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IN ONE TIME-STEP FOR TWO PHASE FLOW *

WILFREDO ANGULO! AND HILDA L OPEZ
Dedicated to Vctor Pereyra on the occasion of his 70th birthday

Abstract. In this paper, we demonstrate the existence, uniquenessirgiorm stability of the discrete solution
obtained with the nonconforming Crouzeix-Ravi&/finite element for a generalized Stokes problem of a two-
phase flow in one time-step.
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1. Introduction. In many applications in science and technology, the flow af imv-
miscible and incompressible fluids in a pipeline, or two-g#hfow, plays an important role
[22, 23. In particular, the lubricated transportation technidggui&requently used to facilitate
the movement of viscous oils through a pipeline lubricatétth & low-viscosity liquid such
as water. For this process to be successful, the low-visctigid must be introduced and
maintained between the viscous oil and the wall of the pigelforming a capsule between
the wall and the high-viscosity fluid’/]. This flow pattern is called core annular flow, and
the proposed physical model for its study assumes thatsrctinfiguration both fluids travel
adjacently in time and space, the interface being a nateparation surface between the two
fluids.

Based on this, Maury et al. in 2002 proposed to study two-dsimnal linear two-phase
flow (D = 2) of a fluid made up of water and petroleum in a horizontal pigelgoverned
by the transient Navier-Stokes equations; s&&. [Initially, Maury proposed a mathematical
model based on these equations with boundary conditiomsaiaymmetrical configuration.
This configuration simplified the study, in the sense thatriterface between both fluids was
represented as a single free boundary, but it added aniattifaundary condition which was
located in the middle of the pipeline. This free boundaryrisuaknown to be determined
in the problem, and this, although apparently simple, makegproblem more difficult by
adding the transport equation which models the evolutiaimie and space of the interface
as it becomes deformed due to the action of stresses protlyted surface tension between
the two fluids. The Arbitrary Lagrangian-Eulerian (ALE) rhetl of approximation, which
is based on a grid that moves with the fluid, and a method ofacheristics for discretizing
the nonlinear convection term on the Navier-Stokes eqgnaticere proposed. Thus, a semi-
discretization in time of the Navier-Stokes equations watsined, leading to a generalized
Stokes problem with non-standard boundary conditions. itau®, Loépez, and Maury1[7],
this problem was discretized in space using the Arnold-BfEprtin finite element (“mini-
element”), and numerical error estimations were estagtish

Next, Angulo and Lopez presented #] p more realistic extension of a two-phase-flow
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two-dimensional problem by considering a non-axisymmatréonfiguration. This variant
eliminates the artificial boundary and complicates the famkfurther since it includes two
free surfaces to be determined, and these deform in diffareharbitrary fashion in space and
time. Using the combined ALE-characteristic method, anvedent variational formulation
to the generalized Stokes problem corresponding to theam@ymmetrical configuration
was proposed, and it was demonstrated that this formuleianvell-posed problem.

In this paper, we present a mixed finite element, differemnfithe “mini-element,” to
approximate the variational formulation proposeddhy &and we demonstrate that the discrete
problem is well-posed and that the solution is stable far thixed finite element. This mixed
finite element approximates each velocity component with@nouzeix-Raviart finite ele-
ment and the pressure by a constant in each element (CreRagiart/y). Some numerical
simulations which verify this heuristically are also pnetssl.

This paper is organized as follows. In Sectidme introduce the Sobolev spaces and
the associated norms used in this article. In Se@jdollowing [4] very closely, we present
the nonlinear equations that model two-phase non-axisytnoakflow and the generalized
Stokes problem that must be solved for each time step. $eétie devoted both to the
discretization of the generalized Stokes problem usingttweizeix-RaviartP, mixed finite
element and to the results on the existence, uniqguenesstaiitity of the solution to the
discrete problem. Finally, in Sectidiwe show some numerical simulations for a two-phase
flow test problem taken fronv].

2. Preliminary basics. In this section we introduce the Sobolev spaces and theiassoc
ated norms employed in this paper; s2€|[and [2] for further details.

