .
For the construction of the weight matrixQ, we again use (3.1) settingf = ef =[

1 1 . . . 1
]T

∈ R
n+2; we get

〈D̂v, ef 〉Q + 〈v, Gef 〉P = 〈Bv, ef 〉I ,

〈D̂v, ef 〉Q = 〈Bv, ef 〉I , (3.4)

which holds becauseGef = 0. The right hand side of (3.4) is a weighted discrete version of
the flux across the boundary

∫

∂Ω=S

~v · n̂ dS.

Assuming we have a stationary problem, we obtain the conservation law

〈D̂v, ef 〉Q = 0, (3.5)

for the calculation ofQ.

3.4. Boundary operatorB. From Green’s identity (3.1) we obtain a relationship be-
tween the boundary operator and the matricesG, D̂, P , andQ that allows us to construct the
operatorB, i.e.,

B = (D̂T Q + PG)T . (3.6)

4. Numerical implementation and results.

4.1. Construction of the operators.With the following 1D example we show how to
construct mimetic operators over non-uniform meshes usingthe idea proposed in Section3.

We use the following notation to indicate what is going to be calculated at each location
of the staggered mesh:× for the calculation of the gradientG, ▽ for the calculion of the
divergenceD, and• for the calculation of the scalar functionf (see Figure4.1). Here,f
represents the scalar function in the given 1D, non-uniformstaggered mesh,̃f represents the
scalar function in the RSC, and the cell[xi−1, xi] is referred to as having cell numberi − 1

2 .

∇∇ ∇ ∇

G G G G G GD D D D

x0 x1/2 x3/2 x5/2 xn-1/2x1 x2 x3 xn-1 xn

FIGURE 4.1.1D, non-uniform staggered mesh.

Since we are going to calculate second order, one dimensional operators, the element CD
will be a single segment and the element CG of the RSC will be two, equally large, juxtaposed
segments. We have taken CD= [0, 1] and CG= [−1, 0] ∪ [0, 1].

To calculate the divergence atxi+1/2, i = 0, 1, . . . , n − 1, we first transform the cell
i + 1

2 to CD according to the following,

x =

{
2(xi+1/2 − xi)ξ + xi, for 0 ≤ ξ < 1

2 ,

(xi+1 − xi)ξ + xi, for 1
2 ≤ ξ ≤ 1.
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Now let us consider̃v(ξ) = v(x(ξ)), so that̃vξ = vxxξ andvx = ṽξ/xξ. Then the divergence
atxi+1/2 is given by

(Dv)(x1/2) = vx(xi+1/2) =
ṽξ

xξ

∣∣∣∣
ξ=1/2

=
ṽ(1) − ṽ(0)

x(1) − x(0)

=
v(x(1)) − v(x(0))

x(1) − x(0)

= (v(xi+1) − v(xi))
1

Jxi+1/2

,

whereJxi+1/2
= xi+1 − xi.

Our divergence operator for non-uniform, 1D meshes will look like

Dv =





−1
Jx1/2

1
Jx1/2

0 0 · · · 0

0 −1
Jx3/2

1
Jx3/2

0 · · · 0

...
. . .

. . .
...

0 · · · 0 −1
Jxn−3/2

1
Jxn−3/2

0

0 · · · 0 0 −1
Jxn−1/2

1
Jxn−1/2









v1/2

v3/2

...
vn−3/2

vn−1/2




.

If we rewrite the matrixD as a product of two matrices,

D =





1
Jx1/2

0 0 · · · 0

0 1
Jx3/2

0 · · · 0

...
. . .

...
0 · · · 0 1

Jxn−3/2

0

0 · · · 0 0 1
Jxn−1/2









−1 1 0 0 · · · 0
0 −1 1 0 · · · 0
...

. . .
. . .

...
0 · · · 0 −1 1 0
0 · · · 0 0 −1 1




, (4.1)

we can see that the resulting divergence operator for non-uniform meshes is a diagonal matrix
with the inverse of the Jacobians of the local transformations (which we callJD) times the
fixed part of the divergence operator for uniform meshes presented in [1].

