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BOOSTING THE INVERSE INTERPOLATION PROBLEM BY A SUM OF
DECAYING EXPONENTIALS USING AN ALGEBRAIC APPROACH  *

MARCO PALUSZNY'!, MIGUEL MARTIN-LANDROVE?, GIOVANNI FIGUEROA!, AND
WUILIAN TORRESY

Dedicated to Vctor Pereyra on the occasion of his 70th birthday

Abstract. An algebraic method is proposed to solve the inverse intatipa problem for data fitting by a
linear combination of decaying exponentials. The methadsiorms the interpolation question into a problem of
finding the roots of a single polynomial. The method is vaédeaby numerical simulations using noiseless synthetic
data with excellent results. The method is applied to médiata coming from magnetic resonance images of
tumoral lesions in brain to obtain relaxation rate disttitnu functions, with results that are trustworthy and fast
when compared with inverse Laplace methods.
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1. Introduction and preliminaries. The idea of using a linear combination ofex-
ponentials to interpolate a sequence of points sampledullggspaced intervals of time
was introduced in 1795 (though practical use of this metheaitad the digital computer)
by Baron Gaspard Riche de Prory3], and is usually known as de Prony’s method. It has
a variety of applications in physics and engineering. Maaggrs have been written about
its applications; among these, we would like to point to thpgrs of Ruhel4], Martin et
al. [8], and Osborne and SmythZ]. An application in the field of tissue segmentation from
NMR brain data was considered i8] [

In this paper, we introduce algebraic manipulations thatpsify the interpolation or
approximation of: points using linear combinations of exponentials. Gi2emeal numbers

C; and\;,7=1,...,n, we consider the function
y(t)=Cre Mt ... 4 Cpe Mt (1.2)
If we take2n evenly spaced samples of timiét, for j = 1,..., k, we get that the points

p; =y (JAt) are given in terms of polynomial expressions

P = Clef)\lAt R OnefAnAt
p2 — 016—2)\] At + A + Cne—QkylAt
(1.2)

pp = Cre "Bt L L 0 e kAnAL
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Definingz; = e MA gy = e 28 g, =e A forj =1,...,nin (1.2) yields
p1=Ciz1 +--+ Chay
4+t Cnxi

py = C1a2
o (1.3)

Pr = C’lx’f 4+t Cna:fl,

and transforms the exponential systetn? into the polynomial systeml(3), where our

unknowns are th€’; and ther; fori =1,...,n.
The problem of de Prony is the inverse question: gikesvenly spaced measurements
P1,DP2,-- -, Pk, fOr a givenn, we want to find real numbers; and\;,i = 1, ..., n, such that

pj = Cle—j)th + CQe—jkgAt N Cne—j)\n,At

forj =1,..., k. Thisis equivalent to solvindl(2) for theC; and\;,i = 1,...,n, in terms
of the measurementis, po, ..., pr. Clearly, this problem does not have a unique solution
unless there is a constraint relationship betweamdn (so that a rank condition might be
satisfied).

In the special case that= 2n, an iterative method is presented 8),[which we review
in Section2. Our goal in this paper is to propose an algebraic numeratedse that reduces
the problem to finding roots and solving a linear equation enfggming a standard least
squares process. This is discussed in Se&idinshould be pointed out that it is also possible
to deal with problem1.3) in terms of Grdobner bases, but this becomes rather cortiguddy
expensive fon > 4.

2. Homotopy continuation method. Intuitively speaking, two functions are homotopic
if one can be deformed continuously into the other. Formallyromotopy between two
continuous functiorf andg from a topological spac to a topological spack is defined to
be a continuous functioH : X x [0, 1] — Y such that, for all points in X, H(z,0) = f(z)
andH (z, 1) = g(z). We will not go into details about homotopic continuatioybed a few
lines that provide a quick look within the context of the appmation problem in this paper;
for further details, seeg] or [7].

Let us start by rewritingX(.3) as

fi=Cix1r +-+ Cprp —p1

fo=Cral +---+ Cprl —pa
. . (2.1)

fr=Cizl +---+ Cnal —pr,
where eacly; is a function of the variable&™, ..., C,,, z1, ..., z,). ExpressionZ.1) gives
the components of a functioR : R?" — RF. Wheneverf; = Oforalli = 1,...,k we

get a solution of systen?(1). Now, suppose that we have a “gode¥i-dimensional initial
estimateb to a zero ofF’, i.e., F'(b) will be small in some sense whéris close to the root
being sought. The next step is to compute a cufve= (s1(t), ..., s2,,(t)) satisfying

F(s(t) = (1 )F () (22)

for0 <t <1, suchthat'(s(0)) = F(b) andF'(s(1)) = 0. Upon differentiation of2.2), the
curves(t) has to satisfy
ds

F(s(t) 5 = —F () (2:3)
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with initial condition s(0) = b, whereF” is the Jacobian of". In this procedure, each
iteration for0 < ¢ < 1 requires the solution of a linear system of equations; heidge
computationally expensive.