Given a domairf) C R? with a boundary)Q, the Sobolev space of functions™ () is
defined as:

H™(Q) = {ve L*Q): 0"ve L*(Q),V|k| <m},

where|k| = k1 + ko with (k1, ko) a pair of non-negative integers (in two dimensions) and

9k — ﬂ
Dt Dk
This space is equipped with the seminorm
1/2
2
|U|Hm(Q) = Z / ‘akv‘ dQ 5
k|=m 7 ¢
and is a Hilbert space for the norm
1/2
2
HUHHm(Q) = Z |U|Hk(9)
0<k<m

The scalar product af?(2) is denoted by, -). The definitions of these spaces are extended
straightforwardly to vectors, with the same notation.

3. The nonlinear model for a2-D two-phase flow. In a longitudinal section of a piece
of the pipeline, the fluid with low viscosity (water) is ad@t to the pipe wall, and it sur-
rounds the fluid with high viscosity (petroleum). FiguBel illustrates this two-phase flow
pattern as a domaid c R? delimited by the piece of horizontal pipe.
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FIGURE 3.1.Domain{2 and boundanps2.

For each time € [0, T, the domairt2 is decomposed into two subdomaifis,(t) and
02(t). Here Q! is the region occupied by the heavy fluid (the petroleum)@his the region
occupied by the water. This latter regidn?, is divided into two subregions, one superior
and another inferior, that we shall c8lf and(2?, respectively, such that

Q2(t) = Q2() UQE(L).
On the other hand, the boundary(@f, i = 1, 2, is given by:

o0 (t) =T}, UL, UT.(t) UTy(t), (3.1)
00 (t) =T3, UT2,, UT.(t)UTy(t) UTy, UTy,, (3.2)

whereTl'}, andl', =T, UT? representthe inlet boundaries for edeh andr'},, and
r2,, =r2,. urz,, representthe outlet boundaries for each subdofaitwe shall then
denote byl';,, =", UT? andl,, =TI}, UI'Z , the inlet and outlet boundaries, respec-
tively, for the entire domainf2. On the other hand;,, andI',, represent the boundaries
corresponding to the pipe wall; and, finally, the separaitid@rfaces between both compo-
nents are given by, (¢) = Q' (t) N (¢) andTy(t) = Q' (t) N . (¢) in the upper and lower
part, respectively.

Itis assumed that the flow is sufficiently smooth, i.e., wilbwe Reynolds numberR <
2000) [29], and this situation holds until a certain tirfie Therefore, at the initial time the
interfaces between the two fluids are considered to be btrigs. It is assumed that these
interfaces are never adjacent to the pipe walls, and thgtafeealways separated sufficiently
well that there is little possibility that they will collidgL4]. Based on these premises, both
interfaces can be conveniently parametrized as follows:

To: (z,8) — Dy(x, 1),
Iy : (x,t) — $p(x, t),

so that, for small quantitied , > ,03 > 0 and allz € [0, L], we have

Dy (z,t) — Pp(x,t) > 61 >0, Pp(x,t) > —D + 02, Py(z,t) <D —d3; (3.3)
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the subdomains being defined by:

Q) ={(z,y) €Q: 0<z <L, By(a,t) <y < Py(x,t)}, (3.4)
Q) ={(z,y) €Q: 0<a <L, du(x,t) <y<D}, (3.5)
Q) ={(z,y) €Q: 0<z <L, —D<y<Py(z,t)}, (3.6)

whereD > 0 is the radius of the pipeline arfdis the pipeline length.
To describe the density and the viscosity in@Jlwe introduce the piecewise constant
quantitiesp andy defined by

2 2
p=>_X'p" and p=> X', 3.7)
=1 =1

wherey’ is the characteristic function of subdoméif, i = 1,2, with x2 defined by
X* = Xoz2u0z = X2 + Xaoz2-

Herep? andy® are, respectively, the given densities and the viscosit@estant in eack?,
1 = 1,2. The velocity and pressure fields are set forth as follows:

V(xt) € Qx0T u=ui(xt) = (uh(x0),ul(x, ), p=pilxt), i=1.2.