To calculate the gradient at the interior pointxi, i = 1, 2, . . . , n − 1, we first transform
cellsi − 1/2 andi + 1/2 to CG according to the following,

x =

{
(xi − xi−1)ξ + xi, for − 1 ≤ ξ < 0,

(xi+1 − xi)ξ + xi, for 0 ≤ ξ ≤ 1.

Now let us consider̃f(ξ) = f(x(ξ)), so thatf̃ξ = fxxξ andfx =
f̃ξ

xξ
. Then the gradient at

xi is given by

(Gf)(xi) = fx(xi) =
f̃ξ

xξ

∣∣∣∣∣
ξ=0

=
f̃(.5) − f̃(−.5)

x(.5) − x(−.5)

=
f(x(.5)) − f(x(−.5))

x(.5) − x(−.5)

=
(
f(xi+ 1

2
) − f(xi− 1

2
)
) 1

Jxi

,
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whereJxi = xi+1/2 − xi−1/2.
Both f̃ξ andxξ have been calculated using the approach presented in [1].
To calculate the gradient at the boundary pointx0, we transform cells12 and 3

2 to CG
according to the following,

x =

{
(x1 − x0)ξ + x1, for − 1 ≤ ξ < 0,

(x2 − x1)ξ + x1, for 0 ≤ ξ ≤ 1.

Then, using the approach presented in [1], we obtain

(Gf)(x0) = fx(x0) =
f̃ξ

xξ

∣∣∣∣∣
ξ=−1

=
− 8

3 f̃(−1) + 3f̃(−.5) − 1
3 f̃(.5)

− 8
3x(−1) + 3x(−.5) − 1

3x(.5)

=
− 8

3f(x(−1)) + 3f(x(−.5)) − 1
3f(x(.5))

− 8
3x(−1) + 3x(−.5) − 1

3x(.5)

=

(
−

8

3
f(x0) + 3f(x1/2) −

1

3
f(x3/2)

)
1

Jx0

,

whereJx0
= − 8

3x0 + 3x 1
2
− 1

3x 3
2
.

Analogously, the gradient at the boundary pointxn is obtained by transforming the cells
n − 3

2 andn − 1
2 to CG.

We note that the element CG of the RSC does not change during the calculation of the
gradient. Rather the derivatives̃fξ andxξ are evaluated at different points, depending on
whether we are calculating the gradient at interior points or at boundary points.

As a result, our gradient operator for non-uniform, 1D meshes will look like

Gf =





−8/3
Jx0

3
Jx0

−1/3
Jx0

0 · · · 0

0 −1
Jx1

1
Jx1

· · · 0 0

...
. . .

. . .
...

0 · · · 0 −1
Jxn−1

1
Jxn−1

0

0 · · · 0 1/3
Jxn

−3
Jxn

8/3
Jxn









f0

f 1
2

f 3
2

...
fn− 1

2

fn





,

so that after rewritingG as a product of two matrices we get

G =





1
Jx0

0 0 · · · 0

0 1
Jx1

0 · · · 0

...
. . .

...
0 · · · 0 1

Jxn−1

0

0 · · · 0 0 1
Jxn









−8
3 3 −1

3 0 · · · 0
0 −1 1 · · · 0 0
...

. . .
. . .

...
0 · · · 0 −1 1 0
0 · · · 0 1

3 −3 8
3




. (4.2)

We can clearly appreciate the effect of the local transformations. The resulting gradient
operator for non-uniform meshes is a diagonal matrix with the inverse of the Jacobians of the
local transformations (that will be calledJG) times the fixed part of the gradient operator for
uniform meshes presented in [1].

If we implement (4.1) and (4.2) over an uniform mesh, thenD andG reduce to the
discrete operators presented in [3, 4, 6, 7]. For non-uniform meshes, the operatorG is simpler
than that obtained in [12].
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Let us now intoduce the following notation:Au indicates a matrixA as it appears for the
uniform mesh case, whereasAnu indicates a matrixA as it appears for the non-uniform mesh
case. For instance,Gu denotes the gradient operator for uniform meshes andGnu denotes
the gradient operator for non-uniform meshes, like (4.2). We will use this notation when
necessary; otherwise,G andD will denote the gradient and divergence operator (respectively)
for the non-uniform case. Moreover, as we saw in the previousconstruction of the operators,
these can be written as a product of two matrices: one fixed matrix, which depends on the
order of the approximation and comes from the schemes presented in [1], and another matrix
with the inverse of the Jacobians of the local transformations, which depends on the staggered
mesh. G′ will denote the fixed part of the gradient operator matrix whereasG will be the
whole operator. For example,G′

nu will be the fixed part of the gradient operator for non-
uniform meshes.

