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Abstract. This paper is a numerical study of different discretizatidar a mixed formulation of the Darcy-
Forchheimer equation. Different finite elements are usedstant functions, conformal linear functions and Croxizei
Raviart non-conformal finite elements. The behavior of tiserétizations is analyzed through a comparative study
of some test problems. The numerical results suggest tieadfthe proposed discretizations has better convergence
properties for the velocity.
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1. Introduction. The following model describes the steady Darcy-Forchhefloe of
a single phase fluid in a porous medium in a bounded dofaamtwo or three dimensions:

EK_1u+ﬁ|u|u+Vp:0in Q, (1.1)
P p

with the divergence constraint

divu =binQ, (1.2)
and boundary condition
u-n = g onos, (1.3)

wherew andp are the velocity vector and the pressure, respectivelis the unit exterior
normal vector to the boundary 6F; ., 3, andp are given positive constants that represent
the viscosity of the fluid, its dynamic viscosity, and its digyy respectively{-| denotes the
Euclidean norm|,u|2 = u-u; K is the permeability tensor, which is assumed to be uniformly
positively defined and bounded; ah@ndg are given functions that meet the compatibility

condition
/b(cc)dcc:/ g (o) do.
Q o0

This problem isnonlinear of monotone typand under mild regularity assumptions on
the data andg, it has been demonstrated that a unique weak solution pséstsfor example,
[9, 11].
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From the physical point of view, Darcy’s law describes a dineclationship between
the velocity vector and the pressure gradient. Experinh@vidence shows that when the
velocity of the fluid is high enough, a nonlinear relatioqsikideveloped between the velocity
vector and the pressure gradient, even in the case of a Nemtdlow through a porous
medium. Dupuit in 18637 and Forchheimer in 19011[)] suggested, in the description
of this type of flow, modifying Darcy’s equation by adding aagatic term to the velocity
with a coefficient that depends on the geometry of the pordsis modification, known
as Forchheimer’s equation, has led to much research froraxpperimental 2, 3, 24, 28],
theoretical §, 7, 9, 11], and numerical16, 17] points of view.

Typically, small velocities are observed in oil reserva@iral aquifers due to the low per-
meability. In these cases, the nonlinear inertial term beinsignificant, and we obtain an
acceptable approximation for a single flow (mono-phase)ti Darcy’s law. Nevertheless,
there are cases in which the flow velocities are relativegjtand the inertial effects cannot
be ignored, making Darcy’s law inadequatd]f

Also, Rami, Fawzi and Fahmi] warn that while Darcy’s law is valid for low velocities,
and small porosity conditions, in many practical situasicthe porous media is bounded by
an impermeable wall, near which high flow rates and non-umifporosity distributions are
observed, rendering Darcy’s law inapplicable.

The foregoing reasons justify the study of a specific flow inohtwe consider a non-
linear relationship between the velocity vector and thesguee gradient by means of the
Darcy-Forchheimer equation.

Girault and Wheeler][1] demonstrated the existence and uniqueness of a weakaoluti
for the Darcy-Forchheimer problem in the single phase chs#heir work, a discretization
was studied using mixed finite elements in which the veloeégtor and the pressure are
approximated by piecewise constants and discontinuoeadifunctions, respectively; see
Crouzeix-Raviart§]. They also proposed an iterative method of alternatingations of
the Peaceman-Rachford type to solve the system of nonlewetions obtained when the
mixed finite elements of Crouzeix-Raviart are applied todyarequation. The convergence
of both this iterative method and the mixed finite elementhodtapplied to the equation of
Darcy-Forchheimer was also demonstrated. Neverthelesisai work the authors presented
only theoretical results without numerical experimermtati

The first objective of this paper is to carry out numericalded the methods studied in
[11] in order to corroborate the theoretical results presetiterkin: convergence ordéx(h)
of the finite elements method and convergence propertided?¢aceman-Rachford method.
The system of nonlinear equations is also solved by meangwtdh’'s method 13, 15 in
order to compare the results with the method proposetili [

A second goal is to propose another approximating space x#difinite elements to
calculate low-order approximations using basic and easyplement finite elements. We
would also like to have a smoother pressure approximatic@omparison to the pressure
approximation obtained with the space proposed.ifj.[ In the space that we propose, the
pressure is approximated by continuous functions suctitibatrestriction to each triangle is
a polynomial of a degree at most ori& ). The velocity vector is approximated by constant
functions in each triangle. This is one of the spaces preddn Urquiza, Dri, Garon, and
Delfour in [26] to solve Darcy’s model, and its convergence propertieskamvn for the
linear case??]. To our knowledge, it has never been applied to solve theahodDarcy-
Forchheimer.