Then, for each time € [0, 7] C R, the Navier-Stokes problem is written as

p(a—u—i-u-Vu) — pAu+Vp =pg ineach’, i=1,2,

ot (3.8)
V-u=0 1inQ,
whereg is the gravity and
u u
u-Vu= uzg—x +uyg—y.
Togther with this PDE, we have the initial condition
vx € Q' u'(x,0) =Ui(x), i=1,2, (3.9)

in which U is a smooth function such that - ¢4, = 0in Q¢ i = 1,2, and such that
Ui(Lo, NT%,) =0, j = a,b. Inturn, the boundary conditions are

u=0U onTl;,,
uw?=0 onT, for j = a,b, (3.10)
g 1Nl = —PoyN on Fouh

and the interface conditions (continuity of the velocityldralance of the normal stress with
the surface tension across the interface) are

[u']. =0, [o]p -nj= —%nl fori =1,2andj = a,b, (3.11)
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whereU = U’ onI" fori = 1,2 denotes the given inlet velocity independent of timg,:
is a given exterior pressure on the outlet boundarig, the unit exterior normal vector to the
boundary of2’, n} is the normal vector td';, j = a, b, exterior toQ', and[]., denotes the

jump onl’; in the direction ofn;,j =a,b,i.e.,
[f]rj - f|Ql - f|sz§-

Physically, the first condition ir3( 10 represents the velocity field with which the fluids enter
into ¢, i = 1,2, throughl';,,. The second condition refers to the non-sliding condititat ts
greater than the velocity field of fluiisince it is in contact with the pipe wally, j = a, b,

as a solid element of subdomdir?(¢). Finally, the third condition represents the balance
of normal surface tension forces with respect to the extgnmessure necessary to establish
equilibrium with the stresses exerted by both fluids on théebboundant’,;. For details
on this type of boundary conditions, sée 12, 13]. On the other hands; > 0, j = a,b, are
given physical constants depending of the two fluids in atinta this spirit, as the lubricated
fluid (water, top and bottom) is the same, it would be natwalbkex, = x, =surface
tension between water and oil. As the geometry of the interfa.involved in the termi[0],

R;, j = a,b, denotes the radius of the curvature with the appropriage, sie., with the
convention that?; > 0 if the center of the curvature df; is located inQ2!, j = a,b; and

o is the stress tensor given by the Navier-Stokes consttgyuation for incompressible
Newtonian fluids:

o =0 (u,p) = pA; (u) - pl,

whereA;(u) = (Vu + (Vu)t) is the rate of strain tensor; se® [/, 25, 29].
We assume that the inlet velocity has the form:

vy e (=D,D), U=-U(yn=(U(y),0)", Uly) >0, (3.12)

i.e., the inlet velocity is parallel to the normal vecioand is directednside(2. Moreover,
we assume thdf (D) = U(—D) = 0; thus, U satisfies the compatibility condition

U? ([, NT3,) =0, j=a,b. (3.13)

Finally, the equation for the motion of the free surfage; = «a, b, (stating the immisci-
bility of the fluids) is given by
0P, 0P,

W + UIW = uy7 j = a’b, (3.14)

with the following initial and boundary conditions:

Vo e [0,L], ®,(x,0) ==y, j=a,b,
vVt € [O,T], <I>j(0,t) = +y9, j=a,b,

wheretyy € (0,4+D) is a constant that adopts thesign if j = a and the— sign if j = b.

In [4], the nonlinear convection term in the Navier-Stokes eiquat(3.8) was semi-
discretized using the characteristics method; 4e8,[6]. With this, the position of the fluid
particles is a function of and the convection term is the total derivative (or the malter
derivative) which is approximated by

du da  umtl —qu,, (X™)
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whereét > 0 is the time stepu”**! is an approximation of the fluid’s velocity at tim& 1
defined on the approximate domain at tin¥e, andX™ = X(¢™) is the characteristic at
time¢". Then, the Navier-Stokes equations #18) are transformed into the known momen-
tum equations, and the generalized Stokes system is obiteonéncompressible flow (for
simplificity, the dependency on each tirtié was suppressed):

apu — pAu + Vp = pg + paw ineachQ’, i =1,2,

. (3.15)
V-u=0 in Q,

wherea represents /6t andw representsi,,, (X™) (known at a previous timg™~1). The
boundary conditions are given b§.(L0 and the problem posed in these terms is known as a
generalized Stokes problefef. [18, 20]), which can be solved for each time step given the
surface that describes the interface. The first conditionte interfaces3.11) remains the
same, and since the position of each interface is now kndwrgécond condition simplifies,
and @.11) is transformed into

