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BOOSTING THE INVERSE INTERPOLATION PROBLEM BY A SUM OF
DECAYING EXPONENTIALS USING AN ALGEBRAIC APPROACH ∗
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Dedicated to V́ıctor Pereyra on the occasion of his 70th birthday

Abstract. An algebraic method is proposed to solve the inverse interpolation problem for data fitting by a
linear combination of decaying exponentials. The method transforms the interpolation question into a problem of
finding the roots of a single polynomial. The method is validated by numerical simulations using noiseless synthetic
data with excellent results. The method is applied to medical data coming from magnetic resonance images of
tumoral lesions in brain to obtain relaxation rate distribution functions, with results that are trustworthy and fast
when compared with inverse Laplace methods.

Key words. de Prony’s method, continuation methods, Gröbner bases, exponential equations, polynomial equa-
tions, nonlinear algebraic equations.
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1. Introduction and preliminaries. The idea of using a linear combination ofn ex-
ponentials to interpolate a sequence of points sampled at equally spaced intervals of time
was introduced in 1795 (though practical use of this method awaited the digital computer)
by Baron Gaspard Riche de Prony [13], and is usually known as de Prony’s method. It has
a variety of applications in physics and engineering. Many papers have been written about
its applications; among these, we would like to point to the papers of Ruhe [14], Martin et
al. [8], and Osborne and Smyth [12]. An application in the field of tissue segmentation from
NMR brain data was considered in [9].

In this paper, we introduce algebraic manipulations that simplify the interpolation or
approximation ofk points using linear combinations of exponentials. Given2n real numbers
Ci andλi, i = 1, . . . , n, we consider the function

y (t) = C1e
−λ1t + · · · + Cne−λnt. (1.1)

If we take2n evenly spaced samples of timej∆t, for j = 1, . . . , k, we get that the points
pj = y (j∆t) are given in terms of polynomial expressions



















p1 = C1e
−λ1∆t + · · ·+ Cne−λn∆t

p2 = C1e
−2λ1∆t + · · ·+ Cne−2λn∆t

...
...

...
pk = C1e

−kλ1∆t + · · ·+ Cne−kλn∆t,

(1.2)
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Definingx1 = e−λ1∆t, x2 = e−λ2∆t, . . . , xn = e−λn∆t, for j = 1, . . . , n in (1.2) yields


















p1 = C1x1 + · · ·+ Cnxn

p2 = C1x
2
1 + · · ·+ Cnx2

n

...
...

...
pk = C1x

k
1 + · · ·+ Cnxk

n,

(1.3)

and transforms the exponential system (1.2) into the polynomial system (1.3), where our
unknowns are theCi and thexi for i = 1, . . . , n.

The problem of de Prony is the inverse question: givenk evenly spaced measurements
p1, p2, . . . , pk, for a givenn, we want to find real numbersCi andλi, i = 1, . . . , n, such that

pj = C1e
−jλ1∆t + C2e

−jλ2∆t + · · · + Cne−jλn∆t

for j = 1, . . . , k. This is equivalent to solving (1.2) for theCi andλi, i = 1, . . . , n, in terms
of the measurementsp1, p2, . . . , pk. Clearly, this problem does not have a unique solution
unless there is a constraint relationship betweenk andn (so that a rank condition might be
satisfied).

In the special case thatk = 2n, an iterative method is presented in [8], which we review
in Section2. Our goal in this paper is to propose an algebraic numerical scheme that reduces
the problem to finding roots and solving a linear equation or performing a standard least
squares process. This is discussed in Section3. It should be pointed out that it is also possible
to deal with problem (1.3) in terms of Gröbner bases, but this becomes rather computationally
expensive forn > 4.

