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Abstract. This paper is a numerical study of different discretizations for a mixed formulation of the Darcy-
Forchheimer equation. Different finite elements are used: constant functions, conformal linear functions and Crouzeix-
Raviart non-conformal finite elements. The behavior of the discretizations is analyzed through a comparative study
of some test problems. The numerical results suggest that one of the proposed discretizations has better convergence
properties for the velocity.
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1. Introduction. The following model describes the steady Darcy-Forchheimer flow of
a single phase fluid in a porous medium in a bounded domainΩ in two or three dimensions:

µ

ρ
K−1u +

β

ρ
|u|u + ∇p = 0 in Ω, (1.1)

with the divergence constraint

div u = b in Ω, (1.2)

and boundary condition

u·n = g on∂Ω, (1.3)

whereu andp are the velocity vector and the pressure, respectively;n is the unit exterior
normal vector to the boundary ofΩ; µ, β, andρ are given positive constants that represent
the viscosity of the fluid, its dynamic viscosity, and its density, respectively;|·| denotes the
Euclidean norm,|u|2 = u ·u;K is the permeability tensor, which is assumed to be uniformly
positively defined and bounded; andb andg are given functions that meet the compatibility
condition

∫

Ω

b (x) dx =

∫

∂Ω

g (σ) dσ.

This problem isnonlinear of monotone type, and under mild regularity assumptions on
the datab andg, it has been demonstrated that a unique weak solution exists; see, for example,
[9, 11].
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From the physical point of view, Darcy’s law describes a linear relationship between
the velocity vector and the pressure gradient. Experimental evidence shows that when the
velocity of the fluid is high enough, a nonlinear relationship is developed between the velocity
vector and the pressure gradient, even in the case of a Newtonian flow through a porous
medium. Dupuit in 1863 [7] and Forchheimer in 1901 [10] suggested, in the description
of this type of flow, modifying Darcy’s equation by adding a quadratic term to the velocity
with a coefficient that depends on the geometry of the pores. This modification, known
as Forchheimer’s equation, has led to much research from theexperimental [2, 3, 24, 28],
theoretical [4, 7, 9, 11], and numerical [16, 17] points of view.

Typically, small velocities are observed in oil reservoirsand aquifers due to the low per-
meability. In these cases, the nonlinear inertial term becomes insignificant, and we obtain an
acceptable approximation for a single flow (mono-phase) through Darcy’s law. Nevertheless,
there are cases in which the flow velocities are relatively high and the inertial effects cannot
be ignored, making Darcy’s law inadequate [11].

Also, Rami, Fawzi and Fahmi [14] warn that while Darcy’s law is valid for low velocities,
and small porosity conditions, in many practical situations, the porous media is bounded by
an impermeable wall, near which high flow rates and non-uniform porosity distributions are
observed, rendering Darcy’s law inapplicable.

The foregoing reasons justify the study of a specific flow in which we consider a non-
linear relationship between the velocity vector and the pressure gradient by means of the
Darcy-Forchheimer equation.

Girault and Wheeler [11] demonstrated the existence and uniqueness of a weak solution
for the Darcy-Forchheimer problem in the single phase case.In their work, a discretization
was studied using mixed finite elements in which the velocityvector and the pressure are
approximated by piecewise constants and discontinuous linear functions, respectively; see
Crouzeix-Raviart [6]. They also proposed an iterative method of alternating directions of
the Peaceman-Rachford type to solve the system of nonlinearequations obtained when the
mixed finite elements of Crouzeix-Raviart are applied to Darcy’s equation. The convergence
of both this iterative method and the mixed finite element method applied to the equation of
Darcy-Forchheimer was also demonstrated. Nevertheless, in that work the authors presented
only theoretical results without numerical experimentation.

The first objective of this paper is to carry out numerical tests of the methods studied in
[11] in order to corroborate the theoretical results presentedtherein: convergence orderO(h)
of the finite elements method and convergence properties of the Peaceman-Rachford method.
The system of nonlinear equations is also solved by means of Newton’s method [13, 15] in
order to compare the results with the method proposed in [11].

A second goal is to propose another approximating space of mixed finite elements to
calculate low-order approximations using basic and easy-to-implement finite elements. We
would also like to have a smoother pressure approximation incomparison to the pressure
approximation obtained with the space proposed in [11]. In the space that we propose, the
pressure is approximated by continuous functions such thattheir restriction to each triangle is
a polynomial of a degree at most one (P1). The velocity vector is approximated by constant
functions in each triangle. This is one of the spaces presented by Urquiza, Dri, Garon, and
Delfour in [26] to solve Darcy’s model, and its convergence properties areknown for the
linear case [22]. To our knowledge, it has never been applied to solve the model of Darcy-
Forchheimer.

Finally, since the Peaceman-Rachford method defined in [11] depends on a parameter
for decoupling the nonlinearity in (1.1) from the constraint (1.2), a study of the sensitivity of
the method with respect to this parameter is presented.
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This paper is organized as follows. Section2defines the notation used. Section3 presents
some ideas on the weak solution to the problem (1.1)–(1.3) highly developed in [11]. Sec-
tion 4 discusses the two different mixed finite elements discretizations previously mentioned.
Section5 analyzes the resolution schemes for the discrete problems.The characteristics of
each one of the test problems and the numerical results are presented in Section6. Finally,
conclusions and possible extensions are presented in Section7.

2. Notation. In this section we introduce the Sobolev spaces and the associated norms
employed in this paper; see [1, 18] for further details.