[ui]rj =0, [0, ‘nj =-K;n} fori=12andj =a,b, (3.16)

where K, used to represemt; /R; for eachj = a,b, is now a known function. Finally,
(3.19, (3.10, and @.16 are the expressions that define the generalized Stokekeprowth
non-standard boundary conditions. Let us consider a Van@tformulation equivalent to the
generalized Stokes problem with non-standard boundangitons (3.19), (3.10 and 3.16),
studied in §]: given the functionsw, pou:, 1, p, Kj, j = a,b, and the constant, find
u € X + Uandp € M to solve

VweX, a(uv)+b(v,p)=1L(v),

(3.17)
Vg e M, b(u,q) =0,
where the functiofU is an extension to ail of the inlet velocityU,
X = {v e [H'(Q)*; v, =0, vlr, =0forj = a,b} , (3.18)
M={q:Q—R; qeL*0)}, (3.19)
a: X x X — Ris abilinear formdefined as
a(u,v) = a/ pu-vdx + l/ pAi(u) @ Ap(v)dx,
Q 2 Q
b: X x M — Ris abilinear formdefined by
b(v,p) = —/pV~vdx
Q
and, finally,/ : X — R is alinear formdefined by
0(v) —/ p(g+aw) ~vdx—/ Dout - Vds — K.nlvds— | Kyn}-vds.
Q Tout Ta Iy

The pressure has no indeterminate constant because thmoctfhdition in 3.10 and the
transmission condition ir3(11) involve the stress tensor.

In [4], it is demonstrated that the bilinear for, -) is X -elliptic, the linear forn?(-) is
a continuous linear functional, and the bilinear fdr(n -) satisfies an inf-sup condition over
X x M. Therefore, the variational formulatio.(L7) is a well-posed problem.
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FIGURE 4.1.Domain$;, and boundarnp2;,

4. Spatial discretization. Taking into accountthak’;, j = a, b, is related to the surface
tension, from this section onwards we shall assume thatléaisha curve of clas§ ' N H?(Q)
with a horizontal tangent at the inlet poiftt, yo ) for ®, and at(0, —yo) for &, i.e.,

' (0)=0 y ®(0)=0.

Then we triangulate separately each subdorf¥iwith a triangulatiorZ,?, so that the global
triangulation given by

T =T, UT;,

with 72 = 7,2, U T;?,, h = maxreq, (hr), is conforming and regular in the sense that
there is no overlapping among the elements of triangulatol there exists a constapt
independent of, such that

h
VT €T, — <,
PT

wherehr denotes the diameter of ea€handp is the diameter of the circle inscribedn
Let us also consider thdj, contains two polygonal linek,, , andI';, ;, whose nodes are on
the interface§’, andr';, respectively. Then we denote B, the domain approximating’,
i.e., the region bounded Y, ., I's. 1, '), I',, andT? , as illustrated in Figuré. 1

In order to employ the Crouzeix-RaviaPy finite elements, we denote I8(T") the set
of all sides of an elemerit’ € 7),, £ = Urcp, £(T) the set of all sides iy, Eaq, =
{e € & e C Q} the set of sides at the boundary, afid= £ \ Esq, the set of internal
sides, including even those corresponding to the two palggiines which approximate the
interfaces. For a given piecewise continuous functipthe jump[v] on a sidee € £ is
defined by

[v](x) = U(x)‘T1 — v(x)|T2, e=(TWNT2) ¢ 0, T1,T> € Ty,

wherex is a point ine. Finally, for everye € &, its midpoint shall be denoted by..
From everything dealt with above, the nonconforming CrauRaviart space of degree
one [L1] is defined by

P, = {vh IS LQ(Q) : VT €Ty, vh|T € P (T); Ve € &, v, is continuous once},
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in which P;(T) is the space of polynomials of degree less than or equal talefieed on
each?l” € 7;,. The property thaty, is only continuous o, implies that

Ve € 50, /[’Uh] ds = 0.