3. Algebraic—humerical scheme.Our idea is to introduce nonlinear changes of vari-
ables in expressiori(3) that reduce the computation of the to the solution of a Toeplitz
linear system. This decouples the problem into a linearipaerms of the symmetric func-
tions of thez;, and finding the roots of a polynomial. We will focus our atten on the case
n = 4 and varioust because of its relevance in the tumor segmentation NMR egijuin;
see P

If £ =2n+ 1andn = 4, the systemX.3) takes the form

p1 = Cixy + Coxo + Cszz + Chxy
pa = C12? + Caxd + Cszi + Cya?
. . . . (3.2)

P9 = 01117? + OQZCg + ngg + O4$2,

and we proceed as follows. First, we reduce the number oftiemsan 3.1) with the trans-
formationg; = p; — pj+1 forj = 1,...,8; and fori = 1,...,4, we define new variables
u; = C; (1 — z;), getting

q1 = u1T1 + U2 + uzx3 + ULy
qo = ulx% + ugx% + U3x§ + u4xﬁ

(3.2)

gg = uw? + ugxg + U3x§ + U4x§.

By taking the differenceg; .1 —qg;z1, together with the change of variablgs= u, (x; — 1),
equation 8.2) gets transformed into

Q2 = q1T1 + V22 + V3T3 + V4xy4
_ 2 2 2
q3 = @21 + v2x5 + v3T3 + v4T;

(3.3)
qs = qrr1 + vz:c; + vga?g + v4:cZ.
Next, eliminatev, by computingy;+1 — g;x2 for j = 2,...,7 to obtain
@3 =q2 (x1 +22) — 172 + W3r3 + WaTy
g1 = @3 (x1 + 22) — Q172 + w3x§ + w4:cﬁ
(3.4)

g8 = g7 (1 + x2) — ge1T2 + w3z + waal,

wherew; = v;(x;—x2) for j = 3, 4. Now, eliminatews from (3.4) by calculatingg; 1 —q;x3
forj =3,...,7, which yields
qa = g3 (1 + 22+ 73) — @2 (T172 + 7123 + T223) + QT 1T2T3 + 4Ty

5 = dq4

q (1171 —+ 2o + Ig) — Q3 (ZCl.CCQ +x123 + IQZCg) + qar1x273 + t4ZC421 (3 5)

g8 = q7 (11 + 22 + x3) — g6 (1272 + X173 + T2w3) + GsT1T2T3 + La7],

wheret, = wy (x4 — x3). Finally, we eliminate s from (3.5 by calculatingg;+1 — g;jz4 for
j=4,---,7, whichyields

Q=MZ, (3.6)
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where
q5 qa —43 42 —q1
Q= de ’ M= | N B T (3.7)
qr g6 —45 da —Qq3
qs g7 —ds6 (5 —q4

Hence, we have obtained a linear modified Toeplitz sySterthe symmetric functions
of the variables:y, x5, x3, andx4, namely

Z1 =1+ T2+ T3+ T4

Ly = X122 + 1123 + 124 + Tox3 + TaTg + 374

(3.8)
3 = X1X2T3 + T1Toxg4 + T1X3T4 + ToT3T4
Z4 = L1X2X3T4.
Itis easy to check that;, x5, x3, 24 are the roots of the quartic equation
bt — 7123 + Zoa® — Zsx + Z4 = 0. (3.9)

We tested the above technique within the framework of ouliegton: recovering the
exponents\; and the coefficientg; for data sets of eight and nine points. Namely, we
considered the exponential fitting probleind) for n = 4 andk = 2n + 1 at the points
t; = 44i/1000 fori = 1,...,9. We take they; as given by {.3) with positive coefficients;,
fori = 1,2, 3,4, chosen randomly and normalized so that; = 1 and);, fori = 1,2, 3,4,
random betweef and20. Then the returned values fert*: ande; lie within 10~° of the
exact values unless the condition number of the Toeplitzimaf given in 3.7) is of order
greater thari0°. The tests were run with standardAVLAB routines. This unstable numer-
ical behavior can be traced back to nearly coincident (wi%) values of the exponents,
which collides with the assumption that the number of défeitissues is four. Consequently,
the occurrence of a large condition number for the 4 Toeplitz matrix is a pointer to the
possibility that the data set might be better approximatetetver than four exponentials.
This will be explored in detail in the context of our applicet in a forthcoming paper; see
also P].

