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MIMETIC SCHEMES ON NON-UNIFORM STRUCTURED MESHES *

E. D. BATISTAf AND J. E. CASTILLOf
Dedicated to Vttor Pereyra on the occasion of his 70th birthday

Abstract. Mimetic operators are approximations that satisfy digcwetrsions of continuum conservation laws.

We propose a technique for constructing mimetic divergeamé gradient operators over non-uniform structured
meshes based on the application of local transformatiodgtenuse of a reference set of cells (RSC). The RSC is
not a mesh, but a set of two uniform elements that are usec el operators are being built. The method has
been applied to construct second and fourth order gradiehtivergence operators over non-uniform 1D meshes.
Our approach leaves invariant the boundary operator esipresfor uniform and non-uniform meshes, which is a
new result and an advantage of our formulation. Finally, merical convergence analysis is presented by solving
a boundary layer like problem with Robin boundary condiotiis shows that we can obtain the highest order of
accuracy when implementing adapted meshes.
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high order, divergence operator, gradient operator, bayndperator.
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1. Introduction. Mimetic operators or summation-by-part operators (as #reysome-
times called) are finite-difference-like approximatiohattreplicate symmetry properties of
the continuum operators and could be thought as an efforbstouct discrete analogs of
vector and tensor calculus. While having a formulation amehjgutational implementation
with a complexity like that of standard finite difference sofes, mimetic schemes tend to
produce more physically reliable results, because thagfgatiscrete versions of contin-
uum conservation laws. Another advantage of mimetic opesas that they simplify the
procedure of obtaining energy estimates in computation@ flynamics and computational
aero-acoustics problemsd, 16].

A special class of mimetic schemes was recently preserjedtere the authors de-
velop a way of constructing high order gradient and divecgeapproximations with mimetic
properties for one dimensional problems on uniform grideese operators will be called
Castillo-Grone operators to differentiate them from ottmémetic schemes, such as the one
studied in P]. The main attributes of Castillo-Grone operators are tiey preserve symme-
try properties of the continuum, they have an overall higheoraccuracy, and no numerical
artifacts such as ghost points or extended grids are useeéinformulation.

This article focuses on generalizing the Castillo-Gronerafors to non-uniform struc-
tured meshes and it is organized as follows: Secfiahows some of the Castillo-Grone
operator matrices and presents basic concepts related tmtistruction of the new opera-
tors. In SectiorB, we explain the method proposed for expanding high orderaticndiver-
gence and gradient operators to non-uniform meshes, tretraation of weight matrices for
defining generalized inner products, and the construcfitéimeoboundary operator matrix. In
the next section we show second and fourth order non-unifoimmetic operators obtained
from these ideas and prove that the boundary operator forund@orm meshes is the same
one obtained for the uniform case. Also, the implementatibthese operators is tested by
solving a boundary-layer-like problem where the numericalvergence rate analysis shows
that, when using adapted meshes, they have the same ordmuohey as the corresponding
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operators on uniform meshes. Finally, Sectiopresents the conclusions derived from this
work and some of the extensions that will be done in the future

2. Preliminaries.

2.1. Mimetic schemes.Mimetic methodsZ, 6, 15] for solving partial differential equa-
tions are based on discretizing the continuum theory uyitierthe problem in such a way
that the scheme obtained tends to replicate much of the mehawund in the continuum
problem. Also, as shown irl[ 3, 7], we can build mimetic operators with the same order of
approximation at the boundary as in the interior of the domathieving the same accuracy
for the solution in the whole domain, as is the case for GasBrone operatorsl].

Discretizing the continuum theory involves the construttof discrete mathematical
analogs for gradient and divergence operators in such a hatythey satisfy conservation
laws like the general Stokes’ theorem (also known as Gahesrém) or Green'’s identity. A
generalized discrete version of this law is

(Dv, f)q + (v,Gf)p = (Bv, f)1. (2.1)

In this expressio, GG, andB stand for the discrete divergence operator, the discratignt
operator, and the boundary operator, respectively. Thekbta represent generalized inner
products with weights), P, and!.