If e;,7 = 1,2,3, is theith side of " € 7;, opposite to itgth vertexa;, then for the spacé},
the base functions associated to the midpgintare given by

QO'L.-,T:1_2AZ'7 i:172737
where)\; is the usual barycentric coordinate relative to the veatex-urthermore, for each

wi T, %= 1,2,3, we have that

/ Y57 ds = |ei|6ij7 (41)

i

where|e;| is the length of the side;, i = 1,2,3, andd;; is the Kronecker delta function.
We introduce now the global Crouzeix-Raviart interpolataperator]l;, € L(H (), Py),
defined as

Yo e H'(Q), VT € Ty, Tp(v)|, = r(v|,),

wherelly € L(H!(T), Pi(T)) is the local Crouzeix-Raviart operator defined by

/HT(v)ds:/vds, 1=1,2,3.

Now, considering4.1), we have that fox.,

1
I (v)(Xe;) = /Uds, i=1,2,3.

lei
Hencellr : HY(T) — PY(T) can be written as

3

Vo e HY(T), Tr(v) = > Tr(v)(xe, )i
i=1

Thus, the velocityu of the problem shall be approximated by a functignbelonging to
the following space:

Xp = {vn € L*(Q)* VT € Ty, vi|, € P}}. 4.2)

Moreover, we define the space of functionswith zero discrete divergence in ed€he 7;,
as follows:

VhZ{Vh EXh; Vh-VhZO}, (43)

inwhichVy, - v, = V- (vh\T) for eachT' € 7;,. Similarly, we approximate the pressyre
by a functionp;, from the space

Mpy = {an € L*(Q); anly € Po(T), VT € Tr}

whereP,(T') is the space of zero degree polynomials defined an7;,.
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Now, we must define the lifting of the inlet velocily, so that the lifting can be ap-
propriately approximated, considering that it is not remdne to assume théat is globally
smooth. Due to physical considerations, the regulariy cgnnot be greater than that of the
inflow velocity of the static problem, specificalljf®/2—=(T';, ). The following proposition
demonstrates the existence of a liftibgy

ProPOSITION4.1. Assume thal';, j = «, b, satisfies the above assumptions, and that
U belongs toH ! (T';,,) and its restriction td;,, belongs taf/?(I"% ) for i = 1,2. Then there
exists a functiold € [H'(Q)]? such thatdiv(U) = 0in ©, U = 0onTy,, j = a,b,

U = (U,0)! onTy,, its restrictionU" to Q¢ belongs tq H2(Q)] fori = 1,2, and
10012002 < ClU|lg2ri ) fori=1,2, (4.4)

with a constant that is independent df .

Proof. The proof shall be presented schematically 9, it is similar for Q2. The
construction ofU is based on the observation thatlif (x) = yo and®;(z) = —y, for all
x € [0, L], then the functiorlJ satisfies all the requirements in this proposition. Thenesfo
as a first intermediate step, we propose the lifting

U = (U,0),
in which
Y(a,y) € Q, Uley) =U(L(2,y))a(z) +cb(z)o (y), (4.5)
for whicha € C* is a truncating function satisfying
0<a(x)<1in[0,L], a(z)=1in[0,L/2], a(xz)=0in[3L/4,L];

b € C*> is given byb(z) = 1 — a(z); cis a constant such that for each connected component
O, i =1,2, we have

/ U nds = 0;
o0

Z is the function
Vo € [0,L], Yy € [®y(x), Pa(x)],
2yo ) (%(w) + %(w))
L,y = ——="—-—|y— SCASCPARECASZA
o= (g emm ) (e
and, finally, o' is the restriction td™ , of a smooth non-negative functignthat vanishes

identically in a neighborhood @2 except in the neighborhood b,,;. Moreover, its trace
onT',,; has compact support and satisfies

/ ods =1.
Fout

SincedN! is closed, and considering the definitionpfve have

/ div(U) dx = 0.
Ql
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The foregoing considerations imply thBt satisfies all the hypotheses in the proposition,
except that its divergence does not necessarily have torbelneeffect,

div(U) = g(z,y),

with

0462) =510 = o) — ) )00
((I)a _ (I)b)Q 83

+U(ZL(@,y)d (z) + co' (Y (),

g(@,y) = 2yo<

wherea’ andb’ are the first derivatives with respectt®f the functions: andb, respectively.
It can also be shown that

% € L*(QY), (4.6)
whered(x) is the minimum distance of € Q' to the corners 0dQ'. Then, according to
Kellogg and OsbornZ4], the condition given by4.6) implies that there exists a function
v € [H3(Q') n H}(Q1)]? such that

diV(V) =g in Ql and ”VH[H?(SP)]? < C”gHHl(Ql).