Finally, since the Peaceman-Rachford method definedihdepends on a parameter
for decoupling the nonlinearity inl(1) from the constraint(.2), a study of the sensitivity of
the method with respect to this parameter is presented.
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This paper is organized as follows. Sectiaefines the notation used. Sect®bpresents
some ideas on the weak solution to the problém)&(1.3) highly developed in11]. Sec-
tion 4 discusses the two different mixed finite elements disatins previously mentioned.
Section5 analyzes the resolution schemes for the discrete problé@ims.characteristics of
each one of the test problems and the numerical results asemtied in Sectiof. Finally,
conclusions and possible extensions are presented iro8ecti

2. Notation. In this section we introduce the Sobolev spaces and theiagsdcorms
employed in this paper; se&,[L8] for further details.

Given a domairf2 ¢ R? with boundaryds?, let us recall Sobolev’s classic space for any
non-negative integen and any number > 1:

wmr(Q)={velL (Q):0%ve L (Q),Y|k <m},

where|k| = ki + ko + k3, with (k1, ko, k3) a triplet of non negative integers, and the partial
derivatived” is

k|
akv = k1 o k2 k3"
Ox7' Oxy> 0xy

This space is equipped with the seminorm

3=

|U|Wmv7‘(£2): Z/ﬂ’@kvrdw )

|k|=m

and the norm

P

Ea— /Q Wl d|

0<k<m

with the usual extension in the cage= ~o. If » = 2, then we obtain the Hilbert space
H™ (). Extensions of this definition to non-integral values:ottan be found in18]. We
also use

L3 () = {v € L*(Q): /Qv(a:)da: = 0} .

3. Variational formulation. Some of the ideas developed ihl] on the existence and
uniqueness of a weak solution for the equatidng)¢(1.3) are briefly presented in this sec-
tion. The following spaces are defined for this purpose:

X =19,
M=W"2(Q)NL2(Q).
The constraintsl(.2) and (L.3) are weakened using Green’s formula:

/v~qum:—/qdivvdm+<q,v~n>89, VYq e M,Vv e H, (3.1)
Q Q

where

H= {v e L3 ()% divwe L (Q)}.
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Thanks to the validity of%.1), if we takeb € L3 (Q) andg € L*“7 (99), then the
problem (.1)—(1.3 is equivalent to the following variational formulationnél a pair(u, p)
in X x M such that

H/ (Kﬁlu)wodm—l-g |u|(u-cp)d:c+/Vp-cpdcc:O, Vo e X, (3.2
P Ja P Ja Q

Vg -udx = —/ qum—i—/ gqdo, Yqe M. (3.3)
Q Q o0

If the given functiong andy satisfy the compatibility conditior, b(x)dx = [, g(0)do,
then this problem has a unique solutian p) in X x M; see [L1].

4. Discrete variational formulation. Let Q2 be a two-dimensional polygon that can be
completely triangulated into triangles. L&t be a family of conforming triangulations 6f,

o=

TeT),

which is regular in the sense of Ciarlél]i.e., there exists a constanindependent of and
T such that

ho

VT € 7711 — =op < g,

pT
whereh is the diameter of andp the diameter of the sphere inscribedlinT';, denotes
the set of all interior edges of trianglesTn, andb, is the middle point of an edgee T'y,.

Using this triangulatior?;, andP; (the space of polynomial functions of degree at most

k), finite element spaceX;,, M), are constructed to approxima¥eandM, respectively. The
discrete variational formulation 08(2—(3.3 follows: find (un, pr) € X5 x M}, such that

H/ (K~ 'up) - @pda + é/ lun| (un, - ;) dz
Q P Ja

p
+ ) / Vpn - gpdx =0, Y, € X, (4.1)
TeT, T
Z / Vap, - upde = —/ bqndx +/ gqndo, Yqn, € My, (4.2)
T Q o0

TeTy

This discrete problem is a system of nonlinear equatioresntimerical solution of which
will be studied in Sectio.
Next, the various approximation spack€s and M}, used in this paper are described.

4.1. Approximations of velocities by piecewise-constantihctions and pressures by
Crouzeix-Raviart elements. In this finite element the velocity vecteris approximated by
functions from the space

X0 = {veL2 (Q)? VTeTh,v|Te]P’§}, (4.3)
and the pressuneis approximated by functions from the space
M, = Q" N LG (), (4.4)
where

VTt =1qe L*(Q); VT € Ty, q|y € Py, andVe € T, ¢ is continuous ofb, } .
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The spaceQ,ll’m is the non-conforming space of degree one introduced ariestiy
Crouzeix and Raviartirg]. In [11], the authors demonstrated that the discrete probfeij
(4.2) with the definitions4.3) and @.4) has a unique solution. Moreover/f, satisfies 4.1)
and the solution: belongs tov 14 (€2), then the following error estimations are obtained:

f[w— uh”m(sz) <Ch |U|W1w4(sz) ’
2

3
3
( YV —Ph)Hzg(T)) <Ch (|p|W2,%(Q) + |u|W1’4(Q)) '