In [1], the authors describe a method for constructing high+omenetic operators on
uniform 1D grids that satisfyX 1) and have the same order of accuracy everywhere. Among
other properties these operators are centro-skew-syrnaertagy satisfy the row sum condi-
tion, meaning that the sum of every row is equal to zero; theysatisfy the column sum con-
dition, given by:(e, PGf) = f,, — f1, wheree, f e R",ande = [1 1 ... 1]T € R+,

As an example, expressiora.?) and @.3) below show Castillo-Grone second order opera-
tors, and 2.4) and @.5) below show fourth order operators.

) -1 1 o o0 --- 0
D=_ o -1 1 0 --- 0 (2.2)
h . .
-8 -1 7
=S 3 =L 0
1
G = 7 0O -1 1 0 --- 0 (2.3)
4751 909 6091 —1165 120 —25 o .. (]
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[ 1152 10063 2483  —3309 2099 =697 ... ]
107 3256 9768 3256 3256 4884
—11 17 3 -5 1
0 T 7 s = w0 0
1 0 1 -9 9 -1 0 0 --- 0
G=— 24 8 8 24 . (2.5)
1 -9 9 -1
0 O % = s = 0 0

These operators have a factigth that depends on the spacing of the uniform mesh and a
factor that depends on the order of accuracy, the matrixeatigint. This matrix will be called
the fixed part of the operator, since its basic structure doedepend on the discretization.

In addition, there is an important fact associated with éhegerators: the treatment
of boundary conditions does not involve ghost points or ateonumerical artifacts, as
sometimes happens with standard finite difference methodi&ad, a boundary operatBr
is used.

Here we present a technique that uses these operators tbrhimietic schemes on
non-uniform structured meshes while preserving their afallel attributes. Other attempts
have been made seeking this goal, aslifj,[where the authors construct mimetic opera-
tors for non-uniform staggered meshes from a matrix-aiglyased method. They explain
the method in a general way and present the explicit cortgtruof second order operators.
However, the gradient and boundary operators obtainetidngre more complex than the
operators obtained with our technique.

We propose a finite-element-like technique for constrygctive operators, based on the
implementation of local transformations of the mesh céMNg.also present numerical exam-
ples of the implementation of second and fourth order micreerators.

2.2. Staggered meshConsider a discretization of the domain by a geometric niésh
In Figure4.1, the geometric mesh is given by the poimfswith i = 0, 1, ..., n, and the cells
of this mesh are the intervals,; 1, z;] with ¢ = 1,2,... n. Define the divergence operator
at the centers of these cells, and call these points D-pd&fne the gradient operator at the
edges of the cells iV, z; with i = 0,1, ..., n, and call these points G-points. The set of all
G-points and D-points will be calledstaggered meshStaggered meshes are widely used,
particularly when solving problems related to fluid dynasnic

2.3. The Reference Set of Cells (RSC)The RSC, as its name suggests, is a set of
uniform reference elements where the actual approximsitioa carried out. This set has
two uniform objects: one called CD, used for the estimatibthe divergence operator and
another one, called CG, used for the estimation of the gnadigerator.

The RSC is independent of the number of points of the meshgtiis elements could
change depending on the order of the approximation desiedhe type of elements em-
ployed for discretizing the physical domain, and on the disien of the physical problem.
However, once these aspects are established, the RSC candiructed and it will remain
unchanged during the process of constructing the mimegcatprs.

3. Mimetic operators on non-uniform structured meshes.

3.1. Idea proposed.Develop local transformations of the cells by using a rafeseset
of cells in order to obtain local, mimetic operatotsand D.

Notice that this is not the same as using traditional curgdir coordinates for the fol-
lowing reasons.
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(i) We locally transform the cells instead of transforming the entire naggince.
(i) We use a reference set of cells instead of a referencémes
(i) The idea can be implemented either for structured ostiuctured meshes, at least in
the case of second order operators. This would not be pessibig a reference mesh.
Itis worth mentioning that in]6], the authors proved that it is not possible to construct a
coordinate transformation operat¥g such that” X, can be used to define a norm and keep
the order of accuracy, for p > 3. In this case P defines a norm for the mimetic operators
or summation-by-part operators discussedli, fL1]. P is a diagonal matrix except at the
upper left and lower right corners. However, as we shall stiogvuse of the operators if][
along with local transformations does solve this probldioyang us to construct high-order
mimetic operators on non-uniform meshes. These new opsna@ntain the same accuracy
as their uniform counterpart when adapted meshes are used.