Given a domainΩ ⊂ R
3 with boundary∂Ω, let us recall Sobolev’s classic space for any

non-negative integerm and any numberr ≥ 1:

Wm,r (Ω) =
{
v ∈ Lr (Ω) : ∂kv ∈ Lr (Ω) , ∀ |k| ≤ m

}
,

where|k| = k1 + k2 + k3, with (k1, k2, k3) a triplet of non negative integers, and the partial
derivative∂k is

∂kv =
∂|k|

∂xk1
1 ∂x

k2
2 ∂x

k3
3

.

This space is equipped with the seminorm

|v|W m,r(Ω) =




∑

|k|=m

∫

Ω

∣∣∂kv
∣∣r dx





1
r

,

and the norm

‖v‖W m,r(Ω) =




∑

0≤k≤m

∫

Ω

|v|
r
W k,r(Ω) dx





1
r

,

with the usual extension in the caser = ∞. If r = 2, then we obtain the Hilbert space
Hm (Ω). Extensions of this definition to non-integral values ofm can be found in [18]. We
also use

L2
0 (Ω) =

{
v ∈ L2 (Ω) :

∫

Ω

v(x)dx = 0

}
.

3. Variational formulation. Some of the ideas developed in [11] on the existence and
uniqueness of a weak solution for the equations (1.1)–(1.3) are briefly presented in this sec-
tion. The following spaces are defined for this purpose:

X = L3 (Ω)
d
,

M = W 1, 3
2 (Ω) ∩ L2

0 (Ω) .

The constraints (1.2) and (1.3) are weakened using Green’s formula:
∫

Ω

v·∇qdx = −

∫

Ω

q div vdx + 〈q,v · n〉∂Ω , ∀q ∈M, ∀v ∈ H, (3.1)

where

H =
{

v ∈ L3 (Ω)
d

: div v ∈ L
3d

d+3 (Ω)
}
.
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Thanks to the validity of (3.1), if we takeb ∈ L
3d

d+3 (Ω) andg ∈ L
3(d−1)

d (∂Ω), then the
problem (1.1)–(1.3) is equivalent to the following variational formulation: find a pair(u, p)
in X ×M such that

µ

ρ

∫

Ω

(
K−1u

)
· ϕ dx +

β

ρ

∫

Ω

|u| (u · ϕ) dx +

∫

Ω

∇p · ϕdx = 0, ∀ϕ ∈ X, (3.2)
∫

Ω

∇q · u dx = −

∫

Ω

bq dx +

∫

∂Ω

gq dσ, ∀q ∈M. (3.3)

If the given functionsb andg satisfy the compatibility condition
∫
Ω b(x)dx =

∫
∂Ω g(σ)dσ,

then this problem has a unique solution(u, p) in X ×M ; see [11].

4. Discrete variational formulation. Let Ω be a two-dimensional polygon that can be
completely triangulated into triangles. LetTh be a family of conforming triangulations ofΩ,

Ω =
⋃

T∈Th

T,

which is regular in the sense of Ciarlet [5], i.e., there exists a constantσ independent ofh and
T such that

∀T ∈ Th,
hT

ρT

= σT ≤ σ,

wherehT is the diameter ofT andρT the diameter of the sphere inscribed inT . Γh denotes
the set of all interior edges of triangles inTh, andbe is the middle point of an edgee ∈ Γh.

Using this triangulationTh andPk (the space of polynomial functions of degree at most
k), finite element spacesXh,Mh are constructed to approximateX andM , respectively. The
discrete variational formulation of (3.2)–(3.3) follows: find (uh, ph) ∈ Xh ×Mh such that

µ

ρ

∫

Ω

(
K−1uh

)
· ϕhdx +

β

ρ

∫

Ω

|uh| (uh · ϕh) dx

+
∑

T∈Th

∫

T

∇ph · ϕhdx = 0, ∀ϕh ∈ Xh, (4.1)

∑

T∈Th

∫

T

∇qh · uhdx = −

∫

Ω

bqhdx +

∫

∂Ω

gqhdσ, ∀qh ∈Mh. (4.2)

This discrete problem is a system of nonlinear equations, the numerical solution of which
will be studied in Section5.

Next, the various approximation spacesXh andMh used in this paper are described.

4.1. Approximations of velocities by piecewise-constant functions and pressures by
Crouzeix-Raviart elements. In this finite element the velocity vectoru is approximated by
functions from the space

X0
h =

{
v ∈ L2 (Ω)

2
: ∀T ∈ Th, v|T ∈ P

2
0

}
, (4.3)

and the pressurep is approximated by functions from the space

M1,m
h = Q1,m

h ∩ L2
0 (Ω) , (4.4)

where

Q1,m
h =

{
q ∈ L2 (Ω) ; ∀T ∈ Th, q|T ∈ P1, and∀e ∈ Γh, q is continuous onbe

}
.
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The spaceQ1,m
h is the non-conforming space of degree one introduced and studied by

Crouzeix and Raviart in [6]. In [11], the authors demonstrated that the discrete problem (4.1)–
(4.2) with the definitions (4.3) and (4.4) has a unique solution. Moreover, ifTh satisfies (4.1)
and the solutionu belongs toW 1,4 (Ω), then the following error estimations are obtained:

‖u − uh‖L2(Ω) ≤ Ch |u|W 1,4(Ω) ,

(
∑

T∈Th

‖∇ (p− ph)‖
3
2

L
3
2 (T )

) 2
3

≤ Ch
(
|p|

W
2, 3

2 (Ω)
+ |u|W 1,4(Ω)

)
.