TeT)

The approximation spaces’ andQ,ll’m are

0 __ V; 0 .
Xh—span{[o},[vz}}, i=1,..., N,
Q}I’m:span{cpi},izl,...,M,

whereN is the number of triangles i, andM is the number of edges. The functionsare
defined as:

\V/Tjeﬂ, ’Ui|Tj:5ij, i,jzl,...,N,

whered;; the delta of Kronecker. The global basis functipncorresponding to nodg
which is the middle point of an edgeof the triangulation and its restriction to a triandleof
a global base functiop; coincides with a local basis functianof 7'. For this finite element,
there are three local functions,

wl (l’,y) =1- 2)\1 ((E,y)7
¢2 (l’,y) =1- 2)\2 ((E,y)7
3 (Z,y) =1-2\3 (Ivy)v

where); (z, y) is the barycentric coordinate associated to the vertexafdie” which is in
front of edgee;.

4.2. Approximations of velocities by piecewise-constantfctions and pressures by
standard finite elementP; . In this case, the spacé, is defined as in4.3) and the pressures
are approximated by functions in the spadg defined by:

My = QN L5 (), (4.5)
where
Qr=1{qeC’(Q): VT € Tp, q|lp € P1} .

The space); is a classic continuous finite element space whose nodelsavettices of the
triangles, and the local basis functions are

7/’1 (xvy) = Al(xvy)a
¢2 (l’,y) = Ag(l',y),
3 (I,y) =1- )\1(17,1/) - /\Q(Iay)'

Itis clear thatX? ¢ X andM,! C M. ThenX} x M} is a conforming finite element space
since it is used as an internal approximation spacefor M.
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5. Solution of nonlinear systems.Independent of the discretization used4nl§—(4.2),
if {¢;} is the basis of the approximation space for each of the compsrof the velocity
fields and is{ ¥, } the basis of the approximation space for the pressure, thecan write

N M
uy, = E Ui, Ph = E [ R
im1 =1

whereu}, are the degrees of freedom of the velocity vector ginthe degrees of freedom of
the pressure. Then, substituting these expressions iatdisicrete problemd(1)—(4.2), we
obtain the following equation in “matrix form”;

aiIFNf =

whereu = [u},...,u)]", p = [p',....,pM]|T, B (@) uis a nonlinear function of corre-
sponding to

L ) - g+ 2 [ (0,
P Ja P Ja

C'is a matrix corresponding to the term

Z /TVph"Phdma

TeT),

ands represents the right-hand side 6f3).

In view of the nonlinearity of the problen® (1), an iterative scheme is required to deter-
mine an approximation to the solution of the problem. In gaper, we consider two iterative
methods to solve5(1): an alternating-direction algorithm of the PeacemankRard type
proposed in]1] and the classical Newton’s methotl3 15]. We briefly describe these meth-
ods in the next section.

5.1. Peaceman-Rachford (PR)There are references to Peaceman-Rachford-type meth-
ods in the literature on finite differences (see for exampk P1, 25]) which relate this
method to all known Alternating Direction Implicit (ADI) semes. A good reference for
PR-type methods in the solution of linear system2.[

In [11] a PR-type algorithm is used for solving.()—(4.2). In that work and for the
purpose of decoupling the nonlinearity and the restrigtiba authors use the same original
idea of the PR method applied to parabolic time dependeibigms. Thus, giverﬁu%,pg),
one constructs the sequeneg’, py) for n > 1, in two steps:

1
;. A nonlinear step without constraint&nowing (u}, p), an intermediate velocityZJ’2
is calculated such that:

— u —uy | - ppdr+ —
a o\ " h) e P Ja

(quL% . goh) dx
I

= __/Q (K_IUZ) 'S"hdw_Z/ Vpy - ppde, Yo, € Xp. (5.2)
o Jr

n+%
up,

p
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1 . .
2. Alinear step with constraint©nceu;, " ? is obtained from the previous stefu; 1, pp )
is obtained such that:

1 nal
—/Q(uZH—thrﬂ -<phdw+%/Q(K_luz+1) ~ppdx

1 77,+% )
uy, e )de, Vo, € Xp,  (5.3)

whereq is a positive parameter.