3.2. OperatorsD and G. To calculate the divergence, we transform each cell, one at
a time, by using the element CD of the RSC. In, CD we can impigrtie approximations
presented in1] for uniform grids. Then, we go back with the transformattorobtain the
divergence at the D-points of the non-uniform staggerechmes

To calculate the gradient, we take groups of juxtaposed aalil transform them by using
the element CG of the RSC. As we did for the divergence, in C@amecalculate the gradient
by using the approximations presented 1hgnd then reverse the transformation. Note the
difference between calculating the gradient and the desecg operator: for the former, we
have to take into account groups of juxtaposed cells becaes®nsider the gradient defined
at the edges of the geometric mesh.

3.3. WeightsP and Q. As shown in the previous section, we would like our operators
to satisfy a discrete conservation law of the form

(Dv, f)o + (v,Gf)p = (Bv, f)1, (3.1)

which ensures that our approximation is fully conservaaiveé mimics the physical properties
of the problem. Here, the matri® is the extended divergence operator — the mdiriwith
rows of zeros added, one row per boundary node. This is becaeseek to approximate
the solution of a given PDE at the D-points as well as at thendaty points. Therefore, the
number of null rows added and the places where they are incated into the matrixD will
depend on the numbering of boundary nodes that we have amdithbering of the nodes,
respectively.

For the construction of the weight matriX, we use the conservation la®.{(), setting

v=e,=[1 1 ... 1}T6R"+1;weget

(Dey, f)q + (€0, Gf)p = (Bey, f)1,
<€v7 Gf>P = <B€va f>1 (32)

This is true because the divergence of a constant funcfkazm)(is equal to zero.
At this point, we do not know what the boundary operator fon+umiform meshes is,
but we note that the left hand side &%) is a weighted discrete version of the integral

/ grad f dS).
Q

Then, by using the fundamental theorem of calculus we geét tha

<evaGf>P:fn_fla (33)
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and solve it forP.
For the construction of the weight matri@, we again use3 1) setting f = ey =

1 .. I}TER"”;weget

(Dv,ef)q + (v,Ges)p = (Bv,es)r,
<ﬁv,ef>Q = (Bv,ef)r, (3.4)

which holds becaus@e; = 0. The right hand side of3(4) is a weighted discrete version of
the flux across the boundary

/ v -ndS.
o0=5

Assuming we have a stationary problem, we obtain the coaten/law
<ﬁ1}, ef)Q = 0, (35)

for the calculation of).

3.4. Boundary operator B. From Green’s identity3.1) we obtain a relationship be-
tween the boundary operator and the matrige®, P, and@ that allows us to construct the
operatorB, i.e.,

B=(DTQ+ PG)T. (3.6)

4. Numerical implementation and results.

4.1. Construction of the operators. With the following 1D example we show how to
construct mimetic operators over non-uniform meshes usiagdea proposed in Secti@n

We use the following notation to indicate what is going to hialated at each location
of the staggered meshx for the calculation of the gradierdt, <7 for the calculion of the
divergenceD, ande for the calculation of the scalar functigh(see Figuret.1). Here, f
represents the scalar function in the given 1D, non-unifstaggered mesH, represents the
scalar function in the RSC, and the cel]_1, z;] is referred to as having cell number %

G D G D G D G G D G
o -o- ——F - ==X ¥ 3‘
Xo X2 X1 Xse X2 Xs2 X3 T X Xn-172 Xn

FIGURE 4.1.1D, non-uniform staggered mesh.

Since we are going to calculate second order, one dimerisipaeators, the element CD
will be a single segment and the element CG of the RSC will lng égually large, juxtaposed
segments. We have taken €00, 1] and CG= [-1,0] U [0, 1].

