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Abstract. In this paper, we demonstrate the existence, uniqueness, and uniform stability of the discrete solution
obtained with the nonconforming Crouzeix-Raviart/P0 finite element for a generalized Stokes problem of a two-
phase flow in one time-step.
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1. Introduction. In many applications in science and technology, the flow of two im-
miscible and incompressible fluids in a pipeline, or two-phase flow, plays an important role
[22, 23]. In particular, the lubricated transportation techniqueis frequently used to facilitate
the movement of viscous oils through a pipeline lubricated with a low-viscosity liquid such
as water. For this process to be successful, the low-viscosity fluid must be introduced and
maintained between the viscous oil and the wall of the pipeline, forming a capsule between
the wall and the high-viscosity fluid [7]. This flow pattern is called core annular flow, and
the proposed physical model for its study assumes that in this configuration both fluids travel
adjacently in time and space, the interface being a natural separation surface between the two
fluids.

Based on this, Maury et al. in 2002 proposed to study two-dimensional linear two-phase
flow (D = 2) of a fluid made up of water and petroleum in a horizontal pipeline, governed
by the transient Navier-Stokes equations; see [27]. Initially, Maury proposed a mathematical
model based on these equations with boundary conditions in an axisymmetrical configuration.
This configuration simplified the study, in the sense that theinterface between both fluids was
represented as a single free boundary, but it added an artificial boundary condition which was
located in the middle of the pipeline. This free boundary is an unknown to be determined
in the problem, and this, although apparently simple, makesthe problem more difficult by
adding the transport equation which models the evolution intime and space of the interface
as it becomes deformed due to the action of stresses producedby the surface tension between
the two fluids. The Arbitrary Lagrangian-Eulerian (ALE) method of approximation, which
is based on a grid that moves with the fluid, and a method of characteristics for discretizing
the nonlinear convection term on the Navier-Stokes equations were proposed. Thus, a semi-
discretization in time of the Navier-Stokes equations was obtained, leading to a generalized
Stokes problem with non-standard boundary conditions. In Girault, López, and Maury [17],
this problem was discretized in space using the Arnold-Brezzi-Fortin finite element (“mini-
element”), and numerical error estimations were established.

Next, Angulo and López presented in [4] a more realistic extension of a two-phase-flow
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two-dimensional problem by considering a non-axisymmetrical configuration. This variant
eliminates the artificial boundary and complicates the problem further since it includes two
free surfaces to be determined, and these deform in different and arbitrary fashion in space and
time. Using the combined ALE-characteristic method, an equivalent variational formulation
to the generalized Stokes problem corresponding to the non-axisymmetrical configuration
was proposed, and it was demonstrated that this formulationis a well-posed problem.

In this paper, we present a mixed finite element, different from the “mini-element,” to
approximate the variational formulation proposed in [4], and we demonstrate that the discrete
problem is well-posed and that the solution is stable for this mixed finite element. This mixed
finite element approximates each velocity component with the Crouzeix-Raviart finite ele-
ment and the pressure by a constant in each element (Crouzeix-Raviart/P0). Some numerical
simulations which verify this heuristically are also presented.

This paper is organized as follows. In Section2 we introduce the Sobolev spaces and
the associated norms used in this article. In Section3, following [4] very closely, we present
the nonlinear equations that model two-phase non-axisymmetrical flow and the generalized
Stokes problem that must be solved for each time step. Section 4 is devoted both to the
discretization of the generalized Stokes problem using theCrouzeix-Raviart/P0 mixed finite
element and to the results on the existence, uniqueness, andstability of the solution to the
discrete problem. Finally, in Section5, we show some numerical simulations for a two-phase
flow test problem taken from [7].

2. Preliminary basics. In this section we introduce the Sobolev spaces and the associ-
ated norms employed in this paper; see [26] and [2] for further details.

Given a domainΩ ⊂ R
2 with a boundary∂Ω, the Sobolev space of functionsHm(Ω) is

defined as:

Hm(Ω) =
{
v ∈ L2(Ω) : ∂kv ∈ L2(Ω), ∀ |k| ≤ m

}
,

where|k| = k1 + k2 with (k1, k2) a pair of non-negative integers (in two dimensions) and

∂kv =
∂|k|v

∂xk1

1 ∂xk2

2

.

This space is equipped with the seminorm

|v|Hm(Ω) =




∑

|k|=m

∫

Ω

∣∣∂kv
∣∣2 dΩ




1/2

,

and is a Hilbert space for the norm

‖v‖Hm(Ω) =




∑

0≤k≤m

|v|
2
Hk(Ω)




1/2

.

The scalar product ofL2(Ω) is denoted by(·, ·). The definitions of these spaces are extended
straightforwardly to vectors, with the same notation.

3. The nonlinear model for a2-D two-phase flow. In a longitudinal section of a piece
of the pipeline, the fluid with low viscosity (water) is adjacent to the pipe wall, and it sur-
rounds the fluid with high viscosity (petroleum). Figure3.1 illustrates this two-phase flow
pattern as a domainΩ ⊂ R

2 delimited by the piece of horizontal pipe.