Since the equationl(1) differs from Darcy’s equation in the nonlinear te@n\um, a
natural way to select the initial gueéa), p} ) is by solving a linear Darcy step:

s / (K™'up) - ppde+ Yy / Vp) - ppde =0, Ve, € X, (5.5)
pPJa Te1, T
Z / Van - uldx = —/ bgpdx +/ gqndo, Yqn € My,. (5.6)
Ten, /T Q o0
Problems %.3—(5.4) and 6.5—(5.6) are written in matrix form as
My = z, (5.7)

where the matrix of coefficient®/ has a block structure

X C

M:[OT 0

} and z= [r s] r
Then, for the problenf(3)—(5.4), X = A+ é[ with A the symmetric matrix associated to the
term% [, (K~ u™) - ¢, dz andr represents the right-hand side 63). For the problem

(5.5-(5.6, X = Aandz = [0 s}T. Considering the characteristics of the coefficient
matrix M, both linear systems were solved with MINRES.

In [11], the authors demonstrate that the problemhd)(4.2) and 6.5—(5.6) have a
unique solution for the finite element spacés3 and @.4), and that the iterative method de-
fined by 6.2—(5.4) is convergent for an arbitrary choice of the initial apgroation (u} , p?)
and anyx > 0.

Curiously, the solution to the problers.@) can be calculated explicitly for the finite
element space<(3) and @.4). This is also true for the finite element spaces considered i
the second discretizatiod .3 and @.5), since the space that approximates the velocities has
not changed. Thus, in each iteration, the solutiorbaf)(is explicitly calculated and then this
solution is introduced in5.39—(5.4), leading to a linear system of the form given i7).

The explicit solution of §.2) is calculated as follows. The spa&€’ consists of constant

1
functions on each triangl€; hence, the test functions,,, as well as the solu'[io'aZJr2 and
Vpjr are constants on each elemé&ntTherefore, a quick calculation leads to:

ntd 1 on4d
up *=—Fp ?,
Y
+l _ +l
where F. 77 = %u%—% Flulk = Vol v = =+ 3 §+4§’F; 2| and

K;t= 7 Jo K~ () dz. For further details, see.[].
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5.2. Newton’s method. For discretizationsX) x M} and X? x M;"™, let us recall
that X;, and M;,, are made up of functions frofi, andP;, respectively, over each <
7T,. Therefore, the basis functions &f, and the gradient of the basis functionsidf, are
constants over each. Hence, the nonlinear problem.()—(4.2) is written as

G (w) = m with w = [ul,ul, .. u,ul pt, M

x? y7
where
ATi(%Kilul + %|uz|uZ + leh‘Vz/Jij)
j:

Z ATiV\IJj . ui
T; €Supp(V;j)

G (w) = (5.8)

i=1,...N, j=1,....M
Here Az, is the area of triangl&’; v, j = 1,2, 3, are the restrictions of the basis functions
associated to the midpoints of the edges of the triafigleand p’i, j = 1,2,3, are the
degrees of freedom of the pressure associated to the midpfithe edges of triangl€;.
Thus, Newton's method is written as:

wy given

fork=0,1,...,

DG(wy)er, = —G(wy) + [0 s

Wk+1 = Wk + €k,

]T

)

where DG (wy,) is the Jacobian matrix with respectdé, p’, i = 1,...,N,j =1,..., M.
This Jacobian matrix has the same structure as mafrand it is symmetric, since the upper
left block is A plus the Jacobian of the nonlinear teﬁp‘m\u| u, which is symmetric, and the
other blocks are the same blocks as in the malfix

In each Newton step, the Jacobian matrix is computed e#pli§ince the linear system
in Newton’s method and those that appear5rB8—(5.4) and 6.5—(5.6) are symmetric, we
use MINRES [L2, 20, 23, 27] to solve them.

6. Numerical Results. In this section, we present results of numerical experisent
that were designed to test the effectiveness of the PR matbogpared with Newton’s
method, considering two different discretizations of theiational formulation of the Darcy-
Forchheimer problemi(1)—(4.2). The numerical experimentation was accomplished through
three test problems of the form:

Pr—tu+ b lulu+ Vp = f(z,y) inQ,
P P
divu = bin Q,
u-m = g onosl,
where) C R? is a square defined as:
Q={(z,y) eR?: —~1<a<l, -1<y<l1}

The first test problem is defined as follows:

1+ 8222 +2y2) (z +y) + 32?2

TEN =0 pya T30 (e - ) + 307
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and

I+y, x=1,

1—y, r=-—1,
g(z,y) =

T — 17 Y= 17
—T — 17 Yy = _11
so that the exact velocity field and the pressure function are

u(:v,y):(x+y7x—y)T, p(xay):x3+y3

For the second test problem, we use

1) (1+5Lﬁ1)\/(x+1)2+4(y+1)2) + 342

Fz,y) = :
— &) l) (1 + gletl) \/(:v +1)° +4(y+ 1)2) + 3y2
and
1, r=1,
0, r=-—1,
T,Yy) =
01 Yy = _17

Here, the exact velocity field and the pressure function are

C((@+1)? @+D)y+D\
u(xvy)_< 4 s 2 ) )

Finally, for the third test problem, we selected

plz,y) =2 +y°.