2. Homotopy continuation method. Intuitively speaking, two functions are homotopic
if one can be deformed continuously into the other. Formally, a homotopy between two
continuous functionf andg from a topological spaceX to a topological spaceY is defined to
be a continuous functionH : X× [0, 1] → Y such that, for all pointsx in X , H(x, 0) = f(x)
andH(x, 1) = g(x). We will not go into details about homotopic continuation beyond a few
lines that provide a quick look within the context of the approximation problem in this paper;
for further details, see [8] or [7].

Let us start by rewriting (1.3) as


















f1 = C1x1 + · · ·+ Cnxn − p1

f2 = C1x
2
1 + · · ·+ Cnx2

n − p2

...
...

...
fk = C1x

k
1 + · · ·+ Cnxk

n − pk,

(2.1)

where eachfi is a function of the variables(C1, . . . , Cn, x1, . . . , xn). Expression (2.1) gives
the components of a functionF : R2n → Rk. Wheneverfi ≡ 0 for all i = 1, . . . , k we
get a solution of system (2.1). Now, suppose that we have a “good”2n-dimensional initial
estimateb to a zero ofF , i.e.,F (b) will be small in some sense whenb is close to the root
being sought. The next step is to compute a curves(t) = (s1(t), . . . , s2n(t)) satisfying

F (s(t)) = (1 − t)F (b) (2.2)

for 0 ≤ t ≤ 1, such thatF (s(0)) = F (b) andF (s(1)) = 0. Upon differentiation of (2.2), the
curves(t) has to satisfy

F ′(s(t))
ds

dt
= −F (b) (2.3)
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with initial condition s(0) = b, whereF ′ is the Jacobian ofF . In this procedure, each
iteration for0 ≤ t ≤ 1 requires the solution of a linear system of equations; hence, it is
computationally expensive.

3. Algebraic–numerical scheme.Our idea is to introduce nonlinear changes of vari-
ables in expression (1.3) that reduce the computation of thexi to the solution of a Toeplitz
linear system. This decouples the problem into a linear partin terms of the symmetric func-
tions of thexi, and finding the roots of a polynomial. We will focus our attention on the case
n = 4 and variousk because of its relevance in the tumor segmentation NMR application;
see [9].

If k = 2n + 1 andn = 4, the system (1.3) takes the form

p1 = C1x1 + C2x2 + C3x3 + C4x4

p2 = C1x
2
1 + C2x

2
2 + C3x

2
3 + C4x

2
4

...
...

...
...

p9 = C1x
9
1 + C2x

9
2 + C3x

9
3 + C4x

9
4,

(3.1)

and we proceed as follows. First, we reduce the number of equations in (3.1) with the trans-
formationqj = pj − pj+1 for j = 1, . . . , 8; and fori = 1, . . . , 4, we define new variables
ui = Ci (1 − xi), getting

q1 = u1x1 + u2x2 + u3x3 + u4x4

q2 = u1x
2
1 + u2x

2
2 + u3x

2
3 + u4x

2
4

...
...

...
...

q8 = u1x
8
1 + u2x

8
2 + u3x

8
3 + u4x

8
4.

(3.2)

By taking the differencesqj+1−qjx1, together with the change of variablesvi = ui(xi−x1),
equation (3.2) gets transformed into

q2 = q1x1 + v2x2 + v3x3 + v4x4

q3 = q2x1 + v2x
2
2 + v3x

2
3 + v4x

2
4

...
...

...
...

q8 = q7x1 + v2x
7
2 + v3x

7
3 + v4x

7
4.

(3.3)

Next, eliminatev2 by computingqj+1 − qjx2 for j = 2, . . . , 7 to obtain

q3 = q2 (x1 + x2) − q1x1x2 + w3x3 + w4x4

q4 = q3 (x1 + x2) − q2x1x2 + w3x
2
3 + w4x

2
4

...
...