ETNA
Kent State University 

http://etna.math.kent.edu

172 W. ANGULO AND H. LÓPEZ

FIGURE 3.1.DomainΩ and boundary∂Ω.

For each timet ∈ [0, T ], the domainΩ is decomposed into two subdomains,Ω1(t) and
Ω2(t). Here,Ω1 is the region occupied by the heavy fluid (the petroleum) andΩ2 is the region
occupied by the water. This latter region,Ω2, is divided into two subregions, one superior
and another inferior, that we shall callΩ2

a andΩ2
b , respectively, such that

Ω2(t) = Ω2
a(t) ∪ Ω2

b(t).

On the other hand, the boundary ofΩi, i = 1, 2, is given by:

∂Ω1(t) = Γ1
in ∪ Γ1

out ∪ Γa(t) ∪ Γb(t), (3.1)

∂Ω2(t) = Γ2
in ∪ Γ2

out ∪ Γa(t) ∪ Γb(t) ∪ Γ0a ∪ Γ0b
, (3.2)

whereΓ1
in andΓ2

in = Γ2
ina

∪ Γ2
inb

represent the inlet boundaries for eachΩi, andΓ1
out and

Γ2
out = Γ2

outa
∪ Γ2

outb
represent the outlet boundaries for each subdomainΩi. We shall then

denote byΓin = Γ1
in ∪ Γ2

in andΓout = Γ1
out ∪ Γ2

out the inlet and outlet boundaries, respec-
tively, for the entire domainΩ. On the other hand,Γ0a andΓ0b

represent the boundaries
corresponding to the pipe wall; and, finally, the separationinterfaces between both compo-

nents are given byΓa(t) = Ω
1
(t)∩Ω

2

a(t) andΓb(t) = Ω
1
(t) ∩Ω

2

b(t) in the upper and lower
part, respectively.

It is assumed that the flow is sufficiently smooth, i.e., with alow Reynolds number (R <
2000) [29], and this situation holds until a certain timeT . Therefore, at the initial time the
interfaces between the two fluids are considered to be straight lines. It is assumed that these
interfaces are never adjacent to the pipe walls, and that they are always separated sufficiently
well that there is little possibility that they will collide[14]. Based on these premises, both
interfaces can be conveniently parametrized as follows:

Γa : (x, t) 7−→ Φa(x, t),

Γb : (x, t) 7−→ Φb(x, t),

so that, for small quantitiesδ1 , δ2 , δ3 > 0 and allx ∈ [0, L], we have

Φa(x, t) − Φb(x, t) > δ1 > 0, Φb(x, t) > −D + δ2, Φa(x, t) < D − δ3; (3.3)
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the subdomains being defined by:

Ω1(t) = {(x, y) ∈ Ω : 0 ≤ x ≤ L, Φb(x, t) < y < Φa(x, t)} , (3.4)

Ω2
a(t) = {(x, y) ∈ Ω : 0 ≤ x ≤ L, Φa(x, t) < y ≤ D} , (3.5)

Ω2
b(t) = {(x, y) ∈ Ω : 0 ≤ x ≤ L, −D ≤ y < Φb(x, t)} , (3.6)

whereD > 0 is the radius of the pipeline andL is the pipeline length.
To describe the density and the viscosity in allΩ, we introduce the piecewise constant

quantitiesρ andµ defined by

ρ =

2∑

i=1

χiρi and µ =

2∑

i=1

χiµi, (3.7)

whereχi is the characteristic function of subdomainΩi, i = 1, 2, with χ2 defined by

χ2 = χΩ2
a∪Ω2

b
= χΩ2

a
+ χΩ2

b
.

Hereρi andµi are, respectively, the given densities and the viscositiesconstant in eachΩi,
i = 1, 2. The velocity and pressure fields are set forth as follows:

∀ (x, t) ∈ Ωi × [0, T ], u = ui(x, t) =
(
ui

x(x, t), ui
y(x, t)

)
, p = pi(x, t), i = 1, 2.

Then, for each timet ∈ [0, T ] ⊂ R, the Navier-Stokes problem is written as

ρ

(
∂u

∂t
+ u · ∇u

)
− µ∆u + ∇p = ρg in eachΩi, i = 1, 2,

∇ · u = 0 in Ω,

(3.8)

whereg is the gravity and

u · ∇u = ux
∂u

∂x
+ uy

∂u

∂y
.