2y(1 - a2) (14 28V/y2(1 = 2?7 + 22(1 = 7)) + 30
—22(1 —y?) (1 + 20y (1 — 22)? + 22(1 - y2)2) + 3y

f(x,y) =

and
g(z,y) = 00noN.

In this case, the exact solution of the velocity field and theesponding pressure function
are

u(z,y) = (2y(1 - 2%), —22(1 — %), plz,y) =2 +y°.

The last two problems were taken fro26].

For all the problemsy andp were taken to be 1 anfl = I5.>. Numerical tests were
carried out using different values for parametén order to study the behavior of the methods
as the nonlinearity of the problem increases.

We use a classical triangulatidf built with a family of three parallel lines, meaning
that the squar€ is divided intoL x L squares of a sizk with L = 2/h, which are divided



ETNA
Kent State University
http://etna.math.kent.edu

196 H. LOPEZ, B. MOLINA, AND J. SALAS

FIGURE 6.1. Triangulation7;, with h = 1/2.

into two rectangular triangles by tracing the ascendingalial line. Figures.1 shows this
type of triangulation.

It is easy to verify that the size of the vector velocity apgmation is4L? for both
mixed finite elements spacex;) x M,"™ and X x M}. The size of the vector pressure
approximation i (3L + 2) and(L + 1)2 for M, and M}, respectively.

All the experiments were run on a Intel Core 2 Duo E4300, 1.& @sing MATLAB 7.0.

For the two approximation spaces considered, the calouktvere made for different values
of h: 1/8, 1/16, and1/32. The exact solution is known in all the cases and the stopping
criterion was:

en = [lu = up|2q) < tol,

wheretol is a given parameter. In the experimetiswas set tol.95h, except in the third
experiment. A maximum 2100 iterations was enough to reach convergence in all cases.

In order to make an adequate comparison, the initial guedddaton’s method and the
PR method were the same. Although there is no proof of coevegfor Newton's method
with this initial guess, in all cases the method successtulhverged. The stopping criterion
for MINRES was10~!2 in the 2-norm of the residual.

As we mentioned previously, the PR method wiH x M,f’m converges for ang > 0.
Nevertheless, in practice, it could be observed that itebiehis very sensitive to the choice
of this parameter. For this reason it is very important tecehn appropriate value.

In our first experiment, we conducted a comparative studyp®fR algorithm for dif-
ferent choices of the parameter Numerical tests were performed for all the problems and
the two discretizations defined in the previous section. Béleavior of the algorithm with
respect to the parametemwas similar for all the problems and for both discretizasionhus,
we only report graphs showing a comparative study of therpatera for problem 3 when
g =>50andh =1/8.

Figures6.2(a) and6.2(b) report the behavior of the algorithm with respect to thenber
of iterations for six values of in the interval(0, 1] and for discretizations(} x A} and
XD x M,}m, respectively, while Figures.3(a) and6.3(b) show the behavior of the algorithm
for six different values ofx in the interval[1, 150] and for discretizations(} x M} and
XD x M,i’m, respectively. It can be observed that, regardless of tharatization, the best
results were obtained when = 1, a = 0.01, anda = 5, whereas the worst results were
achieved whemv was too close to zero or greater than 50. This led us to stuaggkctrum
of the coefficients matri¥/ in the PR method. It was observed that, for both discretirati
spaces, forv values near zero or greater than 50, that the minimum eifigmed M tends
to zero and the condition number increases, influencingateeaf convergence of MINRES.
This study confirms our numerical results with respect tocti@ce of thex value.
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FIGURE 6.2. (a) Problem 3 with3 = 50, o € (0,1] and discretizationX x M. (b) Problem 3 with
. S 1
B8 =50, a € (0, 1] and discretizationX{ x M,"™.
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FIGURE 6.3. (a) Problem 3 with3 = 50, o € [1,150] and discretizationX? x M. (b) Problem 3 with
B = 50, o € [1,150] and discretizationX? x M,"™.

Based on all the numerical tests conducted, it was detedrihma the best results, in
most cases, were achieved for= 1; therefore, this value af is used in the PR algorithm in
the remaining experiments.

In the second experiment, we study the behavior of the Pemtddachford algorithm
with the two discretizations considered in this paper ferttiree test problems. Different val-
ues of the discretization parameteand several values of the parameterere considered.
Tables6.1, 6.2, and6.3report the number of iterations and the error of the veloggtytor in
the L?(2) norm.

We observe that for different values 6f the number of iterations required by PR is
similar in both discretizations. However, the computagiarost of solving the linear system
for the discretizationX? x M,""™ is higher, since the size of the system for this discretizati
is approximately, 30% bigger. Therefore, we conclude thatliscretization using’? x M}
is more attractive for this method.