The approximation spacesX0
h andQ1,m

h are

X0
h = span

{[
vi

0

]
,

[
0
vi

]}
, i = 1, . . . , N,

Q1,m
h = span {ϕi} , i = 1, . . . ,M,

whereN is the number of triangles inTh andM is the number of edges. The functionsvi are
defined as:

∀Tj ∈ Th, vi|Tj
= δij , i, j = 1, . . . , N,

whereδij the delta of Kronecker. The global basis functionϕi corresponding to nodei,
which is the middle point of an edgee of the triangulation and its restriction to a triangleT of
a global base functionϕi coincides with a local basis functionψ of T . For this finite element,
there are three local functions,

ψ1 (x, y) = 1 − 2λ1 (x, y) ,

ψ2 (x, y) = 1 − 2λ2 (x, y) ,

ψ3 (x, y) = 1 − 2λ3 (x, y) ,

whereλi (x, y) is the barycentric coordinate associated to the vertex of triangleT which is in
front of edgeei.

4.2. Approximations of velocities by piecewise-constant functions and pressures by
standard finite elementP1. In this case, the spaceXh is defined as in (4.3) and the pressures
are approximated by functions in the spaceM1

h defined by:

M1
h = Q1

h ∩ L2
0 (Ω) , (4.5)

where

Q1
h =

{
q ∈ C0

(
Ω
)

: ∀T ∈ Th, q|T ∈ P1

}
.

The spaceQ1
h is a classic continuous finite element space whose nodes are the vertices of the

triangles, and the local basis functions are

ψ1 (x, y) = λ1(x, y),

ψ2 (x, y) = λ2(x, y),

ψ3 (x, y) = 1 − λ1(x, y) − λ2(x, y).

It is clear thatX0
h ⊂ X andM1

h ⊂ M . ThenX0
h ×M1

h is a conforming finite element space
since it is used as an internal approximation space forX ×M .
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5. Solution of nonlinear systems.Independent of the discretization used in (4.1)–(4.2),
if {ϕi} is the basis of the approximation space for each of the components of the velocity
fields and is{Ψi} the basis of the approximation space for the pressure, then one can write

uh =
N∑

i=1

ui
hϕi , ph =

M∑

i=1

pi
hΨi ,

whereui
h are the degrees of freedom of the velocity vector andpi

h the degrees of freedom of
the pressure. Then, substituting these expressions into the discrete problem (4.1)–(4.2), we
obtain the following equation in “matrix form”:

[
B (û) C
CT 0

] [
û

p̂

]
=

[
0

s

]
, (5.1)

whereû = [u1
h, . . . ,u

N
h ]T , p̂ = [p1, . . . , pM ]T , B (û) û is a nonlinear function of̂u corre-

sponding to

µ

ρ

∫

Ω

(
K−1

h uh

)
· ϕhdx +

β

ρ

∫

Ω

|uh| (uh · ϕh) dx,

C is a matrix corresponding to the term

∑

T∈Th

∫

T

∇ph · ϕhdx,

ands represents the right-hand side of (4.2).
In view of the nonlinearity of the problem (5.1), an iterative scheme is required to deter-

mine an approximation to the solution of the problem. In thispaper, we consider two iterative
methods to solve (5.1): an alternating-direction algorithm of the Peaceman-Rachford type
proposed in [11] and the classical Newton’s method [13, 15]. We briefly describe these meth-
ods in the next section.

5.1. Peaceman-Rachford (PR).There are references to Peaceman-Rachford-typemeth-
ods in the literature on finite differences (see for example [19, 21, 25]) which relate this
method to all known Alternating Direction Implicit (ADI) schemes. A good reference for
PR-type methods in the solution of linear systems is [29].

In [11] a PR-type algorithm is used for solving (4.1)–(4.2). In that work and for the
purpose of decoupling the nonlinearity and the restriction, the authors use the same original
idea of the PR method applied to parabolic time dependent problems. Thus, given

(
u0

h, p
0
h

)
,

one constructs the sequence(un
h, p

n
h) for n ≥ 1, in two steps:

1. A nonlinear step without constraints.Knowing (un
h, p

n
h), an intermediate velocityu

n+ 1
2

h

is calculated such that:

1

α

∫

Ω

(
u

n+ 1
2

h − un
h

)
· ϕhdx +

β

ρ

∫

Ω

∣∣∣un+ 1
2

h

∣∣∣
(
u

n+ 1
2

h · ϕh

)
dx

= −
µ

ρ

∫

Ω

(
K−1un

h

)
· ϕhdx −

∑

T

∫

T

∇pn
h · ϕhdx, ∀ϕh ∈ Xh. (5.2)
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2. A linear step with constraints.Onceu
n+ 1

2

h is obtained from the previous step,
(
un+1

h , pn+1
h

)

is obtained such that:

1

α

∫

Ω

(
un+1

h − u
n+ 1

2

h

)
· ϕhdx +

µ

ρ

∫

Ω

(
K−1un+1

h

)
· ϕhdx

+
∑

T∈Th

∫

T

∇pn+1
h · ϕhdx = −

β

ρ

∫

Ω

∣∣∣un+ 1
2

h

∣∣∣
(
u

n+ 1
2

h · ϕh

)
dx, ∀ϕh ∈ Xh, (5.3)

∑

T∈Th

∫

T

∇qh·u
n+1
h dx = −

∫

Ω

bqhdx+

∫

∂Ω

gqhdσ, ∀qh ∈Mh, (5.4)

whereα is a positive parameter.