This is so even when the domdilt is not convex, since in this case it is only required that
the angles at the two corners of the bounda}y be smaller thamr; this is satisfied due to
the hypotheses established on the interfaces. Finallyrinaf is concluded by taking

T=U-v, 4.7)

as the appropriate lifting that satisfies all the requiretsiehthis proposition

Since a function that belongs ' () for i = 1,2 also belongs td'/2~¢(Q) for any
¢ > 0, Proposition4.1 has the following corollary.

COROLLARY 4.2. Under the assumptions of Propositidri, the functionU defined by
(4.7 belongs tq H3/27¢(Q)]? for anye > 0, and there exists a consta@tc) independent
of U andU such that

2
HﬁH[HS/%a(Q)]2 < C(E)”U”HS/%S(FM) <C(e) Z HUHHz(F;n)- (4.8)
i=1

As U € [H'(Q)]?, it can be approximated component by component using tHeaglo
Crouzeix-Raviart interpolator, since it is enough for ifpmssess a continuous trace in each
segment. We define this approximation by

U, = (I, (U),0)*

and we have the following result.
PrOPOSITION4.3. Let U be the function of the Propositich1 and U, its approxima-
tion by means of the global Crouzeix-Raviart interpolaiidren

thEMh, /qh Vh-ﬁhdxzo.
Q
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Proof. For allq, € M) we have

/qhvh'ﬁhdxz Z
Q

TeT),

3
Qh|TZ/ ﬁh'nei dS,
i=1 " ¢€i

wheren,, is the normal unit vector external 0 on itsith sidee;. By the definition of the
Crouzeix-Raviart interpolation operator

/ﬁh-neid(s:/ﬁ-neids.

Yan € Mp, /
Q

Thus,

thh-ﬁthZ/th-ﬁdx
Q

and the proof concludes with the fact that U = 0in Q.0
Another point that must be addressed prior to proposingaetisvariational formulation
involves the approximation of the integral term that take$ae tension into account,

Ly

The proposed approximation is motivated by the fact that wie sign convention used for
eachR;, we have
1
ﬁ . nj dtj

R,TR, st ) TOh

wheret; is the tangenttd'; in the direction of increasing which is the same as the direction
ofincreasing; n; is the principal normal vector t6;, i.e., parallel tam} and directed toward
thecenter of curvaturef I';; andR; is the positiveradius of curvaturei.e.,R; = R; if the
center of the curvature is located insidedfand ?; = —R; if the center of curvature is on
the other side. Therefore, in the case of test functions X, we have

dt; dt;
K; = v, —Lds = K; .—Lds, j=a,b. 4.9
i(vr) /F KjVh 1 s = K, /Fj vy, I s, ] =a, (4.9)

Now, let
x) = (al,yl =®;(2])), 0<r<N, j=a,b
be the points defined in eah, with
0:.1"6 <:v{ < - <x'ZN_1) <x'§V:L, J =ua,b.

Let S7 be the arch of'; with end pointsk’ andxﬁﬂ. The polygor’, ; is built from straight
lines that connect the nodesf to x7_, , for every0 < r < N — 1, and we denote by

the chordx/, x/_,]. We define the unit tangent along the chord] by

I
x X:
il ' 0<r<N, j=a,b,

t] = , 0<

r X
J J
XT+1 — X
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and approximaté; (v;,) by the following formula:
N .
Vi, € Xn, K, (Vi) = k; Z (X) 41 0) - (6 =] 1), j=a)b, (4.10)

wherex , Is the midpoint of the segment where the function is approximated with the
Crouze|x a viart element.