Togther with this PDE, we have the initial condition

∀x ∈ Ωi, ui(x, 0) = U i
0(x), i = 1, 2, (3.9)

in which U i
0 is a smooth function such that∇ · U i

0 = 0 in Ωi, i = 1, 2, and such that
U i

0(Γ0j ∩ Γ2
in) = 0, j = a, b. In turn, the boundary conditions are

u = U onΓin,

u2 = 0 onΓ0j for j = a, b,

σ · n = −poutn onΓout,

(3.10)

and the interface conditions (continuity of the velocity and balance of the normal stress with
the surface tension across the interface) are

[
ui

]
Γj

= 0, [σ]Γj
· n1

j = −
κj

Rj
n1

j for i = 1, 2 andj = a, b, (3.11)
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whereU = Ui onΓi
in for i = 1, 2 denotes the given inlet velocity independent of time,pout

is a given exterior pressure on the outlet boundary,n is the unit exterior normal vector to the
boundary ofΩi, n1

j is the normal vector toΓj , j = a, b, exterior toΩ1, and[·]Γj
denotes the

jump onΓj in the direction ofn1
j , j = a, b, i.e.,

[f ]Γj
= f |Ω1 − f |Ω2

j
.

Physically, the first condition in (3.10) represents the velocity field with which the fluids enter
into Ωi, i = 1, 2, throughΓin. The second condition refers to the non-sliding condition that is
greater than the velocity field of fluid2 since it is in contact with the pipe wall,Γ0j , j = a, b,
as a solid element of subdomainΩ2(t). Finally, the third condition represents the balance
of normal surface tension forces with respect to the external pressure necessary to establish
equilibrium with the stresses exerted by both fluids on the outlet boundaryΓout. For details
on this type of boundary conditions, see [5, 12, 13]. On the other hand,κj > 0, j = a, b, are
given physical constants depending of the two fluids in contact. In this spirit, as the lubricated
fluid (water, top and bottom) is the same, it would be natural to takeκa = κb =surface
tension between water and oil. As the geometry of the interface is involved in the term [10],
Rj , j = a, b, denotes the radius of the curvature with the appropriate sign, i.e., with the
convention thatRj > 0 if the center of the curvature ofΓj is located inΩ1, j = a, b; and
σ is the stress tensor given by the Navier-Stokes constitutive equation for incompressible
Newtonian fluids:

σ = σ (u, p) = µA1 (u) − pI,

whereA1(u) =
(
∇u + (∇u)t

)
is the rate of strain tensor; see [5, 7, 25, 29].

We assume that the inlet velocityU has the form:

∀y ∈ (−D, D), U = −U(y)n = (U(y), 0)
t
, U(y) > 0, (3.12)

i.e., the inlet velocity is parallel to the normal vectorn and is directedinsideΩ. Moreover,
we assume thatU(D) = U(−D) = 0; thus,U satisfies the compatibility condition

U2
(
Γ0j ∩ Γ2

in

)
= 0, j = a, b. (3.13)

Finally, the equation for the motion of the free surfaceΓj , j = a, b, (stating the immisci-
bility of the fluids) is given by

∂Φj

∂t
+ ux

∂Φj

∂x
= uy, j = a, b, (3.14)

with the following initial and boundary conditions:

∀x ∈ [0, L] , Φj(x, 0) = ±y0, j = a, b,

∀t ∈ [0, T ] , Φj(0, t) = ±y0, j = a, b,

where±y0 ∈ (0,±D) is a constant that adopts the+ sign if j = a and the− sign if j = b.
In [4], the nonlinear convection term in the Navier-Stokes equations (3.8) was semi-

discretized using the characteristics method; see [1, 3, 6]. With this, the position of the fluid
particles is a function oft and the convection term is the total derivative (or the material
derivative) which is approximated by

∂u

∂t
+ u · ∇u =

du

dt
≈

um+1
m − um (Xm)

δt
,
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whereδt > 0 is the time step,um+1
m is an approximation of the fluid’s velocity at timetm+1

defined on the approximate domain at timetm, andXm = X(tm) is the characteristic at
time tm. Then, the Navier-Stokes equations in (3.8) are transformed into the known momen-
tum equations, and the generalized Stokes system is obtained for incompressible flow (for
simplificity, the dependency on each timetm was suppressed):

αρu − µ∆u + ∇p = ρg + ραw in eachΩi, i = 1, 2,

∇ · u = 0 in Ω,
(3.15)

whereα represents1/δt andw representsum (Xm) (known at a previous timetm−1). The
boundary conditions are given by (3.10) and the problem posed in these terms is known as a
generalized Stokes problem(cf. [18, 20]), which can be solved for each time step given the
surface that describes the interface. The first condition for the interfaces (3.11) remains the
same, and since the position of each interface is now known, the second condition simplifies,
and (3.11) is transformed into

[
ui

]
Γj

= 0, [σ]Γj
· n1

j = −Kjn
1
j for i = 1, 2 andj = a, b, (3.16)

whereKj, used to representκj/Rj for eachj = a, b, is now a known function. Finally,
(3.15), (3.10), and (3.16) are the expressions that define the generalized Stokes problem with
non-standard boundary conditions. Let us consider a variational formulation equivalent to the
generalized Stokes problem with non-standard boundary conditions (3.15), (3.10) and (3.16),
studied in [4]: given the functionsw, pout, µ, ρ, Kj , j = a, b, and the constantα, find
u ∈ X + U andp ∈ M to solve

∀v ∈ X, a (u,v) + b (v, p) = ℓ (v) ,
(3.17)