To calculate the divergence af, /2, i = 0,1,...,n — 1, we first transform the cell
i+ % to CD according to the following,

. 2(wip1y2 — )6+, for 0<¢
N ($i+1 — Il)g + x;, for % < E
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Now let us conside#(¢) = v(z(§)), so thaty = v,ze andv, = ¢ /z¢. Then the divergence
atz;, 1/ is given by

(Dv)(@1/2) = va(@ig1/2) = —

WhereJmHm =Tiy1 — T;.

Our divergence operator for non-uniform, 1D meshes wilklbke

—1 1 7]
1 0 0 . 0
A - o2
g0 Jags V3/2
Dv = :
0 - 1 0 _
. anaa/z Jzn:ls/z zn_?;;
L J‘"n—l/z anfl/2 h
If we rewrite the matrixD as a product of two matrices,
'J L 0 0 e 0 ]
T1/2 1 -1 1 0 0 e 0
o0 7, 0 0 0 -1 1 0 - 0
1 0 0 0 -1 1 0
Tn—-3/2
L Ten_1/2 |

we can see that the resulting divergence operator for niforammeshes is a diagonal matrix
with the inverse of the Jacobians of the local transformmatigvhich we call/p) times the
fixed part of the divergence operator for uniform meshesqoies! in [L].

To calculate the gradient at the interior paint i = 1,2,...,n — 1, we first transform
cellsi — 1/2 andi + 1/2 to CG according to the following,

(i —xim)E 4+, for —1<E<0,
€r =
(Tip1 —x)§ + 25, for 0<E <1

Now let us considef (¢) = f(x(¢)), so thatfe = f.ze andf, = gf—i Then the gradient at
x; is given by

o) = fo(e) = Te| = FB)=F(=5)
(Gf)( z) fm( 1) T o 1‘(5) —1‘(—_5)
f(z(.5)) — f(z(=5))
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Where,]mi = xi+l/2 - xi_l/g.

Both ff andz, have been calculated using the approach presentédl in [

To calculate the gradient at the boundary paigt we transform cell% and% to CG
according to the following,

— (Il—IQ)§+.§C1, for —1§§<0,
S\ (2 —a)E+a, for 0<E<I.

Then, using the approach presentedlif fve obtain

e fe SAFCD 37(-5) — 5(5)
(GF)(wo) = falwo) = o a1+ 3e(=5) - a(5)
_ 5 f(a(=1) + 3/ (a(=5)) — g f(2(.5))

—22(=1) + 3z(—5) — $2(5)
= <—§f(x0) +3f(171/2) - %f(IB/Q)) Jioa

whereJ,, = —%xo + 31‘% — %x%
Analogously, the gradient at the boundary paiptis obtained by transforming the cells
n— 3 andn — 1 to CG.
We note that the element CG of the RSC does not change duencptbulation of the
gradient. Rather the derivativgi; andz, are evaluated at different points, depending on
whether we are calculating the gradient at interior pointstdoundary points.

As a result, our gradient operator for non-uniform, 1D meskid look like

r—8/3 3 —1/3 T b
oo Jeg g 0 o 0 Jo
0 I e 0 0 f%
zq Iy f§
Gf = : : Sl
DR _1 1
0 0 J?;gl Jap_1 8(/)3 fn,l
-3 2
L O e O J:L'n, Jzn Jzn - L n Jd

so that after rewriting= as a product of two matrices we get

- 1 -
o - T RPN
O - 0 - 0 0 -1 1 -+ 0 0
G=|: : : 2k (4.2)
! 0 0 0 -1 1 0
Tp—1 1 0 1 3 8
L 0 7. | 3 - 3