Since elements af, do not have global weak derivatives, we must use a modificatio
of a(-,-) andb(-, -) in order to state the discretization of the problem. Thusdefne

ah(uh,vh): Z |:Oé/ phuh~Vth
T

TeT),

1 (4.11)

+s / 1 (Vattn + (Vaun)!) : (Vava + (Vave)') dx
T

+ Jn(un, vn),

where for allv;, € X}, the termV,,v,, = V(Vh\T) is the discrete gradient il € 7y, pp,
andy, are approximations to the density and the viscosity regmdgidefined by

=put, i=1,2, (4.12)

_ 1
Ph Q;LI =P, Hh Q;LL

and
Vup, v, € Xp, Ju(up,vi) = B |/uh [vi]d
ecé

is the factor that controls thegid body rotationswhich cause a lack of coercivity for the
Crouzeix-Raviart approximation when applied to the Stdkesulation written in terms of
the strain tenson; (u) [8]. Likewise,

b uh,qh Z /qh Vh Vth (413)

TeT),

Based on the foregoing, the discrete variational formarfatis as follows: find
u, € X;, + Uy andpy, € M), that satisfy

Vv, € Xy, ap (p, Vi) + by (Vi,pr) = £(Vh),

(4.14)
Vg € My, by (up,qn) =0,

where

(vy) :/ pn (g4 aw) - vy dx

@ (4.15)

- / PoutVh -0 ds — Kp o(v) — Kp (V).
Pout

In the following, we will define the norm associated to thecgp&;, to be

Vi € Xn,  [IValli = IValltraiaye + IVVRlIF2 @y + Ta(Va, va), (4.16)
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where
vv e (L)1, IVVIEz@p = > VI (4.17)
TeTy

is thebroken norn{19]. The following result on boundedness dy is obtained.
PROPOSITION4.4. There exist constants’ andC” independent ok such that

Vv € X, Jh(Vh,Vh) < C/|||VVh|||[2L2(Q)]2 < CNHVhHi. (4.18)

Proof. The proofis similar to that presented by Girault et al.ig][ O
On the other hand, with Korn’s inequality for piecewidé vector fields ],

W€ X IVl < O (K0 B + Tivawn) ). (@19
Poincaré’s inequality for piecewidé' vector fields §],

Vi € Xpy  [[Vallfregaye < Co <|||VVh 1722y + Jh(Vh,Vh))v (4.20)

and the above result of boundedness.fpy we have the following equivalence lemma be-
tween the norm associated to the spageand the broken norm of the gradient of every
functionvy, € Xj,.

LEMMA 4.5. There exist positive constanis and 3, such that

Vi € Xp, Bif|Vva |||[2L2(Q)]2 < ||Vh||% < B2l Vva |||[2L2(Q)]2' (4.21)

Now, using norm| - ||, previously defined, we have the following lemma for the globa
Crouzeix-Raviart operator.
LEMMA 4.6. There is a constar@, independent of, so that

vv e [H(QP, M7 < CllvIa @2 (4.22)

Proof. The proofis similar to that presented, in a more genertihgeby J.-L. Guermond
and A. Ernin [L5]. O

4.1. Uniform stability analysis. The first step in the numerical analysis of the problem
(4.14 consists in proving aniform discrete inf-sup conditidior the pair of spaceX,, M.
This is the objective of the following proposition.

PROPOSITION4.7. Let7;, be the triangulation previously defined. There exists a con-
stantg* > 0, independent of, such that the following discrete inf-sup condition holds:

b
Vg, € My, sup M

> B*|lanllL2(0)- (4.23)
viex,  [valln

Proof. By Fortin’s Lemma (se€llf]), proving the discrete inf-sup condition is equivalent
to demonstrating that there exists a restriction opefipre £(X, X}) and a constanf’,
independent ofi, such that

Vv e X, |Ip(v)x < Clv]x, (4.24)
Van € Mp, bp(IIn(v) — v, qn) = 0. (4.25)
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It is easy to check that ifl;, is taken as the Crouzeix-Raviart operator, the24) and @.25
are verified and the proposition is established with

*x
B=%
where > 0 is the constant for the continuous inf-sup condition &hés the constant of

Lemma4.6. O

4.2. Results on the existence and uniqueness of the discre@ution (uy,, p). Let
us write the velocityu,, as

up, = ug,p + Uy,

whereU),, satisfies Propositiod.3. Then the problem4(14) is the following linear system
of equations: findug , prn) € X5, x M), that satisfy

Vvi € Xn, an (W04, Vi) + bn (Vi o) = £ (Vi) — an (Un,va)

(4.26)
Vagy, € My, by (ugn,qn) =0.