∀q ∈ M, b (u, q) = 0,

where the functionU is an extension to allΩ of the inlet velocityU,

X =
{
v ∈

[
H1(Ω)

]2
; v|Γin = 0, v|Γ0j

= 0 for j = a, b
}

, (3.18)

M =
{
q : Ω → R; q ∈ L2(Ω)

}
, (3.19)

a : X × X → R is abilinear formdefined as

a(u,v) = α

∫

Ω

ρu · v dx +
1

2

∫

Ω

µA1(u) : A1(v) dx,

b : X × M → R is abilinear formdefined by

b(v, p) = −

∫

Ω

p∇ · v dx

and, finally,ℓ : X → R is a linear formdefined by

ℓ(v) =

∫

Ω

ρ (g + αw) ·v dx −

∫

Γout

poutn · v ds −

∫

Γa

Kan
1
a·v ds −

∫

Γb

Kbn
1
b ·v ds.

The pressure has no indeterminate constant because the outflow condition in (3.10) and the
transmission condition in (3.11) involve the stress tensor.

In [4], it is demonstrated that the bilinear forma(·, ·) is X-elliptic, the linear formℓ(·) is
a continuous linear functional, and the bilinear formb(·, ·) satisfies an inf-sup condition over
X × M . Therefore, the variational formulation (3.17) is a well-posed problem.
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FIGURE 4.1.DomainΩh and boundary∂Ωh

4. Spatial discretization. Taking into account thatKj , j = a, b, is related to the surface
tension, from this section onwards we shall assume that eachΓj is a curve of classC1∩H2(Ω)
with a horizontal tangent at the inlet point(0, y0) for Φa and at(0,−y0) for Φb, i.e.,

Φ′
a(0) = 0 y Φ′

b(0) = 0.

Then we triangulate separately each subdomainΩi with a triangulationT i
h , so that the global

triangulation given by

Th = T 1
h ∪ T 2

h ,

with T 2
h = T 2

h,a ∪ T 2
h,b, h = maxT∈Th

(hT ), is conforming and regular in the sense that
there is no overlapping among the elements of triangulation, and there exists a constantζ
independent ofh such that

∀ T ∈ Th,
hT

ρT
≤ ζ,

wherehT denotes the diameter of eachT andρT is the diameter of the circle inscribed inT .
Let us also consider thatTh contains two polygonal linesΓh,a andΓh,b whose nodes are on
the interfacesΓa andΓb, respectively. Then we denote byΩi

h the domain approximatingΩi,
i.e., the region bounded byΓh,a, Γh,b, Γi

0, Γi
in andΓi

out as illustrated in Figure4.1.
In order to employ the Crouzeix-Raviart/P0 finite elements, we denote byE(T ) the set

of all sides of an elementT ∈ Th, E =
⋃

T∈Th
E(T ) the set of all sides inTh, E∂Ωh

=
{e ∈ E ; e ⊂ Ωh} the set of sides at the boundary, andE0 = E \ E∂Ωh

the set of internal
sides, including even those corresponding to the two polygonal lines which approximate the
interfaces. For a given piecewise continuous functionv, the jump[v] on a sidee ∈ E is
defined by

[v](x) = v(x)
∣∣
T1

− v(x)
∣∣
T2

, e = (T1 ∩ T2) 6⊂ ∂Ωh, T1, T2 ∈ Th,

wherex is a point ine. Finally, for everye ∈ E , its midpoint shall be denoted byxe.
From everything dealt with above, the nonconforming Crouzeix-Raviart space of degree

one [11] is defined by

Ph =

{
vh ∈ L2(Ω) : ∀T ∈ Th, vh

∣∣
T
∈ P1(T ); ∀e ∈ E , vh is continuous onxe

}
,
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in which P1(T ) is the space of polynomials of degree less than or equal to onedefined on
eachT ∈ Th. The property thatvh is only continuous onxe implies that

∀e ∈ E0,

∫

e

[vh] ds = 0.

If ei, i = 1, 2, 3, is theith side ofT ∈ Th opposite to itsith vertexai, then for the spacePh

the base functions associated to the midpointxei are given by

ϕi,T = 1 − 2λi, i = 1, 2, 3,

whereλi is the usual barycentric coordinate relative to the vertexai. Furthermore, for each
ϕi,T , i = 1, 2, 3, we have that

∫

ei

ϕj,T ds = |ei|δij , (4.1)

where|ei| is the length of the sideei, i = 1, 2, 3, andδij is the Kronecker delta function.
We introduce now the global Crouzeix-Raviart interpolation operator,Πh ∈ L(H1(Ω), P1),
defined as

∀v ∈ H1(Ω), ∀T ∈ Th, Πh(v)
∣∣
T

= ΠT (v
∣∣
T
),

whereΠT ∈ L(H1(T ), P1(T )) is the local Crouzeix-Raviart operator defined by
∫

ei

ΠT (v) ds =

∫

ei

v ds, i = 1, 2, 3.

Now, considering (4.1), we have that forxei

ΠT (v)(xei ) =
1

|ei|

∫

ei

v ds, i = 1, 2, 3.