Since the equation (1.1) differs from Darcy’s equation in the nonlinear termβ
ρ
|u|u, a

natural way to select the initial guess
(
u0

h, p
0
h

)
is by solving a linear Darcy step:

µ

ρ

∫

Ω

(
K−1u0

h

)
· ϕhdx +

∑

T∈Th

∫

T

∇p0
h · ϕhdx = 0, ∀ϕh ∈ Xh, (5.5)

∑

T∈Th

∫

T

∇qh · u0
hdx = −

∫

Ω

bqhdx +

∫

∂Ω

gqhdσ, ∀qh ∈Mh. (5.6)

Problems (5.3)–(5.4) and (5.5)–(5.6) are written in matrix form as

My = z, (5.7)

where the matrix of coefficientsM has a block structure

M =

[
X C
CT 0

]
and z =

[
r s

]T
.

Then, for the problem (5.3)–(5.4),X = A+ 1
α
I withA the symmetric matrix associated to the

term µ
ρ

∫
Ω

(
K−1un+1

h

)
·ϕhdx andr represents the right-hand side of (5.3). For the problem

(5.5)–(5.6), X = A andz =
[
0 s

]T
. Considering the characteristics of the coefficient

matrixM , both linear systems were solved with MINRES.
In [11], the authors demonstrate that the problems (4.1)–(4.2) and (5.5)–(5.6) have a

unique solution for the finite element spaces (4.3) and (4.4), and that the iterative method de-
fined by (5.2)–(5.4) is convergent for an arbitrary choice of the initial approximation

(
u0

h, p
0
h

)

and anyα > 0.
Curiously, the solution to the problem (5.2) can be calculated explicitly for the finite

element spaces (4.3) and (4.4). This is also true for the finite element spaces considered in
the second discretization (4.3) and (4.5), since the space that approximates the velocities has
not changed. Thus, in each iteration, the solution of (5.2) is explicitly calculated and then this
solution is introduced in (5.3)–(5.4), leading to a linear system of the form given in (5.7).

The explicit solution of (5.2) is calculated as follows. The spaceX0
h consists of constant

functions on each triangleT ; hence, the test functionsϕh, as well as the solutionu
n+ 1

2

h and
∇pn

h are constants on each elementT . Therefore, a quick calculation leads to:

u
n+ 1

2

T =
1

γ
F

n+ 1
2

T ,

where F
n+ 1

2

T = 1
α
un

T − µ
ρ
K−1

T un
T − ∇T p

n
h, γ = 1

2α
+ 1

2

√
1

α2 + 4β
ρ

∣∣∣Fn+ 1
2

T

∣∣∣, and

K−1
T = 1

|T |

∫
T
K−1 (x) dx. For further details, see [11].
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5.2. Newton’s method.For discretizationsX0
h × M1

h andX0
h × M1,m

h , let us recall
thatXh andMh are made up of functions fromP0 andP1, respectively, over eachT ∈
Th. Therefore, the basis functions ofXh and the gradient of the basis functions ofMh are
constants over eachT . Hence, the nonlinear problem (4.1)–(4.2) is written as

G (w) =

[
0

s

]
with w = [u1

x, u
1
y, . . . , u

N
x , u

N
y , p

1, . . . , pM ]T ,

where

G (w) =




ATi

(µ
ρ
K−1

Ti
ui + β

ρ
|ui|ui +

3∑
j=1

pij∇ψij
)

∑
Ti∈Supp(Ψj)

ATi
∇Ψj · u

i





i=1,...N, j=1,...,M

. (5.8)

HereATi
is the area of triangleTi; ψij

, j = 1, 2, 3, are the restrictions of the basis functions
associated to the midpoints of the edges of the triangleTi; and pij , j = 1, 2, 3, are the
degrees of freedom of the pressure associated to the midpoints of the edges of triangleTi.
Thus, Newton’s method is written as:

w0 given

for k = 0, 1, . . . ,

DG(wk)εk = −G(wk) +
[
0 s

]T
,

wk+1 = wk + εk,

whereDG(wk) is the Jacobian matrix with respect toui, pj , i = 1, . . . , N , j = 1, . . . ,M .
This Jacobian matrix has the same structure as matrixM and it is symmetric, since the upper
left block isA plus the Jacobian of the nonlinear termβ

ρ
|u|u, which is symmetric, and the

other blocks are the same blocks as in the matrixM .
In each Newton step, the Jacobian matrix is computed explicitly. Since the linear system

in Newton’s method and those that appear in (5.3)–(5.4) and (5.5)–(5.6) are symmetric, we
use MINRES [12, 20, 23, 27] to solve them.

6. Numerical Results. In this section, we present results of numerical experiments
that were designed to test the effectiveness of the PR methodcompared with Newton’s
method, considering two different discretizations of the variational formulation of the Darcy-
Forchheimer problem (4.1)–(4.2). The numerical experimentation was accomplished through
three test problems of the form:

µ

ρ
K−1u +

β

ρ
|u|u + ∇p = f(x, y) in Ω,

div u = b in Ω,

u·n = g on∂Ω,

whereΩ ⊂ R
2 is a square defined as:

Ω = {(x, y) ∈ R
2 : −1 < x < 1, −1 < y < 1}.