...
...

q8 = q7 (x1 + x2) − q6x1x2 + w3x
6
3 + w4x

6
4,

(3.4)

wherewj = vj(xj−x2) for j = 3, 4. Now, eliminatew3 from (3.4) by calculatingqj+1−qjx3

for j = 3, . . . , 7, which yields

q4 = q3 (x1 + x2 + x3) − q2 (x1x2 + x1x3 + x2x3) + q1x1x2x3 + t4x4

q5 = q4 (x1 + x2 + x3) − q3 (x1x2 + x1x3 + x2x3) + q2x1x2x3 + t4x
2
4

...
...

...
...

q8 = q7 (x1 + x2 + x3) − q6 (x1x2 + x1x3 + x2x3) + q5x1x2x3 + t4x
5
4,

(3.5)

wheret4 = w4(x4 − x3). Finally, we eliminatet4 from (3.5) by calculatingqj+1 − qjx4 for
j = 4, · · · , 7, which yields

Q = MZ, (3.6)
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where

Q =









q5

q6

q7

q8









, M =









q4 −q3 q2 −q1

q5 −q4 q3 −q2

q6 −q5 q4 −q3

q7 −q6 q5 −q4









. (3.7)

Hence, we have obtained a linear modified Toeplitz system1 in the symmetric functions
of the variablesx1, x2, x3, andx4, namely

Z1 = x1 + x2 + x3 + x4

Z2 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4

Z3 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4

Z4 = x1x2x3x4.

(3.8)

It is easy to check thatx1, x2, x3, x4 are the roots of the quartic equation

x4 − Z1x
3 + Z2x

2 − Z3x + Z4 = 0. (3.9)

We tested the above technique within the framework of our application: recovering the
exponentsλi and the coefficientsci for data sets of eight and nine points. Namely, we
considered the exponential fitting problem (1.2) for n = 4 andk = 2n + 1 at the points
ti = 44i/1000 for i = 1, ..., 9. We take thepi as given by (1.3) with positive coefficientsci,
for i = 1, 2, 3, 4, chosen randomly and normalized so that

∑

ci = 1 andλi, for i = 1, 2, 3, 4,
random between0 and20. Then the returned values fore−tiλi andci lie within 10−5 of the
exact values unless the condition number of the Toeplitz matrix M given in (3.7) is of order
greater than109. The tests were run with standard MATLAB routines. This unstable numer-
ical behavior can be traced back to nearly coincident (within 3%) values of the exponents,
which collides with the assumption that the number of different tissues is four. Consequently,
the occurrence of a large condition number for the4 × 4 Toeplitz matrix is a pointer to the
possibility that the data set might be better approximated by fewer than four exponentials.
This will be explored in detail in the context of our application in a forthcoming paper; see
also [9].

At a recent conference, the II International Congress on Numerical and Computational
Simulations, the authors became aware that the problem can also be solved using the VARPRO
system developed in the classical work of Gene Golub and Victor Pereyra [6] of 19732.
In fact, under the change of variablesui = Ci(1 − xi)xi for i = 1, . . . , 4, and taking
yj = pj − pj+1 for j = 1, . . . , 8, our system (2.1) takes the Vandermonde form, which
for n = 4 is

























y1

y2

y3

y4

y5

y6

y7

y8

























=

























1 1 1 1
x1 x2 x3 x4

x2
1 x2

2 x2
3 x2

4

x3
1 x3

2 x3
3 x3

4

x4
1 x4

2 x4
3 x4

4

x5
1 x5

2 x5
3 x5

4

x6
1 x6

2 x6
3 x6

4

x7
1 x7

2 x7
3 x7

4

































u1

u2

u3

u4









, (3.10)

1The modified Toeplitz system is exactly Toeplitz in the variablesZ1,−Z2, Z3 and−Z4.
2See [5] for an interesting review of the history of the developmentof the idea of separable nonlinear least

squares and its applications.
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and hence it can be solved using VARPRO. See [2] and [3] for further examples in the area
of Lattice Quantum Chromodynamics.