The third experiment tries to establish the order of coneeeg of the discretizations
considered in this paper. In this experiménf,was set td).95h to demand higher accuracy
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TABLE 6.1
Comparison betweeXQ X M}L’m andX}? X Mﬁ discretizations of Problem 1 (using PR).

h=1 h= ] h= 4
8 iter  |lu—upll2g | dter  Jlu—upllag) | dter  Jlu—upll 2
0 [ X T 0.2399 13 0.1161 19 0.0602
X,(é XM, 7 0.2210 11 0.1154 17 0.0585
20 X,(; xM,;™ | 13 0.2400 24 0.1190 37 0.0602
XIx M, 12 0.2375 20 0.1210 32 0.0607
30 | XMy | 19 0.2401 35 0.1201 55 0.0602
X,(é XMy, 18 0.2330 30 0.1192 48 0.0600
40 X,(; xM;™ | 25 0.2401 46 0.1207 72 0.0609
XIxM;, 23 0.2389 39 0.1212 63 0.0608
50 | XpxM,™ | 31 0.2402 57 0.1210 90 0.0608
X,(é XMy, 28 0.2427 49 0.1201 79 0.0603
TABLE 6.2

Comparison betweex ? x M}i’m and X? x M} discretizations of Problem 2 (using PR).

h=1 h= ] h= 4
8 iter  |lu—upllp2g | dter  Jlu—upllpag) | dter  Jlu—upllp2g)
10 X;; X M;’m 10 0.2282 15 0.1204 22 0.0589
X,(L XMy, 10 0.2201 15 0.1181 22 0.0582
20 X,O XM}L’m 19 0.2336 30 0.1180 43 0.0604
X,(f xM;, 18 0.2346 29 0.1183 42 0.0607
30 X;; X M%L’m 28 0.2360 44 0.1210 65 0.0596
X,(L XM, 26 0.2407 43 0.1186 63 0.0602
40 X,O XM}L’m 37 0.2372 59 0.1200 86 0.0604
X,(f x M) 35 0.2363 57 0.1189 84 0.0599
50 X;; ><M1L’m 45 0.2433 73 0.1216 108 0.0601
X,(L XMy, 43 0.2399 70 0.1216 104 0.0609

and to observe the convergence order. The experimentédtiresaroborate thé(h) conver-
gence for the velocity vector approximation that was priedién [L1] for the discretization
spaceX ) x M,i’m. The experiments also indicate that the convergence forgtoeity vector
approximation i< (h) for the discretization spack x M. Tables6.4and6.5show these
results for problem 2 wheh = 1/8, h = 1/16, h = 1/32, andh = 1/64.

In all the numerical tests, the stopping criterion Was— “ZHLz(sz) < tol without tak-
ing into account the pressure accuracy. Talilésand6.7 show the errof|p — pp| a1 (o)
corresponding to the results shown in Tabfe$ and 6.5, respectively. It is clear that the
accuracy of the pressure approximations is very bad. Nesiexds, it is worth noting that the
experimental convergence ordeid$h).

In view of these results, we would like to study how many itieras would be necessary
to achieve an error in the pressure approximation similénéane which is being demanded
from the velocity vector. Tables.8and6.9 show the errof|p — py| g1 () for pressure ap-
proximations obtained with 300 iterations. We can see fiioes¢ tables that the accuracy of
the pressure is far from satisfying the velocity vectorsiaacy in all cases, i.e., for different
values of the discretization parameteand the different values of parametér Therefore,
this method seems to be very computationally expensive t@ioh good approximation of
the pressure.

The fourth and last experiment compares the PR method wathveil-known Newton
method for solving nonlinear systems. Tab$e$Q 6.11, and6.12show the results for New-
ton’s method using the discretizatioAs) x M, andX? x M.
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TABLE 6.3
Comparison betweerX}? X M,lL’m and Xg X M,{ discretizations of Problem 3 (using PR).

h=1 h=>L1 h=L1
16 32
8 iter  Jlu—upllp2g) | dter  |lu—wpll2g | dter  Jlu—upllp2 g
10 | XOxM, ™ 17 0.2437 27 0.1219 36 0.0609
Xg ><J\/[£ 2 0.1806 2 0.1102 8 0.0585
20 X0><Mll1’m 32 0.2437 54 0.1219 71 0.0609
Xg x Mj, 2 0.1822 2 0.1130 14 0.0602
30 | XOxMp™ 48 0.2437 80 0.1219 106 0.0609
Xg x M, 2 0.1828 2 0.1140 20 0.0608
40 | X?x M}11,m 64 0.2437 106 0.1219 140 0.0609
X§ x Mj, 2 0.1831 2 0.1146 27 0.0604
50 | XOx M ™ 80 0.2437 132 0.1219 175 0.0609
Xg x M, 2 0.1833 2 0.1149 33 0.0607
TABLE 6.4