Hence,ΠT : H1(T ) → P 1(T ) can be written as

∀v ∈ H1(T ), ΠT (v) =
3∑

i=1

ΠT (v)(xei )ϕi,T .

Thus, the velocityu of the problem shall be approximated by a functionuh belonging to
the following space:

Xh =
{
vh ∈ L2(Ω)2; ∀T ∈ Th, vh

∣∣
T
∈ P 2

h

}
. (4.2)

Moreover, we define the space of functionsvh with zero discrete divergence in eachT ∈ Th

as follows:

Vh = {vh ∈ Xh; ∇h · vh = 0} , (4.3)

in which∇h · vh = ∇ · (vh

∣∣
T
) for eachT ∈ Th. Similarly, we approximate the pressurep

by a functionph from the space

Mh =
{
qh ∈ L2(Ω); qh

∣∣
T
∈ P0(T ), ∀T ∈ Th

}
,

whereP0(T ) is the space of zero degree polynomials defined onT ∈ Th.
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Now, we must define the lifting of the inlet velocityU, so that the lifting can be ap-
propriately approximated, considering that it is not reasonable to assume thatU is globally
smooth. Due to physical considerations, the regularity ofU cannot be greater than that of the
inflow velocity of the static problem, specifically,H3/2−ε(Γin). The following proposition
demonstrates the existence of a liftingU.

PROPOSITION4.1. Assume thatΓj , j = a, b, satisfies the above assumptions, and that
U belongs toH1(Γin) and its restriction toΓi

in belongs toH2(Γi
in) for i = 1, 2. Then there

exists a functionU ∈ [H1(Ω)]2 such thatdiv(U) = 0 in Ω, U = 0 on Γ0j , j = a, b,

U = (U, 0)t onΓin, its restrictionU
i

to Ωi belongs to[H2(Ωi)]2 for i = 1, 2, and

‖U‖[H2(Ωi)]2 ≤ C‖U‖H2(Γi
in) for i = 1, 2, (4.4)

with a constantC that is independent ofU .
Proof. The proof shall be presented schematically forΩ1; it is similar for Ω2. The

construction ofU is based on the observation that ifΦa(x) = y0 andΦb(x) = −y0 for all
x ∈ [0, L], then the functionU satisfies all the requirements in this proposition. Therefore,
as a first intermediate step, we propose the lifting

Ũ = (Ũ , 0)t,

in which

∀(x, y) ∈ Ω, Ũ(x, y) = U (L (x, y)) a(x) + cb(x)̺1(y), (4.5)

for whicha ∈ C∞ is a truncating function satisfying

0 ≤ a(x) ≤ 1 in [0, L], a(x) = 1 in [0, L/2], a(x) = 0 in [3L/4, L];

b ∈ C∞ is given byb(x) = 1− a(x); c is a constant such that for each connected component
Ωi, i = 1, 2, we have

∫

∂Ωi

Ũ · n ds = 0;

L is the function

∀x ∈ [0, L], ∀y ∈ [Φb(x), Φa(x)],

L (x, y) =

(
2y0

Φa(x) − Φb(x)

)
y − y0

(
Φa(x) + Φb(x)

Φa(x) − Φb(x)

)
;

and, finally,̺1 is the restriction toΓi
out of a smooth non-negative function̺that vanishes

identically in a neighborhood of∂Ω except in the neighborhood ofΓout. Moreover, its trace
onΓout has compact support and satisfies

∫

Γout

̺ ds = 1.

Since∂Ω1 is closed, and considering the definition ofc, we have

∫

Ω1

div(Ũ) dx = 0.
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The foregoing considerations imply that̃U satisfies all the hypotheses in the proposition,
except that its divergence does not necessarily have to be zero. In effect,

div(Ũ) = g(x, y),

with

g(x, y) = 2y0

(
[Φb(x) − y]Φ′

a(x) − [Φa(x) − y]Φ′
b(x)

(Φa − Φb)2

)
a(x)

∂U

∂L

+ U(L (x, y))a′(x) + c̺1(y)b′(x),

wherea′ andb′ are the first derivatives with respect tox of the functionsa andb, respectively.
It can also be shown that

Ũ

δ
∈ L2(Ω1), (4.6)

whereδ(x) is the minimum distance ofx ∈ Ω1 to the corners of∂Ω1. Then, according to
Kellogg and Osborn [24], the condition given by (4.6) implies that there exists a function
v ∈ [H2(Ω1) ∩ H1

0 (Ω1)]2 such that

div(v) = g in Ω1 and ‖v‖[H2(Ω1)]2 ≤ C‖g‖H1(Ω1).