4. The rectangular Toeplitz cases.If the number of measurementsk is not equal to
2n + 1 wheren is the number of variables, our Toeplitz system is not square. If k < 2n + 1,
the Toeplitz system is underdetermined. In terms of the NMR brain tissue segmentation
problem, this means that we could fix arbitrarily one type of tissue (or more, depending on
the rank of the Toeplitz matrix). Ifk > 2n + 1, the Toeplitz system is overdetermined, and
hence there is no interpolatory solution, but an approximate solution may be determined using
least squares. In the case thatn = 4 and the number of equations is10, the resulting Toeplitz
system isQ = MZ, whereZ is computed by minimizing‖Q − MZ‖2, and

Q =













q5

q6

q7

q8

q9













, M =













q4 −q3 q2 −q1

q5 −q4 q3 −q2

q6 −q5 q4 −q3

q7 −q6 q5 −q4

q8 −q7 q6 −q5













.

The solutionx1, x2, x3, andx4 can be retrieved from (3.8). In the case of noisy data, we can
supplement the original data with additional data points, and this leads naturally to overde-
termined Toeplitz systems.

In order to evaluate the overall performance of the method, asynthetic image data set
was constructed using the BrainWeb Simulated Brain Database [1] as a template for different
tissue types. It was assumed that only four different types of tissues were present, includ-
ing cerebrospinal fluid, gray and white matter, and connective tissue. Synthetic data were
constructed as follows. For each tissue, the relaxation rate was assumed to be normally dis-
tributed around a mean value dependent on the tissue characteristics; these mean values were
2 s−1 for cerebrospinal fluid, 10s−1 for gray matter, 12s−1 for white matter, and 20s−1

for connective tissue. The resulting relaxation rate distribution function is shown in Figure
4.1 (top right). The baseline for data points was assumed to be distributed according to a
Rice-Rayleigh distribution, also shown in Figure4.1(bottom right). To consider the effect of
noise, fluctuations distributed according to normal distributions were added to data points. In
doing so, data sets for standard deviations ranging from 10 to 0.0001 were constructed. The
results are shown in Figure4.1for the region of interest delimited in the figure.

5. Conclusions. It is clear that the method is fast and easy to implement. Also, it is a
reasonable alternative in the undetermined cases. We conducted experiments with noiseless
synthetic data that were numerically stable unless the condition number of the Toeplitz matrix
was very large. The problem of segmenting tumor tissue in thebrain from NMR relaxation
data has been tackled successfully in [10]; see also [11] and [4]. In [10] and [11], the authors
use the Inverse Laplace Transform, which is rather slow. Thepresent method improves the
computation time roughly by a factor of one thousand.

Figure5.1(a) and (b) compare the relative frequencies of the relaxation times of the pix-
els in the shown regions of interest as computed with the Inverse Laplace Transform and the
technique proposed in this paper, respectively. The computed relaxation time is the average
of the exponentsλi weighted by the coefficientsci. In this particular example, there are eight
measurements and one of the four exponents is set to one, i.e., there is a baseline; see [9].
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us to the VARPRO technology for the solution of Vandermonde systems. Giovanni Figueroa
is deeply grateful to Mrs. Marvy de Nuñez and Mr. José Luis Figueroa by his support to
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FIGURE 4.1.The effect of noise on the distribution of relaxation rates.

FIGURE 5.1.Comparison between the proposed method and the Inverse Laplace Transform (ILT) algorithm of
[10]. (a) Corresponds to Figure 11 of [10], showing the comparison between tumoral lesion and control (contralat-
eral region). (b) Illustrates results obtained by the proposed method for regions similar to those of (a).

present this article in the II International Congress on Numerical and Computational Simula-
tions Cumaná 2007. We also dedicate this paper to the memoryof Gene Golub.
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[10] M. M ARTÍN-LANDROVE, F. MAYOBRE, I. BAUTISTA , R. VILLALTA , Brain tumor evaluation and segmen-
tation by in vivo spectroscopy and relaxometry, MAGMA, Magnetic Resonance Materials in Physics,
Biology, and Medicine, 18 (2005), pp. 316–331.
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