To prove the existence and uniqueness of the solutiphe X, the following must be
proved:

e Bicontinuity of the bilinear fornuy, (-, -) over X, x X},: there exists a constamt> 0
such that

Yup, vy € Xp, |ap(un, vi)| < yllunlln [[valla- (4.27)

e Coercitivity of the bilinear formay(-,-) over X;, x Xj: there exists a constant
o > 0 such that

Vv € X, ah(vh,vh) > Oé*HVhH%. (4.28)

On the other hand, the existence and uniquenegg bblds automatically from Propo-
sition 4.7 once we have the result fon,. This is established with the following proposition.

PROPOSITION4.8. The system of linear equations given By2@ has a unique solution
(uo_,h,ph) S Xh X Mh.

Proof. Bicontinuity (4.27) is obtained immediately by considering the definition o th
bilinear formay, the norm| - ||, associated to spacé;,, and the Cauchy-Schwartz inequality.
Indeed, we have

v = max { a max (p') 1 -
1<i<2 7 2 1<i<2 ’

Finally, coercitivity @.28 is verified with

C - ] _
R T RPN
=55 ¢ mln{algliIEQ(p), 21131_132@),1},

as an immediate consequence4fl® and Lemmat.5. O
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5. Numerical simulation. In this section we present a numerical simulation of the gen-
eralized Stokes problem at an initial timg considering each interface as a horizontal line
within the domain. Therefore, the terms, ;(vy), j = a, b, are zero for every € X;. The
condition at the pipeline outlet is established for a martoimpressure given by,,; = 0,
andg = 9.806es.

The simulation is based on the following parameters= 1, p, = 1.1, 41 = 0.1 and
w2 = 0.01. The inlet velocityU = (U(y))e; is defined by the functiofy given by

13 £
vyeT:, Uly) = <_2Lu2)y2+ <_2LM2>D2

3 ) 5 3 T3 % (2 — 2
vyerl, U =(— + (- i + D?|,
Y ) 2L )Y 2Lp2 4 I

where¢ > 0 is a hydrodynamic parameter taken frorhfor this test problem.

Figures5.1and5.2 visualize, respectively, the velocity field and the presdieid. The
pressure field is shown with greater intensity at the inlethef pipe (red color) and less
intensity at the outlet (blue color), which is consistenthathe type of shear stresses that
must be maintained to obtain the velocity field as illustldteFigure5.1; see |7, 22, 23].

e XAI
L L L L L s [ L !
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FicUrE5.1. Velocity field. FicURE5.2. Pressure field.

Following Hughes?21], we determine the constraint ratio for the system equatibri 4.
The value of this ratio was = 1.999, very close t@®, which is the optimal value. Therefore,
in heuristic terms, the calculations verify the discrefesinp condition.

6. Conclusions. We have described a discretization of a water-petroleumpiaase
flow problem based on a generalized Stokes problem with temdard boundary condi-
tions [4], using the Crouzeix-Raviart mixed finite element with @& and P, for the
velocity and pressure, respectively. Under an adequatatizaral formulation, we demon-
strated that the discretization generates a linear systesquations whose solution exists,
is unique, and is uniformly stable, since a discrete inf-soipdition was demonstrated over
the nonconforming Crouzeix-Raviart finite element spaked$’,. The existence of a lifting
function which extends the Dirichlet condition to the eatuipeline was also demonstrated,
based on the regularity and properties that make it adeqoaenserve an incompressible
flow condition and be approximated by means of the Crouzeixid&t interpolation operator.
Based on this, a numerical simulation was presented to Zzsue velocity field and pres-
sure field for an initial time in which the interfaces betwdlea two fluids are straight lines.
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The constraint ratio was also calculated, and it was cargistith the theoretical results,
since the uniform stability of the solution was thus heioély verified.

The finite element of Crouzeix-Raviart has been used by nousauthors for the solu-
tion of problems where the Navier-Stokes equations arifledisimulation of incompressible
flows; see, for example2p]. Like the mini-element, the Crouzeix-Raviart element ista
ble mixed combination. However, since there is no physieakon to assume continuous
pressure between the two fluidd2] 23], we consider the Crouzeix-Raviart element in the
space discretization of the two-phase flow studied in thiskveobetter tool to approximate
the pressure.

In future work, we would like to do a convergence analysistarmbmpare our numerical
results with those generated by the “mini-element.” Alse,would like to compute solutions
for several time steps and approximations to the interfateden both fluids.
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