The first test problem is defined as follows:

f (x, y) =





(
1 + β

√
2x2 + 2y2

)
(x+ y) + 3x2

(
1 + β

√
2x2 + 2y2

)
(x− y) + 3y2




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and

g (x, y) =






1 + y, x = 1,

1 − y, x = −1,

x− 1, y = 1,

−x− 1, y = −1,

so that the exact velocity field and the pressure function are

u (x, y) = (x+ y, x− y)
T
, p(x, y) = x3 + y3.

For the second test problem, we use

f (x, y) =





(x+1)2

4

(
1 + β (x+1)

4

√
(x+ 1)2 + 4 (y + 1)2

)
+ 3x2

− (x+1)(y+1)
2

(
1 + β (x+1)

4

√
(x+ 1)

2
+ 4 (y + 1)

2

)
+ 3y2



 ,

and

g (x, y) =






1, x = 1,

0, x = −1,

−(x+ 1), y = 1,

0, y = −1,

Here, the exact velocity field and the pressure function are

u (x, y) =

(
(x+ 1)2

4
,−

(x+ 1)(y + 1)

2

)T

, p(x, y) = x3 + y3.

Finally, for the third test problem, we selected

f (x, y) =




2y(1 − x2)

(
1 + 2β

√
y2(1 − x2)2 + x2(1 − y2)2

)
+ 3x2

−2x(1 − y2)
(
1 + 2β

√
y2(1 − x2)2 + x2(1 − y2)2

)
+ 3y2





and

g(x, y) = 0 on∂Ω.

In this case, the exact solution of the velocity field and the corresponding pressure function
are

u (x, y) =
(
2y(1 − x2),−2x(1 − y2)

)T
, p(x, y) = x3 + y3.

The last two problems were taken from [26].
For all the problems,µ andρ were taken to be 1 andK = I2×2. Numerical tests were

carried out using different values for parameterβ in order to study the behavior of the methods
as the nonlinearity of the problem increases.

We use a classical triangulationTh built with a family of three parallel lines, meaning
that the squareΩ is divided intoL × L squares of a sizeh with L = 2/h, which are divided
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FIGURE 6.1.TriangulationTh with h = 1/2.

into two rectangular triangles by tracing the ascending diagonal line. Figure6.1 shows this
type of triangulation.

It is easy to verify that the size of the vector velocity approximation is4L2 for both
mixed finite elements spaces,X0

h ×M1,m
h andX0

h ×M1
h . The size of the vector pressure

approximation isL(3L+ 2) and(L+ 1)2 forM1,m
h andM1

h , respectively.
All the experiments were run on a Intel Core 2 Duo E4300, 1.8 GHz using MATLAB 7.0.

For the two approximation spaces considered, the calculations were made for different values
of h: 1/8, 1/16, and1/32. The exact solution is known in all the cases and the stopping
criterion was:

en = ‖u − un
h‖L2(Ω) ≤ tol,

wheretol is a given parameter. In the experimentstol was set to1.95h, except in the third
experiment. A maximum of2100 iterations was enough to reach convergence in all cases.

In order to make an adequate comparison, the initial guess for Newton’s method and the
PR method were the same. Although there is no proof of convergence for Newton’s method
with this initial guess, in all cases the method successfully converged. The stopping criterion
for MINRES was10−12 in the 2-norm of the residual.

As we mentioned previously, the PR method withX0
h ×M1,m

h converges for anyα > 0.
Nevertheless, in practice, it could be observed that its behavior is very sensitive to the choice
of this parameter. For this reason it is very important to select an appropriate value.

In our first experiment, we conducted a comparative study of the PR algorithm for dif-
ferent choices of the parameterα. Numerical tests were performed for all the problems and
the two discretizations defined in the previous section. Thebehavior of the algorithm with
respect to the parameterα was similar for all the problems and for both discretizations. Thus,
we only report graphs showing a comparative study of the parameterα for problem 3 when
β = 50 andh = 1/8.

Figures6.2(a) and6.2(b) report the behavior of the algorithm with respect to the number
of iterations for six values ofα in the interval(0, 1] and for discretizationsX0

h ×M1
h and

X0
h ×M

1,m
h , respectively, while Figures6.3(a) and6.3(b) show the behavior of the algorithm

for six different values ofα in the interval[1, 150] and for discretizationsX0
h × M1

h and
X0

h ×M1,m
h , respectively. It can be observed that, regardless of the discretization, the best

results were obtained whenα = 1, α = 0.01, andα = 5, whereas the worst results were
achieved whenα was too close to zero or greater than 50. This led us to study the spectrum
of the coefficients matrixM in the PR method. It was observed that, for both discretization
spaces, forα values near zero or greater than 50, that the minimum eigenvalue ofM tends
to zero and the condition number increases, influencing the rate of convergence of MINRES.
This study confirms our numerical results with respect to thechoice of theα value.
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FIGURE 6.2. (a) Problem 3 withβ = 50, α ∈ (0, 1] and discretizationX0
h
× M1

h
. (b) Problem 3 with

β = 50, α ∈ (0, 1] and discretizationX0
h
× M1,m

h
.
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FIGURE 6.3. (a) Problem 3 withβ = 50, α ∈ [1, 150] and discretizationX0
h
× M1

h
. (b) Problem 3 with

β = 50, α ∈ [1, 150] and discretizationX0
h
× M1,m

h
.