L? error in the velocity vector foﬁ(}z X M}L of Problem 2 (using PR).

h=1 h=+s h=35 h=g;
B | iter  Nlu—wupllp2q | iter  Jlu—unllp2q) | iter  |lu—unllpzq) | dter  |lu—unll 2
10 19 0.115777 27 0.058054 35 0.029657 45 0.014556
20 34 0.116988 49 0.058556 65 0.029663 83 0.014772
30 49 0.118094 71 0.059097 96 0.029348 122 0.014767
40 65 0.117002 94 0.058702 126 0.029548 161 0.014785
50 80 0.117932 116 0.059148 157 0.029409 200 0.014809
TABLE 6.5

L? error in the velocity vector fOIX}? X M;’m of Problem 2 (using PR).

16 32 64

B |iter  Nlu—upllp2g | dter  lu—wllp2g) | iter  [lu—uplleg) | iter  Jlu—uplp20)

10 23 0.1180 30 0.0593 39 0.0293 48 0.0146

20 | 46 0.1180 60 0.0592 76 0.0297 94 0.0148

30 | 69 0.1182 90 0.0593 115 0.0295 141 0.0148

40 92 0.1183 121 0.0592 153 0.0296 188 0.0148

50 | 115 0.1185 151 0.0593 191 0.0297 236 0.0148
TABLE 6.6

H*-error in the pressure foX? x M} of Problem 2 (using PR).

h=1 h==L1 h=2L h=21

8 16 32 64
B ||P—PhHH1(Q) Hp_ph”Hl(Q) ||1U—1UhHH1(Q) HP—Ph”Hl(Q)
10 3.2904 1.8173 1.0408 0.5384
20 7.3398 4.1593 2.3604 1.2929
30 11.4311 6.5330 3.6103 2.0186
40 15.2159 8.7497 4.9460 2.7460
50 19.3172 11.1320 6.1974 3.4741

In all problems and for different values gf if the discretization parametérdecreases,
then more steps were required for the discretizafighx Mi’m than for the discretization
X7 x M}. This behavior was more pronounced for problems 1 and 3.

On the other hand, if the results obtained in Talflds6.3and6.16-6.12are compared,
it can be observed that in all experiments, the PR algoritaquired fewer iterations than
Newton’s method. Figure8.4, 6.5 and6.6 show this behavior for the three test problems
whenf = 20 andh = 1/32. Itis also worthwhile mentioning that the computer cost



ETNA
Kent State University
http://etna.math.kent.edu

200 H. LOPEZ, B. MOLINA, AND J. SALAS
TABLE 6.7
H*-error in the pressure forxX? x M,lL’m of Problem 2 (using PR).
b T T T S
B Hp_ph”Hl(Q) ||1U—1UhHH1(Q) HP—Ph”Hl(Q) Hp_thHl(Q)
10 2.6589 1.5737 0.8486 0.4698
20 5.0690 3.0083 1.7230 0.9531
30 7.4851 4.4454 2.4983 1.4099
40 9.9030 5.7956 3.3234 1.8668
50 12.3214 7.2339 4.1485 2.2973
TABLE 6.8
H' error in the pressure foxX ) x M of Problem 2 with 300 iterations (using PR).
h=% h= 15 h=z h=g;
B | llp=prllgiey lIp=pullgrg) lp=prllgry  IIP=prllgig
10 0.3553 0.1772 0.0885 0.0442
20 0.3559 0.1773 0.0885 0.0443
30 0.3629 0.1865 0.1052 0.0721
40 0.4719 0.3586 0.3271 0.3192
50 0.9871 0.9663 0.9649 0.9652
TABLE 6.9
H* error for the pressure foX ) x M,lL”” of Problem 2 with 300 iterations (using PR).
h=g% h= 16 h=3 h=g;
B | llp=prllgiey lp=pullgrg) llp=—prllgry  IIP=prllgig
10 1.2886 0.6441 0.3220 0.1610
20 2.4543 1.2272 0.6135 0.3068
30 3.6227 1.8119 0.9072 0.4562
40 47741 2.4019 1.2314 0.6739
50 5.9343 3.0806 1.7518 1.2106
TABLE 6.10
Comparison betweex ? x M}i’m and X? x M} discretizations of Problem 1 (using Newton).
he he he b
Ié; iter  [lu—upllp2g) | dter  llu—upll2g) | dter  Jlu—upllp 2
10 [ XPxan™ 29 0.2416 83 0.1207 430 0.0609
X,(é XMy, 8 0.2369 26 0.1210 83 0.0597
20 | X9x M}L’m 52 0.2419 203 0.1218 608 0.0609
XUt 19 0.2319 49 0.1201 154 0.0601
30 Xg X M;’m 89 0.2410 322 0.1217 895 0.0609
Xg XMy, 30 0.2419 79 0.1192 249 0.0607
40 X,0 X M}L’m 146 0.2427 471 0.1213 1305 0.0608
XOx ML 47 0.2346 118 0.1218 321 0.0605
50 | X9 ><M1L’m 205 0.2436 629 0.1218 1664 0.0609
X:(? XM% 58 0.2415 159 0.1207 410 0.0606