This is so even when the domainΩ1 is not convex, since in this case it is only required that
the angles at the two corners of the boundaryΓ1

in be smaller thanπ; this is satisfied due to
the hypotheses established on the interfaces. Finally, theproof is concluded by taking

U = Ũ − v, (4.7)

as the appropriate lifting that satisfies all the requirements of this proposition.
Since a function that belongs toH1(Ωi) for i = 1, 2 also belongs toH1/2−ε(Ω) for any

ε > 0, Proposition4.1has the following corollary.
COROLLARY 4.2. Under the assumptions of Proposition4.1, the functionU defined by

(4.7) belongs to[H3/2−ε(Ω)]2 for anyε > 0, and there exists a constantC(ε) independent
of U andU such that

‖U‖[H3/2−ε(Ω)]2 ≤ C(ε)‖U‖H3/2−ε(Γin) ≤ C(ε)
2∑

i=1

‖U‖H2(Γi
in). (4.8)

As U ∈ [H1(Ω)]2, it can be approximated component by component using the global
Crouzeix-Raviart interpolator, since it is enough for it topossess a continuous trace in each
segment. We define this approximation by

Uh = (Πh(U), 0)t

and we have the following result.
PROPOSITION4.3. LetU be the function of the Proposition4.1andUh its approxima-

tion by means of the global Crouzeix-Raviart interpolator.Then

∀qh ∈ Mh,

∫

Ω

qh ∇h ·Uh dx = 0.
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Proof. For allqh ∈ Mh we have

∫

Ω

qh ∇h ·Uh dx =
∑

T∈Th

qh

∣∣
T

3∑

i=1

∫

ei

Uh · nei ds,

wherenei is the normal unit vector external toT on its ith sideei. By the definition of the
Crouzeix-Raviart interpolation operator

∫

ei

Uh · nei ds =

∫

ei

U · nei ds.

Thus,

∀qh ∈ Mh,

∫

Ω

qh∇h · Uh dx =

∫

Ω

qh∇ ·U dx

and the proof concludes with the fact that∇ · U = 0 in Ω.
Another point that must be addressed prior to proposing a discrete variational formulation

involves the approximation of the integral term that takes surface tension into account,

Kj(v) =

∫

Γj

Kjn
1
j · v ds, j = a, b.

The proposed approximation is motivated by the fact that with the sign convention used for
eachRj , we have

n1
j

Rj
= −

nj

Rj

=
dtj

ds
, j = a, b,

wheretj is the tangent toΓj in the direction of increasings, which is the same as the direction
of increasingx; nj is the principal normal vector toΓj , i.e., parallel ton1

j and directed toward
thecenter of curvatureof Γj ; andRj is the positiveradius of curvature, i.e.,Rj = Rj if the
center of the curvature is located inside ofΩ1 andRj = −Rj if the center of curvature is on
the other side. Therefore, in the case of test functionsvh ∈ Xh, we have

Kj(vh) =

∫

Γj

κjvh ·
dtj

ds
ds = κj

∫

Γj

vh ·
dtj

ds
ds, j = a, b. (4.9)

Now, let

xj
r =

(
xj

r, y
j
r = Φj(x

j
r)

)
, 0 ≤ r ≤ N, j = a, b

be the points defined in eachΓj , with

0 = xj
0 < xj

1 < · · · < xj
(N−1) < xj

N = L, j = a, b.

Let S̃j
r be the arch ofΓj with end pointsxj

r andxj
r+1. The polygonΓh,j is built from straight

lines that connect the nodes ofxj
r to x

j
r+1 for every0 ≤ r ≤ N − 1, and we denote bySj

r

the chord[xj
r,x

j
r+1]. We define the unit tangenttj along the chordSj

r by

tj
r =

x
j
r+1 − xj

r∣∣∣xj
r+1 − x

j
r

∣∣∣
, 0 ≤ r ≤ N, j = a, b,
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and approximateKj(vh) by the following formula:

∀vh ∈ Xh, Khj(vh) = κj

N−1∑

r=1

vh(xj
r+1/2) · (t

j
r − t

j
r−1), j = a, b, (4.10)

wherexj
r+1/2 is the midpoint of the segmentSj

r where the function is approximated with the
Crouzeix-Raviart element.

Since elements ofPh do not have global weak derivatives, we must use a modification
of a(·, ·) andb(·, ·) in order to state the discretization of the problem. Thus, wedefine

ah(uh,vh) =
∑

T∈Th

[
α

∫

T

ρhuh · vh dx

+
1

2

∫

T

µh(∇huh + (∇huh)t) : (∇hvh + (∇hvh)t) dx

]

+ Jh(uh,vh),

(4.11)

where for allvh ∈ Xh, the term∇hvh = ∇(vh

∣∣
T
) is the discrete gradient inT ∈ Th, ρh

andµh are approximations to the density and the viscosity respectively defined by

ρh

∣∣
Ωi

h

= ρi, µh

∣∣
Ωi

h

= µi, i = 1, 2, (4.12)

and

∀uh,vh ∈ Xh, Jh(uh,vh) =
∑

e∈E

1

|e|

∫

e

[uh] · [vh] ds

is the factor that controls therigid body rotationswhich cause a lack of coercivity for the
Crouzeix-Raviart approximation when applied to the Stokesformulation written in terms of
the strain tensorA1(u) [8]. Likewise,

bh(uh, qh) = −
∑

T∈Th

∫

T

qh ∇h · vh dx. (4.13)

Based on the foregoing, the discrete variational formulation is as follows: find
uh ∈ Xh + Uh andph ∈ Mh that satisfy

∀vh ∈ Xh, ah (uh,vh) + bh (vh, ph) = ℓ (vh) ,

∀qh ∈ Mh, bh (uh, qh) = 0,
(4.14)

where

ℓ(vh) =

∫

Ω

ρh (g + αw) · vh dx

−

∫

Γout

poutvh · n ds − Kh,a(vh) − Kh,b(vh).