Based on all the numerical tests conducted, it was determined that the best results, in
most cases, were achieved forα = 1; therefore, this value ofα is used in the PR algorithm in
the remaining experiments.

In the second experiment, we study the behavior of the Peaceman-Rachford algorithm
with the two discretizations considered in this paper for the three test problems. Different val-
ues of the discretization parameterh and several values of the parameterβ were considered.
Tables6.1, 6.2, and6.3report the number of iterations and the error of the velocityvector in
theL2(Ω) norm.

We observe that for different values ofβ, the number of iterations required by PR is
similar in both discretizations. However, the computational cost of solving the linear system
for the discretizationX0

h ×M1,m
h is higher, since the size of the system for this discretization

is approximately, 30% bigger. Therefore, we conclude that the discretization usingX0
h ×M1

h

is more attractive for this method.
The third experiment tries to establish the order of convergence of the discretizations

considered in this paper. In this experiment,tol was set to0.95h to demand higher accuracy
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TABLE 6.1
Comparison betweenX0

h
× M1,m

h
andX0

h
× M1

h
discretizations of Problem 1 (using PR).

h = 1
8

h = 1
16

h = 1
32

β iter ‖u− uh‖L2(Ω) iter ‖u − uh‖L2(Ω) iter ‖u − uh‖L2(Ω)

10 X0
h
×M1,m

h
7 0.2399 13 0.1161 19 0.0602

X0
h
×M1

h 7 0.2210 11 0.1154 17 0.0585
20 X0

h
×M1,m

h
13 0.2400 24 0.1190 37 0.0602

X0
h
×M1

h 12 0.2375 20 0.1210 32 0.0607
30 X0

h
×M1,m

h
19 0.2401 35 0.1201 55 0.0602

X0
h
×M1

h 18 0.2330 30 0.1192 48 0.0600
40 X0

h
×M1,m

h
25 0.2401 46 0.1207 72 0.0609

X0
h
×M1

h 23 0.2389 39 0.1212 63 0.0608
50 X0

h
×M1,m

h
31 0.2402 57 0.1210 90 0.0608

X0
h
×M1

h 28 0.2427 49 0.1201 79 0.0603

TABLE 6.2
Comparison betweenX0

h
× M1,m

h
andX0

h
× M1

h
discretizations of Problem 2 (using PR).

h = 1
8

h = 1
16

h = 1
32

β iter ‖u− uh‖L2(Ω) iter ‖u − uh‖L2(Ω) iter ‖u − uh‖L2(Ω)

10 X0
h
×M1,m

h
10 0.2282 15 0.1204 22 0.0589

X0
h
×M1

h 10 0.2201 15 0.1181 22 0.0582
20 X0

h
×M1,m

h
19 0.2336 30 0.1180 43 0.0604

X0
h
×M1

h 18 0.2346 29 0.1183 42 0.0607
30 X0

h
×M1,m

h
28 0.2360 44 0.1210 65 0.0596

X0
h
×M1

h 26 0.2407 43 0.1186 63 0.0602
40 X0

h
×M1,m

h
37 0.2372 59 0.1200 86 0.0604

X0
h
×M1

h 35 0.2363 57 0.1189 84 0.0599
50 X0

h
×M1,m

h
45 0.2433 73 0.1216 108 0.0601

X0
h
×M1

h 43 0.2399 70 0.1216 104 0.0609

and to observe the convergence order. The experimental results corroborate theO(h) conver-
gence for the velocity vector approximation that was predicted in [11] for the discretization
spaceX0

h×M
1,m
h . The experiments also indicate that the convergence for thevelocity vector

approximation isO(h) for the discretization spaceX0
h ×M1

h. Tables6.4and6.5show these
results for problem 2 whenh = 1/8, h = 1/16, h = 1/32, andh = 1/64.

In all the numerical tests, the stopping criterion was‖u − un
h‖L2(Ω) ≤ tol without tak-

ing into account the pressure accuracy. Tables6.6 and6.7 show the error‖p − ph‖H1(Ω)

corresponding to the results shown in Tables6.4 and6.5, respectively. It is clear that the
accuracy of the pressure approximations is very bad. Nevertheless, it is worth noting that the
experimental convergence order isO(h).

In view of these results, we would like to study how many iterations would be necessary
to achieve an error in the pressure approximation similar tothe one which is being demanded
from the velocity vector. Tables6.8 and6.9 show the error‖p − ph‖H1(Ω) for pressure ap-
proximations obtained with 300 iterations. We can see from these tables that the accuracy of
the pressure is far from satisfying the velocity vector’s accuracy in all cases, i.e., for different
values of the discretization parameterh and the different values of parameterβ. Therefore,
this method seems to be very computationally expensive to obtain a good approximation of
the pressure.