At a recent conference, the Il International Congress on &higal and Computational
Simulations, the authors became aware that the problems@abasolved using the VARPRO
system developed in the classical work of Gene Golub andoWieereyra §] of 1973.

In fact, under the change of variables = C;(1 — z;)x; for i = 1,...,4, and taking
y; = pj — pj+1 forj = 1,...,8, our system Z.1) takes the Vandermonde form, which
forn=4is

_yl_ 1 1 1 1]

Y2 1 T2 T3 T4

Y3 Ii I§ SC§ Ié (731

Ya| _ | X1 T X3 Ty| (U2

vs|  |od od ol ad| |us|” —

Yo x} x‘;’ 25| |ug

1The modified Toeplitz system is exactly Toeplitz in the Vblés Z,, — Z2, Z3 and—Z.
2See P] for an interesting review of the history of the developmefthe idea of separable nonlinear least
squares and its applications.
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and hence it can be solved using VARPRO. S8apd [3] for further examples in the area
of Lattice Quantum Chromodynamics.

4. The rectangular Toeplitz cases.If the number of measurementsis not equal to
2n + 1 wheren is the number of variables, our Toeplitz system is not square< 2n + 1,
the Toeplitz system is underdetermined. In terms of the NNM&nbtissue segmentation
problem, this means that we could fix arbitrarily one typeisgue (or more, depending on
the rank of the Toeplitz matrix). I > 2n + 1, the Toeplitz system is overdetermined, and
hence there is no interpolatory solution, but an approxé@salution may be determined using
least squares. In the case that 4 and the number of equationslis, the resulting Toeplitz
system i) = M Z, whereZ is computed by minimizin @ — M Z||,, and

qs qa —q3 42 —q1
d6 g5 —q4 43 —Q2
Q= |a|, M= g —-q5 q1 —q3
g8 g7 —ds 45 —dq4
q9 g8 —q7 46 —Gs

The solutionz, 22, x3, andz4 can be retrieved fron3(8). In the case of noisy data, we can
supplement the original data with additional data pointsl #his leads naturally to overde-
termined Toeplitz systems.

In order to evaluate the overall performance of the methayndhetic image data set
was constructed using the BrainWeb Simulated Brain Datafigas a template for different
tissue types. It was assumed that only four different tydesssues were present, includ-
ing cerebrospinal fluid, gray and white matter, and conmedissue. Synthetic data were
constructed as follows. For each tissue, the relaxatianwais assumed to be normally dis-
tributed around a mean value dependent on the tissue chastics; these mean values were
2 s~ for cerebrospinal fluid, 16~ for gray matter, 12~ for white matter, and 26!
for connective tissue. The resulting relaxation rate itigtion function is shown in Figure
4.1 (top right). The baseline for data points was assumed to $teildited according to a
Rice-Rayleigh distribution, also shown in Figurd (bottom right). To consider the effect of
noise, fluctuations distributed according to normal disttions were added to data points. In
doing so, data sets for standard deviations ranging frono DOX001 were constructed. The
results are shown in Figure1for the region of interest delimited in the figure.

5. Conclusions. It is clear that the method is fast and easy to implement. ,Atse a
reasonable alternative in the undetermined cases. We ctatexperiments with noiseless
synthetic data that were numerically stable unless theitonshumber of the Toeplitz matrix
was very large. The problem of segmenting tumor tissue irbth& from NMR relaxation
data has been tackled successfullylifi{ see also11] and [4]. In [10] and [L1], the authors
use the Inverse Laplace Transform, which is rather slow. greeent method improves the
computation time roughly by a factor of one thousand.

Figure5.1(a) and (b) compare the relative frequencies of the relarditines of the pix-
els in the shown regions of interest as computed with ther@/kaplace Transform and the
technique proposed in this paper, respectively. The coegaiaxation time is the average
of the exponents; weighted by the coefficients. In this particular example, there are eight
measurements and one of the four exponents is set to onéhére is a baseline; se@] |
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FIGURE 4.1.The effect of noise on the distribution of relaxation rates.
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FIGURE5. 1. Comparison between the proposed method and the Inversadeaptansform (ILT) algorithm of
[10]. (a) Corresponds to Figure 11 ofip], showing the comparison between tumoral lesion and co(tantralat-
eral region). (b) lllustrates results obtained by the prepd method for regions similar to those of (a).

present this article in the Il International Congress on Mtioal and Computational Simula-
tions Cumana 2007. We also dedicate this paper to the meoh@gne Golub.
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