We can clearly appreciate the effect of the local transfoiona. The resulting gradient
operator for non-uniform meshes is a diagonal matrix withittverse of the Jacobians of the
local transformations (that will be calleft;) times the fixed part of the gradient operator for

uniform meshes presented ifj [
If we implement 4.1) and @.2) over an uniform mesh, the® and G reduce to the

discrete operators presenteddn4, 6, 7]. For non-uniform meshes, the operatois simpler
than that obtained inlp).
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Let us now intoduce the following notationt, indicates a matrixd as it appears for the
uniform mesh case, whereds,, indicates a matrixl as it appears for the non-uniform mesh
case. For instancéy, denotes the gradient operator for uniform meshes@pg denotes
the gradient operator for non-uniform meshes, like?, We will use this notation when
necessary; otherwis€,andD will denote the gradient and divergence operator (respeg)i
for the non-uniform case. Moreover, as we saw in the previoastruction of the operators,
these can be written as a product of two matrices: one fixed>xmathich depends on the
order of the approximation and comes from the schemes peabam[1], and another matrix
with the inverse of the Jacobians of the local transfornmatiavhich depends on the staggered
mesh. G’ will denote the fixed part of the gradient operator matrix velasG will be the
whole operator. For examplé&;’,,, will be the fixed part of the gradient operator for non-
uniform meshes.

The weight matrice®,,, and@,,,, obtained by solving3.3) and 3.5) areP,,,, = P;Jal
andQy, = jng;. The hat over the matriz(g1 means that we are considering the aug-
mented matrix which has some extra rows, as many as the atgmneinergence has and
in the same position. These extras rows are zero everywhespeat the main diagonal
position, where they are equal to one.

Finally, the boundary operator can be built by using expoes8.6), as follows,

= (D))" IhIp QL + PG = (D)7 Q, + PLG)T
= (B:{)T = Bu.

That is, the second order boundary operator for non-uniforeshes is the same operator
obtained for the uniform case. The boundary operator forunaform meshesi3,,.,, obtained
with our method is simpler than that obtained 2], A similar situation was found with the
gradient operator. Thus, our approach provides an aligenttt generalize Castillo-Grone
operators to non-uniform meshes that is simpler to impldriem that proposed irip].
Some other properties of the mimetic operators are:
() D,,andG,,, are centro-skew-symmetric,
(i) D,, andG,,, are banded matrices,
(iii) the global conservation lawd(1) on non-uniform meshes is satisfied.

4.2. Implementation. We aim to solve the Boundary Value Problem (BVP)

VP f(x) = F(z),  we0.1] (4.3)
af(0) + Bf'(0) = b, (4.4)
af(1)+ Bf'(1) = by, (4.5)
where
2 % 105
Fe) = o+ 1x 10 “~ 5 =1 (4.6)
o100 100 4.7)

arctan(100)’ + arctan(100) (1 +1 x 10%)°

To solve this problem, we use second and fourth order minogté@rators on non-uniform
meshes obtained by the technique described earlier.

First, we compute the solution of (3—(4.5 by using the second order operators previ-
ously constructed. The discrete Laplacian is

L = DG e RI2)x(n+2),
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08 0.8
e i limeti «+ + + Adapted Mesh Mimetic
i i mmmm Analytical Solution

[ 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8

a x b x

FIGURE 4.2. (a) Numerical solution obtained with a uniform mesh, (b) uoal solution obtained with an
adapted mesh.

whereD is the augmented divergence operator, which has two rowsreszadded (one at
the top and one at the bottom). For the boundary conditidém §nd @.5), we have that

QAf+BBGf=1[br 0 - 0 by . (4.8)

The matrixA is such thatd; ; = A, 42,42 = 1 and all other entries are zero. A discrete
form of the boundary value problem.Q—(4.5) can be written as

(aAd+ BBG — L)f = F. (4.9)

In (4.8) and @.9), f represents the numerical solution of the problem.