(4.15)

In the following, we will define the norm associated to the spaceXh to be

∀vh ∈ Xh, ‖vh‖
2
h = ‖vh‖

2
[L2(Ω)]2 + |||∇vh|||

2
[L2(Ω)]2 + Jh(vh,vh), (4.16)
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where

∀v ∈ [L2(Ω)]2, |||∇v|||2[L2(Ω)]2 =
∑

T∈Th

‖∇v‖2
[L2(T )]2 , (4.17)

is thebroken norm[19]. The following result on boundedness forJh is obtained.
PROPOSITION4.4. There exist constantsC′ andC′′ independent ofh such that

∀vh ∈ Xh, Jh(vh,vh) ≤ C′|||∇vh|||
2
[L2(Ω)]2 ≤ C′′‖vh‖

2
h. (4.18)

Proof. The proof is similar to that presented by Girault et al. in [19].
On the other hand, with Korn’s inequality for piecewiseH1 vector fields [9],

∀vh ∈ Xh, |||∇vh|||
2
[L2(Ω)]2 ≤ C1

(
|||A1(vh)|||2[L2(Ω)]2 + Jh(vh,vh)

)
, (4.19)

Poincaré’s inequality for piecewiseH1 vector fields [8],

∀vh ∈ Xh, ‖vh‖
2
[L2(Ω)]2 ≤ C2

(
|||∇vh|||

2
[L2(Ω)]2 + Jh(vh,vh)

)
, (4.20)

and the above result of boundedness forJh, we have the following equivalence lemma be-
tween the norm associated to the spaceXh and the broken norm of the gradient of every
functionvh ∈ Xh.

LEMMA 4.5. There exist positive constantsβ1 andβ2 such that

∀vh ∈ Xh, β1|||∇vh|||
2
[L2(Ω)]2 ≤ ‖vh‖

2
h ≤ β2|||∇vh|||

2
[L2(Ω)]2 . (4.21)

Now, using norm‖ · ‖h previously defined, we have the following lemma for the global
Crouzeix-Raviart operator.

LEMMA 4.6. There is a constantC, independent ofh, so that

∀v ∈ [H1(Ω)]2, ‖Πh(v)‖2
h ≤ C‖v‖2

[H1(Ω)]2 . (4.22)

Proof. The proof is similar to that presented, in a more general setting, by J.-L. Guermond
and A. Ern in [15].

4.1. Uniform stability analysis. The first step in the numerical analysis of the problem
(4.14) consists in proving auniform discrete inf-sup conditionfor the pair of spacesXh, Mh.
This is the objective of the following proposition.

PROPOSITION4.7. Let Th be the triangulation previously defined. There exists a con-
stantβ⋆ > 0, independent ofh, such that the following discrete inf-sup condition holds:

∀ qh ∈ Mh, sup
vh∈Xh

bh(vh, qh)

‖vh‖h
≥ β⋆‖qh‖L2(Ω). (4.23)

Proof. By Fortin’s Lemma (see [16]), proving the discrete inf-sup condition is equivalent
to demonstrating that there exists a restriction operatorΠh ∈ L(X, Xh) and a constantC,
independent ofh, such that

∀v ∈ X, ‖Πh(v)‖X ≤ C‖v‖X , (4.24)

∀qh ∈ Mh, bh(Πh(v) − v, qh) = 0. (4.25)
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It is easy to check that ifΠh is taken as the Crouzeix-Raviart operator, then (4.24) and (4.25)
are verified and the proposition is established with

β⋆ =
β

C
,

whereβ > 0 is the constant for the continuous inf-sup condition andC is the constant of
Lemma4.6.

4.2. Results on the existence and uniqueness of the discretesolution (uh, ph). Let
us write the velocityuh as

uh = u0,h + Uh,

whereUh satisfies Proposition4.3. Then the problem (4.14) is the following linear system
of equations: find(u0,h, ph) ∈ Xh × Mh that satisfy

∀vh ∈ Xh, ah (u0,h,vh) + bh (vh, ph) = ℓ (vh) − ah

(
Uh,vh

)
,

∀qh ∈ Mh, bh (u0,h, qh) = 0.
(4.26)

To prove the existence and uniqueness of the solutionu0,h ∈ Xh, the following must be
proved:

• Bicontinuity of the bilinear formah(·, ·) overXh×Xh: there exists a constantγ > 0
such that

∀uh,vh ∈ Xh, |ah(uh,vh)| ≤ γ‖uh‖h ‖vh‖h. (4.27)

• Coercitivity of the bilinear formah(·, ·) over Xh × Xh: there exists a constant
α∗ > 0 such that

∀vh ∈ Xh, ah(vh,vh) ≥ α∗‖vh‖
2
h. (4.28)

On the other hand, the existence and uniqueness ofph holds automatically from Propo-
sition 4.7once we have the result foruh. This is established with the following proposition.