The weight matricesPnu andQnu obtained by solving (3.3) and (3.5) arePnu = P ′

uJ−1
G

andQnu = Ĵ−1
D Q′

u. The hat over the matrixJ−1
D means that we are considering the aug-

mented matrix which has some extra rows, as many as the augmented divergence has and
in the same position. These extras rows are zero everywhere except at the main diagonal
position, where they are equal to one.

Finally, the boundary operator can be built by using expression (3.6), as follows,

Bnu = (D̂T
nuQnu + PnuGnu)T = ((ĴDD̂′

u)T Ĵ−1
D Q′

u + P ′

uJ−1
G JGG′

u)T

= ((D̂′

u)T ĴT
DĴ−1

D Q′

u + P ′

uG′

u)T = ((D̂′

u)T Q′

u + P ′

uG′

u)T

= (BT
u )T = Bu.

That is, the second order boundary operator for non-uniformmeshes is the same operator
obtained for the uniform case. The boundary operator for non-uniform meshes,Bnu, obtained
with our method is simpler than that obtained in [12]. A similar situation was found with the
gradient operator. Thus, our approach provides an alternative to generalize Castillo-Grone
operators to non-uniform meshes that is simpler to implement than that proposed in [12].

Some other properties of the mimetic operators are:
(i) D′

nu andG′

nu are centro-skew-symmetric,
(ii) Dnu andGnu are banded matrices,
(iii) the global conservation law (3.1) on non-uniform meshes is satisfied.

4.2. Implementation. We aim to solve the Boundary Value Problem (BVP)

−∇2f(x) = F (x), x ∈ [0, 1], (4.3)

αf(0) + βf ′(0) = b1, (4.4)

αf(1) + βf ′(1) = b2, (4.5)

where

F (x) =
2 × 106x

arctan(100)(1 + 1 × 104x2)2
, α = 1, β = 1, (4.6)

b1 =
100

arctan(100)
, b2 = 1 +

100

arctan(100) (1 + 1 × 104)
. (4.7)

To solve this problem, we use second and fourth order mimeticoperators on non-uniform
meshes obtained by the technique described earlier.

First, we compute the solution of (4.3)–(4.5) by using the second order operators previ-
ously constructed. The discrete Laplacian is

L = D̂G ∈ R
(n+2)×(n+2),
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FIGURE 4.2. (a) Numerical solution obtained with a uniform mesh, (b) Numerical solution obtained with an
adapted mesh.

whereD̂ is the augmented divergence operator, which has two rows of zeros added (one at
the top and one at the bottom). For the boundary conditions (4.4) and (4.5), we have that

αAf̂ + βBGf̂ =
[
b1 0 · · · 0 b2

]T
. (4.8)

The matrixA is such thatA1,1 = An+2,n+2 = 1 and all other entries are zero. A discrete
form of the boundary value problem (4.3)–(4.5) can be written as

(αA + βBG − L)f̂ = F. (4.9)

In (4.8) and (4.9), f̂ represents the numerical solution of the problem.
Figure4.2 shows the solution of (4.9) (dotted line) along with the analytical solution

f(x) = arctan(100x)
arctan(100) (solid line). For this boundary-layer-like problem we haveused a uni-

form mesh with 1000 points, shown in Figure4.2(a), and an adapted mesh with just 50 points,
shown in Figure4.2(b). For the latter, the points have been clustered to the left using the
mesh-size functionfms(x) = arctan

(
x
10

)
+ 1 × 10−3.