The fourth and last experiment compares the PR method with the well-known Newton
method for solving nonlinear systems. Tables6.10, 6.11, and6.12show the results for New-
ton’s method using the discretizationsX0

h ×M1,m
h andX0

h ×M1
h .
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TABLE 6.3
Comparison betweenX0

h
× M1,m

h
andX0

h
× M1

h
discretizations of Problem 3 (using PR).

h = 1
8

h = 1
16

h = 1
32

β iter ‖u − uh‖L2(Ω) iter ‖u − uh‖L2(Ω) iter ‖u − uh‖L2(Ω)

10 X0
h
×M1,m

h
17 0.2437 27 0.1219 36 0.0609

X0
h
×M1

h 2 0.1806 2 0.1102 8 0.0585
20 X0

h
×M1,m

h
32 0.2437 54 0.1219 71 0.0609

X0
h
×M1

h 2 0.1822 2 0.1130 14 0.0602
30 X0

h
×M1,m

h
48 0.2437 80 0.1219 106 0.0609

X0
h
×M1

h 2 0.1828 2 0.1140 20 0.0608
40 X0

h
×M1,m

h
64 0.2437 106 0.1219 140 0.0609

X0
h
×M1

h 2 0.1831 2 0.1146 27 0.0604
50 X0

h
×M1,m

h
80 0.2437 132 0.1219 175 0.0609

X0
h
×M1

h 2 0.1833 2 0.1149 33 0.0607

TABLE 6.4
L2 error in the velocity vector forX0

h
× M1

h
of Problem 2 (using PR).

h = 1
8

h = 1
16

h = 1
32

h = 1
64

β iter ‖u − uh‖L2(Ω) iter ‖u − uh‖L2(Ω) iter ‖u − uh‖L2(Ω) iter ‖u − uh‖L2(Ω)

10 19 0.115777 27 0.058054 35 0.029657 45 0.014556
20 34 0.116988 49 0.058556 65 0.029663 83 0.014772
30 49 0.118094 71 0.059097 96 0.029348 122 0.014767
40 65 0.117002 94 0.058702 126 0.029548 161 0.014785
50 80 0.117932 116 0.059148 157 0.029409 200 0.014809

TABLE 6.5
L2 error in the velocity vector forX0

h
× M1,m

h
of Problem 2 (using PR).

h = 1
8

h = 1
16

h = 1
32

h = 1
64

β iter ‖u − uh‖L2(Ω) iter ‖u − uh‖L2(Ω) iter ‖u − uh‖L2(Ω) iter ‖u − uh‖L2(Ω)

10 23 0.1180 30 0.0593 39 0.0293 48 0.0146
20 46 0.1180 60 0.0592 76 0.0297 94 0.0148
30 69 0.1182 90 0.0593 115 0.0295 141 0.0148
40 92 0.1183 121 0.0592 153 0.0296 188 0.0148
50 115 0.1185 151 0.0593 191 0.0297 236 0.0148

TABLE 6.6
H1-error in the pressure forX0

h
× M1

h
of Problem 2 (using PR).

h = 1
8

h = 1
16

h = 1
32

h = 1
64

β ‖p − ph‖H1(Ω) ‖p − ph‖H1(Ω) ‖p − ph‖H1(Ω) ‖p − ph‖H1(Ω)

10 3.2904 1.8173 1.0408 0.5384
20 7.3398 4.1593 2.3604 1.2929
30 11.4311 6.5330 3.6103 2.0186
40 15.2159 8.7497 4.9460 2.7460
50 19.3172 11.1320 6.1974 3.4741

In all problems and for different values ofβ, if the discretization parameterh decreases,
then more steps were required for the discretizationX0

h ×M1,m
h than for the discretization

X0
h ×M1

h . This behavior was more pronounced for problems 1 and 3.
On the other hand, if the results obtained in Tables6.1–6.3and6.10–6.12are compared,

it can be observed that in all experiments, the PR algorithm required fewer iterations than
Newton’s method. Figures6.4, 6.5, and6.6 show this behavior for the three test problems
whenβ = 20 andh = 1/32. It is also worthwhile mentioning that the computer cost
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TABLE 6.7
H1-error in the pressure forX0

h
× M1,m

h
of Problem 2 (using PR).

h = 1
8

h = 1
16

h = 1
32

h = 1
64

β ‖p − ph‖H1(Ω) ‖p − ph‖H1(Ω) ‖p − ph‖H1(Ω) ‖p − ph‖H1(Ω)

10 2.6589 1.5737 0.8486 0.4698
20 5.0690 3.0083 1.7230 0.9531
30 7.4851 4.4454 2.4983 1.4099
40 9.9030 5.7956 3.3234 1.8668
50 12.3214 7.2339 4.1485 2.2973

TABLE 6.8
H1 error in the pressure forX0

h
× M1

h
of Problem 2 with 300 iterations (using PR).

h = 1
8

h = 1
16

h = 1
32

h = 1
64

β ‖p − ph‖H1(Ω) ‖p − ph‖H1(Ω) ‖p − ph‖H1(Ω) ‖p − ph‖H1(Ω)

10 0.3553 0.1772 0.0885 0.0442
20 0.3559 0.1773 0.0885 0.0443
30 0.3629 0.1865 0.1052 0.0721
40 0.4719 0.3586 0.3271 0.3192
50 0.9871 0.9663 0.9649 0.9652

TABLE 6.9
H1 error for the pressure forX0

h
× M1,m

h
of Problem 2 with 300 iterations (using PR).

h = 1
8

h = 1
16

h = 1
32

h = 1
64

β ‖p − ph‖H1(Ω) ‖p − ph‖H1(Ω) ‖p − ph‖H1(Ω) ‖p − ph‖H1(Ω)

10 1.2886 0.6441 0.3220 0.1610
20 2.4543 1.2272 0.6135 0.3068
30 3.6227 1.8119 0.9072 0.4562
40 4.7741 2.4019 1.2314 0.6739
50 5.9343 3.0806 1.7518 1.2106

TABLE 6.10
Comparison betweenX0

h
× M1,m

h
andX0

h
× M1

h
discretizations of Problem 1 (using Newton).