for Newton is higher than for PR iteration, because in eagfaiion, Newton evaluates the
Jacobian and solves a system of linear equations, and P8ssalinear system of equations
and calculates an intermediate solution. The computerofdisis calculation is negligible in

comparison with the Jacobian evaluation. For these reagm®R algorithm is much more
attractive.

7. Conclusions. This paper presents a comparative study between the Peadeacaford
iterative method and Newton’s method with two differentcdétizations of a flow using
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TABLE 6.11
Comparison betwee ? x M}L’m and X9 x M} discretizations of Problem 2 (using Newton).
h=1 h= h= g
8 iter  Jlu—upllpag | dter  Jlu—upllag) | iter  Jlu—upllp g
10 X,O XM%L’"L 39 0.2431 110 0.1182 427 0.0609
X,(é X My, 12 0.2362 35 0.1186 103 0.0601
XM’ . . .
20 X,(; M}L " 77 0.2380 240 0.1207 760 0.0609
XIx M, 27 0.2424 66 0.1207 196 0.0607
30 X,O XM%L’"L 141 0.2423 415 0.1212 1189 0.0609
X,(é X My, 39 0.2437 99 0.1198 311 0.0606
XM’ . . .
40 X,(; M}L ™ 1 139 0.2428 560 0.1214 1563 0.0608
XIx M, 59 0.2349 153 0.1210 413 0.0594
50 X,O XM%L’"L 191 0.2433 768 0.1218 2008 0.0609
X,(é X My, 75 0.2396 203 0.1197 531 0.0608
TABLE 6.12
Comparison betweng X M}t’m anng X M}L discretizations of Problem 3 (using Newton).
h=1 h= L h=3
8 iter  Jlu—upllp2g) | dter  |lu—upllp2g) | dter  Jlu—upllp2g
10 Xg X J\/li’m 12 0.2437 42 0.1219 116 0.0609
XPx M 6 0.1910 7 0.1108 16 0.0562
20 X}gxM%’m 19 0.2437 90 0.1219 371 0.0609
X x My, 7 0.2071 9 0.1082 22 0.0592
30 Xg X J\/li’m 27 0.2435 136 0.1219 426 0.0609
XPx M}, 8 0.1901 11 0.1107 28 0.0594
40 X}g xMP™ 35 0.2437 170 0.1219 589 0.0609
X x My, 8 0.2365 13 0.1217 39 0.0605
50 Xg X J\/li’m 42 0.2437 225 0.1219 791 0.0609
XPx M}, 9 0.2052 16 0.1184 48 0.0599
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FIGURE 6.4. Number of iterations vs absolute error in the solution of ftean 1 usingX}? X M,lL”” and
X9 x M} discretizations and the methods PR and Newton.

Darcy-Forchheimer’s equation. Newton’s method is not cetitige with the PR method,
because the PR method has a lower cost per iteration andesdenver iterations to achieve
convergence. The parameterin the PR method was set to its best value after some ex-
periments. The convergence order for the discretizalinx A/} with PR was determined
experimentally, and the convergence order for the diszattin X ;) x M,i’m, determined the-
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FIGURE 6.6. Number of iterations vs absolute error in the solution of e 3 usinng X Mi"" and
X9 x M} discretizations and the methods PR and Newton.

oretically in [L1], was corroborated. The results obtained through our tedtlems indicate
that the PR iterative method is very attractive for numélyicgolving Darcy-Forchheimer’s
model with both discretizations. However, for thg x M} discretization, the CPU and
memory requirements are lower and there is not much difterémthe number of iterations

compared with theX x M, discretization. For that reason, th&) x M, discretization
is a better choice.

In a future paper, we would like to study the convergence tdaoiy vector approxi-
mation using the PR method and the space discretizafjprx M}, to propose other mixed
finite elements, and to solve the nonlinear systems withrathative methods of low com-
putational cost. As for obtaining an accurate approxinmefio the pressure and low compu-
tational cost, it would be interesting to use a remarKiifj [n which the solution of a Poisson
equation for recovering a pressure approximation is prego¥Ve also would like to com-

pare our results with those of other researchers in nuneairmoalations of flow models with
a projection.
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