Figure 4.2 shows the solution of4(9) (dotted line) along with the analytical solution
f(z) = % (solid line). For this boundary-layer-like problem we hawed a uni-
form mesh with 1000 points, shown in FiguteXa), and an adapted mesh with just 50 points,
shown in Figure4.2(b). For the latter, the points have been clustered to theukhg the
mesh-size functiofims(z) = arctan (%) + 1 x 1073,

The BVP @.3—(4.5 is notoriously difficult to solve. It is well known that tramnal
finite difference methods tend to produce approximationis mon-physical oscillations close
to the boundary: = 0. Some other options exist that avoid the appearance oflatsmils,
such as the upwind difference scheme and the donor cell sghieuh both these schemes
suffer from a drop in accuracy] 8]. With mimetic schemes, on the other hand, we obtain
solutions that agree with the physics of the problem in theseehat no oscillations occur.
Moreover, by using non-uniform mimetic operators and arptethmesh, we obtained very
good results with just a few points (FigufeX(b)).

Table 4.1 shows that the mimetic approximations implemented arerskooder with
asymptotic truncation errots;, estimated by

Ey, = ch? + O(hP1),
wherep is the order of the approximationjs the convergence-rate constants the number

of points in the mesh, andl = 1/n. The order of convergence was estimated using the
maximum norm

||f_f||OO:ma'X{|fi+%_fi-ﬁ-%" iZO,...,n_l},
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and the mean-square norm

n—1

1f = Fllza = 4| Dy = fir )2 (T i

=0

where(JBl)i,i is the Jacobian of the local transformation or the volumeaased with the
celli + 3.

TABLE 4.1
Convergence analysis for second order mimetic schemes.

Scheme  Ej (|| - [l) Ep (|- 1lz,)
Uniform  24480.7 x h*-9%  18637.6 x h1-9¢
Adapted  3.44 x h2-08 45 x h1-93

Random  410.57 x h-88 335.97 x h-89

Numerical results show that mimetic operators over adapteshes are not only sec-
ond order, but also have convergence-rate constants srallethe corresponding constants
for the uniform scheme. Similar results are reportedlii,[where schemell?] was imple-
mented.

Next, we consider the solution of the BVR.9)—(4.5 obtained with fourth order uniform
and non-uniform (adapted) mimetic operators. These operate equal to the product of a
diagonal matrix with the inverse of the Jacobians of thellbeasformations times the fixed
part of the Castillo-Grone fourth order operators. We nb&t bperatorss and D are fourth
order accurate at the images{@fandgi+%, respectively 2], and that these points have been
approximated by Lagrange interpolations of fourth order.this case we have clustered the
points by using the same mesh-size function as before. Tineogence results are presented
in Table4.2

As with the second order case, we note an improvement in theerical solution when
using adapted meshes, suggesting a much smaller convergaiecconstant. Moreover, this
example illustrates that we can construct, from the opesato[1], fourth order mimetic
approximations on adapted meshes and preserve their agcura

Thus, the use of adapted meshes with the mimetic schemeswzind in this paper
presents a very good option for solving boundary-layer [gmols.

TABLE 4.2
Convergence analysis for fourth order mimetic schemes.

Scheme | By (| - [lso) En (|- llzy)
Uniform | 1.18 x 10% x h*17  9.10 x 10% x h*17
Adapted |  11029.6 x h3-98 8105.84 x h3:98
Random | 1699.21 x h!1-05 1342.42 x h1-06

5. Conclusions and future works. We have established a technique that allows us to
construct, from the schemes presentedlh fnimetic approximations over non-uniform
meshes. In this process, we introduced new elements to ¢logytlof mimetic methods: the
RSC and the use of local transformations as the basic toobfwstructing mimetic operators.

The operators obtained are local and satisfy discrete cemtsen laws. We showed that
they can be expressed as the product of a fixed part, depemémt order of accuracy, and
a factor that depends on the discretization.
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Also, the technique reproduces the operators used in epidications fi, 6] when
applied to uniform meshes; it extends the Castillo-Gronerators to non-uniform meshes;
and it keeps invariant the boundary operator for the unifarmd non-uniform case, which
makes its computation and implementation simpler than tethad proposed inlf]. It is
worth mentioning that the last two provide completely nesutts.

Future work includes the implementation of this method tostuct mimetic operators
of higher order, for higher dimension problems, and for gaheolygonal discretizations of
the physical domain.

Acknowledgments. Thanks to Dany De Cecchis for his advice with the formattihg o
this document.
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