h = 1
8

h = 1
16

h = 1
32

β iter ‖u − uh‖L2(Ω) iter ‖u − uh‖L2(Ω) iter ‖u − uh‖L2(Ω)

10 X0
h
×M1,m

h
29 0.2416 83 0.1207 430 0.0609

X0
h
×M1

h 8 0.2369 26 0.1210 83 0.0597
20 X0

h
×M1,m

h
52 0.2419 203 0.1218 608 0.0609

X0
h
×M1

h 19 0.2319 49 0.1201 154 0.0601
30 X0

h
×M1,m

h
89 0.2410 322 0.1217 895 0.0609

X0
h
×M1

h 30 0.2419 79 0.1192 249 0.0607
40 X0

h
×M1,m

h
146 0.2427 471 0.1213 1305 0.0608

X0
h
×M1

h 47 0.2346 118 0.1218 321 0.0605
50 X0

h
×M1,m

h
205 0.2436 629 0.1218 1664 0.0609

X0
h
×M1

h 58 0.2415 159 0.1207 410 0.0606

for Newton is higher than for PR iteration, because in each iteration, Newton evaluates the
Jacobian and solves a system of linear equations, and PR solves a linear system of equations
and calculates an intermediate solution. The computer costof this calculation is negligible in
comparison with the Jacobian evaluation. For these reasons, the PR algorithm is much more
attractive.

7. Conclusions.This paper presents a comparative study between the Peaceman-Rachford
iterative method and Newton’s method with two different discretizations of a flow using
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TABLE 6.11
Comparison betweenX0

h
× M1,m

h
andX0

h
× M1

h
discretizations of Problem 2 (using Newton).

h = 1
8

h = 1
16

h = 1
32

β iter ‖u − uh‖L2(Ω) iter ‖u− uh‖L2(Ω) iter ‖u − uh‖L2(Ω)

10 X0
h
×M1,m

h
39 0.2431 110 0.1182 427 0.0609

X0
h
×M1

h 12 0.2362 35 0.1186 103 0.0601
20 X0

h
×M1,m

h
77 0.2380 240 0.1207 760 0.0609

X0
h
×M1

h 27 0.2424 66 0.1207 196 0.0607
30 X0

h
×M1,m

h
141 0.2423 415 0.1212 1189 0.0609

X0
h
×M1

h 39 0.2437 99 0.1198 311 0.0606
40 X0

h
×M1,m

h
139 0.2428 560 0.1214 1563 0.0608

X0
h
×M1

h 59 0.2349 153 0.1210 413 0.0594
50 X0

h
×M1,m

h
191 0.2433 768 0.1218 2008 0.0609

X0
h
×M1

h 75 0.2396 203 0.1197 531 0.0608

TABLE 6.12
Comparison betweenX0

h
× M1,m

h
andX0

h
× M1

h
discretizations of Problem 3 (using Newton).

h = 1
8

h = 1
16

h = 1
32

β iter ‖u − uh‖L2(Ω) iter ‖u − uh‖L2(Ω) iter ‖u − uh‖L2(Ω)

10 X0
h
×M1,m

h
12 0.2437 42 0.1219 116 0.0609

X0
h
×M1

h 6 0.1910 7 0.1108 16 0.0562
20 X0

h
×M1,m

h
19 0.2437 90 0.1219 371 0.0609

X0
h
×M1

h 7 0.2071 9 0.1082 22 0.0592
30 X0

h
×M1,m

h
27 0.2435 136 0.1219 426 0.0609

X0
h
×M1

h 8 0.1901 11 0.1107 28 0.0594
40 X0

h
×M1,m

h
35 0.2437 170 0.1219 589 0.0609

X0
h
×M1

h 8 0.2365 13 0.1217 39 0.0605
50 X0

h
×M1,m

h
42 0.2437 225 0.1219 791 0.0609

X0
h
×M1

h 9 0.2052 16 0.1184 48 0.0599
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FIGURE 6.4. Number of iterations vs absolute error in the solution of Problem 1 usingX0
h
× M1,m

h
and

X0
h
× M1

h
discretizations and the methods PR and Newton.

Darcy-Forchheimer’s equation. Newton’s method is not competitive with the PR method,
because the PR method has a lower cost per iteration and requires fewer iterations to achieve
convergence. The parameterα in the PR method was set to its best value after some ex-
periments. The convergence order for the discretizationX0

h ×M1
h with PR was determined

experimentally, and the convergence order for the discretizationX0
h×M

1,m
h , determined the-
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oretically in [11], was corroborated. The results obtained through our test problems indicate
that the PR iterative method is very attractive for numerically solving Darcy-Forchheimer’s
model with both discretizations. However, for theX0

h × M1
h discretization, the CPU and

memory requirements are lower and there is not much difference in the number of iterations
compared with theX0

h ×M1,m
h discretization. For that reason, theX0

h ×M1
h discretization

is a better choice.

In a future paper, we would like to study the convergence of velocity vector approxi-
mation using the PR method and the space discretizationX0

h ×M1
h , to propose other mixed

finite elements, and to solve the nonlinear systems with other iterative methods of low com-
putational cost. As for obtaining an accurate approximation for the pressure and low compu-
tational cost, it would be interesting to use a remark in [11] in which the solution of a Poisson
equation for recovering a pressure approximation is proposed. We also would like to com-
pare our results with those of other researchers in numerical simulations of flow models with
a projection.
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