PROPOSITION4.8. The system of linear equations given by (4.26) has a unique solution
(u0,h, ph) ∈ Xh × Mh.

Proof. Bicontinuity (4.27) is obtained immediately by considering the definition of the
bilinear formah, the norm‖·‖h associated to spaceXh, and the Cauchy-Schwartz inequality.
Indeed, we have

γ = max

{
α max

1≤i≤2
(ρi),

1

2
max
1≤i≤2

(µi), 1

}
.

Finally, coercitivity (4.28) is verified with

α∗ =
C̃

C1β2
, C̃ = min

{
α min

1≤i≤2
(ρi),

1

2
min

1≤i≤2
(µi), 1

}
,

as an immediate consequence of (4.19) and Lemma4.5.
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5. Numerical simulation. In this section we present a numerical simulation of the gen-
eralized Stokes problem at an initial timet0, considering each interface as a horizontal line
within the domain. Therefore, the termsKh,j(vh), j = a, b, are zero for everyv ∈ Xj . The
condition at the pipeline outlet is established for a manometric pressure given bypout = 0,
andg = 9.806e2.

The simulation is based on the following parameters:ρ1 = 1, ρ2 = 1.1, µ1 = 0.1 and
µ2 = 0.01. The inlet velocityU = (U(y))e1 is defined by the functionU given by

∀y ∈ Γ2
in, U(y) =

(
−

ξ

2Lµ2

)
y2 +

(
−

ξ

2Lµ2

)
D2

and

∀y ∈ Γ1
in, U(y) =

(
−

ξ

2Lµ1

)
y2 +

(
−

ξ

2Lµ2

)[
|Γ1

in|
2

4

(
µ2 − µ1

µ1

)
+ D2

]
,

whereξ > 0 is a hydrodynamic parameter taken from [7] for this test problem.
Figures5.1and5.2visualize, respectively, the velocity field and the pressure field. The

pressure field is shown with greater intensity at the inlet ofthe pipe (red color) and less
intensity at the outlet (blue color), which is consistent with the type of shear stresses that
must be maintained to obtain the velocity field as illustrated in Figure5.1; see [7, 22, 23].

FIGURE 5.1.Velocity field. FIGURE 5.2.Pressure field.

Following Hughes [21], we determine the constraint ratio for the system equations (4.14).
The value of this ratio wasr = 1.999, very close to2, which is the optimal value. Therefore,
in heuristic terms, the calculations verify the discrete inf-sup condition.

6. Conclusions. We have described a discretization of a water-petroleum two-phase
flow problem based on a generalized Stokes problem with non-standard boundary condi-
tions [4], using the Crouzeix-Raviart mixed finite element with spacesP1 andP0 for the
velocity and pressure, respectively. Under an adequate variational formulation, we demon-
strated that the discretization generates a linear system of equations whose solution exists,
is unique, and is uniformly stable, since a discrete inf-supcondition was demonstrated over
the nonconforming Crouzeix-Raviart finite element spacesP1/P0. The existence of a lifting
function which extends the Dirichlet condition to the entire pipeline was also demonstrated,
based on the regularity and properties that make it adequateto conserve an incompressible
flow condition and be approximated by means of the Crouzeix-Raviart interpolation operator.
Based on this, a numerical simulation was presented to visualize the velocity field and pres-
sure field for an initial time in which the interfaces betweenthe two fluids are straight lines.
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The constraint ratio was also calculated, and it was consistent with the theoretical results,
since the uniform stability of the solution was thus heuristically verified.

The finite element of Crouzeix-Raviart has been used by numerous authors for the solu-
tion of problems where the Navier-Stokes equations arise inthe simulation of incompressible
flows; see, for example, [28]. Like the mini-element, the Crouzeix-Raviart element is asta-
ble mixed combination. However, since there is no physical reason to assume continuous
pressure between the two fluids [22, 23], we consider the Crouzeix-Raviart element in the
space discretization of the two-phase flow studied in this work a better tool to approximate
the pressure.

In future work, we would like to do a convergence analysis andto compare our numerical
results with those generated by the “mini-element.” Also, we would like to compute solutions
for several time steps and approximations to the interface between both fluids.
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[23] D. D. JOSEPH, R. BAI , K. P. CHEN, AND Y. RENARDY, Core-annular flows, Annu. Rev. Fluid Mech., 29
(1999), pp. 65–90.

[24] R. B. KELLOGG AND J. E. OSBORN, A regularity result for the Stokes problem in a convex polygon, J. Funct.
Anal., 21 (1976), pp. 397–431.

[25] L. L ANDAU AND E. LIFCHITZ, Mécaniques des Fluides, MIR Moscow, 1955.
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2000.