The BVP (4.3)–(4.5) is notoriously difficult to solve. It is well known that traditional
finite difference methods tend to produce approximations with non-physical oscillations close
to the boundaryx = 0. Some other options exist that avoid the appearance of oscillations,
such as the upwind difference scheme and the donor cell scheme; but both these schemes
suffer from a drop in accuracy [5, 8]. With mimetic schemes, on the other hand, we obtain
solutions that agree with the physics of the problem in the sense that no oscillations occur.
Moreover, by using non-uniform mimetic operators and an adapted mesh, we obtained very
good results with just a few points (Figure4.2(b)).

Table4.1 shows that the mimetic approximations implemented are second order with
asymptotic truncation errorsEh estimated by

Eh = chp + O(hp+1),

wherep is the order of the approximation,c is the convergence-rate constant,n is the number
of points in the mesh, andh = 1/n. The order of convergence was estimated using the
maximum norm

‖f̂ − f‖∞ = max{|f̂i+ 1
2
− fi+ 1

2
|, i = 0, . . . , n − 1},



ETNA
Kent State University 

http://etna.math.kent.edu

MIMETIC SCHEMES ON NON-UNIFORM STRUCTURED MESHES 161

and the mean-square norm

‖f̂ − f‖L2
=

√√√√
n−1∑

i=0

(f̂i+ 1
2
− fi+ 1

2
)2(J−1

D )i,i,

where(J−1
D )i,i is the Jacobian of the local transformation or the volume associated with the

cell i + 1
2 .

TABLE 4.1
Convergence analysis for second order mimetic schemes.

Scheme Eh (‖ · ‖∞) Eh (‖ · ‖L2
)

Uniform 24480.7 × h1.94 18637.6 × h1.94

Adapted 3.44 × h2.08 .45 × h1.93

Random 410.57 × h.88 335.97 × h.89

Numerical results show that mimetic operators over adaptedmeshes are not only sec-
ond order, but also have convergence-rate constants smaller than the corresponding constants
for the uniform scheme. Similar results are reported in [14], where scheme [12] was imple-
mented.

Next, we consider the solution of the BVP (4.3)–(4.5) obtained with fourth order uniform
and non-uniform (adapted) mimetic operators. These operators are equal to the product of a
diagonal matrix with the inverse of the Jacobians of the local transformations times the fixed
part of the Castillo-Grone fourth order operators. We note that operatorsG andD are fourth
order accurate at the images ofξi andξi+ 1

2
, respectively [2], and that these points have been

approximated by Lagrange interpolations of fourth order. For this case we have clustered the
points by using the same mesh-size function as before. The convergence results are presented
in Table4.2.

As with the second order case, we note an improvement in the numerical solution when
using adapted meshes, suggesting a much smaller convergence-rate constant. Moreover, this
example illustrates that we can construct, from the operators in [1], fourth order mimetic
approximations on adapted meshes and preserve their accuracy.

Thus, the use of adapted meshes with the mimetic schemes constructed in this paper
presents a very good option for solving boundary-layer problems.

TABLE 4.2
Convergence analysis for fourth order mimetic schemes.

Scheme Eh (‖ · ‖∞) Eh (‖ · ‖L2
)

Uniform 1.18 × 10
9 × h

4.17
9.10 × 10

8 × h
4.17

Adapted 11029.6 × h3.98 8105.84 × h3.98

Random 1699.21 × h1.05 1342.42 × h1.06

5. Conclusions and future works. We have established a technique that allows us to
construct, from the schemes presented in [1], mimetic approximations over non-uniform
meshes. In this process, we introduced new elements to the theory of mimetic methods: the
RSC and the use of local transformations as the basic tool forconstructing mimetic operators.

The operators obtained are local and satisfy discrete conservation laws. We showed that
they can be expressed as the product of a fixed part, dependenton the order of accuracy, and
a factor that depends on the discretization.
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Also, the technique reproduces the operators used in earlier publications [4, 6] when
applied to uniform meshes; it extends the Castillo-Grone operators to non-uniform meshes;
and it keeps invariant the boundary operator for the uniformand non-uniform case, which
makes its computation and implementation simpler than the method proposed in [12]. It is
worth mentioning that the last two provide completely new results.

Future work includes the implementation of this method to construct mimetic operators
of higher order, for higher dimension problems, and for general polygonal discretizations of
the physical domain.

Acknowledgments. Thanks to Dany De Cecchis for his advice with the formatting of
this document.
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